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Abstract
Modern sensor technologies can provide detailed information about soil variation which 
allows for more precise application of fertiliser to minimise environmental harm imposed 
by agriculture. However, growers should lose neither income nor yield from associated 
uncertainties of predicted nutrient concentrations and thus one must acknowledge and 
account for uncertainties. A framework is presented that accounts for the uncertainty and 
determines the cost–benefit of data on available phosphorus (P) and potassium (K) in the 
soil determined from sensors. For four fields, the uncertainty associated with variation in 
soil P and K predicted from sensors was determined. Using published fertiliser dose–yield 
response curves for a horticultural crop the effect of estimation errors from sensor data on 
expected financial losses was quantified. The expected losses from optimal precise applica-
tion were compared with the losses expected from uniform fertiliser application (equivalent 
to little or no knowledge on soil variation). The asymmetry of the loss function meant that 
underestimation of P and K generally led to greater losses than the losses from overestima-
tion. This study shows that substantial financial gains can be obtained from sensor-based 
precise application of P and K fertiliser, with savings of up to £121 ha−1 for P and up to 
£81 ha−1 for K, with concurrent environmental benefits due to a reduction of 4–17 kg ha−1 
applied P fertiliser when compared with uniform application.
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Introduction

It is estimated that globally 9–14 million tonnes of phosphorus (P) leaches from fields 
into watercourses (Beusen et al., 2016; Chen et al., 2016), largely as a result of exces-
sive application of fertiliser. This excessive use of fertiliser is causing substantial envi-
ronmental harm. To minimise such harm, fertiliser needs to be applied more precisely 
than at present, varying across fields to meet crop requirements but no more. This 
accords with the aims of precision agriculture.

Precision agriculture (PA) aims to produce sufficient crops sustainably for socie-
ty’s needs while minimising costs to the producer and harm to the environment. This 
involves the management of spatial and temporal variation within fields; it requires 
intense information. Growers who adopt PA must consider the need, value, costs and 
possible other sources of information to identify whether they can use it to improve their 
efficiency and reduce environmental impact. The associated uncertainty of the infor-
mation they acquire for this purpose affects both its value and consequently their view 
of this approach to management. Current decision-making on variable rate application 
(VRA) of fertiliser is based primarily on yield responses as functions of management 
inputs in agronomic trials (Pringle et al., 2004a, 2004b). To vary fertiliser intelligently, 
however, growers need to have detailed maps of nutrient status or fertiliser requirement 
for their fields.

Obtaining detailed soil information to support VRA requires intense sampling. 
Although the required sampling density depends on specific circumstances, in particular 
the degree of short-distance variation in the soil, a general consensus is that around 10 
observations per hectare are required. Both the sampling and laboratory analysis of soil 
collected are laborious and time-consuming. The whole process by conventional wet 
chemical analysis is too expensive for the sizes of samples required to map soil varia-
tion accurately within fields. Most growers therefore apply uniform dressings of ferti-
liser based on average estimates of nutrient concentrations made from a small number 
of samples. Recent developments in spectroscopy offer an affordable and effective alter-
native with instruments designed for use both in the laboratory and in the field (Li et al., 
2015). X-ray fluorescence (XRF) spectroscopy has been available for several decades, 
and more recently infrared (IR) reflectance spectroscopy has become feasible for analys-
ing and predicting soil properties on a large number of samples cheaply (Bellon-Maurel 
& McBratney, 2011; Viscarra Rossel & Webster, 2012). The net result is substantially 
cheaper than chemical analysis alone and enables surveyors to obtain sufficient detail 
on the spatial variation of soil properties affordably (Viscarra Rossel & Bouma, 2016).

All measurement embodies some degree of error, however, and so soil data also have 
their associated uncertainty. Nevertheless this study considered the errors in standard 
chemical analyses by modern equipment small enough to be ignored. Spectroscopic 
estimation introduces yet another source of error. That is, calibration equations that 
describe the relationship between the wet chemistry measures and the soil spectra also 
have an associated error. Finally, measurements of the soil cannot be made at all loca-
tions, and so interpolation is necessary to estimate the soil variables between measured 
locations. This interpolation, usually done by kriging, has an associated prediction 
error. These errors accumulate through the whole procedure and are embodied in the 
error variances of the final estimates. Ignoring the resultant uncertainty can lead to false 
inferences from the data and hence faulty decision-making (Cherry et al., 2008; Goo-
vaerts, 2001; Heuvelink, 2018).
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Given the ease with which spectroscopy can replace conventional chemical methods for 
analysing soil, it is important to know how the errors it introduces affect the final spatial 
predictions and in turn the potential financial advantage of precise fertiliser management 
compared with uniform application. This is because errors carry with them costs. Over-
estimation of a plant nutrient concentration in the soil, say P, would lead to a grower’s 
applying too little fertiliser and to loss of potential yield and income. Under-estimation of 
the concentration would lead to the grower’s over-fertilizing, spending unnecessarily on 
fertiliser, to the point of spending more than earned in increased yield of crop.

Yates (1981) set out the principles by which one might assess the balance between costs 
of survey and benefits that would accrue from greater accuracy. The aim is to minimise 
the sum of sampling costs and expected losses due to errors. For this Yates defined a loss 
function and suggested how it might be minimised. The loss function is a generic approach 
studied not only in the context of soil survey (Lark & Knights, 2015) but also in environ-
mental protection (Goovaerts, 1997) and soil management (Faechner et al., 2000). Because 
overestimation and underestimation incur losses for different reasons the loss function may 
be asymmetric. Given a loss function and an error distribution for the information, one 
can make a decision that minimises expected losses (e.g. Faechner et al., 2000; Goovaerts, 
1997).

This study is concerned with the prediction of available P and K for precise manage-
ment of fertiliser in horticultural crops. The main objective is to investigate the potential 
for soil spectral methods (near- and mid-infrared and X-ray fluorescence) to predict how 
these soil variables change within well-managed fields and so determine the effect of pre-
diction errors on the expected loss. It was hypothesised that, once uncertainty in predic-
tions has been accounted for, soil spectroscopy could adequately predict the spatial vari-
ability to justify variable rate application of P and K fertiliser. For this, soil samples from 
four fields in the Cambridgeshire Fens of the UK were considered. Measurements of avail-
able P and K estimated from soil spectra were used to predict how the concentrations vary 
across the fields and to compute the associated error variances from interpolation. The 
expected losses associated with varying applications of fertiliser given the error variance of 
the predictions are computed. The expected losses are compared with the losses that would 
have accrued if estimates from wet chemistry had been used to determine a single applica-
tion rate per field. General conclusions are drawn about the effect of uncertainty in nutrient 
status on economic and environmental losses and practical considerations are given with 
regard to implementing the loss function.

Methods

Data

Data were obtained in sample surveys of four fields in the Fen district of Cambridgeshire, 
England, in 2018 and 2019. The region was originally dominated by peat, much of which 
has oxidized since the land was drained in the seventeenth century. The land surface is 
now 1 to 2 m lower than it was except for the natural sinuous drainage channels contain-
ing mineral sediment. These former channels, known locally as ‘rodhams’, have become 
elevated features in the landscape (Hodge et al., 1984), and they are clearly distinguishable 
on LiDAR (light detection and ranging) imagery. The LiDAR raster (2  m × 2  m resolu-
tion) from the British Environment Agency was used as a basis for sampling. The sampling 
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design of Field 1 (8.2 ha) was based around a 30-m square grid, with three transects (on 
alternate rows of the grid) more intensely sampled at 6-m intervals. The designs for Field 2 
(16.9 ha), Field 3 (5.1 ha) and Field 4 (8.9 ha) were computed for initial numbers of points 
(121, 107 and 100, respectively) by spatial coverage sampling (Walvoort et al., 2010). Each 
point lay in the centre of its Dirichlet tile. All tiles in each field were of equal area, ensur-
ing spatial coverage of the entire field. This led to an approximate grid with an interval of 
around 30 m. A sub-sample of 36 (Field 2), 26 (Field 3) and 32 (Field 4) of these points 
were selected with balanced sampling (Grafström & Lilics, 2019) on the spatial coordi-
nates and LiDAR. At each location of these sub-samples, another sampling point 6 m away 
at a random orientation was added to estimate the short-scale spatial variance. In all fields 
extra sample points were also added to ensure coverage of the range of soil conditions and 
LiDAR. The decision for the location of these extra points was based on the LiDAR sur-
vey and satellite imagery showing variation in soil colour. In all, the numbers of sampling 
points for the fields were 256 (Field 1), 161 (Field 2), 138 (Field 3) and 142 (Field 4). Sup-
plementary Fig. 1 shows the field boundaries with the sampling points. Three soil cores of 
topsoil (0–0.25 m) were taken within a 0.5 m × 0.5 m quadrat at each sampling location. 
These three cores were bulked and mixed for spectroscopic measurements. A subset of 30 
samples from each field was taken for further laboratory analysis. The subset was selected 
from the total sample by balanced sampling on the spatial coordinates and LiDAR data.

Available P was measured by the standard Olsen method (Olsen et  al., 1954) and a 
SANplus continuous colorimetric flow analysis (Skalar Analytical BV, Breda, Neth-
erlands). Available K was determined in an ammonium-nitrate (NH4NO3) extract and 
Inductively Coupled Optical-Emission Spectroscopy (Optima 7300 DV, Seer Green, UK). 
The soil samples were dried in air and milled, and sub-samples were pressed into small 
wells (6 mm across and approximately 1 mm deep) and placed in a Tensor II spectrometer 
(Bruker, Ettlingen, Germany). The absorbance spectrum in the range 9998–3999  cm−1, 
i.e. the near-infrared (NIR), of each sub-sample was measured with a resolution of 1 cm. 
Each sub-sample’s mid-infrared (MIR) spectrum in the range 4000–600 cm−1 was recorded 
on the same instrument with a resolution of 2 cm−1. A DP-6000 Delta Premium portable 
X-ray fluorescence (pXRF) (Olympus Ltd, Center Valley, USA) was used to scan the soil 
samples. The pXRF features a Rh X-ray tube operated at 10–40 keV with a high resolution 
( < 165 eV) silicon drift detector. The pXRF was set to scan for 30 s at both 10 and 40 keV. 
The pXRF was set up in an instrument stand, and samples where placed on the aperture in 
a sample cup covered with a Prolene Thin Film (Chemplex Ind, Florida, USA). Potential 
drift in the XRF analyser was reduced by scans of a stainless steel 316-alloy clip contain-
ing 16.13% Cr, 1.78% Mn, 68.76% Fe, 10.42% Ni, 0.20% Cu, and 2.10% Mo tightly fitted 
over the aperture prior to the measurements on each aliquot. The pXRF samples where 
measured in three replicates on one aliquot, near- and mid-infrared spectra were measured 
on three aliquots of each soil sample. Further analysis was done on the mean spectra of 
those three measurements.

Spectral processing and calibration

The raw spectra were pre-processed first by the Savitzky–Golay filter (Savitzky & 
Golay, 1964) and then transformed to their first derivatives. The H2O bands (7900–5587 
and 6849–5102  cm−1) were removed from the NIR spectra (Bowers & Hanks, 1964). 
The region of 4464–4115  cm−1 was removed from the MIR spectra to account for the 
CO2 peak at 4248 cm−1 (Sandford & Allamandola, 1990). The 10 keV XRF spectra were 
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subset to the range of 0.5–7.8 keV, the 40 keV XRF spectra to the range of 0–24.4 keV. 
The 10- and 40-keV spectra were then combined.

Calibration was done by partial least squares (PLS) regression with the kernel algo-
rithm on the derivative spectra. Separate models were used for Fields 3 and 4, whereas 
a single model was used on pooled data for Fields 1 and 2 because they were close to 
one another. The number of components to be included in the model were selected as 
follows. First, the mean squared error (MSE) between the known values and the predic-
tions was computed by leave-one-out cross-validation (LOO-CV). The standard devi-
ation of the LOO-CV residuals was also computed. To minimise over-fitting, models 
were computed for a maximum of 15 components. Subsequently, the model was chosen 
that included the fewest components, yet lay within the MSE’s standard deviation of the 
model that had the smallest error overall (Hastie et al., 2009, Sect. 7.10). The minimum 
number of components to be included was set to 1.

Preliminary analysis showed that whilst XRF tends to give the most accurate pre-
dictions of P and K, this was not always the case, and therefore all three sets of spec-
tra were combined. The PLS predictions from NIR, MIR and XRF matrices for each 
property were used for an ordinary least-squares (OLS) multiple regression, known as 
the Granger–Ramanathan averaging method (Granger & Ramanathan, 1984). The model 
underlying the OLS regression in its general form is

where �chem is a vector of observed values (as measured by wet chemistry), � is a vector of 
PLS predictions, the wi, i = 1, 2,… , t , are weighting coefficients of the t individual predic-
tors included in the regression and � is the error term. This equation was solved for the 
intercept ( w0 ) and the t coefficients for each of the spectral matrix combinations ( � ). The 
intercepts correct for bias if one of the individual predictors is biased.

Each prediction has associated with it an error, and these errors were treated as ones 
arising from the use of the OLS regression model. The error variance of these predic-
tions, of which there are n , is hereafter referred to as

where ychem(i) are the assumed true values measured by wet chemistry and ŷspec(i) are the 
predicted values from the spectra. The error variance has been propagated through into the 
geostatistical model. The reader is referred to Supplementary Fig. 2 for further details on 
the PLS and Granger–Ramanathan model-averaging results.

Geostatistical analysis

The predictions from the spectra together with the spatial coordinates and LiDAR 
heights were then used to predict the concentrations of each nutrient by the empirical 
best linear unbiased predictor (E-BLUP) (Lark et al., 2006). This is effectively a combi-
nation of kriging the spectral estimates with external drift (the LiDAR height) and uni-
versal kriging. It combines additively fixed effects (e.g. the unknown mean, the LiDAR 
height and the coefficients of any trend) and random effects (the spatially correlated 
random variation). Its model is

(1)�chem = w0 + w1�1 +⋯ + wt�t + �

(2)var
[
�y
]
=

1

n

∑n

i=1

{
ychem(i) − ŷspec(i)

}2
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Here � is the coefficient of the height, H , measured by LiDAR, the � are unknown coef-
ficients, � ≡ x1, x2 are the coordinates of a position in the field, the fj(�) are typically first- 
or second-order polynomials, and the �(�) represents the residuals from the fixed effects, 
i.e. the LiDAR height and the spatial trend. The residuals are assumed to be second-order 
stationary random variables, jointly normally distributed with zero means and n × n covari-
ance matrix �d with variogram �(�):

where � is the lag in distance and direction between any two points. The random variation 
was treated as isotropic, so that � becomes a scalar in distance only: h = |�| . The vari-
ogram of �(�) was examined by the method of moments. In all cases the random residuals 
could be successfully described by the isotropic exponential variogram model:

or the isotropic spherical variogram model:

Here c0 and c1 are variances, respectively the nugget and sill of the correlated variance, 
and r (the range of the spherical function) and a are distance parameters. Parameters for a 
plausible model can be found by maximum likelihood (ml) or maximization of the likeli-
hood of the residuals given the data (reml). Lark et  al. (2006) and Webster and Oliver 
(2007) give the derivation of the equations in full. The reml estimation method is pre-
ferred, because it reduces bias in random effects parameters due to the uncertainty in the 
fixed effects parameters. However, the ml may be compared between models with differ-
ent fixed effects structures, but such a comparison is not valid for reml. Therefore, the ml 
method was used first to select the fixed effects.

Preliminary investigations (visual inspection and marginal plots) suggested that the 
estimated soil properties, ŷspec , have long-range trends across the fields. These were con-
sidered as fixed effects. Estimated soil properties also vary systematically with elevation 
as recorded by LiDAR, so this was considered as another fixed effect. Each trend vari-
able (up to quadratic terms in eastings and northings, and elevation) was added in turn and 
tested whether its addition was significant by a log-likelihood ratio test. A chi-squared p
-value from the log-likelihood ratio of 0.05 was taken as threshold and any smaller value 
( p ≤ 0.05 ) was treated as evidence that additional trend parameters should be included. 
After the selection of fixed effects, the fixed effects and random effects in Eq. (3) were re-
estimated using residual maximum likelihood (reml). If c0 was less than var

[
�y
]
 then it was 

set equal to var
[
�y
]
 and Eq. (3) was solved again. Next, the final variograms were used for 

universal kriging. This provided the predictions and their kriging variances.

(3)Ykrig(�) = �H(�) +
∑J

j=0
�jfj(�) + �(�)

(4)�(�) =
1

2
E
[
{�(�) − �(� + �)}2

]

(5)
𝛾(h) = c0 + c1

{
1 − exp

(
−
h

a

)}
for 0 < h

= 0 for h = 0

(6)
𝛾(h) = c0 + c1

{
3h

2r
−

1

2

(
h

r

)3
}

for 0 < h < r

= c0 + c1 for h ≥ r

= 0 for h = 0
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The linear mixed models were cross-validated by LOO-CV. The linear mixed models 
were re-estimated for each iteration to diminish bias in parameter values (Hastie et  al., 
2009, Sect. 7.10). The LOO-CV of the linear mixed-models were evaluated with the mean- 
and median-standardized squared prediction errors (SSPEs) (Lark, 2000).

Theory of the loss function

The loss function, L(F) , is defined as the difference in profit that results from applying a 
given amount of fertiliser F compared with the economic optimal amount F0:

where the profit Φ(F) is the difference between the income from the crop (price of the 
crop × yield) and the cost of the fertiliser:

where M is the price of the crop (£ t−1) and V  is the cost of the fertiliser (£ kg−1). It was 
assumed that the yield is given by the dose–response equation:

 where � is the yield, S is the concentration of the nutrient in the soil, F is the applied fer-
tiliser (kg ha−1), � is the increase in nutrient concentration (mg kg−1) in the soil for every 
1 kg ha−1 fertiliser applied, and � , � , � and R are parameters, then the optimum amount of 
fertiliser can be calculated from this and is given by

 where B = V∕M , known as the break-even ratio.
By definition, the loss given by Eq. (7) is zero when the optimum amount of fertiliser 

is applied. However, computing the optimum amount of fertiliser to apply relies on one’s 
knowing the nutrient status, S , in the soil, and one cannot know it precisely.

Given the probability distribution, g(s) , of the nutrient status S the optimum fertiliser 
rate that maximizes the expected profit can be computed:

This also minimises the expected loss function, E[L(F)] , which was defined here as the 
difference between the profit where S is known without error and associated optimum ferti-
liser, F0 in Eq. (10), is applied

(7)L(F) = Φ
(
F0

)
− Φ(F)

(8)Φ(F) = M × Yield − V × F

(9)� = � + �R�F+S + ν(�F + S)

(10)F0 = ln

(
B∕� − �

�RSlnR

)
∕�lnR

(11)Fopt = ln

(
B∕� − �

�lnR∫ ∞

0
Rsg(s)ds

)
∕�lnR

(12)E[L(F, S)] = Φ
(
F0, S

)
− ∫

∞

0

{Φ(F, s)}g(s)ds
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Parameterization and analysis of the loss function

All fields sampled were cultivated for lettuce, and so loss functions were computed 
associated with this crop. The dose response curve for P was derived from Prasad et al. 
(1988) and for K from Greenwood et  al. (1980). Parameters were estimated for the 
linear plus exponential functions with the Gauss–Newton algorithm in GenStat (VSN 
International, 2021). It was assumed that for every 1 kg of P added in fertiliser 0.18 kg 
becomes available to the crop (Muhammed et al., 2017), for every 1 kg of K added in 
fertiliser, 0.62  kg becomes available to the crop (Blake et  al., 1999). Furthermore, it 
was assumed that the added nutrients are contained in the top 0.25 m of the soil (the 
sampling depth). The value of 480 kg  m−3 for bulk density of this peat soil was taken 
from Milne et al. (2006). Given the support of the kriged predictions (2 m × 2 m), it fol-
lows that an addition of 1 kg fertiliser per ha leads to an increase in the concentration 
of this layer of 0.15 mg available P kg−1 and 0.52 mg available K kg−1, equal to � in the 
dose–response Eq. (9) (see details in Supplementary Material). Greenwood et al. (1980) 
listed a mean base nutrient concentration of 69 mg available K kg−1 for the unfertilised 
soil in their study, which was used as an additive component. A profit margin ( M ) of 
£90 per tonne of lettuce per hectare was assumed. The prices of fertiliser ( V  ) were taken 
as £0.36 per kg P fertiliser and £0.29 per kg K fertiliser. Table 1 lists the parameter val-
ues of the dose–response equations for P and K.

The profitability of variable-rate application (VRA) was assessed based on kriged 
maps by computing the total expected loss (Eq. 12) across each field. This was done by 
comparing the expected loss for each field between that from VRA, E

[
L
(
Fopt

])
 , and a 

uniform application (UA) based on wet chemistry alone, E
[
L
(
FUA

])
 . For this purpose, 

five samples per field were selected in a W-shape from the locations at which the nutri-
ents had been measured by wet chemistry. These five samples were used to compute an 
average soil nutrient concentration per field that was used to determine the uniform rate 
of fertiliser application.

Software

Analysis was done with base R commands as well as the following R packages as imple-
mented in RStudio: data handling with the tidyverse (Wickham et al., 2019) package, 
computation of the sampling designs using the spcosa (Walvoort et  al., 2010), Bal-
ancedSampling (Grafström & Lilics, 2019) and SpatialEco (Evans, 2019) packages, 
spectral processing using prospectr (Stevens & Ramirez-Lopez, 2013), partial least 
squares regression using pls (Bjørn-Helge et  al., 2019), Granger–Ramanathan averag-
ing using GeomComb (Weiss & Roetzer, 2016), model-based geostatistics using the 
geoR package (Ribeiro & Diggle, 2018) and handling of spatial objects using the raster 

Table 1   Dose—response 
equation parameters as relevant 
to Eq. 9

Soil nutrient � � � R �

P 142.15  − 145.8  − 0.776 0.98 0.15
K 63.3  − 63.3 0 0.98 0.52
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(Hijmans, 2020) and rgdal (Bivand et al., 2020) packages. Graphics were created with 
base R functions and the package ggplot2 (Wickham, 2016).

Results

Uncertainty in kriging predictions from soil properties estimated by spectroscopy

The nugget variances, c0 , were underestimated for the following variogram models: avail-
able K (Fields 1, 2, 3, and 4) and available P (Fields 1 and 2). The nugget parameter was 
therefore set equal to var

[
�y
]
 and Eq. (3) was solved again to account for the under-estima-

tion of the error. Data of both P and K in all four fields were fitted with a linear trend model 
as fixed effects (Table 2). Fitting trend coefficients, as expected, resulted in smaller semi-
variances than their equivalents of the original variables, i.e. the difference between black 
discs and circles (Fig. 1). The LOO-CV results of the mixed model variograms accorded 
overall with expectations for both P and K and all four fields (Supplementary Fig. 3).

Loss function on variable‑rate fertiliser application

The fitted dose–response curves for P and K affected the profit Φ(F) and the loss func-
tion L(F) = Φ

(
F0

)
− Φ(F) differently because of their asymmetry characteristics and by 

association the expected loss, i.e. loss from perfect knowledge, E[L(F)] in Eq.  (12). For 
available P, the dose–response curve declines linearly in yield for large values of P (Fig. 2).

That is to say over-application of fertiliser results in financial losses because too much 
fertiliser is applied and yield is diminished. This effect of over-application of P fertiliser to 
soil with a large concentration of P fertiliser is greater than a similar over-application of K 
fertiliser; for K where the dose–response curve increases to an asymptote, and so the asso-
ciated prediction of profit and loss converge at large rates of applied fertiliser (Figs. 3 and 

Table 2   Fixed effects and parameters estimated by reml of the variograms, H stands for LiDAR (elevation 
height in metres), and x

1
 and x

2
 are the spatial coordinates

The variogram parameters are the nugget variance ( c
0
 ) the sill of the correlated variance ( c

1
 ), and r and a 

are the distance parameters
Sph spherical, Exp exponential

Field Soil nutrient Fixed effects Variogram type Variogram parameters

c
0

c
1

r∕m a∕m

1 P x
1
, x

2
, x

2

1
, x

2

2
, x

1
x
2

Sph 23 59 172 –
K H, x

1
, x

2
, x

2

1
, x

2

2
, x

1
x
2

Sph 4100 1784 104 –
2 P H, x

1
, x

2
Exp 22 50 – 35

K H, x
1
, x

2
Exp 3200 5551 – 64

3 P H, x
1
, x

2
, x

2

1
, x

2

2
, x

1
x
2

Exp 39 38 – 59
K x

1
, x

2
, x

2

1
, x

2

2
, x

1
x
2

Exp 1100 1413 – 64
4 P H Exp 15 151 – 12

K H, x
1
, x

2
, x

2

1
, x

2

2
, x

1
x
2

Exp 720 1565 – 12
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4). For both P and K, larger uncertainty of the predicted nutrient content (large �2
krig

 ) 
increases the expected loss and reduces the profit.

Fig. 1   Linear mixed model variograms for all fields, ◦ refer to the experimental variograms of the original 
variable, ∙ refer to the experimental variograms of the residuals from the trend model, the solid black line 
refers to the final model fitted by restricted maximum likelihood procedures
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As expected, the fertiliser rate that minimises the expected loss ( Fopt ) is greater than the 
optimal fertiliser rate when the soil variable is known without error ( F0 ) for all fields, again 
because of the asymmetry of the loss functions. The asymmetry means that overestimation 
generally leads to larger losses than does underestimation of soil P and K. Error variance in 
the estimates of P and K in the soil consequently leads to larger recommended applications 
of fertiliser than if one had perfect knowledge ( �2

krig
= 0 ) (Fig. 5).

The optimal P fertiliser application varied substantially in all fields. The variation was 
less pronounced for K, particularly in Field 4. Across Field 1, most kriged estimates of K 
fall on the asymptote of the dose–response curve, hence F0 = 0 for a large part of the field 
(Fig. 6A). The �2

krig
 increases the probability that kriging estimates fall below the asymp-

tote, however. In those situations application of fertiliser becomes necessary to minimise 
the expected loss (Fig. 6B). These observations also hold for Fields 2 and 4. The kriged 
estimates of available K in Fields 1, 2 and 4 were larger than the range of the dose–response 
curve (Fig.  7). Consequently, applying no fertiliser for a major portion of the field was 
more profitable (Fig. 6B, D and H).

The total expected loss on a field-basis was less for variable-rate P and K application 
( E
[
L
(
Fopt

)]
 ) than the total loss of blanket fertiliser application arising from the wet chem-

ical analysis ( E
[
L
(
FUA

)]
 ) (Table  3). There was a financial incentive of VRA of P ferti-

liser across all fields (ranging from £7–£121 ha−1) and for K fertiliser across three fields 
(ranging from £6–£81  ha−1). That is, for available K the difference between E

[
L
(
Fopt

)]
 

and E
[
L
(
FUA

)]
 was small in Field 4. Less P fertiliser was used on a field-basis under VRA 

( Fopt ) than with uniform application ( FUA ) in Fields 1, 2 and 3 (Table  3). Within those 
fields, total P fertiliser use was reduced by VRA with 4–17 kg ha−1 compared with uniform 
application. Most K fertiliser would be used on a field-basis in all cases under VRA ( Fopt ) 
(Table 3).

Discussion

Error approximation and the estimation of the variogram

For this study it was assumed that the error was homogeneous across the sample loca-
tions that were predicted by spectroscopy. This allowed for the more generic assumption 
that the prediction library already existed (for example, derived from a spectral library). If, 
however, predictions were obtained from a single sampling campaign, the error variance 
of locations with associated wet chemistry data and those without could be separated in a 
subsequent geostatistical analysis, as Delhomme (1978) suggested.

Error propagation is rarely taken into account in soil surveys based on spectroscopy. 
Ramirez-Lopez et  al. (2019), listed two other studies in which the propagation of errors 
was reported in the last 10  years (Brodský et  al., 2013; Viscarra Rossel et  al., 2016). 
Somarathna et  al. (2018) and Ellinger et  al. (2019) also propagated errors from infrared 
spectral into predictions of soil carbon. Error propagation is important for two reasons. 
First, Somarathna et  al. (2018) found that acknowledging the measurement error, in this 
case var

[
�y
]
 , reduces uncertainty in spatial predictions (as supported by Clark et al., 2010). 

The extent to which this has an effect will depend on the complexity of the target variable’s 
spatial variation and the geographical extent of the study. Second, acknowledgement of the 
uncertainty (and its minimisation) is necessary to detect small rates of change in the soil 
property of interest by monitoring over time (Viscarra Rossel et al., 2016). This study is 
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concerned with variation in space, and it is this variation that determines whether variable 
rate application is relevant.

One merit of kriging is that in addition to providing unbiased predictions it mini-
mises the squared-errors of those predictions, which are known. The predictions are 
best in that sense. Kriging, like other forms of regression, smooths: unobserved small 

Fig. 2   Dose–response curves for available P (exponential + linear) and available K (exponential) fitted 
based on data from Prasad et al. (1988) (P) and Greenwood et al. (1980) (K). See Table 1 in the main text 
for parameter values

Fig. 3   Profit and loss under zero error variance, expected profit and loss under an error variance of 
5  mg  kg−1 and an error variance of 200  mg  kg−1 for a range of estimated soil P values from 10 to 
80 mg kg−1. The range of P fertiliser applied spans 0 to 120 kg ha−1
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values are over-estimated, and large ones under-estimated (Webster & Oliver, 2007). 
Smoothing thus leads to underestimation of the spatial variance, a consequence one 
needs to consider in using the predictions for determining variable rates of fertiliser.

LiDAR was included as a fixed effect in six of the eight LMMs, and all LMMs 
except one included geographic trends (i.e. in the spatial coordinates) in the model. 
Kriging within reml is based in the assumption of second-order stationarity of the ran-
dom part of the process. That is why the fixed effects of trend and LiDAR were sepa-
rated out and also why each field was treated separately. Having an exhaustive covari-
ate allowed one to do that and to approximate the uncertainty of the target variable 
more accurately than otherwise (Lark, 2009).

Data requirements and estimation of the loss function

The loss function requires certain requirements of, or assumptions about, data. For 
example, the soil’s bulk density was estimated from general knowledge in the area (see 
method Sect. 3.4). It is known that the density of soil on the rodhams differs from that 
of the peaty soil between them. Even in the best scenario, these estimates embody an 
error which should ideally be accounted for. Similarly, the modelled response of the 
crop contains error and this should be incorporated in the framework, although this 
was not included for reasons of clarity.

Fig. 4   Profit and loss under zero error variance, expected profit and loss under an error variance of 
50  mg  kg−1 and an error variance of 2000  mg  kg−1 for a range of estimated soil K values from 100 to 
600 mg kg−1. The range of K fertiliser applied spans 0 to 225 kg ha−1
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The loss function to estimate the value of variable‑rate application

Based on the differences in E[L(F)] between Fopt and FUA , there appears to be little 
financial incentive for variable-rate application of K fertiliser in Field 4 ( ΔE[L(F)] = 1 , 
Table 3). The difference in E[L(F)] between Fopt and FUA is larger for Fields 1, 2 and 3 
(with ΔE[L(F)] equal to 7, 6 and 81, respectively). For available P, most kriged estimates 

Fig. 5   Optimum P fertiliser application with perfect knowledge of soil P ( F0 ), optimum application when 
accounting for �2

krig
 in the estimate of soil P ( Fopt)
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lay in the linearly increasing range of the dose–response curve, and there is a financial 
incentive to implement variable rate application for all fields.

The difference in total K fertiliser used between F0 and Fopt was especially large for 
Fields 1, 2 and 3, which can be explained by the large nugget variance ( c0 ) and sill ( c1 ) 
(Fig. 1 and Table 2). Field 4 has the largest E[L(F)] values for P under VRA (Table 3), 
which can be attributed to large values of �2

krig
 (Fig. 7), a short distance parameter ( a ) and 

Fig. 6   Optimum K fertiliser application with perfect knowledge of soil K ( F0 ), optimum application when 
accounting for �2

krig
 in the estimate of soil K ( Fopt)
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large sill ( c1 ) in the variogram (Fig. 1 and Table 2). Additionally, the smaller applications 
of P fertiliser under VRA than under uniform application for Fields 1, 2 and 4 means that 
VRA poses less environmental damage than uniform application would; that is, there 
would be less P lost from the soil to pollute waterways and cause eutrophication.

The large expected loss under uniform application of P in Fields 3 and 4 can be attrib-
uted to a biased estimate of the mean concentration of soil P across the field and hence 
blanket fertilizer recommendation, FUA . Sampling by a W-design has been found to be 
equivalent to random sampling in the estimation of a mean concentrations of nutrients 

Fig. 7   Box-plots of kriging predictions and the kriging variance ( �2
krig

 ), by field for available P and K, hori-
zontal lines represent the nutrient value for which the maximum yield, Opt(� ), is obtained on the fitted 
dose–response curve

Table 3   Fertiliser used (kg ha−1) for perfect knowledge ( F
0
 ), variable-rate application ( Fopt ) and uniform 

application based on wet chemistry samples ( FUA)

Expected loss (from perfect knowledge) for variable-rate application, E[L(Fopt)] , and uniform application, 
E[L(FUA)] , with ΔE[L(F)] being the difference in expected loss given by E[L(FUA)] − E[L(Fopt)]

Field Area (ha) Soil nutrient Fertiliser (kg ha−1) Expected loss (£ ha−1)

F
0

Fopt FUA E[L(Fopt)] E[L(FUA)] ΔE[L(F)]

1 8.2 P 113 113 120 31 38 7
2 16.9 102 103 120 38 52 14
3 5.1 103 104 61 33 154 121
4 8.9 47 53 57 94 145 51
1 8.2 K 4 27 0 16 23 7
2 16.9 3 24 0 13 19 6
3 5.1 197 205 144 69 150 81
4 8.9 0 4 0 6 7 1
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(Marchant et al., 2012). However, because the samples that make up the W-design were 
chosen a posteriori (the samples come from the set that were analysed by wet chemistry 
and these were selected purposely to span the range in the field) the mean estimate of avail-
able P and K is suspected to be biased.

It is further noted that the expected loss under uniform application of K fertiliser is large 
for Field 3. The large expected loss is likely due to the effect of uncertainty being more 
pronounced for smaller values of available K (Fig. 4D–F). Additionally, the uncertainty in 
available K predictions was relatively larger than the range of available K in the calibration 
set (Supplementary Fig. 2).

Overall, the expected loss, E[L(F)] , and hence  Fopt was found to depend on (a) the 
kriging variance, (b) the ranges of P and K for which the dose–response curves were cali-
brated, (c) the range of estimated values in the fields and (d) the asymmetry of the loss 
function. These factors need to be properly quantified, parameterized and accounted for in 
the loss functions so that farmers can make their decisions with confidence, while taking 
into account uncertainty.

Implications of the loss function approach on decision‑making

Although quantification of uncertainty (based on data and current models) allows one to 
make statements with confidence, it can also identify where the effort of reducing uncer-
tainty will result in the largest gains. The loss function has enabled scientists and manag-
ers to decide how much field-work and analysis is required to answer specific questions in 
environmental monitoring. For example, it is used to optimise the size of samples for sur-
vey; see Yates (1981), Faechner et al. (2000), Goovaerts (1997), Lark and Knights (2015) 
for examples. Relevant decisions within a sampling campaign involve (a) where and when 
to take samples, (b) what measurements to make on the samples, and (c) with what accu-
racy to take these measurements.

The loss function framework provides a method to assess the quality of predictions from 
spectroscopy beyond specific metrics such as R2 and investigate whether the accuracy is 
“sufficient” to address relevant questions. In this particular study to test the hypothesis 
whether soil spectroscopy could adequately predict the spatial variability to justify variable 
rate application of P and K fertiliser.

For example, if sampling, handling and spectroscopy costs are less than the difference 
between E

[
L
(
Fopt

)]
 and E

[
L
(
FUA

)]
 then VRA is worthwhile. These costs depend amongst 

other things on both the total number of samples and the number of samples for calibra-
tion. The costs of spectroscopy per sample will also decrease with increased size of field. 
The smallest estimate of cost was for Field 2 (the largest in area); it was £49  ha−1 for P 
and £47  ha−1 for K. Although these costs fall within the range of cost savings of VRA 
compared with UA (£7–121 ha−1), they are larger than the savings for Field 2 specifically. 
However, this study investigated a best-case scenario for spectroscopy and did not optimize 
the data-collection for cost-effectiveness. One could reduce these costs by measuring the 
reflectance spectra of the soil surface on the run in the field. So far, however, trials to esti-
mate P and K in the soil from visible–NIR in the field by Cozzolino et al. (2013), Daniel 
et al. (2003), Kuang et al. (2012) and Ji et al. (2014) have produced disappointing results. 
Reports of R2 values lie in the range 0.09–0.87 for predictions of available P and 0.03–0.87 
for available K. No reports were found that support within-field estimation of available P 
and K from MIR and XRF spectroscopy, which holds potential for further research.
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Within six out of eight fields in this study, the cost-effectiveness of VRA was primarily 
driven by increases in yield, in some cases at the cost of applying more fertiliser compared 
to uniform application. The excess use of potash fertiliser does not pose a direct threat to 
the environment. The overuse of phosphate fertiliser on the other hand in Field 3, might 
minimise economic loss at the cost of the environment. However, one could argue that 
increased efficiency gained by VRA also has potential to reduce the total land area used to 
reach equivalent yields. Setting aside agricultural land in areas vulnerable to leaching is a 
recognized strategy to manage phosphorus concentrations at the catchment scale (Schou-
mans et al., 2014). In that case one would need to ensure that leaching or artificial drain-
age is not the driving force behind small concentrations of P at the field-scale in the first 
place (Baveye & Laba, 2015). The results further showed that the environmental benefit of 
fertiliser savings from VRA (in the range of 4–17 kg ha−1) was not strictly accompanied 
with a large increase in profit (Field 1). Hence, in order to account for the environmental 
benefits of precise fertiliser application, the results suggest that costs of P leaching (e.g. 
remediation) need to be included in sustainable phosphorus management strategies aimed 
at precise fertiliser application. These costs of P leaching can be substantial. For example, 
if the excess fertiliser finds its way into water bodies, the cost to water companies has been 
estimated to range between 75 and 114 million pounds sterling per year for England and 
Wales (Pretty et al., 2003). Costs associated with eutrophication range among others from 
restorative measures such as dredging, treatment of drinking water (including removal 
of algal toxins), loss of important species and ecological damage generally (Pretty et al., 
2003). The presented framework for estimating financial losses could be adapted to place 
a larger penalty on over-application of phosphorus fertiliser based on the environmental 
costs of leaching. It could provide a stepping stone towards fulfilling the requirement to 
quantify the economic and environmental benefits of sustainable phosphorus management 
(Brownlie et al., 2021).

Conclusions

The results show that there was an economic incentive for precise fertiliser application of 
both phosphorus and potassium fertiliser once the uncertainty in soil’s nutrient concentra-
tions estimated from sensors was accounted for. Given that growers need to subtract the 
costs of sampling and sample analysis from their gross income, further study should use 
the loss function to define an optimum where both uncertainty of information and the effort 
to collect the data by sampling and analysis are minimised.

To quantify society’s benefits of precise fertiliser application holistically, however, envi-
ronmental costs need to be taken into consideration. The results showed that environmental 
benefits occurred from precise fertiliser application even though no large increase in profit 
was gained. These findings have implications for policies aimed at sustainable management 
of phosphorus fertilisers. That is, it is recommended that the loss function could be adapted 
to include environmental costs of P leaching to assist in quantifying both the economic and 
environmental benefits of precise fertiliser application.
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