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Abstract

The Rothamsted Insect Survey has kept records of aerial aphid activity
using suction traps since 1965. Previous work has shown that, for certain
species, there is a linear relationship between the date of first record in the
trap each year and the mean temperature during the preceding winter. This
paper describes and evaluates a more complex technique which relates the
date of first record to a range of weather variables over 28 winter time
periods. The technique uses principle components analysis to remove correla-
tions between weather variables before these are regressed on the date of first
record. Data from 1966 to 1988 inclusive are used to generate models to
predict the date of first record of Myzus persicae (Sulzer) at Rothamsted, and
the predictive values of models using both simple and multiple regression are
assessed using data from 1989 to 1992. The accuracy of the multiple regression
models was no greater than that of the simple regression models during these
years. However, the multiple regression approach identified relationships
with other variables for time periods when the correlation with mean
temperature was weaker and may therefore be more widely applicable.
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potato and sugarbeet crops at the time of planting, and
can be expected to remain active for six to eight weeks
after this (Dewar, 1986). A system which could provide
an early indication of the likelihood of aphid activity
whilst the insecticide is effective would allow growers to
avoid unnecessary applications at the time of planting.
For these predictions to be of maximum value in ration-
alizing use of granular insecticides, they would need to
be issued by the beginning of March, although a later
prediction may be of value in warning growers of the
need for aphicidal sprays later in the growing season.

The Rothamsted Insect Survey has used 12.2 m
suction traps (Macaulay et al., 1988) to monitor aerial
aphid activity in Great Britain since 1965, and since
then a network of such traps has been established
throughout much of Europe (Tatchell, 1991). For some
species at some sites, the date of first record and the
total number of aphids caught up to 1 July are linearly
related to mean temperature during the preceding
winter, and simple linear regression (Turl, 1980;
Walters & Dewar, 1986; Harrington et al., 1990) or mul-
tiple linear regression (A'Brook, 1983; Harrington et al.,
1989) techniques have been used to develop predictive
models. Simple linear regression models do not always
account for a sufficient proportion of the total variance
to make a reliable prediction, probably because the
model is attempting to describe a complex relationship
using only one predictor variable. Previous multiple
regression studies have used weather variables which
are likely to have been correlated with one another, and
this makes interpretation of the models difficult.
Harrington et al. (1991) investigated the value of an
improved multiple regression technique in forecasting
the date of the first record of 49 aphid species at six
sites in 1989. The models used were particularly succ-
essful in predicting the date of the first record of four
species (Myzus persicae (Sulzer), Macrosiphum euphorbiae
(Thomas), Sitobion avenae (Fabricius) and Phorodon
humuli (Schrank)) at a range of sites, and the methodol-
ogy warrants further testing and comparison with the
more straightforward simple linear models. This paper
describes the multiple regression technique in greater
detail and assesses the abilities of the models using this
technique, and using simple regression with mean tem-
perature, to predict the date of the first record of Myzus
persicae in the Rothamsted suction trap in the years
from 1989 to 1992.

Methods

Sources of data

Aphid data were obtained from the Rothamsted
Insect Survey database. The Julian date of the first record
of M. persicae at Rothamsted in each year was used in the
analyses. This was assumed to be an indication of the
time at which the aerial aphid population reached the
threshold of detection using the suction traps, and there-
fore an index of the time of the start of the migration
from winter hosts, potentially to crop plants. The use of
the first aphid trapped is likely to result in stochastic
sampling errors, although Harrington et al. (1990) found
that the first record was more closely related to winter
mean temperature than either the third or the fifth

Table 1. Variables used in the analysis

1. Mean screen temperature

2. Mean screen minimum temperature

3. Mean grass minimum temperature

4. Mean accumulated day degrees below zero

5. Mean accumulated day degrees above zero

6. Mean 10 cm soil temperature

7. Mean 30 cm soil temperature

8. Mean rainfall

9. Mean sunshine duration

10. Minimum screen minimum temperature

11. Minimum grass minimum temperature

record. Data from 1966-1988 were used for the construc-
tion of the prediction models.

Weather data were obtained for each site from the
Agricultural and Food Research Council's ARCMET
database. To assess the relative importance of weather at
different times during the winter, separate analyses
were done for each of the months from November to
May, and each consecutive combination of these
months, giving 28 analyses in total. Nine weather
variables were selected for inclusion in the model
according to their availability and perceived biological
significance, and these were averaged over each of the
28 winter periods. The absolute minimum screen and
grass temperatures for each time period were also
included, making 11 variables in total (table 1).

Statistical analysis

Multiple regression can be used to find the most
important weather variables affecting date of first catch.
However, high correlations are often found between
weather variables. This can cause difficulties in assess-
ing the relative importance of each of the regressor vari-
ables as well as limiting the usefulness of the model
when predictions are made from data which are outside
the range of those used to construct the model
(Abraham & Ledolter, 1983). It is therefore desirable to
remove these correlations before continuing with the
construction of potential forecasting models. A. principal
components analysis applied to the 11 original variables
generates a set of scores which retains the total variation
in, and has the same dimensionality as, the original
dataset. Moreover, each score is a linear combination of
all the variables such that the scores are all uncorrelated,
and are therefore more suitable than the original vari-
ables for use in multiple regression analysis. A draw-
back is that if an individual year has a missing value in
any one variable then the values of all the other vari-
ables for that year are ignored in the principal compo-
nents analysis. This was an important consideration in
the selection of the variables to be used in the analysis,
although a limited number of missing values could be
estimated using the MULTMISS procedure in Genstat 5
(Payne et al., 1987). A principal components analysis was
performed after the 11 variables had been put on a com-
mon scale of 0-100. This was achieved by assigning the
smallest datum in each variable a value of zero, the
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largest a value of 100, and placing the remaining data on
a linear scale between.

Multiple regression models were produced by
regressing the aphid data on the principal components
scores derived from the weather data for each time
period, using the stepwise multiple linear regression
methods of Genstat 5. The F-values for the inclusion and
exclusion of variables were both set to 4.0, allowing
terms to be added to, or deleted from, the model only if
this resulted in a significant improvement at approxi-
mately the 5% level (Montgomery & Peck, 1982, p. 278).
Models were backtransformed to obtain coefficients for
the original variables.

Simple regression models were produced by regress-
ing the aphid data on the mean screen temperature for
each time period.

Model evaluation

The coefficient of multiple determination, R2, can be
interpreted as the 'percentage variance accounted for'
and is often used as an indication of the adequacy of a
linear model. However, R2 can be influenced by factors
other than the fit of the data, such as the steepness of the
regression line (Barrett, 1974), and can at best only indi-
cate the strength of the relationship within the existing
data. Thus a model with a large value of R2 may not per-
form well in forecasting future values. It is also inappro-
priate to use R2 for comparisons of models in different
situations, in this case different winter time periods for
example.

To obtain a measure of model prediction accuracy
the models generated using both techniques were
assessed using the prediction error sum of squares
(PRESS) technique (Allen, 1974). The PRESS value is the
sum of the squared differences between the observed
data points and their predicted values based on the
remaining n-1 points. By substituting PRESS for the
error sum of squares in the equation used for R2, a 'pre-
diction R2' can be calculated (Montgomery & Peck, 1982,
pp. 430-434). This indicates how much variability in pre-
dicting new observations the model is expected to
explain.

Models using data up to the end of March and hav-
ing a prediction R2 greater than an arbitrary value of
40% for both techniques were further evaluated using
test data from 1989 to 1992. These data were not used
in the construction of the models. Predictions based on
new data were calculated by substituting new values
into the regression equation and confidence intervals at
the 95% level were calculated for the predictions using
the method suggested by Montgomery & Peck (1982),
p. 125.

A regression model may provide accurate predic-
tions when the new data lie within the range of those
used in its construction, but be inaccurate when used
outside that range, as the model contains no information
about the relationships between the variables under the
new conditions (Weisberg, 1985). It is therefore impor-
tant to know when a prediction is based on an extrapo-
lation of the model. In simple linear regression this is
easily determined but, with multiple regression models,
where the interpolation zone is represented by an ellip-
soid in multidimensional space, it is possible for a new
value to be outside this zone even if all of the regressor

variables are within the range of those used to construct
the model. The multiple regression models were tested
for extrapolation using a method described by
Montgomery & Peck (1982), p. 142.

Results and discussion

Of the 28 simple linear regression models with mean
temperature alone, February was the most significant
single month in determining the timing of the spring
migration of M. persicae at Rothamsted (table 2, last
column). The relationship with mean January tempera-
ture was very weak although models using time periods
which contained both of these months almost always
had a larger prediction R2 than February alone.
Similarly, the relationship with mean temperature in
March was very weak but the inclusion of this month in
a model often resulted in an increase in the prediction
R2. Models constructed using multiple regression
appeared to follow a similar pattern (table 2) but com-
parisons between time periods are more difficult as the
model selected for each uses different combinations of
the weather variables. In general, mean screen tempera-
Table 2. Comparison of prediction R2 of the models generated
for each of the time periods using simple and multiple regres-
sion techniques.

Time
period

Nov
Nov-Dec
Nov-Jan
Nov-Feb
Nov-Mar
Nov-Apr
Nov-May
Dec
Dec-Jan
Dec-Feb
Dec-Mar
Dec-Apr
Dec-May
Jan
Jan-Feb
Jan-Mar
Jan-Apr
Jan-May
Feb
Feb-Mar
Feb-Apr
Feb-May
Mar
Mar-Apr
Mar-May
Apr
Apr-May
May

Type of model

multiple

prediction
R2

0
0
0

51
55
75
74

7
11
60
52
59
73
19
68
83
80
79
54
63
61
72
56
48
50
17
34
0

influential
weather

variables*

-
-

9,5,3
11,2,4,7,1
4,11,7,2,6
7,3,6,11,9,5
9,8
8,3,11,5
7,5,1,3,10,6
4,1,2,11,7,5
4,2,8,7,1
2,7,11,8,6
1,5
5,2,1,7,11
1,5
1,5
5,6,7,1,3
7,5,6,1,2,10,4
11,10,3,8,5
8,7,9,11,5
8,9,7,6,11
5,1,2,7,4,8
11,8,10,4,7
8,9,1,5
7,6,2,1,5
8,3,10
-

simple

prediction
R2

0
0
0

40
53
53
64
0
4

51
58
62
70
15
73
69
77
78
51
48
48
54

0
9

19
0
0
0

'Variables are as in table 1.
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Table 3. Predicted and observed Julian date of first catch of Myzus persicae at Rothamsted, 1989-92 ± 95% confi-
dence limits. Predictions in parentheses are based on extrapolations of the models producing them.

Model
period

Nov-Feb

Nov-Mar

Dec-Feb

Dec-Mar

Jan-Feb

Jan-Mar

Feb

Feb-Mar

Mar

Actual

1989

simple

119 ±34

(110 ±32)

112 ±31

(106 ±31)

117 ±23

(109 ±2 5)

126 + 32

(116 ±34)

131 ± 48

multiple

(104 ±31)

(98 ± 34)

118 ±27

117 ±32

117 + 25

(90 ±21)

129 ±31

123 ± 25

132 ±31

92

1990

simple multiple

111 + 35 (106 ±39)

(101 ±34) 108 ±30

108 ±32 (142 ±34)

(101 ±32) (112 ±32)

139 ±22 (94 ±29)

125 + 24 (111 ±27)

(111 ±34) (112 ±33)

(103 ±36) 107+26

(129 + 49) 111 + 31

112

1991

simple

159 ± 33

146 ± 30

161 + 30

149 ±28

163 ± 23

146 ± 23

168 + 32

145 ± 32

131 ± 48

multiple

(115 ±47)

(102 ± 49)

149 ± 31

161 ± 30

160 ± 26

(108 ± 26)

171 ± 31

(140 ±31)

(129 ±34)

174

1992

simple

135 + 33

126 + 31

138 + 29

130 + 29

133 + 23

123 + 24

132 ± 31

(122 ± 33)

133 + 47

c

multiple

(81 ± 49)

(71 ± 58)

(126 ± 33)

145 ± 30

133 + 25

(111 ±30)

137+30

(107 ± 29)

113 ±31

J9

ture, accumulated day degrees above zero and soil tem-
perature were influential variables in models based on
data from the months of January, February and March.
In models for the later periods examined, where the
mean screen temperature was less important, minimum
temperature, rainfall and sunshine duration tended to
be more important. However, the model for March high-
lighted accumulated day degrees above zero and mean
screen temperature as important variables, whereas
simple regression showed the relationship with mean
screen temperature to be very weak.

Models having a prediction R2 greater than 40%
were obtained from both techniques in 16 of the 28 time
periods, and the eight of these 16 which used data up to
the end of March were evaluated using new test data.
Models for the month of March alone were also tested
on new data in an attempt to resolve the above anomaly.

Despite having, on average, a prediction R2 11 per-
centage points larger than the simple regression model
for the same time period, the multiple regression models
did not produce consistently more accurate predictions
in 1989 to 1992 (table 3). The winter and spring of 1989
and 1990 were exceptionally mild in Britain and
approximately half of the predictions for these years
were based on extrapolations from the models. The
relatively small size of the original dataset used in the
models in this paper (23 years) means that predictions
based on extrapolations could be a common occurrence
with both techniques. This happened more frequently
with the multiple regression technique (19 out of 36
cases) than with the simple regression technique (10 out
of 36 cases). If no long-term changes in weather patterns
were occurring, the likelihood of new data being outside
the range of those used to construct the models would
decrease as the dataset got larger. In a scenario of global
climate change, however, this would not be the case.

The confidence limits associated with the predictions
in table 3 were similar using both methods. The magni-
tude of the confidence limits reflects the variation in the
date of first record which is not accounted for by the
models and hence is usually greater for models having a

small prediction R2. From 1966 to 1988 the range of dates
of first record of M. persicae at Rothamsted was between
Julian days 102 and 205. Although the confidence limits
of most predictions occupied approximately half of the
year to year range, the mean error of interpolated simple
and multiple models was much smaller than this (24
days and 23 days, respectively).

It is interesting to note that in 1989 and 1992, predic-
tions based on extrapolations of both types of model
performed better than those based on interpolations.
The first M. persicae caught at Rothamsted in 1989 and
1992 were both earlier than the earliest aphid caught
during 1966-1988 and therefore outside the range of the
data on which the models were built. Since an interpola-
tion from a regression model is unlikely to be outside
the range of previous experience, predictions resulting
from an extrapolation of a model would be expected to
be closer to the actual date for these two years than
those based on interpolations of the model producing
them.

The relationship between mean temperature in the
periods including January, February and March, and the
date of the start of the spring migration of M. persicae at
Rothamsted is particulary strong. As a result of this, the
multiple regression method did not appear to increase
significantly the accuracy of the predictions although, as
discussed above, the addition of more years of data to
the models may alter the relative performance of the
two techniques. The multiple regression technique was
able to identify relationships with other weather vari-
ables for time periods where the relationship with mean
temperature was weak and, although these did not
result in more accurate predictions in the present analy-
sis, it is possible that the multiple regression models
may be of more use for modelling other species of
aphid, possibly at different sites, and other groups of
insects where the relationship with mean temperature is
weaker.

Empirical models such as the ones presented in this
paper are potentially useful but their value may be
increased by the incorporation of the results of labora-
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tory and field experimentation. For example, a detailed
knowledge of the cold-hardiness of each aphid species
may suggest different thresholds for the accumulated
temperature variables. A sound understanding of the
factors which influence the overwintering survival of
aphids can be of use in the rejection of models where the
observed relationship comes about by chance alone. The
multiple regression model for March appeared, from its
prediction R2, to be much more robust than the corre-
sponding simple regression model but only resulted in a
better prediction in 1990 and 1992. This highlights the
importance of establishing a logical cause-effect relation-
ship before a prediction model is used.

There is little point in using a complex analysis
unless the models formed are more robust than those
obtained from a simpler approach. Although the para-
meters included in the multiple regression models can
be resolved into the original weather variables, the
mechanism of the model is not immediately obvious
and so cause-effect relationships can be less easy to
establish than with the simple linear regression models.
In order to make useful comparisons between these two
methods it will be necessary to test both techniques on
additional data from other years, and also to perform
detailed comparative analyses on other species of aphid.
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