
1 
 

Passive particles Lévy walk through turbulence mirroring the diving 

patterns of marine predators 

 

Andy M. Reynolds 

Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK 5 

 

Tel: +44 (0)1582 763133 

Fax: +44 (0)1582 760981  

Email: andy.reynolds@rothamsted.ac.uk 

 10 

Lagrangian stochastic models for the simulation particle trajectories in turbulent flows 

can be made to be consistent with Kolmogorov’s similarity theory and with prescribed 

Eulerian velocity statistics. Intermittency (i.e., large temporal fluctuations in the rate of 

dissipation of turbulent kinetic energy) can also be accounted for but is usually 

neglected because its impact on turbulent dispersion is typically negligible. Here I show 15 

both heuristically and with the aid of numerical simulations that intermittency results 

in Lévy (Cauchy) walk movement patterns. The novel predictions find strong support 

in an analysis of movement pattern data for inert (dead) copepods in turbulent flows. 

This is the first experimental account of single particle movements in turbulence having 

Lévy walks characteristics. The mechanism stands apart from the much-studied 20 

chaotic and multiplicative pathways to Lévy walking.  Lévy walks have been observed 

in sharks, bony fishes and in other aquatic marine predators and these have been 

attributed to the execution of an evolved, advantageous searching strategy. The new 

finding suggests that going with the flow movements is sufficient to explain the 

occurrence of these Lévy walks.  25 
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1. Introduction 30 

Lagrangian stochastic (LS) models are routinely used to simulate the trajectories of tracer-

particles in turbulence [1]. They can produce trajectories that are consistent with Kolmogorov’s 

similarity theory of turbulence [2] and with prescribed Eulerian velocity statistics (used as 

model inputs); incorporating all available velocity statistics even when non-stationary and 

inhomogeneous. In atmospheric and oceanic boundary layers, large-scale shear, driven by 35 

external factors, provides the energy source for the turbulence, as disturbances extract energy 

from the unstable shear flow. The smaller scale flows are themselves unstable and produce 

even smaller flows, leading to a cascade of energy from large to small scales of motion where 

turbulent kinetic energy is eventually dissipated as heat. The rate of transfer of energy exhibits 

large fluctuations over time. Nonetheless, such fluctuations, known as ‘intermittency’, are 40 

usually neglected in LS models because they typically make a negligible contribution to eddy-

diffusion coefficients and to other long-time dispersal statistics [3]. Consequently, LS models 

are usually formulated in terms of the average rate of transfer of energy between the large 

and small scales of motion.  Here I show both heuristically and with the aid of numerical 

simulations that intermittency results in Lévy walk (LW) movement patterns. The novel 45 

prediction finds strong support in an analysis of movement pattern data for inert (dead) 

copepods in turbulent flows [4]. LWs have previously been implicated in the relative 

movements of particle pairs in turbulence (Richardson’s law) and have been identified in single 

particle trajectories in laminar (non-turbulent) flows [5] but this is the first theoretical and 

experimental account of single particle movements in turbulence having LW characteristics. 50 

Nonetheless, the hallmarks of LWs have been identified in vertical diving patterns of a diverse 

range of aquatic marine predators, including sharks, sea turtles, penguins bony fish and jelly 

fish (horizontal movements have not been quantified) [6-8]. Seeds, spores, pollens and other 

tracer-like particles are therefore predicted to traverse the atmospheric boundary-layer in the 

same way that large aquatic marine predators traverse the water column. This congruence of 55 

movement patterns suggests that LWs in aquatic marine predators might be attributed to flow-

following; a tentative hypothesis that awaits experimental verification.  

2. The simplest Lagrangian stochastic particle-tracking models predict the emergence 

of Lévy walks 

In the simplest of case of stationary, isotropic, homogeneous, Gaussian, high-Reynolds 60 

number turbulence, the LS model for the simulation of tracer-particle movements consists of 

3 independent Uhlenbeck Ornstein processes for movements in the x-, y- and z-directions [9]. 

Modelled movements in the x-direction are described given by 
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where x and u are the position and velocity of the particle at time t,   0

2 /2 CT u  is the 65 

Lagrangian velocity autocorrelation timescale,   is the average rate of dissipation of turbulent 

kinetic energy, 0C  is a universal constant (Kolmogorov’s constant) and dW is an incremental 

Wiener process with mean zero and variance dt [9].  

 

Pope and Chen [10] were the first to incorporate intermittency into LS models, i.e., were the 70 

first to replace the average rate of dissipation of turbulent kinetic energy,  , by the 

instantaneous rate of dissipation of turbulent kinetic energy,   . They did this by noting that 

dissipation rates are approximately log-normally distributed (i.e.,   /ln  is Gaussian 

distributed with 2

2

1
x   [10]) and have exponential autocorrelation, as evidenced by data 

from DNS [11]. Consequently, Eqn. 1 can be supplemented by a stochastic equation, 75 
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where T is the autocorrelation timescale. Taken together, Eqns. 1 and 2 are equivalent to the 

long-time limit (i.e., t>>Kolmogorov’s dissipation timescale) of the model of Reynolds [12,13] 

which is in close agreement with data from carefully controlled, high-precision laboratory 

experiments [14].  80 

A simple heuristic argument suggests that together, Eqns. 1 and 2, result in “Cauchy walks” 

[15], i.e., in LWs with Lévy exponent μ=2. The argument is premised on the expectation that 

the long-time dynamics will be governed by the ratio of two Gaussian noises which can closely 

approximate Cauchy noise.  In the long-time limit with ε effectively held constant, Eqn. 1 

reduces to a random walk model  85 

dWKdx 2           (3) 
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with diffusivity
*

0

2 /2  CK u  that describes tracer-particle movements over time intervals 

with durations Tt   [9]. This model is driven by the ratio of two noises, 
2/1*/dW  where 

2/1* are averages of ε1/2 over the time intervals of duration t . The central limit theorem 

dictates that these averages will tend to be Gaussian distributed because ε has finite mean 90 

and variance. It follows from this that displacements, dx, will, to good approximation and up to 

a constant, be Cauchy distributed.   This is simply because the ratio of the two Gaussian 

noises, y  and z , i.e. dW and 2/1 , is, to good approximation and up to a constant, Cauchy 

distributed 
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The random walk, Eqn. 3, may therefore be a “Cauchy walk”. If so then Cauchy walks could, 

by virtue of the generalized central limit theorem, also arise at short times. These speculations 

are supported by the results of numerical simulations (Fig. 1) using Eqn. 1 and 2. Step-lengths, 

i.e., distances travelled between consecutive changes in the direction of travel, are seen to be 

Cauchy distributed. This is the hallmark of a Cauchy walk [15]. Moreover, the averages of ε1/2 100 

are seen to be Gaussian distributed. 

 

Similar results are expected whenever the LS models reduce to random walk models in the 

long-time limit, e.g., whenever turbulence is weakly inhomogeneous so that the timescale on 

which conditions change as viewed by a tracer-particle (due to inhomogeneity or unsteadiness 105 

in the turbulence) is much longer than T [9]. By way of contrast, if ε is constant then the LS 

model, Eqn. 1, produces exponentially-truncated LWs with 3/4 [16].  

 

This finding suggests that going with the flow in the presence of turbulence results in µ=2 LWs. 

This possibility was examined in a re-analysis of telemetry data for inert (dead) and active 110 

(living) copepods in an aquarium. [4]. Even when inertial effects are negligible, LWs in 

copepods are not inevitable because their non-spherical shape will cause them to turn in 

response to the local fluid velocity gradients, making their trajectories deviate from those of 

tracer-particles [17]. 

  115 

 



5 
 

3. Inert and active copepods Cauchy walk in turbulence 

The aquarium was a 27 cm (W) x 18 cm (D) x 17 cm (H) glass tank. Quasi-homogeneous, 

isotropic turbulence was produced by two arrays of four counter rotating, 4 cm diameter, discs 

located on the lateral sides of the aquarium [18]. The intensity of the turbulence produced was 120 

comparable to that found in coastal zones and tidal estuaries. At this intensity living copepods 

can accelerate much more strongly than the flow. Three-dimensional Lagrangian particle 

tracking measurements were made using four synchronized cameras recording at 100 Hz. 

These measurements were made within a 10 cm x 10 cm x 10 cm volume in the middle of the 

aquarium.  Copepod movements were recorded for 5 minutes in still water and in turbulent 125 

water. Michalec et al. [4] reported that copepods swimming in still water display intermittent 

behaviour characterised by a high probability of small velocity increments associated with 

steady cruising through the water, and by stretched exponential tails associated with frequent 

relocation jumps. Somewhat surprisingly they also found that velocity differences of living and 

dead copepods in turbulence collapse when normalized by their variance. This suggests that 130 

relocation jumps and strong fluid acceleration produce a similar intermittency. This 

intermittency can be modelled very well by a log-stable model with a non-analytical cumulant 

generating function (details given in the Supplementary Material).  

 

Here the movement pattern data of Michalec et al. [4] is re-analysed. The re-analysis is based 135 

on the distances travelled in the vertical direction between consecutive turns which facilitates 

the detection of LW “diving” patterns that can be compared directly with the vertical diving 

patterns of large aquatic marine predators [7-8].  Michelec [4], on the other hand, presented 

results for displacements made across fixed-time durations.  Re-analysis provides strong 

support for Cauchy walk movements in the vertical (Fig 2 and 3), and especially so when 140 

turbulence is relatively strong. Cauchy movement patterns are also evident to some extent in 

active copepods in still water. This is not surprising given that copepods swimming in still and 

turbulent flow belong to the same intermittency class [4]. In still waters the copepods self-

induced motion consists of a succession of intermittent periods of slow swimming with strong 

relocation jumps that mimic the effects of turbulence. Nonetheless, such active behaviours are 145 

not required for the emergence of LW in turbulence and would be energetically costly because 

they would require that organisms frequently swim against the flow. Further analyses are 

presented in the Supplementary Material where it is shown that the velocity statistics of the 

model, Eqns. 1 and 2, like those of the copepods, are characterized by non-analytic cumulants 

(Figs. S1 and S2) and where evidence is presented for the copepods having 3-dimensional 150 

movement patterns resembling Lévy walks (Fig. S3). 
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4. Discussion 

It was shown heuristically and with aid of numerical simulations that intermittency results in 

tracer particles in turbulence having LW (Cauchy walk) movement patterns (Fig. 1). These 

predictions found strong support in pre-existing data for dead (inert) and living (active) 155 

copepods in turbulence (Figs. 2 and 3). The result illustrates that generative mechanisms for 

LWs are often hiding in plain, as evidenced here by the cited literature pertaining to Eqns. 1 

and 2 which comes from the 1980’s and 1990’s. 

 

Tracer particles therefore move through turbulence in the same way as large aquatic marine 160 

predators traverse the water column [6-8]. Nonetheless, it remains to be seen whether the 

similarities between tracer particles and large aquatic marine predators encompass not only 

patterns of movement but also underlying generative processes. The LW diving patterns of 

large aquatic marine predators could be the result of their following the vertical flow 

movements. For marine predators, this free-ride or flow-assisted-ride would be an 165 

energetically favourable way of exploring the water column. Resisting such movements would 

incur energetic costs.  In this regard, it is interesting to note that intermittency in oceanic 

turbulence is not confined to the smallest turbulence scales, as widely thought, but occurs 

across all scales [19]. Unlike many other organisms, aquatic marine predators may therefore 

be predisposed to have LW diving patterns. In other words, aquatic marine predators may 170 

have complex behaviours that are triggered both intrinsically by internal drivers and 

extrinsically by environmental cues but these are not required for the emergence of LW 

movement patterns which could occur freely, as a kind of null template. If so then their 

occurrence in marine predators would mirror those in other organisms which seem to have 

emerged accidentally from innocuous, banal organism-specific behaviours [20,21]. This 175 

challenges the widely-held view that LWs in marine predators are intrinsic and the result of 

selection for advantageous searching [6-8]. 
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Figure 1 Simulation data supporting the heuristic argument for the emergence of LW 

movement patterns in intermittent turbulence. Simulation data for the step-lengths 

(distances travelled between consecutive changes in the direction of travel) produced by Eqns. 275 

1 and 2 with 1,3,4,1 0

22   TCu and 50  (o) together with the best-fit Cauchy 

distribution (red line) (left panel). Simulation data for the distribution of step-average values of 

2/1  (o) together with the best Gaussian distribution (red line) (right panel). The simulation 
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data have skewness 0.19, flatness 3.02 and hyperflatness 15.01. Gaussian variables have 

skewness 0, flatness 3 and hyperflatness 15.  280 
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Figure 2 Inert (dead) copepods have LW movement patterns. Distributions of distances 

travelled in the vertical direction between consecutive changes in the direction of travel up and 

down the aquarium for inert copepods for different stirring rates (●) together with the best fit 285 

Cauchy distributions (red lines). Comparable results (not shown) were obtained for 

movements in the horizontal directions. 
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Figure 3. Active (living) copepods have LW movement patterns. Distributions of distances 

travelled in the vertical direction between consecutive changes in the direction of travel up and 

down the aquarium for active copepods for different stirring rates together with the best fit 

Cauchy distributions (red lines). Comparable results (not shown) were obtained for 295 

movements in the horizontal directions. 

 

. 

 

 300 


