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Abstract
Aphids hide under leaves, reproduce rapidly, and require early detection to prevent crop damage, disease transmission, 
and ensure effective pest management. This study presents a novel approach for aphid detection by utilizing hyperspectral 
imaging, multivariate classification methods and spectral information divergence (SID) analyses. The hyperspectral images 
average spectrum (n = 336) showed significant differences between healthy and infested leaves. Time-series classification 
was performed over 14 days after infestation using four distinct machine learning algorithms. Early-stage infection detection 
may not relate to internal physiological alterations within the leaf but rather to the physical presence of the aphid behind the 
leaf, obstructing subtle physiological signatures. Implementation of spectral endmembers in the VIS–NIR reference spectrum 
led to the identification of an informative abundance SID map within the 710–825 nm range, useful for further classifica-
tion. Machine learning classification resulted in support vector machines achieving 99.20 accuracy. Using random forest, 
twenty-two most important variables found effective in boosting classifier performance. The selected model also extended 
to real-world scenarios by testing progressing infestation patterns over 14 days on independent data sets, confirming the 
system’s reliability. Signal normal variant pre-treatment with partial least squares regression was effective in the estimation 
of aphid populations, achieving a 0.81 coefficient of determination (R2) and a 10.29 root-mean-square error of prediction 
for test datasets. In conclusion, the proposed method was able to successfully detect aphid colony infestation, both earlier 
and in locations that are invisible during standard human inspection.      
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Introduction

Faba bean (Vicia faba, Leguminosae.) is a widely culti-
vated winter-sown leguminous crop known for its nutri-
tional value, including high levels of carbohydrates, protein, 
minerals, and bioactive compounds (Karkanis et al. 2018; 
Lizarazo et al. 2015). The global market for faba beans has 
been steadily growing, with a projected compound annual 
growth rate (CAGR) of 2.6%. China leads as the largest pro-
ducer with 1.69 million ton annual production, followed by 
Ethiopia, Australia, and the UK (FAOSTAT 2022). How-
ever, the productivity and quality of faba beans are threat-
ened by the infestation of black bean aphids (Peignier et al. 
2023). These aphids cause direct damage to the plants by 
feeding on the phloem, resulting in impaired growth and 
reduced yield (Shannag and Ababneh 2007). Furthermore, 
they act as vectors for plant viruses such as bean leaf roll 
virus (BLRV), alfalfa mosaic virus (AMV), and bean yellow 
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mosaic virus (BYMV), leading to additional indirect damage 
(Abdelkhalek et al. 2023; El Amri 2001; Neeraj et al. 1999).

The rapid escalation of infestations, causing substantial 
damage to plants, is facilitated by the asexual reproduc-
tion and viviparity of aphids. Their short generation times 
and high reproduction rates contribute to the swift expan-
sion of infestations, making even minor initial occurrences 
impactful on plant health (El Amri 2001). Aphids extract 
sap by suction and excrete honeydew on leaves, creating a 
favourable environment for fungal growth, which obstructs 
the absorption of specific wavelengths in the electromag-
netic spectrum (550–650 nm) used for chlorophyll produc-
tion. Visible effects of the pest on the crops occur when the 
infestation exceeds the economic threshold. In this study 
we used 50 aphid/leaf/plant as reference (Hernández et al. 
2021). However, according to different sources including 
the Government of Saskatchewan (2025), economic thresh-
olds can vary based on local conditions, crop varieties, and 
market factors. Therefore, consulting regional agricultural 
extensions or local experts is recommended for the most 
accurate and relevant information.  

Accurate monitoring and control of aphid populations are 
crucial for effective crop protection. Traditional methods, 
such as visual inspections and trapping, are time-consuming 
and fail to provide precise information on spatial and tem-
poral aphid distribution, resulting in suboptimal pest man-
agement practices. Excessive pesticide applications lead 
to environmental hazards, negative impacts on beneficial 
insects, health risks, and insect resistance. To overcome 
these challenges, innovative technologies are needed for 
early pest detection before reaching economic thresholds 
(Ding and Taylor 2016; Ragsdale et al. 2007; van der Werf 
1996). Hyperspectral imaging, particularly utilizing changes 
in plant reflectance caused by biotic/abiotic stressors, offers 
a promising solution. This non-destructive and rapid analy-
sis technique enables accurate quantification of plant stress 
at fine resolutions, enhancing preventive measures. How-
ever, effective wavelength selection is needed to optimize 
the use of hyperspectral data and reduce computational 
complexity due to its high dimensionality and collinearity. 
Hyperspectral imaging has demonstrated success in various 
plant science applications, such as evaluating plant health 
parameters (Xiaobo et al. 2011; Zhang et al. 2015), detecting 
and monitoring plant diseases and pests (Baranowski et al. 
2015; Kong et al. 2014; Lee 2015; Liu et al. 2016; Mahlein 
et al. 2010, 2012; Ochoa et al. 2016; Rajendran et al. 2016; 
Rumpf et al. 2010; Yeh et al. 2016; Zhu et al. 2016, 2017), 
and segmenting infested areas (Kumar et al. 2010; Varpe 
et al. 2015).  

Researchers have explored various hyperspectral tech-
niques for detecting and quantifying aphid infestations. 
Machine learning models, such as one-class support vec-
tor machine and Laplacian of Gaussians blob detection, 

achieved exceptional validation scores in accurately iden-
tifying and quantifying aphids on leaves (Peignier et al. 
2023). Near-infrared spectroscopy (NIR) and electronic 
nose (e-nose) coupled with artificial neural network (ANN) 
models have been utilized for classification and regression 
tasks, showing high accuracy in detecting infestation levels 
and predicting insect numbers (Fuentes et al. 2021). Specific 
narrow-band near-infrared wavelengths have been associated 
with aphid abundance in soybean (Alves et al. 2019), while 
wavelengths 788.17 nm, 965.14 nm, and 850 nm for detect-
ing infestation have been identified in sorghum and cotton 
leaves (Hernández et al. 2021). Most of the previous studies 
have failed to consider the location of aphids (below leaf) 
as a game changing factor and their potential influence on 
leaf reflectance. So, they focus on imaging above leaf/step 
aphids, which are often only present during later stages of 
infestation.

Implementing routine field surveys for monitoring aphid 
infestations is often labour-intensive and may not precisely 
capture the spatial and temporal dispersion of pests. Con-
sequently, adopting an automated, non-destructive method-
ology to detect and assess aphid infestations would yield 
advantages for enhanced precision and targeted treatments. 
While prior research has attempted to tackle this issue, it has 
been limited to the detection of aphids on the leaf surface 
(Peignier et al. 2023). However, aphid colonies predomi-
nantly accumulate beneath the leaves, making them invisible 
for human eyes, so addressing this specific concern is crucial 
in pest management. In this investigation, a machine learn-
ing model is introduced to identify and quantify aphids, in a 
more ecologically valid environment than previous studies 
(below leaf) through the application of multivariate clas-
sification methods and the spectral information divergence 
approach.

Material and methods

Sample preparation

Faba bean samples

Faba bean plants were cultivated in greenhouses at the Sut-
ton Bonington campus, University of Nottingham, UK, using 
organic seeds provided by Rothamsted Research Harpenden, 
UK. Germination took place in a commercially available 
peat substrate (Klasmann low nutrient compost). Throughout 
the cultivation process, from the seedling stage onward, all 
plants received consistent light intensities and were grown 
in the same medium. Precise environmental control was 
ensured, maintaining the culture environment at an aver-
age temperature of 18.5 °C, with a maximum temperature 
of 20 °C and a minimum of 17 °C. The average relative 
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humidity during cultivation was calculated to be 44.475%, 
with a recorded range between 32 and 56%. For this study, 
three-week-old plants (Ritchie et al. 1986) were employed. 
Each group of infested potted plants was confined within 
an insect rearing tent (50 × 25 × 25 cm), encompassed by 
100-μm nylon mesh on all six sides. The entire plant setup 
was housed in a growth room following a 12-h daylight and 
12-h night cycle.

Aphid infestation

Aphis fabae Scopoli (Hemiptera: Aphididae), commonly 
known as black bean aphids, were sourced from Rotham-
sted Research, Harpenden, UK. The initial aphid colony was 
allowed to proliferate, resulting in an augmented population 
within a rearing tent housing faba plants. Subsequently, for 
each leaf in the infested group, five adult A. fabae individu-
als were randomly selected from the colony and introduced 
to the experimental plants, positioned beneath the leaves 
(Fig. 1a). A meticulous transfer of aphids into the faba 
plants was conducted using a fine natural bristle brush, and 

to prevent aphid escape, clip cages were promptly deployed 
on the first day of infestation.

Hyperspectral image acquisition

Time series hyperspectral imaging data were collected from 
both aphid-infested and healthy leaves over a fourteen-day 
time courses, covering pre-infestation as baseline (day 0) 
and post-infestation time points daily from day 1 to day 
14, with two biological replicates for each time point. The 
imaging process occurred near a climate-controlled room 
where the experimental units were housed, with each cage of 
plants transferred one at a time to the imaging room, ensur-
ing efficient imaging within 1–2 min per plant. The push 
broom hyperspectral imaging system (Fig. 1b) consisted 
of an HSI camera, Specim FX10, equipped with halogen 
lighting, mounted on a Specim LabScanner sized 40 × 20 cm 
(Specim, Spectral Imaging, Ltd., Oulu, Finland). Working 
within the visible near-infrared (VNIR) spectral range of 
380–1000 nm, the operated camera with a mean spectral 
resolution of 5.5 nm (224 bands) and line comprising 1024 

Fig. 1   Image pre-processing pipeline (a), configuration of hyperspectral experimental setup (b), Aphid colony developed on faba leaf (c)
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spatial pixels, could acquire spectral data at a maximum 
frame rate of 327 frames per second (fps) in full-frame 
mode. The hyperspectral measurements were conducted 
in a dark room, illuminated solely by LabScanner halogen 
lamps, and one scans were acquired for each hyperspectral 
dataset, which was saved in raw format for subsequent pro-
cessing. Reflectance calibration was performed for each 
scan, utilizing white and dark images to obtain corrected 
images through a specific equation (Saeidan et al. 2021). 
After horizontal positioning and the leaf reflectance image 
in each spectral band was computed for all combinations of 
faba plant and time point, forming the basis for subsequent 
statistical analyses. The dataset comprised fourteen time 
points (ranging from 1 to 14 days), two plant treatments, two 
replications and six hyperspectral images for each treatment, 
resulting in a total of 336 reflectance image (observations) 
that were included in the statistical analyses.

Data analyses

Pixel selection and pre‑treatments

Data analysis was performed using Matlab software 
(MATLAB 2018). As shown in Fig. 1c, to distinguish 
between the background and plant areas in hyperspectral 
images, a simple basic classifier (SVM) was utilized. The 
dataset, gathered manually, consisted of two groups of 
spectral signatures representing plant and background, 
with approximately 300 pixels in each category. Because 
of the significant contrast between the background signa-
ture and the plant material (see Fig. 2a), segmenting the 
hyperspectral image into two groups was a straightforward 
task. To eliminate pixels with mixed spectral characteris-
tics, the resulting mask subjected to morphological opera-
tion called “erosion” using a (5 × 5) matrix as the structur-
ing element (Barreto et al. 2020; Hirata and Papakostas 

2021). Consequently, the resulting mask effectively limited 
the region of interest (ROI) only for plant area. ROIs of 
healthy and infested plants were mapped onto original 
spectral images to obtain full spectra in the 380–1000 nm 
range. The samples were processed under consistent con-
ditions, resulting in a spectral dataset. An average value 
for each plant was employed for classification, resulting 
in 336 samples, evenly distributed across infested and 
healthy faba bean groups. The dataset was divided into 
training and test sets, with 60% (200 spectra) used for 
training classification models, and the remaining 40% (136 
spectra) employed as the test set. To ensure comparability, 
the spectral intensity in each waveband was normalized 
(standard normal variant) using the average and standard 
deviation intensity values from the entire spectrum (Zhang 
et al. 2016). Second part of the data processing continued 
by extracting a reference spectrum based on endmember 
values and comparing all spectra with this reference to 
obtain binary masks for infested plant images. End-mem-
bers are fundamental spectral signatures in hyperspectral 
data that represent unique materials. They facilitate the 
decomposition of image pixels into fractional material 
abundances. These spectra are typically considered pure 
pixels and can be detected using geometric and convex 
analysis methods (Winter 1999). To choose only those pix-
els associated with pure aphid signature the Spectral Infor-
mation Divergence (SID) algorithm was utilized. In the 
SID, a reference spectrum is a known spectral signature 
used as a comparison baseline to measure the similarity 
between different spectral signatures in hyperspectral data. 
The SID algorithm then computes the spectral divergence 
between the reference spectrum and each pixel spectrum 
in the image to assess their similarity (Yousefi et al. 2016). 
Process continued by manual selection of aphid-accumu-
lated areas for each sample using roipoly command from 

Fig. 2   Near-infrared curves illustrating the reflectance values across a wavelength range of 380–1000 nm for the raw spectra (a) and the average 
spectra for background, healthy and infested plants observed over a period of 14 days (b)



J Plant Dis Prot         (2025) 132:109 	 Page 5 of 15    109 

the Matlab image processing toolbox. Relevant spectra for 
the infested dataset were then extracted from pixels.

Spectral similarity measures

In this study, we address the detection of aphids in hyper-
spectral images using spectral similarity measures. Initially, 
the task was approached as a binary classification problem; 
however, due to unknown nature of infestation pattern dis-
tribution on leaves, negative class examples were not repre-
sentative of pure aphid infestation (Peignier et al. 2023). To 
overcome this limitation, the SID method was adopted, ena-
bling the evaluation of aphid infestation discriminatory abil-
ity. This method calculates the distance between the prob-
ability distributions produced by two spectral signatures and 
a lower divergence value indicates higher similarity between 
the vectors. The SID is mathematically defined using relative 
entropy or Kullback–Leibler information divergence.

Cons ide r ing  hype r spec t r a l  p ixe l  ( vec to r ) 
x =

(
x1, x2,… , xL

)T  representing a spectral vector 
acquired at various wavelengths �

l
, a probability vector 

p =
(
p1, p2,… , pL

)T, characterizes the statistics of the pixel 
x (Eq. 1), Using (1) entropy of each hyperspectral image 
pixel x can be defined as Eq. 2. Additionally, considering 
another pixel y =

(
y1, py2,… , yL

)T with its corresponding 
probability vector q =

(
q1, q2,… , qL

)T the self-information 
for the l-th band of pixels x and y is introduced using infor-
mation theory (Eq. 3). Then using (3), the relative entropy 
of y with respect to x can be defined by Eq. 4.

Building upon this, the Kullback–Leibler information 
measure, quantifying the difference between the probability 
distributions of x and y, is defined as the relative entropy D 
(x ⃦y). The assessment of spectral similarity between pixels 
x and y involves the proposition of the SID as a symmetric 
hyperspectral measure, which is computed as:

By incorporating relative entropy, SID offers a novel per-
spective on spectral similarity, enabling a more informative 
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(5)SID(x||y) = D(x||y) + D(y||x)

characterization of each pixel’s spectral information (Chang 
2000).

Feature selection

Principal component analysis (PCA) is a widely used dimen-
sionality reduction (DR) technology and implemented in 
this study to reduce dimensionality of data and eliminate 
multi-collinearity while retaining maximum variance (Hasan 
and Abdulazeez 2021; Omuya et al. 2021). In this study, we 
implemented PCA on raw data and incorporated first three 
principal components as an input for one of the classification 
treatments. Also, in later phase of research and to feed rel-
evant feature to each classifier, twenty-two distinctive wave-
lengths (features) on spectrums of healthy and pure infested 
area on leaves were selected by random forest (RF) method. 
RF, recognized as one of the most prevalent ensembles 
learning techniques for feature selection tasks, entails the 
creation of numerous decision trees that are uncorrelated. 
Specifically, RF effectively utilizes the "Wrapper" method 
to generate scores indicating the importance of variables 
(Iranzad and Liu 2024). In this research, we developed a RF 
algorithm in Matlab environment utilizing Bagging method 
and the number of decision trees set to 200.

Classification modelling techniques and performance

In this research, a diverse set of machine learning techniques, 
including support vector machine (SVM), linear discrimi-
nant analysis (LDA), K-nearest neighbourhood (KNN), and 
artificial neural network (ANN), were applied. The results 
of using these four approaches were compared on the accu-
racy and errors for early detection of aphid in faba bean. 
The fitting and validation of these models were conducted 
using the Matlab statistical software (Matlab 2018). The 
dataset used for modelling comprised a total of 336 sam-
ples, with 168 samples representing healthy plants and the 
remaining 168 samples for inoculated plants. As part of the 
supervised classification approaches, LDA was employed. 
This method aims to maximize data variance and model dif-
ferences between various data classes. By identifying linear 
combinations of independent variables, LDA effectively 
separates different classes of objects or events, projecting 
the multidimensional feature space into a lower-dimensional 
space where the ratio of between-class scatter to within-class 
scatter is optimized. SVM, based on discovering the most 
suitable line or decision boundary that proficiently segre-
gates data points associated with distinct classes, was uti-
lized to classify samples into two groups by constructing an 
optimal hyperplane. This approach is well-suited for small 
sample learning problems, as well as handling nonlinear and 
high-dimensional datasets (Kok et al. 2021). A radial basis 
function (RBF) was selected as the kernel function, a choice 
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that has demonstrated successful outcomes in numerous pre-
vious studies (Peignier et al. 2023). The study employed the 
KNN algorithm as another classifier. This nonparametric 
machine learning technique identifies the k-nearest neigh-
bours in the training data that are closest to the test value and 
calculates the distance between the test value and each of 
those neighbours. Additionally, an ANN with three layer and 
“Relu” activation function was implemented as classifier. 
For the evaluation of binary classification performance in 
the context of imbalanced conditions, we adopted standard 
evaluation measures, specifically the F1 score, precision, and 
the area under the curve (AUC). To compute these evalu-
ation measures for different validation sets, a tenfold was 
employed during cross-validation procedure. This method 
ensures robustness and consistency in the assessment pro-
cess, particularly when dealing with imbalanced datasets.

Results

Classification results when incorporating spectrums 
of entire leaf

After calibration, the resulted unprocessed (raw reflectance) 
spectra of individual plant samples, as well as their average, 
are illustrated in Fig. 2. The average spectrum reveals subtle 
distinctions between healthy and infested samples, predomi-
nantly within the spectral range of 725–1000 nm. Specifi-
cally, for healthy leaves, the reflectance between 725 and 
1000 nm exhibits a notably higher level compared to other 
parts of the spectral curve. This is in accordance with Alves 
et al. (2019), which claimed, reflectance in the near-infrared 
spectral range were negatively associated with cumulative 
aphis days (CAD), but those in the visible spectral range 
were not associated with CAD.

This study used four distinct machine learning algo-
rithms to classify samples into "Healthy" and "Infested" 
categories using both raw and pre-processed spectral data. 
The pre-processing involved the standard normal variate 
(SNV) method and feature selection via principal compo-
nent analysis (PCA). Table 1 presents the model perfor-
mances based on various parameter combinations and their 
corresponding optimal settings. The mean overall accu-
racy was computed across 50 iterations of tenfold cross-
validation for each parameter combination, along with 
average values for area under the curve (AUC), precision, 
F1 scores, and training and test accuracies during cross-
validation. The findings highlight that the ANN and SVM 
models outperformed the other two algorithms in terms 
of overall accuracy, indicating their robustness. The mean 
overall test accuracy across different algorithm ranged 
from 0.65 to 0.95, accompanied by corresponding AUC 
values spanning from 0.62 to 0.93. F1 and precision scores 

ranged from 0.54 to 1.00 and 0.63 to 1.00, respectively. 
Among the algorithms, SVM and ANN models exhibited 
superior performance, while KNN model also delivered 
good results. In contrast, the LDA model demonstrated 
comparatively less favourable outcome.

Considering different spectral datasets, models using 
SNV-processed spectra performed well for both SVM and 
ANN, while PCA-treated spectra yielded better results for 
ANN. Overall, SVM with SNV-pre-processed spectra as 
input variables demonstrated the best performance dur-
ing tenfold cross-validation, achieving a mean accuracy of 
0.95 and an AUC of 0.94. Notably, these models trained 
efficiently, completing the process within seconds. As 
shown in Fig. 3, the performance of four classifiers was 
evaluated over 14 days on an independent set of healthy 
samples. The green colour represents healthy pixels, while 
yellow pixels indicate misclassified infested ones. Ideally, 
no signs of infestation should appear in healthy samples; 
however, in this figure, nearly all classifiers fail to classify 
all pixels as healthy. Comparing the classifiers, the bottom 
row, representing the SVM classifier (labelled “a”), dem-
onstrates the highest accuracy in identifying green pixels 
as healthy. The KNN classifier ranks second in accuracy, 
followed by ANN. The LDA classifier, shown in the sec-
ond row, exhibits very poor classification performance, 
misclassifying nearly half of the healthy pixels as infested 
(Fig. 4).

The representation of infested samples over 14 days 
using the SVM_a classifier, trained on data collected from 
the entire leaf including both aphid-accumulated areas and 
un-accumulated regions is provided in Fig. 8. While we 
will explore this figure in detail in subsequent sections, it 
is important to note that, contrary to our initial expecta-
tions, indications of infestation were evident from the first 
day. One possible explanation for this observation is the 
accumulation of aphids beneath the leaf, which may inter-
fere with light reflection. We hypothesize that a portion 
of NIR light penetrates the leaf, interacts with the aphid’s 
body, and is subsequently reflected towards the camera 
(Peignier et al. 2023).

However, the classification of certain infested pixels 
as yellow may be attributed to specific physical altera-
tions occurring within the leaf (Barreto et al. 2020; Luo 
et al. 2011). Figure 4 illustrates that after fourteen days of 
aphid infestation, the number of healthy pixels within the 
healthy group gradually approaches 1.00, aligning with 
expectations.

Classification results when incorporating 
aphid‑accumulated area on leaf

To disentangle spectral signatures resulting from physi-
ological changes and those associated with aphid bodies, 
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pinpointing the exact location of aphids is crucial. This 
enables the creation of a region of interest (ROI) limited to 
the aphid-affected area for data extraction and processing 
(Peignier et al. 2023). In the ensuing step, meticulous feature 
selection was employed to identify which NIR wavelengths 
are associated with the aphid’s body beneath the leaf.

The Nfinder algorithm (Winter 1999) was employed on 
the hyperspectral image dataset, resulting in six distinct 
endmembers. These endmembers were used to unmix the 
original hyperspectral images through a straightforward 
linear unmixing process. Notably, all endmembers within 
the healthy group (Fig. 5a) during Day 10 exhibited nearly 
identical spectral signatures, whereas plants affected by 
aphids exhibit notable discrepancies in certain spectral 
regions (Fig. 5b). Specifically, the ranges of 600–700 nm 
(endmember 1) and 700–850 nm, as well as 850–1000 nm 

(endmember 5), are indicative of the aphid signature (Bajwa 
et al. 2017), a finding that aligns with the work of Peignier 
et al. (2023).

The study utilized the average endmember spectrum 
(Fig. 5c) from infested plants as a reference for the SID 
algorithm, enabling the identification of regions of interest 
(ROIs) and subsequently extract target spectrums. The SID-
based approach was applied to hyperspectral imagery across 
three distinct spectral ranges, revealing scores within the 
710–825 nm range effectively highlighting aphid accumu-
lation beneath the leaves (Fig. 6d). It should be mentioned 
that the aphids positioned behind the leaves are completely 
invisible for human eyes (Fig. 6b, c).

These spectrums, extracted from pure infested area, 
were combined with previously collected uncontaminated 
healthy ones to create a comprehensive final data matrix. 

Fig. 3   Pixel-wise classification of spectral images of healthy plants 
over day 1 to day 14. Probability response to classify a pixel adja-
cent to a healthy plant using various models: a SVM model, b KNN 

model, c ANN model, and d LDA model. All models were trained 
with signals pre-processed using SNV
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Fig. 4   Accuracy of best models. 
Performances are exposed for 
each subset/approach over 14 
days and based on counting 
true-positive and false-negative 
pixels. (*) Asterisk marks indi-
cate the best machine learning 
model with the highest average 
accuracy value

Fig. 5   Six endmembers derived from SNV pre-treated a healthy 
leaves, b leaves with aphid and c the average spectra’s, calculated 
from healthy and infested endmembers. Three different regions 

including 550–700 nm, 710–825 nm, 825–1000 nm on average spec-
trums were used as input for SID algorithm
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Then as shown in Fig. 7, the RF feature selection method 
was used to identify the most important wavelengths based 
on variable scores. Feature selection algorithm selects 
twenty-two wavelengths as important variables which four-
teen of them (705 nm, 707 nm, 710 nm, 713 nm, 723 nm, 
726 nm, 742 nm, 745 nm, 748 nm, 751 nm, 755 nm, 794 nm, 
797 nm, 800 nm) distributed across 700–800 nm region. 
Four wavelengths fall within the visible range (550 nm, 
564 nm, 660 nm, and 663 nm), while another four are iden-
tified between 800 and 900 nm.

Four distinct classification methods were applied to cat-
egorize these data into “healthy” and “infested” groups, and 
their performance metrics were evaluated using a tenfold 
cross-validation approach, as summarized in Table 2.

The classification pipelines yielded similar and high-qual-
ity results. While two methods, KNN and ANN, exhibited 
lower precision scores, most methods delivered satisfactory 
scores. F1 scores were comparable across methods, except 
for the KNN scheme, which scored lower. The area under 
the curve (AUC) consistently demonstrated high-quality out-
comes, with the SVM method surpassing the other methods 
in terms of accuracy and precision. To thoroughly assess 
the system under the challenging scenarios with the data 
originated from independent sets which was not included in 

Fig. 6   Demonstration of invisible aphid pattern beneath the leaf in 
the form of RGB image captured by handheld camera (a), (b) and FX 
10 camera (c) and SID abundance map (d)

Fig. 7   Feature ranking results based on variable importance parameter. Twenty-two wavelengths have high importance value greater than 0.5 
shown in blue (a). Representation of average healthy sample and infested ones along with selected wavelengths (b)

Table 2   Average tenfold 
cross-validation of accuracy, 
AUC, F1, and precision 
scores obtained by the four 
different classification models 
which used SNV pre-treated 
wavelengths and 22 selected 
features

Bold values demonstrate the best performance model

Pre-
treatment

CV-validation Test AUC​ F1 Precision

A B A B

LDA SNV(22 features) 98.80 98.60 1 0.98 0.98 0.98 0.94
SVM SNV(22 features) 99.00 99.20 1 0.98 0.98 0.98 0.93
KNN SNV(22 features) 95.90 97.10 0.99 0.95 0.97 0.98 0.95
ANN SNV(22 features) 98.70 98.90 0.99 0.98 0.98 0.98 0.92
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training/testing process. The performance of the SVM clas-
sifier trained with the twenty-two most important variables 
was showcased through pixel-wise representation in Fig. 8. 
Over the 14-day period depicted in this figure, aphid infesta-
tion advanced in tandem with the rise in aphid population. In 
the first column, the RGB image of the faba plant revealed 
that the aphids beneath the leaves had become completely 
invisible to human eyes. The second column displayed the 
outcomes of SVM classification, trained with all features. 
As a reminder, we collected these data set from all surface 
area of infested plant regardless of those area which aphid 
accumulated.

Moving to the third column, an image was generated 
based on the SID score, clearly highlighting areas where 
aphids had aggregated beneath leaves. This image can be 
served as a ground-truth reference for the last column. In 
the last column, the results of SVM (SVM_b) classifica-
tion, incorporating 22 selected features during training, 
were evaluated. The accurate classification performance 
was discernible by comparing the exact aphid locations in 
the previous column (SID image). However, it is important 
to acknowledge that while SVM_b was effective in distin-
guishing between aphid accumulation areas and other leaf 
regions, it was not without imperfections.

Estimating aphid papulation on leaf

In addition, the spectrums collected manually only from 
aphid accumulation area on leaf were employed to estimate 
the aphid population beneath the leaves. To achieve this, 
partial least square (PLS) regression models in conjunction 
with various data pre-processing methods including standard 
normal variate (SNV), Log (1/R), first and second deriva-
tives were used. It is worth noting that these pre-processing 
approaches had only a slight impact on the final prediction 
error, as summarized in Table 3. Among the pre-process-
ing methods, the SNV treatment demonstrated the most 
favourable calibration performance for the samples, result-
ing in the highest calibration R-squared (R2) of 0.88. The 
cross-validation R2 (R2cv) values were 0.57, and the test R2 
(R2prediction) reached 0.81.

When modelling data from the “plants with aphids” refer-
ence dataset, the application of spectral pre-processing had 
a minimal effect on the prediction models. Calibration mod-
els exhibited R2 values ranging from 0.76 (using Log(1/R)) 
to 0.88 (with SNV). However, more significant differences 
emerged when assessing cross-validation and external vali-
dation (prediction) datasets. In these cases, the use of second 
derivative and raw spectra resulted in less favourable R2 val-
ues and higher prediction errors. As anticipated, first deriva-
tives yielded similar prediction performance (R2cal = 0.83), 
given their function of noise reduction. SNV also delivered 
strong results, as it effectively mitigated light scattering 

effects and consequently led to a slightly lower prediction 
error. Nonetheless, the SNV treatment proved to be the most 
effective, as it consistently yielded the best performance 
with both calibration and prediction R2 values ranging from 
0.88 to 0.81. In Fig. 9a, we present the predicted number of 
aphids in faba plants based on the best-performing predic-
tion models. Furthermore, this figure provides a detailed 
account of the Model SVM-SNV, indicating that it exhibited 
categorized of aphid in three different (Low x < 20, Medium 
20 < x < 50, High > 50) group based on infestation severity. 
Notably, the highest number of outliers was observed for 
class “Low” (12 out of 30) due to probable confusion in data 
extraction from ROI. Additionally, this model displayed rela-
tively small rate of misclassification (6 out of 26) for class 
“Medium” and (5 out of 12) for class “High”.

Figure 9b shows relationships between observed and pre-
dicted number of aphids for the cross-validation and test set. 
The predictions are generated using the most effective model 
(SVM_b pre-treated with SNV) models with data spanning 
Days 1 to 14The R_square value for test set (prediction) is 
0.81 which indicate goodness of fit. The variance of the error 
is almost constant across various levels of dependent vari-
able, so it is statistically significant (Caporaso et al. 2022).

Discussion

This study provides valuable insights into the detection and 
classification of aphid infestations using hyperspectral imag-
ing. The reflectance spectra revealed subtle but significant 
variations between healthy and infested samples, particularly 
within the 750–900 nm spectral range. A possible expla-
nation for this reduction in reflectance in the visible and 
NIR regions is the depletion of photosynthetic pigments, 
such as chlorophyll, due to aphid feeding, which negatively 
impacts plant photosynthesis (Riedell and Blackmer 1999; 
Morgham et al. 1994; Malthus and Madeira 1993). Notably, 
aphid infestations were detectable from the first day, sug-
gesting that the interaction of NIR light with aphid bodies 
beneath the leaf surface allows for early detection (Peignier 
et al. 2023).

The study also highlighted differences in classifier perfor-
mance. Parametric methods like LDA exhibited stable but 
less adaptive accuracy, while nonparametric classifiers such 
as SVM, ANN, and KNN demonstrated superior adaptability 
by dynamically adjusting decision boundaries as infestation 
patterns evolved (Graf et al. 2024). This adaptability made 
SVM, ANN, and KNN more effective for hyperspectral clas-
sification tasks.

Spectral analysis of aphid-infested plants further identi-
fied key variations in reflectance across 600–1000 nm, with 
pronounced differences in regions such as 550–700 nm, 
710–825  nm, and 825–900  nm. Among these, the 
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710–825 nm range provided the most informative results 
when analysed using the SID algorithm. The resulting abun-
dance map effectively highlighted aphid-affected regions, 
serving as a reliable region of interest (ROI) for classifica-
tion (Pathak et al. 2023; Yousefi et al. 2016). These findings 
align with previous studies that associate aphid-induced 
changes in plant reflectance with modifications in leaf ultra-
structure, secondary metabolite production, and physical 
damage caused by aphid feeding (Marston et al. 2020; Li 
et al. 2008; Kumar et al. 2013).

Additionally, aphids exhibit distinct reflectance proper-
ties, particularly in the NIR spectrum, which may be attrib-
uted to structural factors such as cuticle organization and 
pigmentation. These properties may serve as an adaptive 
mechanism, influencing their visibility under hyperspectral 

imaging (Mielewczik et al. 2012; Jacquemoud and Ustin 
2019).

Despite relatively high root-mean-square error (RMSE) 
values in aphid population estimation, the classification 
models effectively categorized infestation levels. Given 
the variability in aphid populations, these prediction errors 
are acceptable for practical applications such as infestation 
screening and severity classification. These findings sug-
gest that hyperspectral imaging, combined with machine 
learning, is a promising tool for precision agriculture, ena-
bling early detection and improved monitoring of aphid 
infestations.

Conclusion

In conclusion, this study demonstrates the effectiveness of 
hyperspectral imaging, coupled with advanced machine 
learning techniques, for the detection and monitoring of 
aphid infestations in plants. The results show that spectral 
signatures, particularly in the near-infrared range, can be 

Fig. 8   Classification performance on independent data set (n = 7 
HIS images). Column (1) represents RGB image, column (2) shows 
SVM trained on all wavelengths, column (3) shows spectral informa-
tion divergence (SID) abundance map and column (4) indicates SVM 
classification trained on 22 selected features)

◂

Table 3   Performance of the 
PLS regression model for 
predicting aphid number by 
selected SVM_b classifier

Bold values demonstrate the best performance model

Pre-processing method LV R
2
Cal RMSEC R

2
CV RMSECV R

2
Prediction RMSEP

Raw 27 0.86 8.25 0.62 15.22 0.61 14.56
SNV 19 0.88 7.96 0.57 16.93 0.81 10.29
Log(1/R) 46 0.76 12.25 0.63 17.92 0.61 13.71
First derivative 26 0.83 9.94 0.61 17.51 0.80 11.29
Second derivative 18 0.83 9.61 0.42 19.47 0.75 11.37

Fig. 9   Comparison between predicted and reference values of aphid 
numbers. a categorizes the aphids into three different infection sever-
ity classes (low, medium, high) shows as green, black, and purple cir-
cle. Test error and cross-validation error were illustrated by red circle 

and red diamond. b Overall regression model statistics for predicted 
versus measured values of aphid numbers (black dot for prediction 
and orange dot for cross-validation). The predictions are generated 
using the SVM model with data spanning days 1 to 14
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leveraged to distinguish between healthy and infested leaves, 
with SVM and ANN classifiers providing the most robust 
performance. The incorporation of aphid accumulation areas 
through ROI-based spectral analysis (SID) significantly 
enhanced classification accuracy, while feature selection 
methods such as RF further improved model performance. 
Additionally, the use of PLS regression for aphid population 
estimation highlights the potential of hyperspectral imaging 
as a tool for both pest detection and quantitative analysis 
in agricultural settings. Although some misclassification 
occurred, especially in the low infestation category, the over-
all results suggest that hyperspectral imaging, when com-
bined with appropriate data processing and machine learning 
techniques, can offer a reliable and efficient approach for 
pest management and monitoring in agricultural practices. 
Future studies could refine these models to reduce prediction 
errors and expand their applicability to other pest species 
and plant types.        
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