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1   |   INTRODUCTION

Society currently faces a whole raft of global challenges to 
future, sustainable development (United Nations, 2021). 
Three key challenges include mitigating and reversing 
climate change, halting declines in biodiversity, and pro-
ducing healthy and nutritious food for the growing world 
population. These challenges are interlinked and the ways 

in which society must respond are complex and wide 
ranging (EEA, 2020; Liu et al., 2015). As the drivers of 
these global problems are better understood, the EU has 
designed a range of policies to try to address them:

1.	 In response to the problems of climate change and 
global warming, there is a need to reduce greenhouse 
gas emissions (Hansen et al., 2013; Peters et al., 2013). 
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Abstract
Oilseed rape can be used to produce biodiesel which can substitute non-renewable 
fuels for transport. In the early 2000s, the EU introduced a series of policies and 
market-based incentives to encourage the production of biofuels to meet their 
obligations to reduce greenhouse gas emissions. This led to a large increase in 
the area of oilseed rape grown across Europe with a simultaneous rise in insect 
pests which were largely controlled by synthetic insecticides. However, the with-
drawal of neonicotinoid seed treatments in 2013 and the development of insecti-
cide resistance in key insect pests led to crop failures and significant yield losses. 
Integrated Pest Management approaches could have prevented this pest problem; 
however, the lack of support and clear financial mechanisms for the enforcement 
of the 2009 Sustainable Use of Pesticides Directive meant that the cabbage stem 
flea beetle (CSFB; Psylliodes chrysocephala) has become a serious pest and the 
area of oilseed rape grown is now falling sharply leading to the need for imports. 
We suggest that it is imperative for Integrated Pest Management approaches to 
now become written into new EU and UK policies and to incentivise the develop-
ment of tools required for implementation and use by farmers.
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Therefore, policies to drive change towards the use 
of greener fuels have been introduced.

2.	 In response to the need for healthy and residue-free 
food, there was a need to introduce policies for the sus-
tainable use of pesticides in crop production.

3.	 In response to the problems associated with the loss of 
insect biodiversity (Sánchez-Bayo & Wyckhuy, 2019; 
Wagner, 2020), there was a need for the reduction 
(ban) in the use of neonicotinoid insecticides which 
have been linked to declines in insect, and more spe-
cifically, pollinator diversity.

These policies all impacted on the production methods 
for oilseed rape (OSR; Brassica napus L.) and the way in 
which the insect pests of this crop can be managed within 
the European Union area. In this perspective, this paper 
aims to (i) show how contradictory EU policies led to the 
development of a serious pest in OSR and the resulting 
implications for the sustainability of OSR cropping and 
(ii) position Integrated Pest Management (IPM) as the 
most suitable management strategy. Furthermore, we 
highlight the need for incorporating IPM into the eco-
environmental policies and wish to stimulate debate about 
how to do this so that IPM becomes a successful and real-
istic alternative to insecticide use.

2   |   EU BIOFUELS POLICY

The transport sector is a major source of greenhouse 
gas (GHG) emissions, responsible for nearly a quarter of 
Europe's GHG emissions (European Commission, 2016). 
To reduce these emissions in Europe, the EU introduced 
the Directive 2003/30/EC (2003) to promote the use of bio-
fuels or other renewable fuels for transport. Biofuels are a 
renewable energy source produced from natural (biobased) 
material, which can be used as substitute for petroleum fuels 
(Demirbas, 2009). Much of the biofuel produced and used 
in the EU is biodiesel, which represents the 85% of the 
total transport biofuels market (USDA, 2020). The major 
feedstock for EU biodiesel is OSR (USDA, 2020), a food 
crop already widely grown across EU for vegetable oil, an-
imal feed and with value as break crop in cereal rotations 
in arable agriculture. Currently, the production of biofuel 
from crops still requires the use of fossil fuels during crop 
production (Dalgaard et al., 2001), and other factors in-
cluding various social, economic, environmental and tech-
nical issues need to be overcome to make the production 
process more sustainable (Oumer et al., 2018). However, 
biofuel production from OSR has been calculated to have 
a positive net energy balance (Kusek et al., 2016) and can 
also contribute towards circular, self-sufficient systems in 
terms of energy requirements (Markussen et al., 2015).

The EU Biofuels policy (2003/30/EC) was designed to 
meet obligations agreed in the Kyoto Protocol to reduce 
GHG emissions. It set a non-binding target of 2% fuel used 
in the transport sector to be derived from biofuels by 2005 
and 5.75% by 2010. To help Member States achieve these 
targets, the European Commission introduced Directive 
EC 2003/96 on Energy Taxation, which allowed coun-
tries to exempt biofuels from excise taxes on fuels, com-
pensating for the higher cost of production. In addition, 
as part of the 2003 reform of the Common Agricultural 
Policy (CAP), support payments for farmers were decou-
pled to the crops produced so they could respond freely 
to the increasing demand for energy crops. This reform 
also introduced a special aid for energy crops (45€ per 
hectare) allowing them to be grown on set-aside land 
while still receiving the set-aside area payment (European 
Parliament & the Council, 2005). The reform paved the 
way for farmers to grow more energy crops, including 
OSR. Furthermore in 2005, the European Commission 
published a Biomass Action Plan to set out measures to re-
duce Europe's dependency on fossil fuels and reduce GHG 
emissions by increasing the development of biomass en-
ergy from wood, wastes and agricultural crops (European 
Parliament & the Council, 2005). The Biomass Action Plan 
created market-based incentives to further promote biofu-
els in the EU and developing countries, removing barriers 
to the development of the market and supporting research 
and development (European Parliament & the Council, 
2005). The Commission also highlighted the importance 
of national targets, imposing obligatory measures and en-
suring the sustainable production of biofuels. Later, the 
EU produced two legislative proposals: the Renewable 
Energy Directive and the Fuel Quality Directive (2009/30/
EC). These directives set out two goals: (1) The delivery of 
a minimum of 20% of total energy to be derived from re-
newable sources by 2020 in every Member State; and more 
specifically (2) 10% of all transport fuels to be derived from 
renewable sources by 2020 across every Member State. 
The Fuel Quality Directive played an important role in 
increasing the inclusion of biofuels in the market as it en-
abled higher blends of biofuels in petrol and diesel, thus 
promoting the use of biofuels by suppliers and increasing 
the demand (Londo, 2009).

3   |   CONSEQUENCES OF THE EU 
BIOFUELS POLICY

Since the EU Biofuels policy and the CAP reform came into 
action in 2003, there has been a large increase in the area 
of OSR grown and production across the EU (FAOSTAT, 
2021; Figure 1). The OSR harvested area increased by 78% 
between 2003 and 2010, achieving a record harvested area 
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of 6.4  million hectares in 2010 (FAOSTAT, 2021). Also, 
the shares of biodiesel made from vegetable oils blended 
with petrol and diesel increased, with an annual growth 
rate of 44% for biodiesel production between 2005 and 
2007 (Banse et al., 2008). In 2004, 27% of oilseed produced 
in EU was processed into biodiesel (Demirbas, 2009). Four 
Member States produced more than two-thirds of the EU’s 
oilseed production: Germany (24% of the total), France 
(20%), Poland (10%) and the United Kingdom (9%; USDA, 
2008). The OSR grown area in the EU relatively remained 
stable from 2010 until 2018, when it sharply decreased to 
levels similar to those recorded in 2006 (Figure 1).

4   |   SUSTAINABILITY ISSUES

It is already widely accepted that EU policies have led to 
an increased use of food crops for the production of con-
ventional biofuels, which may not be the most resource 
efficient approach (Wesseler & Drabik, 2016); increasing 
biofuel production has impacted food prices (Herwartz 
& Saucedo, 2020; Mueller et al., 2008) and caused indi-
rect land-use changes (Bowyer, 2010; Wicke et al., 2012). 
Another, perhaps less cited issue related to the increased 
demand for biofuels is that the increase in the OSR grown 
area has led to an increased simplicity of the agricul-
tural landscape and reduction in non-crop area (Ericsson 
et al., 2009; Strijker, 2005), providing higher availabil-
ity of resources for insect pests and altering pest control 
ecosystem services. It has been shown that diversified 
landscapes with higher proportions of semi-natural areas 
exhibit lower pest abundance and/or higher biocontrol 
services in fields than simple large-scale landscapes with 
low proportions of non-crop areas (Bianchi et al., 2006; 
Gagic et al., 2021; Landis et al., 2008; Veres et al., 2013). 
Although there have been some studies that showed CSFB 
population increases over the period that the area of the 

crop has expanded (Collins, 2017; Lundin, 2021; Nilsson, 
2002), none have yet clearly related these with increases 
in OSR grown area. However, it has been shown how pol-
len beetle (Brassicogethes aeneus) became a troublesome 
pest after 3–4 years of intensive OSR cultivation and re-
mains so (Hokkanen, 2000); indeed, reproductive success 
of pollen beetles has increased by 200%–300% during the 
first 16 years of OSR cultivation compared to those bee-
tles living on cruciferous weeds (their natural host plants; 
Hokkanen, 2000). Also, structural simplicity in agricul-
tural landscapes and reduced percentage of non-crop area 
has been correlated with large amounts of pollen beetle 
damage and reduced larval parasitism rates (Thies & 
Tscharntke, 1999).

This rise in pest populations has led to increased need 
for the use of control products such as synthetic insecti-
cides (FAOSTAT, 2021), mainly pyrethroid sprays and 
neonicotinoid seed treatment, which have their own 
negative impacts on public health and the environment 
(Blacquière et al., 2012; Koureas et al., 2012). The (over) 
dependence on synthetic insecticides raised concerns 
about the ‘sustainability’ of biofuel production in the EU. 
Calls for technology to support reaching the target of 5.75% 
fuel used in the transport sector to be derived from biofu-
els by 2010 and the need for sustainable methods of pest 
control started to play an important role in the biofuels 
debate. In this respect, genetically modified (GM) plants 
have been recommended as a new option for biofuel pro-
duction (Gressel, 2008; Moser et al., 2013). A range of ge-
netically modified OSR varieties, that are either herbicide 
tolerant or insect resistant, have been developed and some 
of which are now being grown in many parts of the world 
(especially in Canada, USA, Australia, Chile; ISAAA, 
2017). For example, genetically modified lines of spring 
OSR (canola) with high trichome density tested in Canada 
have been reported to deter feeding by related Phylotretta 
flea beetles (Alahakoon et al., 2016; Soroka et al., 2011). A 

F I G U R E  1   EU biofuels production 
and consumption (left-hand axis; source: 
European commission medium term 
outlook) and are of oilseed rape harvested 
(thousand ha) in the EU (right-hand axis; 
source: FAO Database and USDA, 2020)
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similar approach could have been tested in Europe against 
CSFB; however, due to EU regulations, development of 
genetically modified OSR varieties attracted little support 
by Industry and funders, which potentially hindered the 
development of resistant lines.

5   |   THE EU SUSTAINABLE USE 
DIRECTIVE

In 2009, in response to the concerns about the over-use 
of synthetic insecticides, the EU approved a legislative 
package that was passed into law which increased restric-
tions on the range of available pesticides and, for the first 
time, also placed constraints on their use (‘the pesticides 
package’: Regulation (EC) No 1107/2009; Regulation 
(EC) No 1185/2009, Directive 2009/127/EC and Directive 
2009/128/EC on the Sustainable Use of pesticides). The 
Sustainable Use Directive states that IPM offers ‘an ap-
proach to reduce the development of harmful organ-
isms where plant protection products and methods are 
appropriately considered and kept to levels that are eco-
nomically and ecologically justified and minimize risks to 
human health and the environment’. This directive had 
two main aims: (1) establish a framework for the sustain-
able use of pesticides ensuring they are safe for humans, 
animals and environment while effective for plant pro-
tection and (2) promote the use of IPM including the use 
of non-(synthetic) toxicant chemical alternatives for pest 
control. Member States were required to develop National 
Action Plans, a set of quantitative objectives, timetables 
and indicators to reduce risks and impacts of pesticide use 
and encourage the introduction of IPM to reduce depend-
ency on pesticides.

6   |   IMPACTS OF CONTRADICTORY  
POLICIES

Despite the moderating efforts of the EU, these directives 
led to a continued demand for biofuel production in the 
EU (Figure 1), elevating the demand for OSR further, 
and increasing the reliance on insecticides for pest con-
trol. Also, the vagueness of the guidance for implementa-
tion of the 2009 Sustainable Use Directive decreased its 
impact and led to large variations between the regula-
tions and measures implemented in the Member States’ 
National Action Plans. This turned into a dramatic situ-
ation when, in 2013, the EU restricted the use of three 
neonicotinoid insecticides: clothianidin, imidacloprid and 
thiametoxam, on crops attractive to bees, including OSR 
(European Commission, 2013 [EU] No 485/2013), due to 
concerns over potential detrimental effects of insecticides 

on birds and bees (Blacquière et al., 2012; Gill et al., 2012; 
Henry et al., 2012; Whitehorn et al., 2012). Until this time, 
synthetic insecticides had remained the main method of 
insect pest control in OSR. Farmers used neonicotinoid-
treated seeds (Maienfisch et al., 2001) to protect OSR from 
CSFB feeding damage through its establishment phase 
and for ensuring healthy crops capable of surviving the 
winter. This seed treatment was combined with applica-
tions of several pyrethroid insecticide sprays during the 
rest of the growing season to control CSFB larvae, which 
mine the stems and weaken the plant, and pollen beetle 
pests (which feed on buds causing abscission). The neo-
nicotinoid ban removed the main method of control for 
CSFB and consequently, pyrethroids became the only 
permitted control. However, the prolonged used of pyre-
throids on OSR contributed to high selection pressure for 
insecticide resistance. Even before the ban, populations 
of CSFB resistant to pyrethroids were discovered across 
the EU (Heimbach & Müller, 2012; Zimmer et al., 2014). 
Furthermore, the neonicotinoid ban, the reduced efficacy 
of pyrethroids and lack of effective alternative controls 
were coupled with warm winters (Copernicus Climate 
Change Service, 2021), which are conducive to CSFB re-
production (Conrad et al., 2021; Mathiasen et al., 2015) 
during the years immediately before and after the ban. 
This led to the ‘perfect storm’, and populations of beetles 
exploded, particularly in countries such as the UK and 
northern France with maritime climates that favour ex-
tended oviposition and larval development (Mathiasen 
et al., 2015).

The inability to control CSFB led to high crop losses and 
complete failure of the crop in some countries (Nicholls, 
2016; Zheng et al., 2020). In the UK in 2014, 76% of the 
national area of OSR crop was affected by adult feeding 
damage causing c.5% crop loss nationally (Nicholls, 2016). 
Of this loss, 62% occurred in eastern regions, causing an 
estimated loss of £13 M in this area alone (Nicholls, 2016). 
Several farmers opted to replant (Alves et al., 2015) sus-
taining losses that would not be accounted for in final 
yield totals. The pest continues to be a major problem; 
resistance is now widespread across Europe (Bothorel 
et al., 2018; Stará & Kocourek, 2019) with resistance lev-
els increasing each year (Willis et al., 2020). In 2020, 39% 
of OSR in UK did not make it to harvest with 14% being 
redrilled due to severe CSFB damage (Bayer, 2020); yields 
fell to their lowest level in over a decade (Defra, 2020) and 
OSR imports were necessary—ironically from countries 
outside the EU that still permit use of neonicotinoid seed 
treatments (Collier, 2019). Loss of control of CSFB has 
made OSR cultivation in certain countries such as UK, 
Germany and France very risky and has been attributed as 
the major cause of the decline of OSR grown area (Andert 
et al., 2021). Possibly as a direct result of this decline in 
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the area of OSR grown, and in order to meet the EU trans-
port targets for 2020, imports of palm oil used for biodiesel 
reached an all-time high in 2020 (Rangaraju, 2021). These 
imports are strongly liked with Indirect Land Use Changes 
and deforestations in third (non-EU) countries (Cazzolla 
Gatti et al., 2019; Cisneros et al., 2020).

In the absence of an adequate accompanying sustain-
ability framework and risk assessment of the impacts of 
the increasing demand for OSR in Europe, it is clear that 
the contradictory (even if well intentioned) policy initia-
tives led to the development of a serious pest. Perhaps, if 
the National Action Plans had been implemented (and 
put into law) at the same time as the drive for OSR ex-
pansion to meet the biofuel target, then the biofuel tar-
get would have been reached without relying on imports, 
and insecticide-resistant CSFB populations might not be 
so widespread. However, there was a lag in implementa-
tion and slow behavioural change in the use of insecti-
cides over that timeframe which allowed CSFB to ‘escape’ 
control.

7   |   THE WAY FORWARD

The European Commission's 2018 review of the sustain-
able use of pesticides directive concluded that although 
all Member States had to implement National Action 
Plans to reduce the risk and environmental impact of pes-
ticides, these were not always sufficient. The Sustainable 
Use Directive did not specify the contents of the National 
Action Plans in detail and often lacked clear criteria on 
how to implement and monitor these plans. The vague-
ness of these provisions did not lead to the required rate 
of adoption of alternative pest control techniques and re-
sulted in great diversity between Member States in terms 
of the National Action Plans’ coverage and completeness 
(European Commission, 2019). This review also empha-
sized farmers’ lack of knowledge and understanding about 
the IPM principles and application, which also limits the 
impact of this directive and the extent to which it can help 
to reduce insecticide dependency. For the policy to be 
successful and widely adopted, farmers’ needs and prob-
lem awareness should be better considered; this could be 
achieved by involving farmers in the co-design of these 
policies (Busse et al., 2021; Hurley et al., 2020).

Going forwards, our reliance on insecticides for crop 
protection is clearly unsustainable and a broad range of 
management options are required for farmers to be able 
to combat CSFB, and other insect pests, in a sustainable 
and efficient way. In this context, IPM is recognized as 
a key element to reduce dependency on insecticides 
and to achieve a more sustainable agriculture (Barzman 
et al., 2015; Birch et al., 2011), and is highly encouraged 

by European legislations (Defra, 2019; European 
Commission, 2019). It offers a set of tools that can help 
suppress pest damage and discern when and what con-
trol methods are required, reducing unnecessary insec-
ticide inputs and minimizing environmental damage. 
IPM has the potential to play a central role in preventing 
OSR disappearing from rotations. IPM methods for CSFB 
have been recently reviewed (Ortega-Ramos et al., 2021); 
thresholds and monitoring methods for CSFB are widely 
available (Ortega-Ramos et al., 2021) and although there 
are currently few alternatives to insecticide control, it has 
been shown that some cultural prevention methods like 
reduced tillage (Lundin et al., 2020; Ulber & Schierbaum-
Schickler, 2003; Valantin-Morison et al., 2007) and com-
panion planting (Barari et al., 2005; Breitenmoser et al., 
2020; Verret et al., 2017; White et al., 2020) can help sup-
press CSFB infestations and damage. Also, natural ene-
mies, especially hymenopteran parasitoids, have been 
shown to have significant potential to reduce CSFB pop-
ulations (Barari et al., 2005; Ferguson et al., 2006; Jordan 
et al., 2020); biocontrol potential could be increased if 
farmers adopt appropriate habitat management mea-
sures to promote natural enemy populations. However, 
there is a need for further research to produce the scien-
tific advances necessary for the development and com-
mercialization of tools and techniques needed to make 
IPM a reality. Also, to facilitate the successful adoption of 
IPM techniques, farmers need to be incentivized to adopt 
IPM (Creissen et al., 2021; Zhang et al., 2018).

Even though some EU countries have local initiatives 
to reduce insecticide use and encourage use of ‘greener’ 
alternatives, there is no formal process for ranking these 
and little information available to help farms make choices 
(Lefebvre et al., 2015). Therefore, there is a need to update 
and disseminate practical guidelines that are customized 
to each Member State that set out the existing technolo-
gies and non-synthetic control methods available to con-
trol pests and diseases on specific crops. These guidelines 
should be made easily available to growers and supported 
by independent advisory services.

8   |   CONCLUSION

Both Europe and the UK now have opportunities 
to design new policies through the ‘Farm to Fork 
Strategy’ (as part of the European Green Deal) and the 
Environmental Land Management (ELM) scheme, re-
spectively, that will genuinely help meet the challenges 
of food production, climate change mitigation and en-
vironmental sustainability. Immediate improvements 
could be made by including IPM strategies in the new 
EU Eco-schemes that incentivize environment-friendly 
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farming practices as part of the 2023 CAP reforms. In 
the UK, Defra have just concluded a consultation on a 
revised draft of the National Action Plans, and it seems 
likely that IPM will play an increasingly prominent role 
in the 25-Year Environment Plan and the evolving ELM 
scheme. To make these new policies successful, farmers 
need to be included in the design of these schemes and 
provided with adequate training to make IPM in OSR a 
real alternative to insecticides and prevent the mistakes 
of the past.
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