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Abstract: Since the discovery of acrylamide in food, and the identification of free asparagine as the 
key determinant of acrylamide concentration in wheat products, our understanding of how grain 
asparagine content is regulated has improved greatly. However, the targeted reduction in grain 
asparagine content has not been widely implemented in breeding programmes so far. Here we sum-
marise how free asparagine concentration relates to other quality and agronomic traits and show 
that these relationships are unlikely to pose major issues for the breeding of low-asparagine wheat. 
We also outline the strategies that are possible for the breeding of low-asparagine wheat, using both 
natural and induced variation. 

Keywords: wheat; asparagine; breeding; acrylamide; protein; pre-harvest sprouting; nitrogen-use 
efficiency; senescence 
 

1. Introduction 
Wheat is one of the world’s most important crops, contributing an estimated 18.6% 

to global daily calorie intake and 19.8% to global daily protein intake in 2018 [1]. The con-
tribution of wheat to daily calorie and protein intake varies substantially by region 
though, with certain regions having greater dependence on wheat than others. For exam-
ple, the contribution of wheat to daily calorie and protein intake was approximately dou-
ble the global average at 39.1% and 38.4%, respectively, in Central Asia in 2018 (Kazakh-
stan, Kyrgyzstan, Tajikistan, Turkmenistan, and Uzbekistan (as described by the Food 
and Agriculture Organisation of the United Nations) [1]). Consequently, it is essential to 
ensure that the supply and quality of wheat is safeguarded against emerging challenges. 
This can be achieved by the development of new crop management strategies and crop 
protection products, or through the breeding of new varieties. 

Wheat breeding and research has been greatly facilitated in recent years by the se-
quencing of multiple wheat genomes [2], the development of numerous marker technol-
ogies [3], and the use of new gene editing technologies [4]. With the development of these 
technologies, we can begin to investigate and improve traits that may have been prohibi-
tively costly or time consuming to improve in the past, and the free amino acid composi-
tion of wheat grain is one such trait. 

The free (soluble, non-protein) amino acid content of wheat grain has been of most 
interest to wheat geneticists in recent years because of the food safety issues associated 
with free asparagine, the precursor to the ‘probably carcinogenic’ processing contami-
nant, acrylamide [5]. Free asparagine reacts with reducing sugars to form acrylamide [6,7], 
but free asparagine concentration has been shown to be the major determinant of acryla-
mide concentration in wheat products in several studies (see [8] for review). Halford et al. 
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[9], for example, used data generated by Muttucumaru et al. [10], to plot free asparagine 
concentration against acrylamide formation in wheat flour heated for 20 min at 160 or 180 
°C, and obtained coefficients of determination (R2) of 0.956 and 0.998 for pot- and field-
grown plants, respectively. In contrast, there was no relationship between the concentra-
tion of reducing sugars and the amount of acrylamide that formed. Muttucumaru et al. 
had shown sulphur deficiency to cause very high concentrations of free asparagine to ac-
cumulate in wheat grain, and Granvogl et al. [11] obtained very similar results, with 
acrylamide formation closely related to asparagine concentration, except in flours from 
extremely sulphur-deprived plants, in which free asparagine concentration was so high 
that it was no longer limiting. 
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Figure 1. Timeline of asparagine research in wheat since the discovery of acrylamide in food [2,5–
7,10,12–26]. Asn (asparagine), G × E (genotype-by-environment interaction), PHS (pre-harvest 
sprouting), GWAS (genome-wide association study), QTL (quantitative trait locus/loci), RNAseq 
(RNA sequencing). 

Curtis et al. [15] also studied the effect of sulphur deficiency and showed acrylamide 
formation to rise with free asparagine concentration (R2 = 0.9945), up to free asparagine 
concentrations of approximately 25 mmol/kg or higher, something only seen in flour from 
extremely sulphur-deprived plants. 

Acrylamide also forms in potato products and the relationship between free aspara-
gine and reducing sugar concentration and acrylamide formation for potato is very dif-
ferent. Potato tubers have higher concentrations of free asparagine than cereal grains and 
reducing sugar concentration is usually the limiting factor for acrylamide formation, alt-
hough free asparagine concentration does contribute to the variance in some datasets [27]. 
Nevertheless, the clear relationship between free asparagine concentration and acryla-
mide formation in wheat products means that strategies to control acrylamide formation 
in wheat-based foods over the last 20 years have targeted free asparagine (Figure 1). 

Although we now better understand the environmental and genetic factors that in-
fluence grain asparagine content, there are still many unanswered questions around how 
these factors interact and how they relate to other traits. Here, we summarise some of the 
research regarding the relationship between free asparagine concentration in the grain 
and other traits, and how genetic improvements might be made using this information. 

2. Relationships between Free Asparagine, Quality, and Agronomic Traits 
2.1. Free Asparagine Concentration and Quality Traits 

Quality traits in wheat are those that impact the functionality of the end product (i.e., 
the baking and nutritional quality of the grain), so encompass traits such as pre-harvest 
sprouting (PHS), protein content and hardness. Grain-free asparagine content has some-
times been found to correlate with some of these quality traits, but this differs greatly 
between studies (Tables 1 and 2). Few quality traits have been tested for a relationship 
with free asparagine in more than one study, and those that have often show different 
relationships across studies (Table 1), implying that free asparagine concentration is un-
likely to correlate strongly with quality traits.  

Malunga et al. [28] undertook the largest study of free asparagine in relation to qual-
ity traits, screening 42 quality traits and assessing their relationship with free asparagine, 
in both wholemeal and white flours. This analysis revealed that free asparagine in whole-
meal samples did not correlate with any quality parameters, except for a weak correlation 
(r = −0.389, p = 0.0339) with the extensograph A parameter. Similarly, free asparagine in 
white flour only correlated weakly with extensograph Rmax (r = −0.370, p = 0.0444), exten-
sograph A (r = −0.378, p = 0.0394) and water dough colour b* parameters (r = 0.373, p = 
0.0426). Corol et al. [29] also performed correlation analyses of free asparagine with qual-
ity traits and did find some weak associations, but these have not been corroborated by 
further studies (Table 1).  

One potentially interesting relationship is that between free asparagine and PHS, be-
cause of the potential for protein hydrolysis during PHS to release free asparagine. PHS 
negatively impacts wheat quality in a range of ways, reducing flour yield, the quality of 
baked products, and nutrient content [30]. Simsek et al. [20] reported a moderately strong 
(r = 0.6–0.7) positive correlation between free asparagine, sprouting score, and endopro-
tease activity in samples of sprouted wheat grain, suggesting that there was a relationship 
between asparagine and PHS at high levels of sprouting. Additionally, in a study de-
signed to render the asparagine synthetase 2 genes (TaASN2) non-functional through gene 
editing, Raffan et al. [25] observed a poor germination phenotype that could be rescued 
through exogenous application of asparagine to the soil, implying that low-grain aspara-
gine content may inhibit germination and could perhaps also affect PHS. Further research 
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is required to confirm the germination phenotype, but asparagine synthetases are known 
to play important roles in germination in other species [31,32]. No correlation has been 
observed to date between asparagine and Hagberg falling number (HFN) (Table 1), which 
is indicative of α-amylase activity and, therefore, PHS. However, it is possible that a rela-
tionship between grain asparagine content, germination and PHS could exist when aspar-
agine concentration is very low (e.g., in TaASN2 edited lines) or very high (e.g., in artifi-
cially sprouted wheat samples). 

Table 1. Association between free asparagine and selected quality traits. 

Asn Measurement Trait r p Reference 
Loge transformation Farinograph absorption 0.94 <0.001 [33] 

 Nitrogen: sulphur grain content 0.73 <0.01  
 Nitrogen grain content 0.62 <0.05  

Loge transformation Sprouting score 0.68 <0.001 [19] 
 Endoprotease activity (sprouted) 0.69 <0.001  
 Endoprotease activity (ΔD) 0.60 <0.01  

Untransformed HFN 0.07 0.39 [29] 
 Z-SDS 0.37 <0.001  
 Gluten content 0.44 <0.001  
 Starch content −0.32 <0.001  
 Water absorption 0.35 <0.001  

 Hardness index 0.03 0.68  
Loge transformation Absorption −0.03 >0.05 [34] 

Untransformed Hardness index 0.15 >0.05 [35] 
Log10 back-transformed Sulphur grain content 0.14 >0.05 [23] 

 HFN 0.03 >0.05  
 Z-SDS −0.29 <0.001  

Untransformed HFN −0.17 0.36 [28] 
 Gluten index −0.36 <0.05  
 Flour starch damage −0.18 0.33  
 Farinograph absorption −0.12 0.5436  

Asn (asparagine), HFN (Hagberg falling number), Z-SDS (Zeleny sedimentation index). 

In contrast to other quality traits, the relationship between grain asparagine content 
and protein has been tested numerous times and the results suggest that there is a positive 
correlation between the two traits, varying from weak to strong, under different condi-
tions (Table 2). The protein content of wheat is important both for breadmaking function-
ality and for its nutritional quality, especially as the global agricultural system shifts to-
wards the cultivation of more plant protein for sustainability reasons. A more detailed 
analysis of the relationship between protein and asparagine was undertaken by Simsek et 
al. [19], who found significant positive associations between asparagine and extractable 
F4 (albumin/globulin), F5, and F6 (hydrolysed polymeric/non-gluten protein) HPLC pro-
tein fractions. This is consistent with the release of free asparagine from the hydrolysis of 
proteins under PHS. Simsek et al. [19] also found significant negative associations be-
tween asparagine and unextractable F1 (HMW glutenin polymers) and F2 (LMW glutenin 
polymers) protein fractions. This was further supported by Ohm et al. [36], where signif-
icant negative (p < 0.05) genotypic and phenotypic correlations were found between free 
asparagine and unextractable F1 protein fractions, but not between free asparagine and 
extractable F1 fractions. 

The contrasting relationships between free asparagine and the different protein frac-
tions has interesting implications for quality, because the ratio of unextractable HMW pol-
ymeric proteins to extractable LMW polymeric proteins is a better determinant of quality 
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than total protein measurements [37,38]. Consequently, lower free asparagine content in 
the grain may be associated with higher bread-making quality. This conclusion was 
drawn by Ohm et al. [36], who further suggested that measurements of unextractable pol-
ymeric protein may allow for selection of varieties that simultaneously have high-quality 
bread-making potential and are low in free asparagine content. Such a correlation between 
free asparagine and bread-making quality has not been consistently observed across stud-
ies, though (see Table 1), so the relationship is probably more complex than this. Higher 
protein content may also be desirable, independent of its effect on bread-making quality. 

The complexity of the factors determining the free asparagine content of grain and 
protein can be illustrated by looking at soft wheat varieties. These varieties typically have 
lower protein content than hard wheats, making them unsuitable for bread-making but 
suitable for biscuits, breakfast cereals, pastries and other baked goods. Based on this, the 
grain of soft wheats might be expected to have lower free asparagine content than hard 
wheats, due to the positive correlations often found with protein (Table 2). Curtis et al. 
[39] did show that varieties with consistently low free asparagine concentration were of-
ten soft wheats, but the difference between hard and soft variety groups was not signifi-
cant, with high and low-asparagine varieties in both groups. It is possible that the associ-
ation of some soft wheat varieties with consistently low free asparagine content was due 
to the deletion of one of the asparagine synthetase 2 homeologues, TaASN-B2, which has 
been shown to be associated with lower grain asparagine content and was more common 
in the soft wheats used in the trial [26]. The effect of this deletion is only apparent when 
the plants have adequate sulphur, though, with the effect being overwhelmed by the huge 
increase in free asparagine concentration that occurs under sulphur deficiency [26], add-
ing more complexity to the control of grain asparagine content. 

Table 2. Associations between free asparagine and protein content. 

Asparagine Measure Protein Measure R2/r p Reference 
Untransformed Crude protein 0.86 * <0.001 [14] 
Untransformed Protein content (2006 UN) 0.93 <0.01 [16] 

 Protein content (2006 T) 0.63 <0.05  
 Protein content (2007 UN) 0.75 >0.05  
 Protein content (2007 T) 0.27 >0.05  
 Protein content (2006 N) 0.73 <0.01  
 Protein content (2007 N) 0.89 <0.01  

Loge transformation Protein content (non-sprouted) NA >0.05 [19] 
 Protein content (sprouted) NA >0.05  
 Protein content (ΔD) NA >0.05  

Untransformed Total protein content 0.45 <0.001 [29] 
 Wholemeal protein content 0.51 <0.001  
 Flour protein content 0.38 <0.001  

Loge transformation Protein content 0.43 <0.001 [34] 
Loge transformation Protein content (rp) −0.03 >0.05 [36] 

 Protein content (rg) −0.37 >0.05  
Untransformed Total protein content 0.52 <0.01 [35] 

Log10 back transformed Total protein content 0.23 <0.01 [23] 
Untransformed Crude protein 0.36 * NA [40] 
Untransformed Crude protein 0.04 * NA [41] 
Untransformed Wholemeal protein content −0.08 0.66 [28] 

 Flour protein content −0.14 0.46  

* These values refer to R2 values, not r values. rp (phenotypic correlation), rg (genotypic correlation). 
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Although the relationship between free asparagine content and the protein composi-
tion of grain is complex, there are two factors that are well known to affect both: nitrogen 
and sulphur fertilisers. Nitrogen application increases both the free asparagine and pro-
tein content of grain, whereas sulphur application decreases free asparagine content and 
improves protein composition (see [42] for review). This is reflected in the correlation be-
tween free asparagine, nitrogen, and the nitrogen to sulphur ratio in wheat grain (Table 
1), and implies that wheat uses free asparagine as a nitrogen store in the grain when sul-
phur is limiting (reviewed in [8]). Application of more sulphur is, therefore, desirable for 
both traits, except for its environmental pollution effects [43], whereas a balance between 
higher protein/higher free asparagine and lower protein/lower free asparagine must be 
struck when it comes to nitrogen application. Similar trade-offs arise because of the asso-
ciation of nitrogen with desirable agronomic traits, but there may be solutions in breeding, 
as discussed below. In the meantime, our advice is that nitrogen application should be 
accompanied with sufficient sulphur (typically 20 kg sulphur per hectare) to prevent the 
nitrogen ending up as free asparagine instead of protein. 

2.2. Free Asparagine and Agronomic Traits 
As a result of the positive association between free asparagine and nitrogen applica-

tion, it might be expected that there would be a similar association between free aspara-
gine and traits related to growth because of the positive relationship between plant 
growth and nitrogen. Positive correlations between free asparagine and yield have indeed 
been found (Table 3) but, perhaps surprisingly, these correlations have not been consistent 
across studies. Xie et al. [44], for example, found that free asparagine (measured in milli-
grams per gram of protein) was negatively correlated with grain yield in one year when 
the yield was low (between two and four tonnes per hectare), but positively associated in 
another year, when the yield was higher (between four and eight tonnes per hectare), sug-
gesting a non-linear relationship. A reduction in plant stress could explain the negative 
correlation observed over lower yield values, whilst the positive correlation could be due 
to greater nitrogen availability in the soil. However, the authors note that the relationship 
between absolute free asparagine content (measured without normalisation to protein) 
and yield was not as strong as the relationship when the normalisation of free asparagine 
to protein was performed. The lack of comprehensive yield/free asparagine studies does 
not provide strong support for hypotheses linking the two traits, but it could be worth-
while investigating the nature of the relationship between free asparagine and yield in 
more detail in future studies.  

Another interesting correlation shown in Table 3 is that between the asparagine re-
sponse (measured as the ratio of asparagine in treated vs. asparagine in untreated plants) 
and the yield gap-based measure of drought tolerance (YDT), as studied by Yadav et al. 
[45]. YDT provides a measurement of how well a variety performs under drought stress 
relative to unstressed conditions. The negative correlation between the asparagine re-
sponse and YDT in the study indicated that plants that were less tolerant to drought 
tended to accumulate more asparagine. This relationship is consistent with the general 
observation that free asparagine accumulates under stress (reviewed in [42]), and Yadav 
et al. [45] suggested that the relationship could be caused by the remobilisation of nitrogen 
during stress-induced senescence. Curtis et al. [46] also showed that asparagine metabo-
lism is affected by drought stress in wheat, by constructing a detailed network describing 
the genes and other factors involved, using a Unique Network Identification Pipeline to 
show the inter-relationships between genes that changed in expression in response to 
drought stress, in both leaves and roots.  

The relationship between free asparagine and senescence in wheat is not well under-
stood, but Emebiri [20] did find a negative correlation between asparagine and flowering 
time (Table 3), which may reflect an association between senescence and asparagine. Se-
nescence is known to cause the remobilisation of nitrogen via asparagine and the activa-
tion of asparagine synthetases in other species, including sunflower, tobacco, and barley 
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[31,47–49], and early senescing barley lines show greater expression of asparagine synthe-
tase in senescing tissues relative to later senescing lines [50]. Navrotskyi et al. [35] also 
found a positive correlation between free asparagine and the number of days until harvest 
(Table 3), again implying that longer periods of senescence might be responsible for this 
association. 

Table 3. Associations between free asparagine and agronomic measurements. 

Asparagine Measure Agronomic Measure r p Reference 
Loge back-transformed Flowering time −0.67 <0.001 [20] 

Untransformed Plant height 0.41 <0.001 [29] 
 TKW 0.03 0.75  
 Mean kernel diameter 0.13 0.11  
 Mean kernel weight 0.06 0.45  
 Yield −0.14 0.09  
 Precipitation (HH) −0.85 <0.05  
 Temperature (HH) 0.74 0.10  

Loge transformation HLW −0.40 <0.001 [34] 
Untransformed Mean kernel diameter 0.37 <0.05 [35] 

 Mean kernel weight 0.37 <0.05  
 Yield −0.32 >0.05  
 Days to harvest 0.61 <0.001  

Log10 back transformed TKW −0.24 <0.01 [23] 
 HLW −0.21 <0.01  

Untransformed Nitrogen application 0.63 NA [40] 
Untransformed TKW −0.27 0.15 [28] 

 HLW −0.07 0.71  
Loge transformed responses YDT −0.73 <0.05 [45] 

Per unit protein Yield (2018) 0.74 NA [44] 
 Yield (2019) −0.56 NA  

Untransformed Yield 0.75 <0.001 [51] 
TKW (thousand kernel weight), HH (heading to harvest date), HLW (hectolitre weight), YDT 
(yield gap-based drought tolerance). 

Further research in this area could be greatly facilitated by investigating free aspara-
gine accumulation in stay-green varieties of wheat. These varieties show delayed senes-
cence, leading to a prolonged green phenotype, and generally have higher yields and bet-
ter stress tolerance, although this leads to a trade-off with protein and micronutrient con-
tent due to the yield dilution effect [52]. Heyneke et al. [53] undertook an experiment com-
paring the leaf metabolome of early and late senescing wheat lines and found that aspar-
agine content in the leaf decreased as senescence progressed, but not significantly. The 
ratio of asparagine to aspartic acid (as well as the ratio of glutamine to glutamic acid) did 
increase significantly, though, in both early and late senescing lines, as senescence pro-
gressed. The authors of this study interpret the increase in nitrogen-rich amino acids (as-
paragine and glutamine) relative to their precursors (aspartic acid and glutamic acid, re-
spectively) as being indicative of nitrogen remobilisation to other active organs. The re-
mobilisation of free asparagine from senescing leaves to developing grain may, therefore, 
be a mechanism which connects senescence and grain-free asparagine content. Further 
investigation of early and late senescing lines should be undertaken to shed more light on 
the relationship between free asparagine and senescence. 

The development of stay-green varieties is part of a larger effort to develop varieties 
with better nitrogen-use efficiency (NUE), in order to reduce agricultural inputs, since 
nitrogen fertilisers are a major source of environmental pollution [54]. NUE can be defined 
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in many different ways but is commonly described as a productivity index measuring 
yield per unit of nitrogen (see [55] for review). Strategies to enhance NUE in wheat may 
impact grain asparagine content due to effects on nitrogen uptake and partitioning within 
the plant, especially those methods that modulate genes involved in amino acid synthesis 
and transport. 

For example, Wan et al. [56] reported that overexpression of the starchy endosperm 
amino acid transporter, TaAAP13, in endosperm tissue increased grain size and grain 
weight, but decreased grain yield and seed number per plant overall, as well as increasing 
free asparagine content. In another study, Tiong et al. [57] transformed rice, wheat, and 
barley plants with a stress-inducible barley alanine aminotransferase, OsAnt1:HvAlaAT, 
resulting in increased grain yield for some of the resulting lines. The authors also showed 
that asparagine content in the roots and shoots of the mutant rice plants was decreased 
relative to wild-type plants, but these measurements were not repeated in the mutant 
wheat plants and grain asparagine content was not measured. Hu et al. [58] also improved 
NUE using modulated amino acid transporters, but this time by overexpressing an iso-
form of glutamine synthetase 2. This increased grain yield under conditions of both high 
and low nitrogen, but total amino acid and glutamine content (with which asparagine is 
often strongly positively correlated) only increased significantly under high nitrogen con-
ditions. These examples show that the many different strategies for improving NUE are 
likely to have different effects on grain asparagine content, based on their individual 
mechanisms, and in combination with different environments and management practices. 
It is, therefore, important that effects on free asparagine concentration (and, therefore, 
acrylamide-forming potential) are assessed in plants in which NUE has been improved. 

The relationship between free asparagine, quality, and agronomic traits, as described 
above, is summarised in Figure 2, below. 

 
Figure 2. Proposed relationship between agronomic factors, quality traits, and grain asparagine con-
tent. Agronomic factors influence both quality traits and grain asparagine content, whilst quality 
traits and grain asparagine are linked to one another. NUE (nitrogen-use efficiency), HMW (high 
molecular weight), LMW (low molecular weight). 
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3. Breeding Wheat with Low Free Asparagine. 
Selection for desirable traits in wheat (e.g., disease resistance and increased yield) has 

occurred since humans first started cultivating diploid and tetraploid wheats, approxi-
mately 10,000 years ago [59,60]. A historical analysis of varieties, registered from the late 
1800s to the present day, indicates that commercial plant breeding has altered the amino 
acid composition of wheat grain, along with many other agronomic and quality traits [61]. 
However, free asparagine showed no discernible change across the measured period and 
another study by Rapp et al. [23] also did not find any temporal trend in free asparagine 
content across the varieties screened in that study. This is in contrast with Corol et al. [29], 
who detected a weak negative correlation between variety release year and grain aspara-
gine content (r = −0.255, p = 0.0019). This slight negative correlation may be due to the 
decreasing protein content of varieties, as a result of selection for increasing yields and 
the yield-dilution effect. 

The lack of any strong correlation between variety release year and grain asparagine 
content reflects that free asparagine concentration is not strongly linked to any other traits 
that have been selected for, over the course of commercial wheat breeding history. How-
ever, free asparagine concentration does display a moderate heritability in some studies 
(Table 4), with the study that used one of the more robust estimates of heritability (Piepho 
and Möhring method), estimating heritability at 0.65, similar to the heritability estimates 
obtained for protein content and falling number from the same study [23]. Further accu-
rate measurements of grain asparagine heritability are required to corroborate this, as well 
as measurements taken across multiple environments, but this indicates that there is scope 
for reducing the free asparagine content of wheat grain through breeding. However, there 
is undoubtedly a substantial environmental (E), as well as genetic (G), effect on free as-
paragine concentration, together with a G × E interaction, which may have discouraged 
breeders from attempting to develop low-asparagine varieties to date. 

Table 4. Heritability estimates of asparagine in wheat (given to 2 significant figures). 

Heritability Method h2 Reference 
Broad-sense 0.31 [20] 

Surrogate method 0.13 [29] 
Piepho and Möhring 0.65 [23] 

Broad-sense 0.41 [61] 

Breeding low-asparagine wheat could potentially be achieved in three main ways: 
directly, by using either existing or induced variation, or indirectly, through selection for 
related traits (Figure 3). New wheat varieties are commonly developed using existing var-
iation; however, the only multi-environment quantitative trait locus (QTL) for low-aspar-
agine known at present is the one in which the TaASN-B2 gene is either present or deleted, 
which has been shown to affect the free asparagine content of grain in two different field 
trials [26]. Selection for the TaASN-B2 deletion represents an easy gain for breeders, but 
further trials testing the effect of the deletion should be performed to confirm the stability 
of the effect across more environments. Other QTL controlling grain asparagine content 
have also been identified, but these have not yet been verified across more than one envi-
ronment [20,23]. Identification of multi-environment QTL, in combination with genomic 
and marker assisted selection [23], could enable low-asparagine wheat to be developed, 
without the time-consuming or expensive need to screen large numbers of plants for as-
paragine concentration. 
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Figure 3. Strategies for the breeding of low-asparagine wheat. 

Relying on natural variation is limited by the availability of existing variation, 
whereas techniques that induce or increase variation in the wheat genome could generate 
new variants with free asparagine content below the normal range. This has been demon-
strated by the use of CRISPR/Cas9 technology to ‘knock out’ the TaASN2 genes, reducing 
grain asparagine content by up to 90% in glasshouse experiments [25]. The edited lines 
still need to undergo trials to confirm the stability of this phenotype in the field, but the 
stability of the ‘natural’ TaASN-B2 deletion phenotype under field conditions [26] is en-
couraging, suggesting that the TaASN2-edited phenotypes may be similarly stable. How-
ever, the interaction between the TaASN-B2 deletion and sulphur deficiency implies that 
TaASN2 variants may not be sufficient to control grain asparagine content during sulphur 
deficiency or other stresses, again highlighting the effects of E and G × E. On the other 
hand, the varieties carrying the TaASN-B2 deletion have intact TaASN-A2 and TaASN-D2 
genes, whereas the edited lines lack any functional TaASN2 genes, so the edited lines will 
be valuable for investigating whether this prevents free asparagine accumulation under 
conditions of sulphur deficiency or other stresses. 

The benefits of inducing variation in candidate genes was also recently demonstrated 
in a preprint by Alarcón-Reverte et al. [62], in which wheat plants possessing EMS-in-
duced null TaASN-A2 alleles were grown in the field and tested for grain-free asparagine 
content. Reductions of between 9% and 34% were achieved, without any negative side 
effects on quality traits, demonstrating again the utility of induced variation and the lack 
of strong associations between free asparagine and quality traits. 

As a result of the potential loss or partial loss of the low-asparagine phenotype of 
TaASN2 knockouts under stress, a third, complementary option for controlling grain as-
paragine content can also be adopted: breeding for stress tolerance. As discussed above, 
stress and grain asparagine content are closely linked, and it is often during stress that the 
highest grain asparagine contents are observed [39,63]. Breeding for stress tolerance 
could, therefore, ensure that a low-asparagine phenotype would be retained under stress. 
Selection for other related traits, such as those discussed above (e.g., PHS resistance, de-
layed senescence), could also provide indirect selection for lower-grain asparagine, but 
these traits are not as clearly linked with asparagine as asparagine is with stress. 
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4. Conclusions 
Asparagine is, of course, an important plant metabolite, and since the discovery that 

it can be converted to acrylamide during the cooking and processing of food, there has 
been debate over how much its concentration could be reduced before effects were seen 
on other important traits. It was also recognized by the food industry that the production 
of fried, roasted, toasted and baked coffee, potato and cereal products containing no 
acrylamide at all was not possible, and that they should aim to reduce acrylamide to levels 
‘as low as reasonably achievable’ [64]. More recently, at least in the European Union, it 
has become a regulatory compliance issue, with manufacturers striving to keep the acryla-
mide levels in their products below benchmark levels set by the European Commission 
[65]. The European Commission is currently considering replacing benchmark levels (de-
scribed as ‘performance indicators’) for some products with maximum levels; i.e., levels 
of acrylamide above which it would be illegal to sell a product [66]. If maximum levels 
were set at or lower than the current benchmark levels, it would have serious implications 
for the food industry. There is a paucity of data in the public domain on acrylamide levels 
in cereal products, but a recent study in Spain found that 15% of breakfast cereals con-
tained acrylamide above the benchmark level, which for wheat-based breakfast cereals is 
300 parts per billion (ppb) [67]. Manufacturers could, therefore, face the prospect of prod-
uct recalls and even prosecution if a maximum level of 300 ppb was imposed. This makes 
it more important than ever that wheat breeders engage on the acrylamide issue, espe-
cially as many strategies involving agronomy and food processing technology have al-
ready been implemented [64] and the opportunities for further gains involving those ap-
proaches may be limited. 

The strategies outlined here show that the breeding of low-asparagine wheat, using 
natural and induced variation, is feasible and unlikely to negatively impact other traits, 
with the exception of germination, which may be affected, but only if free asparagine con-
centration is reduced to very low levels [25]. Furthermore, breeding solutions stand to be 
more sustainable, cost-effective, and less impactful on flavour than the solutions provided 
by agronomic and food sciences, and could make additional agronomic or food industry 
modifications unnecessary. Consequently, development of low-asparagine phenotypes in 
elite wheat varieties should be considered in future wheat breeding programs. 
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