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Abstract

The identification of virulence genes in plant pathogenic fungi is important for understanding the infection process, host
range and for developing control strategies. The analysis of already verified virulence genes in phytopathogenic fungi in the
context of integrated functional networks can give clues about the underlying mechanisms and pathways directly or
indirectly linked to fungal pathogenicity and can suggest new candidates for further experimental investigation, using a
‘guilt by association’ approach. Here we study 133 genes in the globally important Ascomycete fungus Fusarium
graminearum that have been experimentally tested for their involvement in virulence. An integrated network that combines
information from gene co-expression, predicted protein-protein interactions and sequence similarity was employed and,
using 100 genes known to be required for virulence, we found a total of 215 new proteins potentially associated with
virulence of which 29 are annotated as hypothetical proteins. The majority of these potential virulence genes are located in
chromosomal regions known to have a low recombination frequency. We have also explored the taxonomic diversity of
these candidates and found 25 sequences, which are likely to be fungal specific. We discuss the biological relevance of a few
of the potentially novel virulence associated genes in detail. The analysis of already verified virulence genes in
phytopathogenic fungi in the context of integrated functional networks can give clues about the underlying mechanisms
and pathways directly or indirectly linked to fungal pathogenicity and can suggest new candidates for further experimental
investigation, using a ‘guilt by association’ approach.
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Introduction

The Ascomycete fungus Fusarium graminearum (teleomorph

Gibberella zeae) is a major pathogen of wheat causing Fusarium ear

blight, Fusarium head blight or Fusarium head scab disease [1,2]

(www.scabusa.org). As wheat accounts for 32% of global cereal

production and provides 20% of the world’s calorific intake (www.

fao.org), control strategies for Fusarium infection are important for

food security. Fusarium graminearum can also infect the floral tissue of

numerous other cereal species, including maize, barley, triticale,

rice and oats [1]. Although affecting yield, Fusarium infection often

leads to reduced grain quality and to contamination of the grain

with various mycotoxins, in particular the ß-type trichothecene

deoxynivalenol (DON) and its acetylated derivatives (15A-DON

and 3A-DON), which may make the grain unsafe for human and/

or animal consumption [3].

The genome sequence of Fusarium graminearum [4] is predicted to

code for 13,332 proteins and further revisions to the identification

of open reading frames and annotation are in progress [5,6]. As a

result of the analysis of a genetic cross between the sequenced

strain and another strain, the F. graminearum genome is recognised

to contain regions of high recombination in both sub-telomeric

and central chromosome regions interspersed with longer regions

with low or no genetic recombination. Genes shared between

different Fusarium species are primarily located in the low and no

recombination regions [4]. Particular genes in F. graminearum, other

Fusarium species and other plant fungal pathogens have been

investigated experimentally for their contribution to pathogenicity

or virulence, i.e. their qualitative or quantitative effect of the

disease causing ability of a microbe. Typically these experiments

involve stable gene disruption/gene deletion in the pathogen and

observation of the resulting infection phenotype in one or more

host plant systems. Already a large number of F. graminearum genes

have been tested and published, of which 100 were found to alter

virulence and 33 had no effect on the interaction tested at the time
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of writing this article [7] and Table S1). Several of these F.

graminearum virulence genes are unique to this species or restricted

to closely related Fusarium species whilst others genes are also

required for virulence in other plant and/or animal infecting

microbes. To assist comparative studies, the functions in numerous

other pathosystems of pathogenicity and virulence associated

genes has been catalogued in the Pathogen-Host Interactions

database called PHI-base [8–10], accessible at www.phi-base.org.

This is an expertly curated database for ,1000 pathogen-host

interactions. The plant, animal, fungal, oomycete and/or bacteria

entries in PHI-base are extracted from the scientific literature by

domain experts and therefore describe experimentally tested

interactions, for example the effect of a given gene disruption

experiment in a given pathogen, on a particular host. Importantly

PHI-base also details those tested genes, which had no effect on

pathogenicity.

In order to understand how particular genes and their gene

products may contribute to the pathogenic process it is necessary

to explore the biological context of these genes. Approaches that

involve placing these genes within various relationship networks

provide a useful starting point. The relationships can include, for

example, gene co-expression, known or predicted protein-protein

interactions, and sequence similarity (see for example [11] ).

Previously, a predicted protein-protein interaction (PPI) network

has been used to predict pathogenicity genes in Fusarium

graminearum [12]. This ‘guilt by association’ approach [13] was

used to examine those proteins in a predicted PPI network [14]

that have at least two known pathogen associated genes as nearest

neighbours with additional filtering of candidates using some of

the available in planta and in vitro gene expression data available

from a comprehensive data source called PLEXdb [15]. The Liu

et al. network analysis used an initial list of 49 F. graminearum gene

sequences available in PHI-base. A total of 39 potential virulence

associated proteins were identified, of which nine have now been

connected to virulence through experimentation (reviewed in [7]).

Here we extend the study of [12] by using an integrated network

that includes co-expression information and sequence similarity in

addition to the core predicted PPI network [14] as well as a larger

set of known Fusarium graminearum virulence associated genes. The

aim of this study was two-fold: firstly to predict additional F.

graminearum virulence associated genes that could then become

targets for experimental analysis and secondly to enable the

biological context of the predictions to be explored. As our starting

point, we have used the set of verified virulence (VV) genes taken

from the pathogen host interaction database PHI-base (version

3.3) as well as manual curation of the recent literature on Fusarium

graminearum pathogenicity in order to include entries not yet in

PHI-base 3.3. The data integration has been carried out using the

Ondex data integration and visualisation system [16,17] which

allows the integrated network to be explored manually. The

filtering tools in the Ondex system allow the effects of inclusion or

exclusion of various evidence types on the predictions to be

inspected. We discuss in detail the biological plausibility of some of

the predictions. The predictions in the context of the entire

network have been made available for use by the community. We

acknowledge that the term virulence associated genes/proteins can

be interpreted in a number of ways – the candidates we have

identified may be involved in some part of the virulence process

but not necessarily be directly involved (for example, an effector

protein) and could be seen as system components [18].

Results

Predictions Made with the Integrated Network
We constructed an integrated network for Fusarium graminearum

using information from protein sequence similarity, gene co-

expression and predicted protein interactions (PPI). The coex-

pression links were created between nodes representing proteins if

the genes encoding them were found to be coexpressed. We have

previously described the disjoint and overlapping community

structure of the integrated network in [19]. Here we use the

network for prediction of potential new virulence associated

proteins.

Table 1 shows the graph topological properties, calculated with

the NetworkX package [20], of the three constituent networks, as

well as an integrated network, which uses information from all

three constituent networks. The sequence similarity network has a

large number of connected components (subgraphs in which any

two nodes are connected by a path of edges) and a high transitivity

measure (suggesting more tightly connected structures, i.e a more

‘clique-like’ structure). These properties most likely reflect the

grouping of the proteins into sequence similar groups. The

predicted protein interaction network from [14] also has a high

transitivity suggesting a more ‘clique like’ structure, which may be

an indication of predicted protein complexes, although this

structure may be affected by the way in which data from some

experiments is interpreted and represented as binary interactions

in different PPI data sources [17].

The prediction of virulence associated proteins was carried out

in the Ondex software by the implementation of a new plug-in, as

described in the Methods section. Following [12] a node in the

network was labelled as a predicted virulence associated protein if

it was a nearest neighbour to at least two VV seeds. Fewer VV

seeds were involved in predictions in the co-expression network

than the PPI network (18 seeds as compared to 30). As expected,

the integrated network was the largest and had the greatest

number of VV seeds which were involved in predictions (60).

This approach resulted in 215 predictions in the integrated

network, which was considerably more than could be predicted

from any of the individual constituent networks: using only the

sequence similarity based network leads to 100 predictions, the

coexpression network yields 47 predictions and the predicted PPI

network of Zhao et al (2009) 79 predictions. The 215 predictions

(Table S2) contain 29 proteins annotated as hypothetical protein

in the Fusarium graminearum database [6]. The predictions made on

the basis of PPI links to the VV seeds may reflect an ancient

species conserved sub network, because the Fusarium PPI network

originally described by [14] had been developed using information

from six eukaryotic species and one prokaryotic species, which are

all non-pathogenic, namely, budding and fission yeasts, human,

mouse, fly, worm and E. coli. The predictions made on the basis of

co-expression links could potentially represent, either a fungal

taxon restricted, but conserved network, a Fusarium graminearum

specific network or again be part of an ancient species conserved

network. The complete list of all predictions and the seeds they are

connected to is available as Table S3. We have also included

what proportion of all edges for each of the predicted nodes are

linked to seeds. Although, it would be reasonable to assume that a

higher proportion would indicate a more certain prediction, the

small numbers of available seeds did not allow us to explore this

further as part of this study.

Some predictions were made on the basis of the node being a

nearest neighbour to a larger number of VV seeds and these may

represent more confident predictions. Table 2 shows the

distribution of the number of seeds to which each predicted

Refined Network Analysis for Fusarium graminearum
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virulence associated node is connected in the integrated network as

well as in the three constituent networks.

The method for selection of candidate virulence associated

proteins based on the network neighbourhood of the proteins

previously reported to be important for infection and disease

formation was reported by the study of [12]. However, the original

study did not validate the underlying assumption that proteins

important for virulence are in fact more likely to be connected to

other proteins with similar properties. To test this assumption, the

node labels were permuted 10000 times to give an estimate of how

likely any protein annotated to be involved in virulence is to be

connected with at least two others. As shown in Table 3, we have

observed that the probability is significantly higher than would be

expected by chance for sequence similarity and protein-protein

interaction networks, but not so for the co-expression network.

This result can be taken as an indication that the selection strategy

used in this work can be used to reveal the most relevant candidate

proteins.

We have described the community structure of the largest

connected component of the integrated network in another study

[19]. First a series of disjoint (non-overlapping) communities of the

network were detected using the Louvain method [21] (which

optimises a measure known as modularity [22]. Modularity

optimisation is a widely accepted method for community structure

detection and has proven its utility in many biological applications

and in particular has found functionally coherent communities in

PPI networks [23,24]. These disjoint communities were then

transformed into overlapping communities through the applica-

tion of a mathematical programming method, which allows nodes

making connections across community borders to be multi-

clustered according to the optimisation of another metric known

as community strength [19]. In the transformation from disjoint to

overlapping communities, the extent of overlapping, i.e. the

number of proteins that belong to multiple communities, is

controlled by a parameter r. In general, the multi-clustered

proteins were found to have a higher connectivity and higher

multi-functionality based on Gene Ontology (GO) annotations

than proteins belonging to only one module. We found that overall

the verified virulence proteins did not appear to show a tendency

to belong to multiple communities although one case was noted

(r = 0.4), where nearly half (49.3%) of the VV proteins belonged to

more than one community. We are aware that the small number

of VV proteins makes it difficult to ascribe biological significance

to these results. We explore here whether the 215 predictions also

exhibit the same behaviour. We find that 164 out of the 215 are in

the largest module (of size 1951 nodes), which also contains 33

seeds. This module was previously shown to be significantly

enriched for VV proteins, and therefore, it makes sense that a

large number of the predictions also belong to this community due

the nature of guilt-by-association. We now consider the module

membership of the predictions to determine whether they tend to

belong to more than one module. We find that according to the

Fisher’s exact test, a significant proportion of the predicted

proteins do belong to more than one module (in the range 0.4# r

#0.9). This may be due to the fact that multi-clustered proteins

tend to be more connected than proteins belonging to only one

module and therefore have a higher chance of being connected to

the VV proteins. However, it may also indicate that the proteins

Table 1. Comparison of the global properties of the four predicted networks.

Network type Nodes Edges
VV seeds leading
to predictions

Connected
components (CC)

Size of largest
CC Transitivity Predictions

Sequence network 6349 27807 19 (12) 1155 625 0.69 100 (61)

Core PPI [14] 3459 24348 30 (21) 111 2995 0.85 79 (54)

Co-expression 3654 33272 18 (13) 159 3239 0.42 47 (14)

Integrated 9521 80997 60 (50) 439 8364 0.52 215 (120)

Global properties of the three constituent networks and the integrated network. The sequence similarity network excludes nodes with no edges (‘orphan’ proteins with
no sequence similarity matches). Column 4 is the number of verified virulence (VV) seeds involved in the predictions, using the rule that a node must be connected to at
least 2 seeds to be a prediction (in brackets are the corresponding numbers if we require connection to at least 3 seeds); Column 8 gives the number of predictions (in
brackets are the corresponding prediction counts if we require a more stringent rule i. e. a node must be connected to at least 3 seeds to be a prediction).
doi:10.1371/journal.pone.0067926.t001

Table 2. Predicting virulence nodes based on the seed numbers connected within the local neighbourhood.

Number of nodes connected to a given number of seeds

Number of seeds Integrated Protein-protein interaction Co-expression Sequence similarity

2 95 25 33 39

3 58 48 11 23

4 32 6 3 25

5 23 0 0 12

6 3 0 0 1

7 3 0 0 0

8 1 0 0 0

The number of seeds to which each predicted virulence node is connected, in the four networks is shown. A node linked to 2 or more seed nodes is termed a prediction.
Some predictions have links to multiple seeds.
doi:10.1371/journal.pone.0067926.t002
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predicted to be virulence associated may have a tendancy to be

multi-functional.

We also compared the length distributions of the set of 215

predicted virulence associated proteins with the length distribution

of all the proteins in the F graminearum genome and find that

average lengths of proteins in the predictions and the seeds subset

are significantly greater than all the other F. graminearum predicted

proteins (n = 12,984) (Student’s t-test, t = 4.49, d.f. = 79.30,

p,0.01 for seeds vs. other and t = 4.03, d.f. = 225.48, p,0.01

for predictions vs. other). The larger mean size of the VV seeds

compared to the ‘others’ category has arisen purely as a result of

the initial protein types selected by the global fusarium community

for functional experimentation. The underlying reasons for the

increased length of the predicted virulence associated proteins

compared to all the other proteins predicted from the F.

graminearum sequenced genome is currently unclear. However, this

analysis clearly indicates that small protein sequences are under-

represented in the predictions. The 29 hypothetical proteins

predicted have the size range 69 to 1399 amino acids (aa) (mean

527 aa), with only 4 proteins having length under 200 aa

(FGSG_01228 (186), FGSG_00536 (116), FGSG_01888 (69),

FGSG_08359 (178). We also explored the overall predictive

power of the four different networks (Table S4). This analysis

revealed a marked improvement over the random model.

However, the small number of positive and negative examples

are insufficient to make an accurate estimate for either the

sensitivity or specificity values.

Taxonomic Diversity of the Predictions
The taxonomic diversity of the 215 predicted virulence

associated proteins was explored by matching the sequences

against the non-redundant database at NCBI (www.ncbi.nlm.nih.

gov) so as to obtain an indication of which of the predictions is

Fusarium or fungal specific. This distribution is represented as a

heatmap (Figure 1), and the details for each FGSG gene are

shown in Table S5.

Twenty-five of the predictions are specific up to the level of

fungi, whilst 15 are specific up to the level of Ascomycota. The

FGSG_10808 (a conserved hypothetical protein) and

FGSG_03534 (trichothecene 15-O-acetyltransferase) are highly

specific to the level of Hypocreales. This analysis also highlights that

there are 15 predictions unique to the integrated network. Of these

six are found to have a taxonomic distribution beyond eukaryotes.

Overall, this analysis confirms that the predictions present within

each network are for sequences shared with many other eukaryotic

species as well as in some case prokaryote species.

Exploring Predictions from Connections to Multiple
Seeds

The requirement for a node in the network to be a candidate for

virulence was connected to at least two seed VV nodes. As can be

seen from Table 2, some nodes were connected to a greater

number of seeds and these may be suggestive of stronger

predictions. One prediction (FGSG_06878) was made on the

basis of 8 links to seed proteins. The annotations of the seeds that

contributed to the prediction of this protein are given in Table 4.

To facilitate the detailed analysis of the network neighbourhood

of the predicted virulence associated nodes of interest, the Ondex

visualisation tool was used (Figure 2, Figure S1 for complete

neighourhood). These Ondex displays permit the experimenter to

explore simultaneously the details associated with each node as

well as the origin of the different types of source information via

inspection of the colour of each edge connecting the seed to the

predicted node.

The prediction FGSG_06878 is linked to 5 seeds with associated

phenotype ‘reduced virulence’, namely FGSG_10313 (MGV1),

FGSG_00385, FGSG_08737, FGSG_01964, FGSG_09897

(SNF1), and 3 seeds (FGSG_09903 (PKAR) and FGSG_06385

(FMK1) and FGSG_16491 (FST11) with associated phenotype

‘loss of pathogenicity’. This predicted virulence associated protein,

FGSG_06878 is annotated in GenRE database [6] as a ‘‘probable

CMK1 - Ca2+/calmodulin-dependent ser/thr protein kinase type

I’’. The prediction and the seeds from which this prediction was

inferred are shown in Figure 2. Evidence for crosstalk between

Map kinase (MAPK) and calcium-calmodulin dependent signal-

ling leading to the activation of transcripton factors was established

earlier and was recently reviewed for several plant human

pathogenic fungi. [25]. A recent gene deletion study by [26]

confirmed a reduced virulence phenotype for FGSG_06878.

The full details of three other predictions that have links to 7

seeds are given in Table S6 and the immediate networks are

displayed in Figures S2, S3 and S4. In each case, at least one of

the seeds is annotated to be a transcription factor and the

prediction is made from information obtained from only two of the

constituent networks.

Other Examples of Specific Predictions
In total, this integrated network analysis has predicted 215

potential virulence associated proteins. For illustrative purposes

three very different types of predictive example are discussed in

detail. The first example was selected because it illustrates the

effect of multiple complementary information types contributing to

the prediction, the second because a protein unique to F.

graminearum was predicted and the third example reveals that a

network study can identify a specific class of proteins required for

virulence, but is unable to pin-point the specific member of a

multigene family.

Example 1: Prediction of FGSG_00559 with a Role in
Intracellular Signalling Modulation

Within the integrated network, the protein coded for by the

gene FGSG_00559 is predicted on the basis of links to four VV

Table 3. The probability that a verified virulence (VV)seed is connected to at least 2 others by chance.

Network type Seeds connected to 2 or more other seeds p-value

Integrated 13 0.0001

Protein-protein interaction 4 0.0186

Co-expression 3 0.1172

Sequence similarity 7 7.00E-04

doi:10.1371/journal.pone.0067926.t003

Refined Network Analysis for Fusarium graminearum
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proteins. Two of these links come from the predicted PPI

information (magenta edges in Figure 3), namely links to

FGSG_06948 (Gzscp, loss of pathogenicity, related to tetratrico-

peptide repeat protein tpr1) and FGSG_09197 (HMR1, reduced

virulence, probable 3-hydroxy-3-methylglutaryl-coenzyme A re-

ductase), whilst two links to other proteins are from co-expression

Figure 1. Heat map displaying the taxonomic distribution for each of the predicted virulence associated proteins. Each row provides
the information for one sequence. The left hand three columns (SEQ, PPI, COEX) indicate the network in which the prediction could be made (black).
For the bottom 15 rows only the integrated network provides the prediction. The right hand heatmap shows the proportional distribution of all
BLAST hits from the 215 predictions to the NCBI nr database (white – lowest, red - highest) across the taxonomical levels. All hits were counted once,
at the lowest possible level of taxonomical specificity. The grey colour shows cases where there were no hits at a particular taxonomic level. See
Table S2 for the detailed results for each individual FGSG protein.
doi:10.1371/journal.pone.0067926.g001

Refined Network Analysis for Fusarium graminearum

PLOS ONE | www.plosone.org 5 July 2013 | Volume 8 | Issue 7 | e67926



information (blue edges), namely links to FGSG_09895 (NTH1,

reduced virulence, probable a neutral trehalase (alpha,alpha-

trehalose glucohydrolase)) and FGSG_09908 (PKAR, reduced

virulence, probable cAMP-dependent protein kinase regulatory

chain. FGSG_00559 is annotated in the MIPS GenRE database

[6] as a probable 26S proteasome regulatory subunit YTA3. Two

of these seed proteins FGSG_09895 and FGSG_09908 reside

within close physical proximity in the genome, in a micro-region of

virulence genes recently identified using a genome landscape

scanning – reverse genetics approach [27,28]. Other predictions

included in this network neighbourhood, involving at least two of

the same seed proteins include FGSG_06886 a probable 20S core

proteasome subunit PRE2, FGSG_09689 a probable ubiquitin-

protein ligase (E1-like ubiquitin-activating enzyme) and

FGSG_08421 a conserved hypothetical protein. This neighbour-

hood is highly likely to be involved in co-ordinating two different

types of intracellular signalling and possibly involves the degrada-

tion of specific signalling components within the proteasome. All

the genes in this network neighbourhood were found to reside in

regions of either very low or no genetic recombination within the

genome [27] and these sequences are found in many fungal and

other eukaryotic species (Table S5).

Example 2: Prediction of FGSG_00071 Includes Links to
Seeds with Opposite Effects

The protein coded for by the gene FGSG_00071 (TRI1) is

predicted on the basis of links to three VV proteins (Figure 4),

namely FGSG_16251 (reduced virulence, TRI6, transcription

factor) [29], FGSG_03543 (reduced virulence, TRI14, putative

trichothecene biosynthesis protein [30] and FGSG_10397 (in-

crease in virulence, CLM1, longiborneol synthetase [31] and

FGSG_17598 (recently renamed by MIPS). Previously this gene

sequence had been functionally tested as gene FGSG_00007

(increased virulence, cytochrome P450 monooxygenase, DON

biosynthesis) [32]. The three other TRI genes in this network

neighbourhood, namely TRI3 (FGSG_03534), TRI4

Table 4. The prediction of FGSG_06878 as a virulence factor with links to 8 seeds.

FGSG_06878 (probable CMK1 - Ca2+/
calmodulin-dependent ser/thr protein
kinase type I) is linked by

Seeds on which the prediction is based with phenotype [], and MIPS annotation.
Phenotype symbols are rv = reduced virulence, lp = loss of pathogenicity

Predicted PPI to: FGSG_09903 (ste7) [lp], Probable map
kinase kinase

FGSG_10313 [rv] (mgv1) (MGV1 map
kinase)

FGSG_06385 (map1) [lp] (FMK1
pathogenicity map kinase 1

Co-expression to: FGSG_08737 (GzOB031) [rv] Probable
woronin body major protein precursor

FGSG_01964 (CHS5) [rv] Probable chitin
synthase

FGSG_00385 (GzHMG002) [rv]
probable NHP6B - nonhistone
chromosomal protein

Sequence similarity to: FGSG_09897 (snf1) [rv] probable serine/
threonine protein kinase

FGSG_06385 (map1) [lp] (FMK1
pathogenicity map kinase 1)

FGSG_16491 (fst11) [lp]] related to
NRC-1 MAPKK kinase

This prediction FGSG_06878 was confirmed to be a virulence protein in the recent paper of [21-Wang et al.]. Note that prediction FGSG_06878 is linked to seed
FGSG_06385 by both predicted PPI and sequence similarity information. In planta phenotypes are rv, reduced virulence, a quantitative reduction in disease causing
ability and the more stringent lp, indicating loss of pathogenicity where disease establishment is aborted.
doi:10.1371/journal.pone.0067926.t004

Figure 2. The local neighbourhood for the predicted virulence gene FGSG_06878. The neighbourhood of FGSG_06878 (prediction -large
white triangle) and these 8 seed proteins to which it is linked, visualised with Ondex [16]. The magenta coloured edges predicted PPI information,
blue edges predicted co-expression information and the green coloured edges predict sequence similarity information.
doi:10.1371/journal.pone.0067926.g002

Refined Network Analysis for Fusarium graminearum
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(FGSG_03535), TRI11 (FGSG_03540) genes are all located

within the main trichothecene (TRI) biosynthetic cluster, which

is in the middle of chromosome 2 in a region of moderately high

genetic recombination. These three TRI genes are either suggested

or have been shown experimentally in F. graminearum to code for

key steps in the synthesis of various trichothecene mycotoxins,

required for deoxyvalenol (DON) and its acetylated derivatives

[33].

TRI1 and FGSG_00007/FGSG_17598 are located towards the

left end of Chromosome 1, in the region of very high

recombination. FGSG_00007/FGSG_17598 is highly expressed

under DON inducing conditions. FGSG_17598 is annotated by

Figure 3. The local neighbourhood for the predicted virulence gene FGSG_00559. The immediate neighbourhood in the integrated
network within which the predicted virulence associated protein FGSG_00559 resides (large white triangle). Shown are the types of links between the
predictions and the seeds. Magenta coloured edges predicted PPI information and blue edges predicted co-expression information. The various node
colours of the seeds as shown in the legend indicate the experimentally determined outcomes. There are 3 additional virulence predictions in this
neighbourhood (small white triangles).
doi:10.1371/journal.pone.0067926.g003

Figure 4. The local neighbourhood for the predicted virulence gene FGSG_00071 (TRI1). Gene IDs are: FGSG_03543 (TRI14), FGSG_10397
(CLM1), FGSG_17598 (related to O-methyl sterigmatocystin oxidoreductase), FGSG_03535 (TRI4), FGSG_03534 (TRI3), FGSG_16251 (TRI6), FGSG_03540
(TRI11).
doi:10.1371/journal.pone.0067926.g004
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GenRE as ‘related to O-methylsterigmatocystin oxidoreductase’,

but its detailed function is currently unknown.

FGSG_10397 is located in a region of very low recombination

at the other end of chromosome 1 and is required for the

biosynthesis of a different secondary metabolite, namely Culmorin,

when grown under in vitro conditions [31]. In a second study,

([24]-Gardiner et al.) revealed that deletion of FGSG_10397 led to

elevated DON mycotoxin production and hence enhanced

virulence. However, the level of Culmorin was not reported in

the second study.

The predicted virulence node FGSG_00071, is annotated by

MIPS as ‘TRI1 cytochrome P450 monooxygenase’. A gene

disruption mutant in F. graminearum was shown to accumulate

calonectrin compounds, and no longer produced 15-acetyldeox-

ynivalenol [34], however the in planta phenotype of this mutant

strain has not been reported.

Various TRI genes are highly expressed during the symptomless

phase of wheat ear colonisation when the fungal hyphae are

exclusively extracellularly colonising and are in low abundance

[35]. This network neighbourhood which contains conflicting

experimental results (both enhanced and reduced virulence

phenotypes) appears to be involved in both positively and

negatively regulating the production of the trichothecene myco-

toxin deoyxnivalenol and its acetylated derivatives as well as one

other unrelated secondary metabolite, Culmorin, in response to

different external stimuli. Most of the TRI genes in F. graminearum

are highly taxon specific. This virulence prediction was made on

the basis of two co-expression links and one protein interaction

link and suggests value in combining multiple data sources

(Figure 4). The predicted virulence node FGSG_00071 is specific

up to the level of F. graminearum (Table S5).

Example 3: Prediction of Two Non Pathogenicity
Associated Seeds as Potential Candidates for Virulence

The two genes FGSG_05535 and FGSG_09988, annotated in

GenRE as probable G protein alpha subunits, were shown to be

dispensable for pathogenicity [36]. However, both proteins are

connected to two seed proteins required for pathogenicity (reduced

virulence phenotype). The seed proteins are: FGSG_09614

(GPA2) encoding a guanine nucleotide-binding protein alpha-3

subunit and FGSG_04104 (GPB1) encoding a guanine nucleotide-

binding protein beta subunit. Both these seeds are involved in

intracellular signalling. The two non-pathogenicity associated

proteins as well as 7 others (white triangles in Figure 5) would all

be predicted to be virulence associated proteins on the basis of

having two links to pathogenicity associated seeds. This network

neighbourhood contains mostly genes located in genomic regions

with very low/no genetic recombination, which are also found in

many other taxa. The only exception is FGSG_04618 which is

located in a region of very high recombination towards the right

hand end of chromosome 2, but which also has a wide taxon

distribution. FGSG_09988 codes for the G protein alpha 3

subunit. This reveals the selective recruitment of the G protein

alpha subunit to virulence signalling over the beta or gamma

subunits in F. graminearum. Although this network analysis has

revealed a multigene family to be associated with virulence, only

through completion of the gene deletion experiments could the

actual member recuited to virulence be revealed. None of other

members of this cluster belong to multigene families. However the

seven other predicted members of this G-protein cluster possess a

WD repeat domain.

Example 4: Prediction of Three Non Pathogenicity
Associated Seeds as Potential Candidates for Virulence

The gene FGSG_00472 is connected to 5 seeds (Figure S5)

and is annotated in GenRE as a probable cAMP dependent

protein kinase. This gene has recently been shown to be required

for pathogenicity and DON production in planta [26]. The 5 seed

proteins in this cluster are all predicted to be protein kinases. In

addition, in this cluster gene FGSG_00472 is connected to two

additional potential candidates for virulence, namely genes

FGSG_10095 and FGSG_01312. These genes are also annotated

in GenRE as protein kinases and are themselves connected to

either 3 or 4 protein kinase seeds. Both FGSG_10095 and

FGSG_01312 have recently been shown to required for pathoge-

nicity and DON production in planta [26]. Interestingly, the three

newly verified virulence genes when deleted individually have only

a minimal affects on in vitro growth, whereas all the seed genes in

this cluster when deleted individually have a far greater affect on

in vitro growth [26].

Mapping of Recently Identified Kinase Proteins in
Fusarium graminearum to the Integrated Network

The recent comprehensive study of the contribution of the

predicted F. graminearum kinome to pathogenicity towards wheat

ears, mycotoxin production and an additional 15 growth and

development traits assessed in vitro [26] lead to the identification of

21 putative essential proteins, 44 proteins as having a proven role

in disease formation (corresponding to reduced virulence) and 51

proteins with no apparent role in pathogenicity (refer to Table
S7). We have used this data in an attempt to quantify the

predictive accuracy of our combined network approach. Of these

44 new pathogenicity proteins, 23 correspond to predictions made

within our integrated network (Table 5) and a further 4 are

among our set of verified virulence seed proteins (FGSG_10313,

FGSG_06385, FGSG_09903, FGSG_09897). In total, 11 of the

essential for life proteins in [26] were among our predicted

pathogenicity proteins as well as 22, which have been shown to be

unaffected in virulence towards wheat ears. This latter figure

highlights the problem with false positives. However, some of these

single gene negative results may have occured via genetic

redundancy, i. e. a member of a multigene family, where the

role of the deleted gene can be fully taken over by the function of

another related gene(s) and therefore no change in the phenotypic

outcome is observed. Only by exploring the effects of deleting

specific combinations of sequence related genes can these negative

phenotypic effects be confirmed. A further possibility is that some

of the predicted virulence genes may only be required for the

infection of non-wheat host species.

Selecting only those predictions, which were made on the basis

of slightly more stringent criteria, namely requiring at least 3

instead of 2 neighbours as seeds (of which there are 71) has only a

small effect with lowering the number of correctly predicted

proteins with the phenotype ‘reduced virulence’ to 21 and with

phenotype ‘unaffected’ to 17.

Chromosomal Location of the Predicted Pathogenicity
Associated Proteins

When the newly sequenced F. graminearum genome of strain PH-

1 and partial sequence information for a second strain GZ3639

were aligned to the available genetic map involving both these

strains, this revealed an unanticipated result. Cuomo et al., (2007)

described a genome, where the four F. graminearum chromosomes

were unevenly divided into two types of genomic landscape. The

majority of the genome exhibited minimal DNA polymorphism

Refined Network Analysis for Fusarium graminearum
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and a low rate of recombination between the two sequenced

strains and the gene sequences predicted were also shared with two

other Fusarium species, F. oxysporum and F. verticillioides. Separating

these large blocks of conserved DNA, were several smaller regions

with high DNA polymorphism, a very high recombination

frequency, and these contained many of the predicted gene

sequences considered to be unique to F. graminearum. These small

unique regions of the genome were located in both the sub-

telomeric and interstitial regions of each chromosome and were

proposed to be the fusion sites of ancestral smaller chromosomes.

Due to the unusual topology of the F. graminearum genome

landscape, the chromosomal positioning of the predicted virulence

genes accross the four Fusarium graminearum chromosomes was

explored (Figure 6). Visual inspection revealed that most of the

virulence genes predictions lie in the lower recombination

conserved part of the chromosomes (white and blue). However,

four predicted virulence genes reside in chromosome regions with

a high/very high recombination frequency (4 cM–8 cM, red and

.8 cM crimson), namely – FGSG_00071 (Figure 4),

FGSG_15983, FGSG_04618 (Figure 5) and FGSG_16412.

Therefore the rarer type of genome landscape is explored in this

network analysis. These 4 predicted virulence genes are found in

many other species.

Figure 5. The neighbourhood of FGSG_05535 and FGSG_09988. Although connected to the two seed proteins FGSG_09614 (GPA2) and
FGSG_04104 (GPB1), experimental evidence in barley suggests that the two predictions 05535 and 09988 are dispensable for pathogenicity [36].
Genetic redundancy is suggested to explain this fact. (FGSG_05698: probable CPC2 protein, FGSG_09870: probable CPC2 protein; FGSG_09271:
probable SEC13 - protein transport protein; FGSG_10251: probable LST8 protein; FGSG_04618: related to vegetatible incompatibility protein HET-E-1;
FGSG_16028: probable U5 snRNP-specific 40 kD protein (novel WD-40 repeat protein); FGSG_05038: probable nuclear migration protein.
doi:10.1371/journal.pone.0067926.g005

Table 5. Comparison of the distribution of known phenotypes of the seeds within the four predicted networks.

Phenotype Network type

Protein-protein
interactions Coexpression Sequence similarity Integrated

Seeds

Reduced 4 2 4 4

Predictions

Essential 5 0 9 11

Reduced 9 3 20 23

Unaffected 11 0 16 22

Counts of the different phenotypes according to the study by Wang and collegues [26] that were found among the predictions derived using four different networks.
doi:10.1371/journal.pone.0067926.t005
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The Predicted Virulence Associated Protein Set Shows an
Increased Abundance in the Functional Categories
Defense/Virulence and Cellular Communication

The functional classification system developed by the Munich

Information Centre for Protein Sequences (MIPS) allows the

automatic annotation of protein sets into 20 high level functional

categories (Funcat) [37] (http://mips.helmholtz-muenchen.de/

genre/proj/FGDB/). We hypothesised that successful prediction

of virulence associated protein candidates using networks should

also increase the annotation frequency of proteins belonging to

Funcat groups comprising proteins involved in virulence and

protein-protein interactions. Both the protein sets for the seeds and

the predicted virulence associated proteins were compared

(Table 6). A chi-square test showed that both groups are

significantly different (P$0.001). The Funcat groups 14 (protein

fate), 30 (cellular communication/signal transduction mechanism)

and 32 (cell rescue, defense and virulence) were increased, while

the number of proteins belonging to Funcat group 99 (unclassified

proteins and others) was strongly reduced.

Discussion

The integration of multiple types of data such as co-expression,

protein-protein interaction and sequence relatedness can provide

biological context to particular proteins by showing their

relationship to other proteins. In some cases such an approach

can provide enhanced annotation or indeed the first annotation for

a sequence. For example a protein of unknown function may be

strongly co-expressed or may interact with a number of proteins

whose functions are known and this may help in narrowing down

the possible roles of the previously unannotated protein. Here we

used a similar ‘guilt by association’ approach to examine the

network neighbourhood of proteins known to be involved in

pathogenicity or virulence for the fungal Ascomycete species

Fusarium graminearium. There is a large amount of biological,

genome and transcriptome information publically available for this

species and other pathogenic Fusarium species [4,38–40] because of

the ever rising economic global importance of Fusarium ear blight

disease (www.scabusa.org, [2,41].

This study greatly extends the previous network study of ([12] -

Liu et al.). The integrated relationship network developed in this

study leads to 215 predictions, of which 29 are hypothetical

proteins (as annotated by the Fusarium Database ([6] - Wong

et al.) and 25 are fungal specific. The integrated network was

particularly informative and predicted 15 proteins linked to

virulence that were only revealed in this network. Of these,

FGSG_06878 has now been linked to virulence via the shotgun

functional analysis of the predicted kinome ([21]-Wang et al.),

whilst FGSG_03535 (TRI4) is known to be highly upregulated in

planta and is required for the synthesis of of the DON mycotoxin.

The function of the other 13 predicted virulence associated

proteins from the integrated network has not yet been established

(1) and/or tested (12). In addition, this study generated four

predictions, where the prediction was linked to either 7 or 8 seeds.

Of these FGSG_00071 (TRI1), FGSG_07251 and FGSG_10066

have each recently been shown to be required for virulence, whilst

the FGSG_09715 single gene deletion mutant was unaffected in

pathogenicity towards wheat floral tissue. This level of correct

prediction amongst the sequences most highly connected to the

verified virulence seeds could be a way of further prioritising the

list.

Amongst the 215 predictions, several proteins are considered to

have a direct role in virulence because these are required for the

production of the DON mycotoxin virulence factor, i.e. example

2. However, the rest of the predictions could play either a direct or

indirect role in virulence. The analysis of the sequence type and

protein size distribution of the predictions would indicate that this

study has underexplored the possible effector component of

Fusarium graminearum. At the present time we consider most of the

predicted virulence associated proteins identified in this study to

have an indirect role in virulence and could be seen as system

components [18].

One of the caveats with the approach we have taken is that

predictions can be biased in favour of nodes with high degree

centrality values. The degree centrality of a node in the network is

a measure of the number of edges connected to that node, and the

higher the value the more ‘hub-like’ is the node. We used the

Kolmogorov-Smirnov test (see, for example, [42]) to compare the

(cumulative) distributions of each of the three possible pairs of

degree centrality data sets, namely (i) the nodes corresponding to

the verified virulence seeds vs. the nodes of the integrated network,

(ii) the nodes corresponding to the predicted virulence associated

proteins vs. the nodes of the integrated network and (iii) the nodes

corresponding to the predicted virulence associated proteins vs. the

nodes corresponding to the verified virulence seeds. The test

revealed that there was no significant difference for (i) but that

there was a highly significant difference for (ii) and (iii). This may

reflect a bias in the predictions towards high degree centrality

nodes, as such nodes are more likely to be connected to two or

more seed proteins.

Another potential limitation of the approach is that for many

pathogens (excluding well studied examples such as Fusarium

graminearum (see for example [7]), Magnaporthe oryzae, a rice

pathogen and Ustilago maydis, a maize pathogen, there is typically

very limited information on proteins that have been investigated

experimentally for their contribution to virulence and that can act

as seeds. Additionally the set of verified virulence seeds is most

likely biased with certain types of protein being the subject of more

Figure 6. Position of the predictions in relation to the 4 chromosomes of Fusarium graminearum. The predicted virulence genes are shown
as black vertical bars in track 1 for each chromosome. The verified virulence seeds (red bars) are depicted in track 2. Recombination frequency across
the chromosomes is depicted in track 3 using a colour gradient (white (0.0) lowest to crimson (.8 cM highest). The various colours in track 3 for each
chromosome indicate the frequence of recombination (cM/27 kb), i. e. # clBeige 1 clKhaki 2 clGold 3 clGoldenRod 4 clTomato 8 clCrimson. The
numbers between the colours are boundary values in cM/27 kb. Beige represents the lowest and crimson the highest recombination frequency [47].
(Image generated using OmniMapFree [27]).
doi:10.1371/journal.pone.0067926.g006
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intense biological investigations. For example, for F. graminearum

although the analysis of the predicted transcription factors and

protein kinases (the kinome) has been thoroughly explored ([43]

[26] so far the function of the predicted secretome has not [44].

This means that currently the network space is not evenly sampled

and may result in many potential targets being missed. Over the

next few years this problem could either become worse if the

community focusses on genes and gene families already known to

essential for infection and/or disease formation in other patho-

genic species, or the position may improve as the results from large

forward genetic screens for pathogenicity factors and/or via the

screening of hypothetical and conserved hypothetical sequences

occurs.

Recently, a large scale targeted gene disruption study to search

for novel secreted fungal virulence genes was reported for the rice

blast pathogen Magnaporthe orzyae [45]. In total, 78 putative

secreted proteins, most with low sequences similarlity, but highly

expressed during the early stages of plant infection, were tested for

function. Only one M. oryzae gene was shown to be required for

virulence in cereal plants. Deletion of the orthologous gene

reduced the virulence of another fungal pathogen Colletotrichum

orbiculaire, which causes anthracnose disease on non-cereal plants.

This novel virulence gene has a very restricted fungal taxon

distribution. Overall, this recent large experimental biology study

reveals just how low a level of predictive success was achieved

(1.28%) from an initial highly focussed bioinformatics analyses.

Therefore at the present time, the sensitivity of our predictions for

F. graminearum virulence associated proteins from using the

integrated network (1.66%, Table S4) is comparable to that

achieved using a partially bioinformatically guided, direct exper-

imental approach.

Once genome sequence and gene function information is

published on different strains of the same species, several closely

related species, or formae specialis, then the power of this type of

predictive technique is likely to greatly increase. For example,

within the Fusaria the number of species under experimental

investigation is gradually expanding and involves the use of a

range of cereal, non-cereal and mammalian host infecting species.

These studies include F. oxysporum f.sp lycopersici and various other

formae specialis, which infect different dicotyledonous plant species,

F. solani as well as F. verticillioides, F. culmorum and F. pseudogrami-

nearum, which infect a range of cereal hosts. Also, it is anticipated

that in the next five years due to the increased efficiency of

generating single gene deletion strains in specific plant pathogenic

species, this type of integrated network could be used for

comparative analyses involving evolutionarily closely related

fungal species with subtly different infection routes and/or host

ranges.

The protein interaction component of the integrated network

representing predicted interactions [14] was built using known

interaction data from 7 non-pathogenic, non-filamentous fungal

organisms using information from interologs and domain-domain

interactions. Therefore interactions between Fusarium specific

proteins will not have been captured. The identification within

the integrated network of a prediction involved in trichothecene

mycotoxin production (Figure 2), indicates the value of including

co-expresssion data. With the increasing use of next generation

sequencing technologies to explore the interaction transcriptome

in greater detail, it is conceivable that co-expression information

Table 6. Funcat analysis of the verified virulence seeds and candidate virulence associated proteins.

The main functional categories Seeds (%) Candidates (%)

1 metabolism 9.9 7.6

2 energy 0.8 1.6

10 cell cycle and dna processing 4.3 7.1

11 transcription 9.1 4.4

12 protein synthesis 0.4 0.8

14 protein fate (folding, modification, destination) 4.0 11.2

16 protein with binding function or cofactor requirement 10.3 10.3

18 regulation of metabolism and protein function 4.0 4.4

20 cellular transport, transport facilities and transport routes 1.6 4.3

30 cellular communication/signal transduction mechanism 4.0 9.3

32 cell rescue, defense and virulence 1.6 4.5

34 interaction with the environment 3.2 3.7

36 systemic interaction with the environment 0.8 1.2

38 transposable elements, viral and plasmid proteins 0.0 0.1

40 cell fate 4.3 2.6

41 development 2.0 1.2

42 biogenesis of cellular components 3.2 4.4

43 cell type differentiation 6.7 4.2

45 tissue differentiation 0.4 0.3

47 organ differentiation 0.4 0.5

70 Subcellular localization 9.5 9.4

99 unclassified proteins and others 19.8& 6.9

&recovered from forward genetic screens.
doi:10.1371/journal.pone.0067926.t006
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on different phases of the interaction could be used to further

refine the virulence associated protein predictions.

Exploration of the network together with expert biological

knowledge about the predicted proteins in the neighbourhoods of

verified virulence proteins may lead to a further reduction in

hypothesis space and prioritisation to a few genes that could be the

target for experimental investigation. However, two separate F.

graminearum large studies recently published, explored the function

of the 709 predicted transcription factors (TAPs) [43] and the 116

predicted protein kinases [26], indicate that the testing of the

entire 215 predictions in a focussed project would be feasible via a

consortium research approach.

Methods

The Integrated Network
Starting with version 3.3 of PHI-base, Fusarium graminearum

genes were selected whose contributions to virulence have been

tested experimentally and were classified according to whether

they have an effect or not. Further expert curation of more recent

literature for this study added more Fusarium graminearum genes that

experiments suggest are involved in virulence and that are

currently not in PHI-base Vers. 3.3. Table S1 shows the

complete list of seed genes. In total, these 133 experimentally-

tested genes are referred to as the verified virulence (VV) ‘seed’

genes. The mapping of Fusarium graminearum entries in PHI-base to

corresponding sequences taken from the latest annotation of the

Fusarium graminearum genome at the Broad Institute (gene call FG3)

was carried out using BLAST and manually reviewed. The total

numbers of VV seeds is 100, and the ‘virulence unaffected’ seeds is

33. The F. graminearum genome is predicted to code for 13,332

proteins.

We have described the construction of the integrated network

for Fusarium graminearum and explored its community structure in

[19]. The network was constructed using information from three

component data sources, namely gene co-expression, protein

sequence similarity and predicted protein-protein interactions.

The co-expression component of the network was constructed

from the complete publically-available set (12 experiments, 158

individual slides) of Fusarium expression studies form PLEXdb [15]

that used Fusarium Affymetrix GeneChip array [5]. This included 6

in planta experiments and 6 in vitro studies using the wild-type

sequenced PH-1 strain and/or single gene deletion mutants

generated in the PH-1 strain on which the GeneChip array was

designed (Table S7). The data was downloaded in the form

of.CEL files, pooled and normalised using the Robust Multichip

Average (Irizarry et al., 2003), at which point a data matrix of size

18069 (genes) X 158 (samples) was constructed. The similarity of

expression profiles was measured using weighted Pearson corre-

lation coefficient, according to the method of [46]. The sparse

network was constructed from the correlation matrix by applying a

threshold of 0.88. This value was determined to be optimal for this

dataset using the method of Elo et al. (2007), which derives the

optimal correlation cut-off value based on the topological

properties of the network. The probe set IDs from the FG3

annotation of Fusarium [6] were integrated using a mapping file

obtained from MIPS (http://mips.helmholtz-muenchen.de/

genre/proj/FGDB/). The sequence similarity network was

constructed from the results of an all-versus-all sequence matching

of the proteins in version 3.2 of the Fusarium annotation at

(http://mips.helmholtz-muenchen.de/genre/proj/FGDB/) im-

plemented on a TimeLogicH Tera-BLASTTM (Active Motif Inc.,

Carlsbad, CA). The network was constructed by creating a

‘‘similar sequence’’ edge joining the two nodes (genes) when there

was a pairwise similarity observed between their sequences

(bidirectional hit) with expected value of less than 1026. The co-

expression network, the predicted core PPI of Zhao et al [14], the

sequence similarity network and the mutant phenotype annotations

(from PHI-base and the more recently curated literature) were

imported into the Ondex data integration and visualisation system

[16] (www.ondex.org) and combined. Merging the nodes that had

the same gene accession resulted in the union of the two networks.

The coexpression values and scores derived from BLAST were

included as weights on appropriate edges and are included in the

final integrated network available with this paper. The explanation

about how the BLAST scores were calculated and the distribution of

these values for all edges used in predictions are included as a

Figure S6. It is, therefore possible to adjust the threshold further in

Ondex network visualisation software and explore what effects it

would have on the network and the predictions.

In this study we were interested in the potential of the network

for prediction. The prediction of virulence genes was achieved by

implementing a new plug-in software module for the Ondex

system. The plug-in works by creating a set of sub-graphs that

include genes annotated to be of relevance to virulence (the

verified virulence seeds) and their nearest neighbours with respect

to co-expression, PPI and sequence similarity in the constituent

and combined networks. The genes were predicted to be likely

important for virulence if there were at least two known virulence-

relevant genes found in their immediate network neighbourhood,

in a similar manner to that of Liu et al [12]. The seed nodes, the

predictions and the edges connecting predictions to seeds were

‘‘tagged’’ to create gene lists, which could then be used to select

relevant subsets of the network for visualisation in the graphical

user interface of Ondex.

The Ondex software can be downloaded from www.ondex.org.

The integrated network, seed genes and predictions are made

available in File S1.
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predicted virulence associated gene FGSG_06878 connected to

8 verified virulence seeds.
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Figure S2 The local integrated network containing the predicted

virulence associated gene 07251 connected to 7 verified virulence

seeds.
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Figure S3 The integrated network containing the predicted

virulence associated gene FGSG_09715 connected to 7 verified

virulence seeds.
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Figure S4 The integrated network containing the predicted

virulence associated gene FGSG_10066 connected to 7 verified

virulence seeds.
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Figure S5 The integrated network containing the predicted

virulence associated gene FGSG_00472 connected to 5 verified

virulence seeds.
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Figure S6 The distribution of e-values for sequence similarity

edges that were used for deriving predictions.

(DOCX)

Table S1 List of 133 seed verified virulence (VV) genes.
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Table S2 Selected annotation for the 215 predicted virulence

associated proteins.
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Table S3 The ratios of seed associated to all other edges for all

of the proteins predicted to be associated with virulence.
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Table S4 Estimating the predictive power of the four different

networks.
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Table S5 Heatmap showing the taxonomic diversity of the

matches to the 215 predictions.
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Table S6 Prediction of FGSG_09715, FGSG_07251 and

FGSG_10066 as virulence associated proteins.
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Table S7 Mapping the data from Wang et al to the integrated

network.
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Table S8 The publically available F. graminearum microarray

gene expression datasets used in this study.
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File S1 ZIP archive file for Ondex containing the integrated
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