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Highlights 9 

• Remotely sensed data provides an opportunity to characterise crop sequences. 10 

• Crop transition matrices describe the probability of one crop following another. 11 

• Data and agronomic rules used to derive realistic crop sequences for Great Britain. 12 

• Derived crop transition matrices characterise the business-as-usual state. 13 

• Crop transition matrices and code are provided for use in future modelling studies. 14 
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ABSTRACT 16 

Model-based studies of agricultural systems often rely on the analyst defining realistic crop sequences. This 17 

usually involves relying on a few ‘typical rotations’ that are used in baseline scenarios. These may not account 18 

for the variation in farming practices across a region, however, as farmer decision making about which crops 19 

to grow is influenced by a combination of economic, environmental and social drivers. We describe and test 20 

an approach for generating random realisations of plausible crop sequences based on observed data as 21 

quantified by earth observation. Our approach combines crop classification data with a series of crop 22 

management rules that reflect the advice followed by farmers (e.g. to reduce the chance of crop-pests and 23 

disease). We adapt the approach to generate crop sequences specific to regions and soil type. This 24 

demonstrates how the method can be adapted to generate crop sequences typical of a study area of interest. 25 

 26 

Keywords: 27 

Crop rotations; Land Cover® plus: Crops; Modelling; Crop management; baseline scenario modelling. 28 
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1. Introduction 30 

Simulation is an important tool in agricultural research as it allows for the investigation of scenarios that are 31 

infeasible to study through experimental trials due to, for example, time or resource constraints. Agricultural 32 

systems models have been widely used to investigate management scenarios with a view to identifying ways 33 

to improve production efficiency (Reidsma et al., 2009), limit impacts on the environment (Schoumans and 34 

Groenendijk, 2000) or investigate trade-offs and synergies between these two (Milne et al., 2020). These 35 

types of models, however, can be limited in their success by a scarcity in data needed not only for their 36 

parameterisation but also to generate useful scenarios for investigation (Jones et al., 2017). One key aspect 37 

of the agricultural system, which is often incorporated into simulation models, is the concept of crop rotation. 38 

Crop rotations are a short sequence of crops that are repeated over time. They are used in many 39 

agricultural systems across the globe for several reasons, including improvement of soil health and pest 40 

management. Crop rotations tend to vary across regions, developed to account for the characteristics of each 41 

region (e.g. due to climate, soil, topography, pests and diseases, etc.). In Great Britain, this has led to a 42 

prevalence of arable farming in the east and pastoral farming in the west. 43 

Due to its importance in several key metrics, which are often captured as outputs from simulation 44 

models, the chosen crop rotation for a simulation can have important consequences on the outcome of a 45 

study. Indeed, many studies focus on choosing the optimal crop rotation to maximise one or more chosen 46 

outputs. For example, Smith et al. (2016) looked at the effect of changing the rotation design on soil N, P, 47 

and K balances. In many studies, it is common to rely on “typical rotations” for use in the baseline scenarios 48 

as Smith et al. (2016) did in their study on soil nutrients. Alternatively, a model system is chosen, and data 49 

on the cropping history from a typical study site or region is used as the baseline for simulations (e.g. Metcalfe 50 

et al., 2020). However, the power of modelling for testing agricultural scenarios comes from the ability to 51 

model many scenarios in a short space of time and to capture some of the variation in farming practices 52 

across a region in a way which cannot be replicated when simply selecting one case study or crop rotation 53 

scenario.  54 
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Some efforts have been made to develop models for determining crop rotations. However, these 55 

have largely been built to address technical constraints to do with reconciling the timing of agronomic events 56 

(You and Hsieh, 2017). Castellazzi et al. (2008) developed a general method for simulating crop rotations 57 

where the transition from one crop to another is represented by a transition matrix where the allocation of 58 

a crop in a given year depends on the crop allocated in the previous year. They developed this general 59 

methodology to provide a mathematical way to describe predefined crop rotations based on expert 60 

knowledge of those rotations. However, the choice of crop grown in a given field is often much more complex 61 

than simply following a fixed rotation repeatedly. Indeed, in practice it is unusual for farmers to maintain a 62 

predefined crop rotation and use it in succession (I. Shield, pers. comm.). Instead, they will often choose crop 63 

sequences according to several factors and their decision over which crop to grow will be based not only on 64 

the previous cropping history of the field but other more stochastic elements such as weather, variable costs, 65 

crop price and pressure from pests, weeds and diseases. Increasingly, to avoid the build-up of pests, weeds 66 

and pathogens and to maintain soil health, farmers are encouraged to maintain diversity in their cropping 67 

and to be flexible in their choices (AHDB, 2019). 68 

If cropping history could be used to derive sequences of crops commonly grown and to populate the 69 

probability matrix, then it would be possible to use this generic method to simulate current cropping 70 

practices. Some efforts have been made to try and derive crop rotation history from remotely sensed data. 71 

For example, Mueller-Warrant et al. (2017) quantified cropping histories for an 11-year period in north-72 

western Oregon and south-western Washington and used that to understand the cropping sequences that 73 

farmers chose to adopt between the end of one grass seed stand and the start of the next. Cropping histories 74 

derived from remotely sensed data offer a sound means to quantify how decisions made by individuals 75 

manifest as crop sequences at the landscape level. It implicitly accounts for a host of factors influencing crop 76 

choice, for example crop prices, regional constraints, synergies between crops or pest pressure. However, to 77 

our knowledge, such an approach has not been used to characterise the sequences in current use and predict 78 

future ones. 79 
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To simulate cropping sequences in lieu of fixed rotations, the decision processes of the farmers need 80 

to be reflected in the simulations. In this paper, we present a method to generate crop sequences that 81 

characterise the business-as-usual state by implicitly accounting for the environmental constraints (weather, 82 

soil, topography, etc.) of a given region and explicitly accounting for constraints related to the control of 83 

pests, weeds and diseases. We demonstrate our method using data from Great Britain and as such provide 84 

the reader with the necessary data to generate realistic crop sequences for regions across Great Britain. 85 

2. Methods 86 

2.1 Data 87 

Earth observation data have proven to be a useful resource for predicting which crops are grown in field 88 

parcels across landscapes (Graesser and Ramankutty, 2017). If these predictions are available across 89 

sequential years, then they can be used to estimate the probability of transitioning from one crop to another. 90 

The most comprehensive data available indicating crop choices across Great Britain are the UKCEH Land 91 

Cover® plus: Crops maps. These maps are produced using satellite data and indicate the crop grown in each 92 

parcel of agricultural land in Great Britain. Data are currently available for 2016, 2017 and 2018, with more 93 

limited information available for 2015. The crops included within the maps are winter wheat (including oats), 94 

spring wheat, winter barley, spring barley, oilseed rape, field beans, potatoes, sugar beet, maize, and 95 

improved grass. Other cereals, root crops, early potatoes, and vegetables are grouped in a class called ‘other’. 96 

2.2 Crop Transition Matrices 97 

For each land-parcel in the UKCEH Land Cover® plus: Crops dataset, the crop transitions between seasons 98 

were determined (2016 to 2017 and 2017 to 2018). Land parcels where the crop was grass across all years 99 

(2015–2018) were excluded. This allowed us to consider only grass crops that are grown as a ley within an 100 

arable rotation in isolation from those in continuous grassland. We were then able to describe the probability 101 

of transition from any crop in the data set to any other crop in a transition matrix (as an example, see Table 102 

1). These matrices, as described by Castellazzi et al. (2008), typically have as many rows and columns as there 103 

are distinct crops in the data set and describe the probability of transitioning from one crop (row) to another 104 

(column). 105 
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Table 1 106 

Example of a crop transition matrix (medium soil subregion of NUTS region H) giving the probability of 107 

transitioning from one crop (row) to another (column). 108 

Previous 
Crop 

Next Crop 

Sugar 
beet 

Field 
beans 

Grass Maize 
Oilseed 

rape 
Other Potato 

Spring 
barley 

Spring 
wheat 

Winter 
barley 

Winter 
wheat 

Sugar 
beet 

0.008 0.007 0.005 0.051 0.002 0.072 0.022 0.105 0.176 0.041 0.512 

Field 
beans 

0.012 0.011 0.027 0.01 0.01 0.053 0.009 0.022 0.027 0.065 0.755 

Grass 0.033 0.021 0.563 0.044 0.018 0.09 0.018 0.031 0.037 0.041 0.105 

Maize 0.067 0.009 0.119 0.172 0 0.129 0.035 0.038 0.049 0.059 0.323 

Oilseed 
rape 

0.005 0.002 0.01 0.002 0 0.023 0.003 0.005 0.013 0.058 0.878 

Other 0.051 0.033 0.132 0.038 0.05 0.177 0.029 0.044 0.063 0.078 0.306 

Potato 0.039 0.004 0.017 0.026 0.001 0.071 0.008 0.027 0.039 0.058 0.711 

Spring 
barley 

0.07 0.079 0.044 0.021 0.166 0.085 0.033 0.09 0.082 0.133 0.195 

Spring 
wheat 

0.075 0.078 0.054 0.022 0.1 0.094 0.038 0.052 0.097 0.142 0.248 

Winter 
barley 

0.118 0.06 0.048 0.02 0.345 0.086 0.035 0.029 0.035 0.123 0.102 

Winter 
wheat 

0.118 0.079 0.027 0.022 0.124 0.082 0.053 0.05 0.05 0.141 0.255 

            

2.3 Additional considerations 109 

To generate typical cropping sequences, we must address the two main concerns in a farmer’s decision-110 

making process: the environment; and, controlling pest, weed, and disease pressure. 111 

2.3.1 The environment 112 

To address the first factor (the environment), we decide to split Great Britain by region. The reason for 113 

regional differences in farming systems in Great Britain is primarily due to climate and topology; with the 114 

wetter hillier regions in the west being favoured for grazing systems whilst the drier, flatter parts of Great 115 

Britain tending to be favoured for arable crops. In addition to climate and topography, soil type also 116 

determines the suitability of a field for growing a particular crop. To address this, we first split Great Britain 117 



7 
 

into NUTS1 regions, which are a Eurostat geocode that references the subdivisions of the United Kingdom of 118 

Great Britain and Northern Ireland for statistical purposes (Fig. 1) and capture the course-scale regional 119 

differences across the UK. We then used data on soil type to classify the regions further. We divided each 120 

region into three subregions according to the soil clay content (FAO et al., 2012): light soils were classified as 121 

having less than or equal to 18% clay; heavy soils as having greater than 35% clay; and medium soils as 122 

anything in between. We then assigned each land parcel within the Land Cover® plus: Crop maps to one or 123 

more of our subregions, with a land parcel overlapping a subregion boundary assigned to both subregions. 124 

 125 
Fig. 1. A map of the UK showing subdivision according to NUTS1 regions and soil clay content. 126 

2.3.2 Controlling pest, weed, and disease pressure 127 

To account for the second aspect of a farmer’s decision-making process (controlling pest, weed, and disease 128 

pressure) we incorporated a set of rules either directly into the transition matrices or, for rules that cannot 129 

be easily incorporated, by adding a rule-based step to our simulations. 130 
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Because of the investment required to plant a grass ley and in order to reduce pest, weed and disease 131 

pressure, it is recommended that grass leys are kept for at least two years (I. Shield, pers. comm.). We 132 

therefore represented grass as two crop types in our matrix (bringing the total number of crops to 12 in this 133 

case). We refer to our grass crops as 𝐺1 and 𝐺𝑆, which represents the grass-ley in its first year and the grass-134 

ley in subsequent years, respectively. By our rule-based definition that there must be at least two years of 135 

grass: (i) 𝐺1 can only transition to 𝐺𝑆 (which can be expressed as 𝑃(𝐺𝑆|𝐺1) = 1, i.e. the probability that the 136 

next crop is 𝐺𝑆 given that our current crop is 𝐺1 is 1); (ii) 𝐺1 is the only crop that can transition to 𝐺𝑆 (i.e. 137 

other crops, 𝐶, cannot transition to it; 𝑃(𝐺𝑆|𝐶) = 0); and, (iii) 𝐺𝑆 cannot transition to 𝐺1 (i.e. 𝑃(𝐺1|𝐺𝑆) = 0). 138 

From our data, we can directly calculate the transition probability from each non-grass crop, 𝐶, to 𝐺1 in the 139 

same way we calculate other transition probabilities between crops. To calculate the 𝑃(𝐺𝑆|𝐺𝑆) we must 140 

adjust our observed probability of grass remaining from one year to the next to account for our restriction 141 

that 𝑃(𝐺𝑆|𝐺1) = 1. This is calculated from 142 

 𝑃(𝐺𝑆|𝐺𝑆) =
𝑃(𝐺)𝑃(𝐺|𝐺) − 𝑃(𝐺1)𝑃(𝐺𝑆|𝐺1)

𝑃(𝐺𝑆)
, 1 

where: 𝑃(𝐺𝑆|𝐺1) = 1 (as defined above); 𝑃(𝐺|𝐺) is defined from our data; the probability of being in a grass 143 

crop, 𝑃(𝐺), is defined in the grass component of the steady state vector, 𝑣, such that the transition matrix, 144 

𝑀, derived from the data satisfies 𝑀′𝑣 = 𝑣 where 𝑣 is a vector that records crop proportions at steady state 145 

and 𝑀′ is the transpose of 𝑀; the probability of being in the first year of a grass ley, 𝑃(𝐺1), is estimated from 146 

𝑁′𝑦 = 𝑦 where 𝑁′ and 𝑦 are the modified versions of 𝑀′ and 𝑣 , respectively, in which the grass component 147 

is split into first and subsequent grass; and, the probability of being in a subsequent year of a grass ley, 148 

𝑃(𝐺𝑆) = 𝑃(𝐺) − 𝑃(𝐺1). These modified transition matrices, 𝑁, are given in Metcalfe and Sharp (2021). 149 

Using transition matrices calculated from the remotely sensed data, we accounted for the agronomic 150 

“rules” that depend on the previously grown crop. For example, constraints on cropping transitions due to 151 

overlap in the crop harvest and sowing times such as the incompatibility between following an early-winter-152 

harvested sugar beet crop with an early-autumn-sown cereal crop will be avoided as they will not be 153 

observed in the data. However, some crop rules require consideration of more than one year of cropping 154 
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history. These types of rules generally either place limits on the crop frequency or on continuous cropping. 155 

Such constraints generally arise to break the cycle or to prevent build-up of pests, weeds or diseases. For 156 

example, a requirement of four years between sugar beet crops is common to minimise the effect of beet 157 

cyst nematode (Wibberley, 1996). Similarly, it is unusual for a farmer to grow more than two wheat crops 158 

consecutively to avoid the build-up of fungal diseases such as take-all (Castellazzi et al., 2008). Crop rules 159 

limiting both the frequency of crops within a sequence and the maximum length of a continuous sequence 160 

of certain crops were implemented according to standard agronomic practice in England and Wales (Table 161 

2).  162 

Table 2 163 

Crop rules not captured by the transition matrices that are implemented within our model to simulate 164 

standard agronomic practice aimed at preventing the build-up of pest, weeds, and diseases. 165 

 Crop 
 

Rule Reference 

 
Limit on continuous cropping 
 

 

 Wheat 
 

No more than two consecutively Castellazzi et al. (2008) 

 Maize No more than five consecutively 
 

AHDB (2014) 

 Grass Grass ley lasting no more than four years Defra (2019) 
 

 
Limit on crop frequency 
 

 

 
 

Potato  maximum one crop in four years 
 

Wolny (1992) 

 Beet maximum one crop in four years 
 

Wibberley (1996) 

 OSR maximum one crop in four years 
 

Hilton et al. (2013) 

 Grass Break of two years between grass leys 
 

I. Shield, pers. comm.  

2.4 Simulation 166 

We simulated crop sequences in MATLAB (MATLAB, 2018). For each subregion type we initialised a model 167 

with 1000 fields. The number of fields starting in each crop type was determined by calculating the steady 168 

state proportions 𝑣 for each transition matrix 𝑀, that is the vector 𝑣 such that 𝑀′𝑣 = 𝑣, where 𝑀′ is the 169 
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transpose of 𝑀. We then simulated 200 years of crop choices in each of those fields. In each year of 170 

simulation, the next crop to be sown in the field was drawn from a probability distribution according to the 171 

row of the transition matrix corresponding to the crop currently in that field. If a crop rule enforced that a 172 

certain crop could not be grown in a given field (e.g. potatoes were grown the previous year so are not 173 

allowed again this year) then the crop was removed from the transition matrix and other values rescaled so 174 

that the row summed to 1. If, after all rules have been enforced, there is no crop left to choose from, we 175 

default back to the steady state proportions (this only occurs in regions with limited available data, e.g. NUTS 176 

region I, London). The code is available from Zenodo (Metcalfe and Sharp, 2021). 177 

2.5 Analysis 178 

We analysed the resulting crop sequences using the R software package (2018) for any commonalities. We 179 

removed the first ten years of simulated crops as there were large fluctuations in some regions. For the 180 

simulated time period of 11-200 years we counted the number of unique crop sequences of lengths three to 181 

five crops across the 1000 fields and determined the most frequently observed crop sequences for each 182 

subregion. To validate these results, half of the satellite data were used as a training data set to produce the 183 

crop transition matrices with the other half used as a validation set. Crop sequences were simulated from 184 

these crop transition matrices. The probability of a given three-crop sequence (e.g. a 185 

winter wheat – winter barley – winter wheat sequence) were calculated from the simulated sequences and 186 

the observed sequences from the validation data and compared. We performed this analysis both with and 187 

without our additional crop rules from Table 2. By comparing the validation set with sequences generated 188 

without the additional crop rules, we can assess how well the transition matrices are able to predict the 189 

validation data. While our additional crop rules aren’t enforced on the validation set sequences, we also 190 

compare these sequences with the simulated sequences that were generated with the additional crop rules. 191 

3. Results 192 

During the simulated 200 years of cropping, crop proportions generally fluctuated for a short initial period, 193 

due to our additional crop rules, before stabilising, e.g. with the NUTS L region in Fig. 2. Each subregion 194 
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followed its own unique distribution of crop types and there were distinct differences in the simulated 195 

cropping frequencies across both NUTS1 regions and soil types. 196 

 197 
Fig. 2. Example simulations for six subregions of Great Britain, encompassing two NUTS regions (East 198 

Midlands, F and Wales, L) and the three soil types. Here the proportion of fields growing each crop is shown 199 

over 200 years of simulation. 200 

The number of unique crop sequences of lengths three to five crops varied between subregion (Table 201 

3). Some regions had very conserved crop sequences. In the heavy soil subregion of NUTS region I (London) 202 

only 10 different three crop sequences were simulated, accounting for only 0.58% of the total possible 203 



12 
 

permutations. This is due to the limited number of fields in this subregion, however. Outside of London, the 204 

region with the fewest sequences was the heavy soil subregion of NUTS region L (Wales) where there were 205 

413 different three-crop sequences observed, accounting for 23.9% of the total possible permutations. The 206 

NUTS regions E (Yorkshire and the Humber), F (East Midlands), and H (East of England) showed much greater 207 

diversity in the crop sequences being simulated with the light soil subregion of NUTS region F displaying 64% 208 

of the total possible three crop sequences. When we look at the generated crop sequences of length five 209 

there is much less variation and we see a much smaller subset of the total possible crop sequences generated. 210 

However, region M still shows very low diversity (only 2.39% of all total five-crop sequences on the heavy 211 

soil) and region F still shows very high diversity (15.75% of all total five-crop sequences on the light soil).  212 
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Table 3 213 

The number of unique crop sequences of length three to five crops simulated in each subregion across 1,000 214 

fields for 200 years (maximum possible permutations of twelve crops is 1,728 three-crop sequences, 20,736 215 

four-crop sequences, 248,832 five-crop sequences). 216 

Sequence Length: three-crops four-crops five-crops 

NUTS-1 
Clay 

Classification 
Count 

% of total 
possible 

Count 
% of total 

possible 
Count 

% of total 
possible 

C Heavy * * * * * * 

  Medium 748 43.29 4216 20.33 15288 6.14 

  Light 721 41.72 4495 21.68 17580 7.07 

D Heavy 698 40.39 4695 22.64 22200 8.92 

  Medium 833 48.21 5635 27.17 23858 9.59 

  Light 819 47.4 5933 28.61 27968 11.24 

E Heavy 1043 60.36 7293 35.17 30000 12.06 

  Medium 1030 59.61 6559 31.63 24631 9.9 

  Light 1053 60.94 7847 37.84 33818 13.59 

F Heavy 1058 61.23 7407 35.72 29453 11.84 

  Medium 1069 61.86 7424 35.8 29562 11.88 

  Light 1106 64 8704 41.98 39200 15.75 

G Heavy 784 45.37 5123 24.71 21443 8.62 

  Medium 804 46.53 5391 26 22636 9.1 

  Light 822 47.57 5788 27.91 26340 10.59 

H Heavy 1024 59.26 6551 31.59 25027 10.06 

  Medium 1057 61.17 7306 35.23 28992 11.65 

  Light 1050 60.76 7778 37.51 34182 13.74 

I Heavy 10 0.58 17 0.08 28 0.01 

  Medium 543 31.42 3382 16.31 14039 5.64 

  Light 160 9.26 557 2.69 1834 0.74 

J Heavy 800 46.3 5105 24.62 21448 8.62 

  Medium 888 51.39 5440 26.23 22035 8.86 

  Light 865 50.06 5552 26.77 21541 8.66 

K Heavy 764 44.21 4868 23.48 20626 8.29 

  Medium 809 46.82 5556 26.79 25382 10.2 

  Light 790 45.72 5312 25.62 22762 9.15 

L Heavy 413 23.9 2335 11.26 9877 3.97 

  Medium 811 46.93 5037 24.29 19488 7.83 

  Light 616 35.65 3968 19.14 16164 6.5 

M Heavy 429 24.83 2034 9.81 5950 2.39 

  Medium 810 46.88 4964 23.94 19103 7.68 

  Light 786 45.49 4863 23.45 19003 7.64 
* the large majority of this subregion was permanent grassland and so too few transitions remained to make 217 

it viable for simulation.  218 



14 
 

The sequences most commonly generated vary by region, however this is in line with expectation 219 

with more arable-type rotations in the east and pastoral or mixed systems in the west. In NUTS region F (East 220 

Midlands) the most commonly predicted three-crop sequence was winter wheat – oilseed rape – winter 221 

wheat on all three soil types. As the crop sequences are lengthened, either field beans, winter barley or 222 

potatoes are introduced. In NUTS region K (South West), however, we most commonly predict three- to four-223 

year grass leys. In a Defra project (Defra, 2010) that previously looked at determining crop rotations in 224 

different regions of England they predicted crop rotations very similar to ours in the east of England but they 225 

did not include grass in their predictions and so their results differ for the south west. However, their 226 

predicted rotation of winter wheat – winter wheat – winter barley – oilseed rape is very similar to our most 227 

frequent four-crop sequence (after removing any grass leys) of winter wheat – winter barley – oilseed rape 228 

– winter wheat generated by our model in NUTS region K on the medium soil. Even in regions where the 229 

cropping sequences are very conserved, such as the heavy soil subregion of NUTS region L (Wales) the most 230 

commonly predicted three-crop sequence only occurred 8.4% of the time. In other regions where there was 231 

more variety in cropping such as the light soil subregion of NUTS region F (East Midlands) the most commonly 232 

predicted three-crop sequence occurred just 2% of the time. This suggests that farmers are indeed not 233 

repeating typical rotations and are in fact actively adapting the crops produced according to the current 234 

conditions. 235 

Fig. 3 plots the results from our validation analysis. Here we compare our simulated sequences 236 

generated both with and without the additional crop rules from Table 2 to the sequences from the validation 237 

data. We first compare the sequence simulated without the additional crop rules. These simulations 238 

performed well, with the simulated probability of a given of crop sequence closely matching the probability 239 

observed in the validation data. This demonstrates the goodness of fit of the crop transition matrices that 240 

were produced using the training data and shows that crop transition matrices are an effective way of 241 

replicating regional crop choice. The main source of error occurred with the heavy soil subregion of region C. 242 

This is likely due to the lack of data in this subregion, however. Enforcing the additional crop rules on the 243 

simulated sequences results in a poorer fit with the validation data, this is to be expected however as the 244 

validation sequences do not necessarily comply with the additional crop rules of Table 2. For instance, there 245 
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were sequences in the validation set that are strictly prohibited by our crop rules, e.g. a grass-crop-grass 246 

sequence. The largest discrepancy that we consistently found across subregions was in the prevalence of 247 

all-grass sequences, generally indicated by the points to the farthest right of the plots, e.g. the heavy soil 248 

subregion of region M in which approximately 64% of the validation sequences were all-grass sequences 249 

compared to 25% of our sequences simulated with the additional crop rules. This is again expected as our 250 

crop rules control both the maximum consecutive number of years a grass ley in an arable rotation can be 251 

planted for, as well as the minimum time to wait between planting grass leys, all of which serves to reduce 252 

the amount of grass in the simulated sequences. Possible reasons why our crop rules aren’t reflected in the 253 

data could include unexpected farmer behaviour, rented land in which new tenants don’t base their decisions 254 

on the actions of prior tenants or due to crop misclassifications in the data (UKCEH, 2018). This therefore 255 

highlights the need to include these additional crop rules. 256 
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 257 
Fig. 3. Plot of the probability of a given three-crop sequence appearing in the validation data and the 258 

simulations generated using the training data. An identity line is included to assess the accuracy of the 259 

simulated sequences. The heavy soil subregion of region C (North East England) was not simulated due to 260 

insufficient data. The number of fields in the validation set is given by 𝑛. 261 
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4. Discussion 262 

Simulation of crop sequences using transition matrices in combination with agronomic rules allows us to 263 

generate realistic sequences of crops reflecting the business-as-usual state at the subregional level in Great 264 

Britain. The decision as to which crop a farmer will grow is a two-stage process taking into account: the 265 

environment; as well as, pest, weed and disease pressure. Lawes and Renton (2010) took some steps to 266 

incorporating some of these decisions into their land use sequence optimiser accounting for the need to 267 

place break crops into the crop sequence to provide relief from soil pathogens, to minimise populations of 268 

herbicide resistant weeds or to increase soil nitrogen reserves. In this article we incorporated these decisions 269 

in two ways. By populating transition matrices at the subregion level, we accounted for decisions related to 270 

the environment as soil and climatic conditions tend to vary at this scale. These transition matrices only 271 

account for agronomic rules that depend on the previously grown crop, however. By applying additional crop 272 

rules from within the simulation, that depend on crops planted prior to the previously grown one, we can 273 

better account for the second part of the decision-making process. 274 

An alternative approach to including crop-based rules explicitly in the method would be to look at 275 

transition probabilities conditional on more than just the previous year (e.g. if one observes winter wheat 276 

twice in a rotation then what is most likely to come next?). Whilst this approach is attractive because it is 277 

purely data driven and so captures a more realistic picture of crop sequences, it is limited by the fact it 278 

requires a large data set over a number of years. When this study was performed, there were only three 279 

reliable years of data available from Land Cover® plus: Crops, and so a more detailed data driven approach 280 

over more than three years was not possible. 281 

In defining the crop sequence transitions in subregions according to NUTS1 areas and soil types, we 282 

have assumed homogeneity within these regions with respect to crop patterns. Whilst this is a reasonable 283 

assumption to make, as the combination of NUTS1 regions and soil type capture the key geographical and 284 

environmental characteristics, it is possible that potentially large within-subregion variation is ignored. 285 

Furthermore, the use of discrete subregions results in discontinuities at the boundaries, which is an artefact 286 

of the aggregation and not likely in reality. Localised sequences smoothed across space would overcome 287 
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these issues, however it may suffer other problems including interpretation, lack of data used to estimate 288 

sequences and subjective choice of smoothing parameter. Such approaches still rely on some defined region 289 

from which sequence patterns are derived and hence, although these are likely to be much smaller regions 290 

to capture the localised sequences, issues around homogeneity assumptions may still exist. 291 

To further overcome potential issues with high within subregion variability in crop sequences, a more 292 

detailed classification could be undertaken. For example, we also implemented a hierarchical cluster analysis 293 

to form classes according to soil and topographic variables considered important in crop choice (clay, silt, 294 

organic carbon and bulk density). For ease of exposition and to keep the number of transition matrices to a 295 

manageable level for reporting, we chose not to present those results here, but highlight this method as an 296 

alternative for defining regions. 297 

Previous work on the simulation of crop rotations has focused on finding the best rotation to 298 

optimise a given objective, be it economic (Pakawanich et al., 2020), environmental (dos Santos et al., 2011), 299 

or regulatory (Mauri, 2019). Some studies have even considered combining multiple objectives such as 300 

maximising economic returns whilst reducing nitrogen loss and soil erosion (Watkins and Lu, 1998). However, 301 

objective-oriented crop rotations do not necessarily reflect the decision-making process considered by 302 

farmers, as the “best” crop sequence will not only depend on cropping constraints but also a number of 303 

stochastic factors, such as weather, pest pressure, and the environment. For example, we found that the 304 

most common three-crop sequence for each region occurred between 2-8.4% of the time, supporting the 305 

idea that there is no typical crop rotation that is used repeatedly. By taking a data-driven probabilistic 306 

approach we hope to be able to capture some of these stochastic processes when the cropping sequences 307 

are scaled up to a landscape scale. 308 

It is important to consider that Land Cover® plus: Crops contains uncertainty that could influence the 309 

observed transition probabilities. Overall accuracy of the product is around 86%, but this varies between crop 310 

types with grass, oilseed rape and winter wheat having over 90% accuracy and field beans and spring wheat 311 

having below 50% accuracy (UKCEH, 2018). Misclassifications could lead to incorrect transition probabilities 312 

and therefore spurious crop sequences. For example, the originally calculated 𝑃(𝐺𝑆|𝐺𝑆) was negative in the 313 
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light soil subregions of NUTS regions G (West Midlands) and H (East of England), these were set to zero and 314 

the other probabilities in the row were rescaled to sum to one. We believe these negative values are due to 315 

our assumption that 𝑃(𝐺𝑆|𝐺1) = 1 is not necessarily what is found in the Land Cover® plus: Crops data. This 316 

is likely due to a combination of misclassifications in the Land Cover® plus: Crops data, the small time-window 317 

of data available, and farmers planting grass for just a single year. If farmers are planting grass for a single 318 

year, then we expect the number of cases in which this happens to be small because of the investment 319 

required to plant a grass ley and due to the recommendation to plant grass for at least two years to help 320 

reduce pest, weed and disease pressure (I. Shield, pers. comm.). 321 

Here we have described a method of simulating crop sequences that reflect the business-as-usual 322 

state at the subregional level for Great Britain. The use of our method to generate realistic cropping 323 

sequences will allow agricultural systems modellers to move away from simulating crop rotations, an 324 

agronomic practice rarely implemented rigidly on farms, and instead mimic more accurately the decision 325 

processes undertaken by a farmer when making crop choices. This method is well suited to simulating 326 

realistic crop sequences and so will support business-as-usual scenarios. Not only this, but the method offers 327 

a sound way to investigate future scenarios. These could be simulated by incorporating a greater diversity of 328 

crops into the transition matrix or by including more agronomic rules on the frequency of cropping. 329 

Simulation in this way could also allow gradual transitions to new cropping regimes over time rather than 330 

abrupt changes at arbitrary points in a simulation when the crop rotation is changed to some “future 331 

scenario”. As more data become available these “business-as-usual” transition matrices should be updated 332 

to reflect the changing patterns in farming. For example, recent changes in pesticide regulations have left 333 

many farmers defenceless against the cabbage stem flea beetle, a serious pest in oil seed rape, resulting in a 334 

dramatic reduction in the area that this crop is grown (Dewar, 2017). Shocks of this type, including climate 335 

change, changes in crop prices, new invasive pests and diseases and further loss of chemical control methods 336 

will continue to impact observed crop sequences and so it is important to update transition matrices on a 337 

regular basis. In addition, as methods for identifying crops are developed and improve, the satellite 338 

predictions of crop types will become more accurate and able to detect a wider variety of crops leading to 339 

more complex transition matrices that reflect this. 340 



20 
 

Acknowledgements 341 

This work was supported by: Institute Strategic Programme Grant ‘Achieving Sustainable Agricultural 342 

Systems’ (ASSIST) [grant number NEC05829]; Institute Strategic Programme Grant ‘Soils to Nutrition’ (S2N) 343 

[grant number BBS/E/C/000I0330]; ‘Transforming and growing relationships within regional food systems for 344 

Improved nutrition and sustainability’ (TGRAINS) [grant number BB/S014292/1]; and, Strategic Priorities 345 

Fund ‘Landscape Decisions: Towards a new framework for using land assets’ programme ‘New Science to 346 

Enable the Design of Agricultural Landscapes that Deliver Multiple Functions – AgLand’ [grant numbers 347 

NE/T001178/1 (Rothamsted Research) and NE/T000244/2 (UKCEH)]. 348 

References 349 

AHDB, 2014. Growing and feeding forage maize – a review. Work Package 3b: Alternative forages. Research 350 
Partnership: Grasslands, Forage and Soil. 351 

 352 
AHDB, 2019. How resilient is your rotation? [Online]. Available: 353 

https://cereals.ahdb.org.uk/publications/2018/june/07/how-resilient-is-your-rotation.aspx 354 
[Accessed 17/09/2019]. 355 

 356 
Castellazzi, M.S., Wood, G.A., Burgess, P.J., Morris, J., Conrad, K.F., Perry, J.N., 2008. A systematic 357 

representation of crop rotations. Agricultural Systems 97 (1-2), 26-33. 358 
https://doi.org/10.1016/j.agsy.2007.10.006. 359 

 360 
Defra, 2010. Soil carbon: studies to explore greenhouse gas emissions and mitigation, Project code SP1106 361 

[Online]. Available: 362 
http://sciencesearch.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&Co363 
mpleted=0&ProjectID=17323  364 

 365 
Defra, 2019. June Survey of Agriculture and Horticulture [Online]. Available: 366 

https://www.gov.uk/government/statistical-data-sets/structure-of-the-agricultural-industry-in-367 
england-and-the-uk-at-june  368 

 369 
Dewar, A.M., 2017. The adverse impact of the neonicotinoid seed treatment ban on crop protection in 370 

oilseed rape in the United Kingdom. Pest Manage. Sci. 73 (7), 1305-1309. 371 
https://doi.org/10.1002/ps.4511. 372 

 373 
dos Santos, L.M.R., Michelon, P., Arenales, M.N., Santos, R.H.S., 2011. Crop rotation scheduling with 374 

adjacency constraints. Annals of Operations Research 190 (1), 165-180. 375 
https://doi.org/10.1007/s10479-008-0478-z. 376 

 377 
FAO, IIASA, ISRIC, ISSCAS, JRC, 2012. Harmonized World Soil Database (version 1.21). FAO, Rome, Italy and 378 

IIASA, Laxenburg, Austria. 379 
 380 
Graesser, J., Ramankutty, N., 2017. Detection of cropland field parcels from Landsat imagery. Remote Sens. 381 

Environ. 201, 165-180. https://doi.org/10.1016/j.rse.2017.08.027. 382 

https://cereals.ahdb.org.uk/publications/2018/june/07/how-resilient-is-your-rotation.aspx
https://doi.org/10.1016/j.agsy.2007.10.006
http://sciencesearch.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&Completed=0&ProjectID=17323
http://sciencesearch.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&Completed=0&ProjectID=17323
https://www.gov.uk/government/statistical-data-sets/structure-of-the-agricultural-industry-in-england-and-the-uk-at-june
https://www.gov.uk/government/statistical-data-sets/structure-of-the-agricultural-industry-in-england-and-the-uk-at-june
https://doi.org/10.1002/ps.4511
https://doi.org/10.1007/s10479-008-0478-z
https://doi.org/10.1016/j.rse.2017.08.027


21 
 

 383 
Hilton, S., Bennett, A.J., Keane, G., Bending, G.D., Chandler, D., Stobart, R., Mills, P., 2013. Impact of 384 

Shortened Crop Rotation of Oilseed Rape on Soil and Rhizosphere Microbial Diversity in Relation to 385 
Yield Decline. PLOS ONE 8 (4), e59859. https://doi.org/10.1371/journal.pone.0059859. 386 

 387 
Jones, J.W., Antle, J.M., Basso, B., Boote, K.J., Conant, R.T., Foster, I., Godfray, H.C.J., Herrero, M., Howitt, 388 

R.E., Janssen, S., Keating, B.A., Munoz-Carpena, R., Porter, C.H., Rosenzweig, C., Wheeler, T.R., 389 
2017. Toward a new generation of agricultural system data, models, and knowledge products: State 390 
of agricultural systems science. Agricultural Systems 155, 269-288. 391 
https://doi.org/10.1016/j.agsy.2016.09.021. 392 

 393 
Lawes, R., Renton, M., 2010. The Land Use Sequence Optimiser (LUSO): A theoretical framework for 394 

analysing crop sequences in response to nitrogen, disease and weed populations. Crop and Pasture 395 
Science 61 (10), 835-843. https://doi.org/10.1071/CP10026. 396 

 397 
MATLAB, 2018. 9.5.0 (R2018b). The MathWorks, Inc., Natick, Massachusetts, United States. 398 
 399 
Mauri, G.R., 2019. Improved mathematical model and bounds for the crop rotation scheduling problem 400 

with adjacency constraints. European Journal of Operational Research 278 (1), 120-135. 401 
https://doi.org/10.1016/j.ejor.2019.04.016. 402 

 403 
Metcalfe, H., Sharp, R.T., 2021. CropSequenceGenerator (Version 1.0.4). Zenodo. 404 

https://doi.org/10.5281/zenodo.5001978. 405 
 406 
Metcalfe, H., Milne, A.E., Deledalle, F., Storkey, J., 2020. Using functional traits to model annual plant 407 

community dynamics. Ecology 101 (11), e03167. https://doi.org/10.1002/ecy.3167. 408 
 409 
Milne, A.E., Coleman, K., Todman, L.C., Whitmore, A.P., 2020. Model-based optimisation of agricultural 410 

profitability and nutrient management: a practical approach for dealing with issues of scale. 411 
Environ. Monit. Assess. 192 (11), 730. https://doi.org/10.1007/s10661-020-08699-z. 412 

 413 
Mueller-Warrant, G.W., Trippe, K.M., Whittaker, G.W., Anderson, N.P., Sullivan, C.S., 2017. Spatial methods 414 

for deriving crop rotation history. International Journal of Applied Earth Observation and 415 
Geoinformation 60, 22-37. https://doi.org/10.1016/j.jag.2017.03.010. 416 

 417 
Pakawanich, P., Udomsakdigool, A., Khompatraporn, C., 2020. Robust production allocation model for an 418 

agricultural cooperative with yield uncertainty and similar revenue constraints. Comput. Electron. 419 
Agric. 168. https://doi.org/10.1016/j.compag.2019.105090. 420 

 421 
R Core Team, 2018. R: A Language and Environment for Statistical Computing. R Foundation for Statistical 422 

Computing, Vienna, Austria. https://www.R-project.org/. 423 
 424 
Reidsma, P., Ewert, F., Boogaard, H., van Diepen, K., 2009. Regional crop modelling in Europe: The impact of 425 

climatic conditions and farm characteristics on maize yields. Agricultural Systems 100 (1-3), 51-60. 426 
https://doi.org/10.1016/j.agsy.2008.12.009. 427 

 428 
Schoumans, O.F., Groenendijk, P., 2000. Modeling Soil Phosphorus Levels and Phosphorus Leaching from 429 

Agricultural Land in the Netherlands. Journal of Environmental Quality 29 (1), 111-116. 430 
https://doi.org/10.2134/jeq2000.00472425002900010014x. 431 

 432 
Smith, L.G., Tarsitano, D., Topp, C.F.E., Jones, S.K., Gerrard, C.L., Pearce, B.D., Williams, A.G., Watson, C.A., 433 

2016. Predicting the effect of rotation design on N, P, K balances on organic farms using the NDICEA 434 
model. Renew. Agric. Food Syst. 31 (5), 471-484. https://doi.org/10.1017/S1742170515000381. 435 

https://doi.org/10.1371/journal.pone.0059859
https://doi.org/10.1016/j.agsy.2016.09.021
https://doi.org/10.1071/CP10026
https://doi.org/10.1016/j.ejor.2019.04.016
https://doi.org/10.5281/zenodo.5001978
https://doi.org/10.1002/ecy.3167
https://doi.org/10.1007/s10661-020-08699-z
https://doi.org/10.1016/j.jag.2017.03.010
https://doi.org/10.1016/j.compag.2019.105090
https://www.r-project.org/
https://doi.org/10.1016/j.agsy.2008.12.009
https://doi.org/10.2134/jeq2000.00472425002900010014x
https://doi.org/10.1017/S1742170515000381


22 
 

 436 
UKCEH, Land Cover® plus: Crops © UKCEH. © RSAC. © Crown Copyright 2007. 437 
 438 
UKCEH, 2018. CEH Land Cover® plus Crop Map: Quality Assurance [Online]. Available: 439 

https://www.ceh.ac.uk/ceh-land-cover-plus-crop-map-quality-assurance [Accessed 27/03/2020]. 440 
 441 
Watkins, K.B., Lu, Y.C., 1998. Economic and Environmental Tradeoffs Among Alternative Seed Potato 442 

Rotations. J. Sustainable Agric. 13 (1), 37-53. https://doi.org/10.1300/J064v13n01_05. 443 
 444 
Wibberley, J., 1996. A brief history of rotations, economic considerations and future directions. Aspects of 445 

Applied Biology (United Kingdom). 446 
 447 
Wolny, S., 1992. The threat of parasitic nematodes to farm crops grown in various rotations and 448 

monoculture. Acta Academiae Agriculturae ac Technicae Olstenensis, Agricultura (55), 103-113. 449 
 450 
You, P.S., Hsieh, Y.C., 2017. A computational approach for crop production of organic vegetables. Comput. 451 

Electron. Agric. 134, 33-42. https://doi.org/10.1016/j.compag.2016.11.003. 452 
 453 
 454 

https://www.ceh.ac.uk/ceh-land-cover-plus-crop-map-quality-assurance
https://doi.org/10.1300/J064v13n01_05
https://doi.org/10.1016/j.compag.2016.11.003

