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ABSTRACT 

Te Beest, D. E., Paveley, N. D., Shaw, M. W., van den Bosch, F. 2008. 
Disease–weather relationships for powdery mildew and yellow rust on 
winter wheat. Phytopathology 98:609-617. 

Key weather factors determining the occurrence and severity of pow-
dery mildew and yellow rust epidemics on winter wheat were identified. 
Empirical models were formulated to qualitatively predict a damaging 
epidemic (>5% severity) and quantitatively predict the disease severity 
given a damaging epidemic occurred. The disease data used was from 
field experiments at 12 locations in the UK covering the period from 
1994 to 2002 with matching data from weather stations within a 5 km 
range. Wind in December to February was the most influential factor for 

a damaging epidemic of powdery mildew. Disease severity was best 
identified by a model with temperature, humidity, and rain in April to 
June. For yellow rust, the temperature in February to June was the most 
influential factor for a damaging epidemic as well as for disease severity. 
The qualitative models identified favorable circumstances for damaging 
epidemics, but damaging epidemics did not always occur in such circum-
stances, probably due to other factors such as the availability of initial 
inoculum and cultivar resistance. 

Additional keywords: Blumeria graminis f. sp. tritici, climate change, data 
mining, epidemiology, Puccinia striiformis. 

 
Powdery mildew (Blumeria graminis f. sp. tritici Em. Marchal) 

and yellow rust (Puccinia striiformis Westend. f. sp. tritici) are 
damaging foliar diseases in winter wheat (Triticum aestivum). If 
an infection is untreated yield reduction as a result of powdery 
mildew or yellow rust infection can typically be around 10 to 
20% and sometimes up to 40% (32). Powdery mildew occurs on 
average on 50% of the crops in the UK and yellow rust on 
average on 8% (12). Both diseases are routinely targeted with 
fungicides in the UK. If the occurrence or absence of an 
economically damaging disease infection could be forecasted then 
this could possibly guide fungicide usage which may have 
financial and environmental benefits. Here, a disease infection 
with a disease severity higher than 5% will be called a “damaging 
epidemic”, for reasons explained further in the materials and 
methods section. 

After harvest yellow rust survives on volunteer wheat, from 
which it is wind-dispersed to autumn sown wheat where it 
survives the winter. In winter, latent periods increase due to cold 
temperatures (35). A rapid disease increase can occur early in the 
spring with severe levels present by May. Yellow rust needs free 
moisture (high humidity, rainfall, or dew) for infection, is wind-
dispersed, and has an optimal temperature range around 10 to 
15°C (13). Later in the season temperatures above 23°C can halt 
yellow rust epidemics by affecting infectious lesions (10,13, 
15,18,32). Powdery mildew is wind-dispersed and infects volun-
teers after harvest, and then infects autumn sown crops. Disease 
cycles can continue during the winter if temperatures are mild. In 
spring, as the temperature rises and humidity is high, growth 

increases rapidly and it infects the leaves (32). Powdery mildew 
germinates best at a high relative humidity (>95%), the tempera-
ture range for germination is around 10 to 22°C. Disease 
development will decline rapidly with temperatures above 25°C 
(15,32). 

Despite this detailed knowledge, there are few substantial 
analyses of field data to determine what weather factors and in 
which time periods might best be used for forecasting. One 
method for identifying and quantifying such disease-weather 
relationships is ‘Window Pane’ (5). Window Pane is a search 
algorithm for identifying correlations between disease and weather 
variables within specified times frames. The Window Pane 
algorithm has been applied to a wide range of problems (2,4,6–8). 
Although few resulting models have been used in practice, they 
create valuable insights in disease-weather relationships. Initially 
most applications used a regression analysis, but in Pietravalle et 
al. (25) a binary approach (using discriminant analysis) was intro-
duced allowing conditions correlated with a damaging epidemic 
to be identified. In this paper we use ‘Window Pane’ on mildew 
and yellow rust with a discriminant analysis to identify key 
weather-disease relationships that can predict a damaging 
epidemic. Subsequently, we use a correlation analysis to identify 
which weather factors influence disease severity given that a 
damaging epidemic has occurred. Empirical models are formu-
lated for both the occurrence of a damaging epidemic and for 
disease severity. Yellow rust on winter wheat has been analyzed 
previously with Window Pane by Coakley et al. (7); main factors 
influencing disease infection in the Pacific Northwest of the 
United States were winter temperature (positively correlated) and 
summer temperature (negatively correlated). The aim of this 
paper is to analyze how epidemics are correlated with weather 
throughout the season in the UK, how this relates to the life cycle 
of both diseases, and assess what weather factors can be used 
quantitatively for forecasting powdery mildew and yellow rust. 
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© 2008 The American Phytopathological Society 



610 PHYTOPATHOLOGY 

MATERIALS AND METHODS 

Data. Disease data for yellow rust and powdery mildew were 
obtained from replicated plots (which had not received fungicide 
treatment) in winter wheat experiments during the period from 
1994 to 2000 (with the exception of 1998) at a total of 12 sites 
across England, Scotland, and Northern Ireland. References 
describing the experiments are given in Table 1. Each combina-
tion of year and site is described here as a ‘year-site’. In total,  
37 year-sites were available for yellow rust and 38 for powdery 
mildew. In each year-site, a number of observations resulting 
from different cultivars, were available varying from 2 to 24. In 
total, 253 observations were available for yellow rust, and 324 for 
powdery mildew. If we were unable to classify whether a damag-
ing epidemic occurred in an observation, due to the presence of 
other foliar diseases, then this observation was omitted, this only 
affected 8 observations. For powdery mildew, all cultivars with a 
National Institute of Agricultural Botany (NIAB) resistance rating 
(1) of four or higher, on a scale going from one (susceptible) to 
nine (resistant), had a damaging epidemic in 20% of the obser-
vations. The most susceptible cultivars, with a resistance rating of 
three or lower, had a damaging epidemic in 47% of the obser-

vations. This group however consisted of only 32 observations 
and was too small to analyze separately. For yellow rust, 175 
observations over 28 year-sites were susceptible cultivars (resis-
tance rating five or lower) and 61 observations over 16 year-sites 
were resistant cultivars (resistance rating six or higher). For 
yellow rust, 6% of the resistant cultivars had a damaging 
epidemic compared with 16% of susceptible cultivars. Separating 
the data into two cultivar groups would have reduced the number 
of year-sites too much in both cultivar groups. For both diseases 
the analysis was only done on the full data set, but the effect of 
resistance was examined afterwards. 

For Mycosphaerella graminicola (Fuckel) Schröter (anamorph 
Septoria tritici), a mean disease severity of 5% across the upper 
three leaves of the canopy, which contributed most to yield (27), 
during grain filling has been used (11,25) as an approximate 
economic injury level (28); which is the level of disease during 
yield formation that is likely to result in a yield loss with a 
sufficiently large economic value to justify the cost of prevention 
by fungicide treatment. Clearly, there are differences between 
Septoria tritici, powdery mildew, and yellow rust in the mecha-
nisms by which they affect the host. However, all three are pre-
dominantly Type II pathogens, as defined by Johnson (14), which 

TABLE 1. Overview of year-sites with the number of observations for each year-site and the number of observations with a damaging epidemic (shortened
epidemics) per year-site, and the total number of damaging epidemics at the bottom of the table 

Site name Year Mildew Epidemics Yellow rust Epidemics 

Northern Irelanda 2000b 2 0 2 0 
Arthur Rickwoodc 1994d 4 0 4 1 
 1995d 4 4 4 0 
 1997d,e 23 5 4 0 
Bridgetsc 1995d 4 0 4 1 
 1996d 4 1 4 0 
 1997d 4 0 4 0 
Gleadthorpec 1994d 4 4 4 0 
 1995d 4 2 4 0 
 1996d 4 4 4 0 
Harpendenf 1994d,e 20 3 –  
 1996d,e 22 1 4 0 
High Mowthorpec 1994d 4 0 4 0 
 1995d 4 0 4 1 
 1996d 4 0 4 0 
 1997d 4 0 4 1 
 1999b 2 0 2 0 
 2000b 2 0 2 0 
Morleyc 1999b 2 0 2 1 
 2000b 2 0 2 0 
Rosemaundc 1994d 4 1 4 0 
 1995d 4 1 4 0 
 1996d 4 2 4 0 
 1997d 4 1 4 0 
 1999b 2 0 2 0 
 2000b 2 0 2 0 
Aberdeeng 1999b 2 0 2 1 
 2000b 2 0 2 0 
Tadcasterf 1997d,e 23 23 4 0 
Terringtonc 1994d,e 24 0 26 3 
 1995d,e 23 0 25 11 
 1996d,e 24 0 25 2 
 1997d,e 24 0 24 3 
 1999b 3 0 3 3 
 2000b 3 0 3 2 
Wyec 1994d 4 0 4 1 
 1995d,e 24 0 24 0 
 1996d,e 25 21 25 0 
Total  324  253  
Total epidemics  73 (22.5%)  31 (12.3%)  

a Experiment conducted by Agricultural Research Institute of Northern Ireland. 
b The experiments were obtained from and described by Milne et al. (20), from which the data were in sections entitled Validation and Data set 1. 
c Experiment conducted by ADAS. 
d Experiments were described by Pietravalle et al. (25) where a subset of these experiments were also used previously for Window Pane analysis of Septoria tritici.
e Described in Parker et al. (23) where the Septoria tritici subset of the data was used. 
f Experiment conducted by Central Science Laboratory. 

g Experiment conducted by Scottish Agricultural Colleges. 
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cause damage which is related to the canopy area occupied by 
symptoms. Hence, for simplicity and to allow comparisons be-
tween the diseases, the analysis presented here adopted a severity 
of 5% or more, during grain filling, as defining a ‘damaging 
epidemic’. The data consisted of visual estimates of the per-
centages of leaf area showing symptoms and measurements of 
leaf sizes for each leaf layer. We calculated disease severity (Sev) 
as the percentage area affected by symptoms on the top three leaf 
area according to 
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where Sevi is the percentage of leaf i affected by symptoms and 
Areai is the surface area of leaf layer i. Each observation consisted 
of assessments at a number of growth stages (29). For powdery 
mildew the average severity between GS57 (3/4 of head emerged) 
to GS75 (grain at medium milk) was taken as the estimate of 
disease severity. For yellow rust the average severity between 
GS50 (head visible) to GS73 (grain at early milk) was taken. 

To maximize practical applicability of results for disease fore-
casting, daily weather data were retrieved from the Biotechnology 
and Biological Sciences Research Council (BBSRC) met data 
web for meteorological stations located within 5 km of each 
experimental site. The following daily weather data were re-
trieved: maximum temperature (maximum in degree Celsius), 
minimum temperature (minimum in degree Celsius), mean tem-
perature (in degree Celsius, calculated as the average of maxi-
mum and minimum temperature), relative humidity (mean in %), 
radiation (radiant energy from the sun in MJ m–2), rain (in mm), 
sunshine (hours), vapor pressure (mean in milli-bars), wind  
run (distance traveled by the wind in km), and wind speed (mean 
in m s–1). Some weather data were missing, partly due to sensor 
errors or because some weather items were not measured at a 
particular station. For vapor, rain, minimum, maximum, and mean 
temperature, 10% of the weather data were missing, for wind run 
and wind speed, 25% of the weather data were missing, and for 
humidity, radiation, and sunshine, 35% of the weather data were 
missing. Missing data were omitted from the analysis as de-
scribed in the methods section. 

Method. The iterative search algorithm, Window Pane, was 
used to identify which weather factors in which period of the 
growing season had the strongest relationship with the occurrence 
of a damaging epidemic. The algorithm has been described previ-
ously (5,25) and was implemented with Genstat (24). In sum-
mary, the basis of Window Pane is an iterative search procedure 
by which a predefined time frame (time lag) was searched 
window by window as illustrated in Figure 1. Time lags (TL) 
varied from 300 to 40 days, and are searched in steps of 10 days. 
For each TL, window lengths from 120 to 40 days were searched 
in steps of 5 days. The lower limit of 40 days was chosen because 
shorter windows are more likely to be influenced by coincidental 
weather events and could result in spurious relationships. The 
upper limit of 120 was chosen to include long-term effects. All 
observations were aligned on growth stage 65 (flowering half 

complete) which is the average growth stage at which disease was 
observed. From growth stage 65 we counted backwards according 
to the TL (Fig. 1). The maximum TL of 300 days counted back-
wards to approximately sowing in early September which gives a 
full overview of the growing season. In each window for each 
disease observation a weather function was calculated. This 
weather function transformed the daily weather data in the win-
dow into a single summarizing weather variable. In each window 
the correlation or misclassification (described in the next section) 
between derived weather variables and disease observations was 
calculated. If a window contained days with missing weather 
data, the window was dropped, to ensure that each weather vari-
able was calculated accurately in each window. In the remainder 
of the paper we will refer to measured weather data as weather 
factors. The term ‘weather variable’ will refer to weather factors 
transformed by a weather function. The weather functions used 
were (i) number of days in the window the weather variable was 
above or below a threshold, (ii) number of consecutive days above 
or below a threshold, (iii) the average value of the weather 
variable, and (iv) accumulation above or below a threshold. For 
each weather factor we used a range of values as thresholds based 
on likely values (based on median and quartiles). By repeating 
this process iteratively it was possible to identify the windows and 
weather variables that minimize the P value used as measure for 
significance in correlation analysis, or misclassification rate in the 
case of a discriminant analysis. 

Discriminant analysis. A binary version of the discriminant 
analysis was used to classify the observations into two groups. 
The method identified the weather variables that determined 
whether or not a damaging epidemic occurred (25). These disease 
data were classified into damaging epidemic {1} and absence of a 
damaging epidemic {0}. The weather variable were similarly 
classified to {0,1}, but according to a threshold x0. This threshold 
was estimated from the data by minimizing the misclassification 
rate (m), according to equation 2, based on the weather variable. 
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where Yi is the disease severity in {0,1}, Xi is the weather variable 
for observation i, and n is the total number of observations. All 
observations are weighted (wi) according to the number of 
observations in one year-site j (#obs), calculated according to 
equation 3, 

j
jw

obs#

1
=  (3) 

 

Fig. 1. Window selection process of ’Window Pane’. The time lag was started 300 days counted backwards from growth stage (GS) 65 and decreased by 10 for 
consecutive iterations (e.g., 300, 290, 280, etc.). In each time lag, window length started with 120 days and for consecutive iterations window length was
decreased by 5 days (e.g., 120, 115, 110, etc.). GS 65 occurred in the data on average around the end of June, so 300 days counted back was around the start of
September. 
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The percentage of damaging epidemics in the data for yellow rust 
and mildew on the total observations was relatively low, respec-
tively, 12.3 and 22.5% percentage (Table 1). With this distribution 
of damaging epidemics, the discriminant function (equation 2) 
had a bias towards classifying the observations without damaging 
epidemic correctly (since there are more of them), resulting in 
more false negatives. To balance equation 2, we multiplied the 
observations with an additional weight (c, equation 4 and 5) in 
such a way that the total weight for observations with a damaging 
epidemic and those without a damaging epidemic were equal. 
Equation 2 was changed accordingly to equation 4 in which c is 
the additional weighting factor. With this additional weight, more 
emphasis was put on classifying the observations with a damag-
ing epidemic correctly: 
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Correlation analysis. In our second analysis we looked spe-
cifically for weather factors determining the severity of a damag-
ing epidemic given the condition that it had occurred. In this 
analysis we selected all observations classified as damaging 
epidemics (Table 1) and applied Window Pane to find the most 
significant time lags, time windows, and weather factors. Instead 
of the misclassification rate, we calculated the correlation co-
efficient with Genstat (24) between disease severity and weather 
variable and use the P value as a measure of significance of how 
well the disease data correlated with a weather variable. 

Spurious relationships. One problem with the Window Pane 
approach is that of apparently strong relationships occurring by 

pure chance (25) due to the large number of comparisons made  
in the analysis, which was in the order of 25,000. Such  
spurious relationships are difficult to identify and the problem can 
only be addressed rigorously with an independent data set. 
However, stringent selection of relationships can reduce the 
probability of identifying spurious relationships. We based our 
selection on the following criteria. The first selection criterion 
used was the misclassification or P value. The second was the 
number of occasions variables based on the same weather factor 
identified a relationship, and the third was whether these rela-
tionships occurred in consecutive windows. If a low misclassi-
fication or P value did not occur in multiple consecutive  
windows and in several weather functions it was unlikely to be a 
genuine relationship. Finally, all identified relationships should 
relate to what is known about the life cycle. If a mechanistic 
explanation can be found for the identified relationships, then 
they are less likely to be spurious. To select the weather variables 
we used a threshold minimum misclassification with weightings 
(M1, Tables 2 and 3) of 0.19 for powdery mildew and 0.24 for 
yellow rust, the secondary misclassification without weighting 
(M2, Tables 2 and 3) needed to be lower than 0.16. In the cor-
relation analysis we used a P value threshold of 0.01. The cri- 
teria were set so that the strongest 1% of relationships were 
selected. 

Empirical models. After identifying the relationships indi-
vidually the selected relationships were combined in empirical 
models. Relationships identified in the discriminant analysis were 
used to formulate empirical models for the occurrence of a 
damaging epidemic. The discriminant function (equation 2 and 4) 
only works with one variable, so to combine multiple variables 
into one model we used Fisher’s linear discriminant function (17) 
or canonical variate analysis (CVA) as programmed in Genstat 
(24). Variables related to disease severity, given a damaging epi-
demic occurred, were included in empirical models using a 
multiple linear regression as programmed in Genstat (24) with 
model selection based on adjusted R2. 

TABLE 3. Results relationships between powdery mildew and weather variables identified in the misclassification analysis and correlation analysis for yellow
rusta 

Misclassification analysis – yellow rust Time lag Window M1 M2 

Tmean (accumulation above 4°C) 130 115 0.19 0.12 
Vapor (accumulation below 6 mb) 140   80 0.20 0.15 
Tmin (accumulation above 6°C)   90   80 0.22 0.12 
Tmax (accumulation above 12°C) 160   80 0.23 0.11 
Sunshine (accumulation above 4 h) 200   70 0.24 0.16 

Correlation analysis – yellow rust Time lag Window R P value 

Tmax (accumulation above 16°C) 140 100 0.85 0.001 
Rain (number ≥8 mm)   40   40 –0.85 0.001 
Tmean (accumulation above 12°C) 140   95 0.78 0.003 

a The first column contains the weather factor and function. Time lag and window length mark the period in the season, M1 is the misclassification with additional
weight c, M2 is the misclassification without additional weight, and R is the correlation. 

TABLE 2. Results relationships between powdery mildew and weather variables identified in the misclassification and correlation analysesa 

Misclassification analysis – powdery mildew Time lag Window M1 M2 

WindRun (number ≥200 km) 190 85 0.09 0.06 
WindSpeed (accumulation below 3 m s–1) 190 75 0.10 0.08 
Sunshine (number ≤2 h) 180 60 0.16 0.10 
Radiation (accumulation below 4 MJ) 180 55 0.17 0.09 

Correlation analysis – powdery mildew Time lag Window R P value 

Tmin (accumulation above 12°C) 110 100 0.74 0.006 
Humid (consecutive number ≥95%) 110 100 0.69 0.009 
Rain (accumulation above 10 mm)  80  70 0.69 0.009 
Tmax (number ≥20°C) 110 100 0.71 0.010 

a The first column contains the weather factor and function. Time lag and window length in the second and third columns mark the period in the season, M1 is the
misclassification with additional weight c (equation 4), M2 is the misclassification without additional weight, and R is the correlation coefficient. 
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RESULTS 

Mildew relationships. The relationships identified with the 
discriminant and correlation analyses were located in different 
periods of the season (early and late in the season, respectively) 
and different weather factors were involved. The main periods for 
each weather factor are illustrated in Figure 2. Table 2 shows the 
relationships with the lowest misclassification and P value for 
each weather factor. Wind was found to be the main weather 
factor influencing the probability of a damaging epidemic fol-
lowed by sunshine and radiation. Temperature was the main 
weather factor influencing disease severity given a damaging 
epidemic. 

Yellow rust relationships. For yellow rust, weather conditions 
associated with a damaging epidemic were similar to the condi-
tions that contributed to a high disease severity (Fig. 3). The main 
weather factors are illustrated in Figure 3 and Table 3 shows the 
relationships with the lowest misclassification and P value for 
each weather factor. Temperature was the most important weather 
factor influencing both the probability of damaging epidemics 
and disease severity. As a second variable, vapor pressure deficit 
was identified as an important weather factor influencing the 
occurrence of a damaging epidemic. 

Mildew models. The best model describing the relationship 
between weather and the development of a damaging epidemic 
for powdery mildew was formed with wind run (Fig. 4); adding a 

Fig. 4. Number of days with wind run ≥200 km (in an 85 day window with a 
time lag of 180 days) plotted against the disease severity of powdery mildew
with true and false positives and negatives indicated. A damaging epidemic
was predicted if more than 57 days were above 200 km a day. Observations 
from resistant and susceptible cultivars are marked with a star and dot,
respectively. 

 

Fig. 3. Illustration of main influential periods for yellow rust. The time line indicates days counted backwards from growth stage (GS) 65. The box plot is the 
spread in GS 65 dates. The arrows indicates the effect of the variable, a higher temperature is related to a larger probability of a damaging epidemic for the
discriminant analysis (lower half), and is related to higher disease severity in the correlation analysis (upper half). 

 

Fig. 2. The main influential periods for powdery mildew during which weather was strongly related to subsequent disease are illustrated. The time line indicates 
days counted backwards from growth stage (GS) 65. The box plot is the spread in GS 65 dates. The arrows indicate the effect of each variable, an arrow down
means, for example, less wind is related to a larger probability of a damaging epidemic for the discriminant analysis (left) and more rain related to a higher disease 
severity in the correlation analysis (right). 
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second variable did not decrease the misclassification rate. A 
model with similar accuracy could have been built with wind 
speed, but wind run had a marginally lower misclassification. 
Alternative models consisted of sunshine or radiation; adding a 
second variable to these models did not lower the misclassi-
fication. The best model describing disease severity given a 
damaging epidemic combined rain, maximum temperature, and 
humidity with an R2 of 82.5%, whereas excluding humidity 
reduced the R2 to 77.3% (Table 4). 

Yellow rust models. The best model describing the relationship 
between weather and the development of a damaging epidemic 
for yellow rust combined mean temperature and vapor pressure. 
The model had few false negatives, but many false positives. 
Vapor pressure is often unavailable from weather stations, but an 
alternative model including only mean temperature (Fig. 5) 
showed higher false negative misclassification and higher false 
positives (Table 5). The best model describing disease severity 
given a damaging epidemic occurred for yellow rust consisted of 
maximum temperature and rain, with an R2 of 86.4%. But the 
relationship with rain can be questioned (see discussion). An 
alternative model including only maximum temperature, had an 
R2 of 70.2% (Table 5). 

DISCUSSION 

Weather variables related to damaging epidemics and disease 
severity given a damaging epidemic occurred have been identi-
fied. The misclassification and R2 values cited are for the data 
with which the models were derived and are therefore potentially 
optimistic. To assess the accuracy of the models a validation on 
independent data is needed. However a subjective assessment of 
the models can be made by comparing the identified relationships 
to what is known about the epidemiology and the life cycle of 
powdery mildew and yellow rust. We then compare our results 
with other published Window Pane results and discuss how the 
results might be used for forecasting. 

Powdery mildew. Wind run during the early part of the season 
was the main weather factor related to damaging epidemics of 
mildew, a small wind run increased probability on a damaging 
epidemic. Still conditions create a humid environment, and it is 

known that high humidity favors the development of powdery 
mildew infection (15,32). A similar result was found by Friedrich 
(9) with a deterministic model simulating the infection cycle to 
forecast the infection probability of powdery mildew; the conclu-
sion was that more wind had a negative effect on the probability 
of infection. 

Wind also plays an important role in the dispersal of powdery 
mildew (15,32), affecting the abundance of initial inoculum if 
there are few initial sources. However, in our analysis we did not 
find any positive correlation between wind and the probability of 
a damaging epidemic. This suggests the effect of wind on humid-
ity is stronger than the effect of wind on dispersal. Low wind runs 
may still be sufficient to move initial inoculum between fields. No 
relationship was found with vapor pressure, also commonly 

TABLE 4. Empirical model overview for powdery mildew: successive columns contain the model variables, time lag (TL), and window length mark the period of
the season, the misclassification of the model (M1), the false negative misclassification (MFN), the false positive misclassification (MFP), and the number of year-
sites in the model (YS)a 

Model overview – powdery mildew TL Window M or R2 MFN MFP YS 

Discriminant analysis        
Wind run Number of days ≥200 km 190 85 0.35b 0.00 0.43 28 
    0.09c 0.04 0.10  
 Model: wind × 0.299 – 17.07 < 0   0.06d 0.32 0.00  
Sunshine  Number of days ≤2 h 180 60 0.47 0.12 0.51 28 
 Model: sunshine × 0.674 – 24.07 < 0       
Radiation Accumulation below 4°C 180 55 0.50 0.14 0.46 28 
 Model: radiation × 0.156 + 13.61 < 0       
Wind run Number of days ≥200 km 190 85 0.39 0.00 0.41 24 
Sunshine  Number of days ≤2 h 180 60      

Correlation analysis        
Humidity Number of consecutive days ≥95% 110 100 82.5   12 
Rain Accumulation above 10 mm   80 70     
Maximum temperature Number of days ≥20°C 110 100     
 Model: humidity × 0.794 + rain × 0.150 + maximum  

   temperature × 0.716 – 7.16 
      

Rain Accumulation above 10 mm 80 70 77.3   12 
Maximum temperature Number of days ≥20°C 110 100     

 Model: rain × 0.163 + maximum temperature var 3 ×  
   1.043 – 3.22 

      

a The discriminant analysis models are conditional and predict a damaging epidemic if the statement is true, the correlation models predict disease severity at
growth stage 65 given a damaging epidemic. Model indicates the equation representing the empirical model. 

b Calculated with Fisher’s linear discriminant analysis. 
c Calculated with discriminant function with additional weights. 
d Calculated with standard discriminant function, R2 is the adjusted R square.  

Fig. 5. Mean temperature accumulated above 4°C (in a 115 day time window 
with a time lag of 130 days) plotted against the disease severity of yellow rust
with true and false positives and negatives indicated. A damaging epidemic is
predicted if more than 490°C days was accumulated in the 130 to 115 window. 
Observations from resistant and susceptible cultivars are marked with a star
and dot, respectively. 
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associated with leaf wetness (21). Friedrich (9) found that both a 
high and a low vapor pressure decreased the chance on disease 
infection, which would have made it difficult to find such a rela-
tionship with our analysis. High relative humidity in the range of 
95 to 100% favors disease development (15,32). The relationship 
found here between disease severity and the number of consecu-
tive days above 95% relative humidity corresponds with this. 
However, relationships with humidity are often weak because 
average daily humidity measured in a meteorological station only 
weakly represents what is actually happening in a crop canopy. 
Most stages of the mildew infection proceed at low light intensity 
(32), and sunshine dries out the plant and decreases humidity. The 
relationship with sunshine found here corresponds with this. Low 
radiation and sunshine hours were both in a similar time window 
associated with a higher probability of a damaging epidemic, 
probably because radiation and sunshine are highly correlated and 
have the same influence on the life cycle. 

The key relationship found with disease severity, given a 
damaging epidemic occurred, was accumulated minimum tem-
perature above 12°C and the number of days with maximum tem-
perature exceeding 20°C, which is the equivalent of a mean 
temperature of 16°C. These are in broad agreement with previous 
measurements of the optimal temperature range for mildew 
between 15 and 22°C (15,32). A higher temperature was corre-
lated with a higher disease severity, so both relationships suggests 
that in the UK in April, May, and early June, temperature is a 
limiting factor in mildew development. We did not find a relation-
ship with a high temperature limiting epidemic development, 
probably because temperatures were not high enough during the 
period analyzed to inhibit growth. Another relationship found 
with disease severity, given a damaging epidemic occurred, was 
rain. Rainfall has been reported to have opposing effects. Heavy 
rain is often followed by high relative humidity, creating good 
conditions for powdery mildew (15,32), but rain can also wash 
away spores (19). Our analysis suggests that the effect of rain on 
humidity predominates under UK conditions. 

Yellow rust. Temperature was the most influential factor for 
both the occurrence of a damaging epidemic and disease severity 
given a damaging epidemic occurred. The temperature range for 
yellow rust is optimal between 10 and 15°C with limits near 0 and 
21°C; temperatures higher than 23°C will slow down an epidemic 
(13,32). The relationships found corresponded with this tempera-
ture range. By analyzing epidemic growth rate, Papastamati et al. 
(22) also found that temperature was the most important variable 
for the progress of yellow rust. Christensen et al. (3) found that 
the temperature in January and February is positively correlated 
with yellow rust severity. In Gladders et al. (10) a high winter 
temperature, associated with overwintering, was identified as the 

most important factor for yellow rust infections later in the 
season. Coakley et al. (6) found a similar positive correlation be-
tween the average temperature and disease severity in January, 
followed by a negative correlation with the number of days above 
25°C in May and June. In our results a higher temperature was 
associated with a higher likelihood of damaging epidemics and is 
associated with subsequent higher disease severity, suggesting 
that temperature is a limiting factor correspondent with the 
January period found by Coakley et al. (6) and Christensen et al. 
(3). We did not find a negative relationship between high tempera-
tures and yellow rust, probably because the temperature in 
England seldom exceeded 25°C in the period we analyzed. Yellow 
rust epidemics are nonetheless sometimes halted by periods of hot 
weather but mainly after growth stage 65 (flowering half 
complete). 

A relationship was found between accumulated vapor pressure 
below six milli-bars and a lower risk of damaging epidemics, (i.e., 
higher vapor pressure increased disease). Vapor pressure influ-
ences leaf wetness which, considering the dependency of yellow 
rust on free moisture, would explain this relationship. Another 
requirement for the development of yellow rust is the availability 
of short periods with free moisture, which can be either high 
humidity, rainfall, or dew (15,32). We did not find a relationship 
that is in line with this, suggesting the availability of free moisture 
is not a limiting factor. This may be because UK weather is 
characterized by periods of anti-cyclonic weather, during which 
dew commonly forms overnight, alternating with frontal systems 
carrying rain. In the misclassification analysis we found a positive 
relationship with sunshine. Light quantity, related to sunshine,  
has been shown to positively influence infection efficiency 
(18,30,31). 

Model accuracy. For both powdery mildew and yellow rust the 
models identify favorable circumstances in which a damaging 
epidemic may occur. But both models resulted in many false posi-
tives, this means a damaging epidemic did not occur despite the 
model indicating favorable conditions. In these cases other factors 
are presumably involved, such as the absence of initial inoculum, 
disease resistance, or unfavorable weather events not captured in 
the models. Survey data suggests one important contrast; powdery 
mildew occurs on average on 50% of the crops in the UK whereas 
yellow rust only occurs on average on 8% (12). The high mobility 
of mildew conidia and the high incidence of infected crops make 
false positives due to lack of initial inoculum unlikely. In con- 
trast, the lower mobility of yellow rust spores and the low 
incidence of affected fields to act as sources of inoculum, may 
explain some of the false positives for rust. For yellow rust  
there was a noticeable effect of cultivar resistance (Fig. 5). The 
number of damaging epidemics was greater for susceptible 

TABLE 5. Empirical model overview yellow rust: successive columns contain the model variables, time lag (TL) and window length mark the period of the
season, M is the misclassification of the model, MFN is the false negative misclassification, MFP is the false positive misclassification, and YS is the number of 
year-sites in the modela 

Model overview – yellow rust TL Window M or R2 MFN MFP YS 

Discriminant analysis         
Vapor Accumulation below 6 mbar 140 100 0.47 0.02 0.43 24 
Mean temperature Accumulation above 4°C 130 115     
 Model: vapor × 0.0383 + mean temperature × –0.00214 – 19.2 > 0       
Mean temperature Accumulation above 4°C 130 115 0.50 0.07 0.56 25 

 Model: mean temperature × 0.0385 – 19.08 > 0       

Correlation analysis         
Maximum temperature Accumulation above 16°C 140 100 86.4   11 
Rain Number of days ≥8 mm   40   40     
 Model: maximum temperature × 0.5 + rain × –4.08 + 2.54       
Maximum temperature Accumulation above 16°C 140 100 70.2   12 

 Model: maximum temperature × 0.777 – 5.73       

a All models calculated with Fisher’s linear discriminant analysis. R2 is the adjusted R square. Model indicates the equation representing the model. The 
discriminant analysis models are conditional and predict a damaging epidemic if the statement is true, the correlation models predict disease severity at growth 
stage 65 given a damaging epidemic. 
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cultivars and the severity of those epidemics was higher. For 
yellow rust, a damaging epidemic on susceptible cultivars occurred 
in circumstances identified as unfavorable (false negative). For 
powdery mildew there was a less noticeable effect of cultivar 
resistance (Fig. 4). 

Comparisons between diseases. For powdery mildew a sepa-
ration was found, both in weather factors and in period of the 
season, between the weather variables related to occurrence of a 
damaging epidemic and weather variables related to disease se-
verity given a damaging epidemic. There was no such separation 
for yellow rust (Fig. 6). Window Pane analysis of Septoria tritici 
(25) produced a similar pattern of results to those seen here for 
powdery mildew, in that it was possible to distinguish an early 
period and a later period (Fig. 6). These findings may reflect 
fundamental differences in epidemiology, but our analysis did not 
suggest an obvious mechanistic explanation. Yellow rust, if it 
occurs, is more likely to reach a high severity than powdery 
mildew. If the initial conditions for a damaging epidemic have 
been met, then conditions favorable for a high disease severity, 
both temperature related, are also likely to be met under UK 
conditions. For powdery mildew, the initial inoculum necessary 
for occurrence of a damaging epidemic and conditions favorable 
for a high disease severity are very different both in time and 
weather factor, and have to be met separately. 

Disease prediction. If a disease forecast is to be used to guide 
fungicide treatment decisions, a prediction is needed before the 
first spray. For powdery mildew the relationships identified with 
the discriminant analysis, and models based on them, are suitable 
for this. For yellow rust, early prediction is more difficult; the 
period in which most of the strong, temperature, relationships 
occur continue until after the growth stage when the first spray is 
usually applied. Maximum temperature could be used for an early 
indication, but it is one of the weaker relationships. Early field 
observations of yellow rust have been shown to have predictive 
value (33), so a forecast system combining weather and disease 
observations may be sufficiently accurate to be useful. 

False negatives are potentially more damaging in guiding 
fungicide sprays than false positives, for both yellow rust and 
powdery mildew the false negatives are low which suits such 
prediction. A different trade-off between false negatives and false-
positives may be preferred for different objectives, such as 
maximizing economic returns or minimize disease risk, and also 
by alternative beneficiaries (26). The trade-off can be altered by 
adjusting the model, as shown in Table 4 for the wind run model. 
A full analysis of the trade-off could be done using the receiver 
operating curve methodology as described by (16,34). 

Window Pane. The advantage of Window Pane is that with the 
iterative search, quantitative relationships between weather and 
disease can be located in a specific period. A disadvantage of 
Window Pane is that the iterative search generates a large amount 
of potential relationships and creates a selection problem. We 
therefore used qualitative selection criteria which makes the 
selection of relationships difficult to fully automate, complicating 
a cross validation which could be used as a tool to identify 
spurious relationships. The choice of weather functions may seem 
arbitrary, and although in principle it is easy to use nonlinear 
functions with several parameters even for a single weather 
variable, it is difficult to see how a systematic search can be built 
with them. For example, the relationships with temperature here 
are not closely related to those in mechanistic models (21). 
However, the interplay of automated search and biologically in-
formed choices provides an illuminating analysis of our data set, 
generating worthwhile hypotheses about predictive relationships 
of practical use, with unexpected features, in particular, the 
importance of wind in the early season in mildew. 
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