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A B S T R A C T

The patch spraying of weeds is an area of precision agriculture that has had limited uptake. This is in part due to
the perceived risks associated with not controlling individual weeds. Nevertheless, the inherent patchiness of
weeds makes them ideal targets for site-specific management. We propose using a mechanistic model to identify
areas of a field vulnerable to invasion by weeds, allowing the creation of treatment maps that are risk averse. We
developed a spatially-explicit mechanistic model of the life-cycle of Alopecurus myosuroides, a particularly pro-
blematic weed of cereal crops in the UK. In the model, soil conditions which vary across the field, affect the life-
cycle of A. myosuroides. The model was validated using data on the within-field distribution of A. myosuroides on
commercial farms and its co-location with soil properties. We demonstrate the important role played by soil
properties in determining the within-field distribution of A. myosuroides. We also show that scale-dependent
correlations between A. myosuroides and soil properties observed in the field are an emergent property of the
modelled dynamics of the A. myosuroides life-cycle. Our model could therefore support effective site-specific
management of A. myosuroides within fields by predicting areas that are vulnerable to A. myosuroides. The
usefulness of this model in its ability to predict patch locations for A. myosuroides highlights the possibility of
using similar models for other species where data are available on the response of the species to various soil
properties.

1. Introduction

Precision agriculture is already commonplace in many aspects of
farming. Information-based management systems to adapt fertilizer
distribution across the field were first introduced in the mid-1980s
(Gebbers and Adamchuk, 2010) and since then precision farming
techniques including GPS steering, soil mapping, and variable rate
seeding are becoming increasingly popular; with the proportion of UK
farmers who implement these techniques increasing over recent years
(Defra, 2013). The concept of site-specific weed management, specifi-
cally patch spraying is less prevalent but is gathering interest. Site-
specific weed management takes into account the spatial variability of
weeds either through intermittent spraying based on observed weed
density at different locations or by modelling the thresholds for weed
density above which it is economic to spray (Garibay et al., 2001). This
results in reduced chemical cost and more accurate application of
control practices (Dieleman et al., 2000).

Despite the economic and environmental benefits of patch spraying
for weed management, it has not been readily taken up as a standard

management tool. There are many reasons for this (Christensen et al.,
2009) but perhaps the most important is that a change to patch
spraying goes against current practice. An unwillingness to implement
site-specific weed management may stem from the perceived risk of
missing individuals that grow outside of currently established patches
and are not detected by weed mapping. Individuals may enter the field
from elsewhere or a patch may expand due to increased dispersal from
highly dense patches or through cultivation. If these individuals remain
unsprayed there is a risk they will turn into new patches. The in-
corporation of buffer zones into spray maps is a general measure taken
to try and combat this, however this does not account for seed
spreading outside of the immediate area surrounding the patch or en-
tering the field from elsewhere.

Despite the reservations of farmers in using precision agriculture
techniques in weed control, many weed species lend themselves well to
site-specific control due to their patchy distributions within fields. In
recent years, the idea of studying the spatial distribution of weeds with
the intent to introduce a site-specific aspect to their management has
been an area of growing interest. The introduction of satellite spatial
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technology in the 1990s introduced the possibility of locating weed
patches in the field (Lutman et al., 2002) and this is now being explored
further with the use of unmanned aerial vehicles (e.g. Castaldi et al.,
2016; López-Granados et al., 2016a,b; Pérez-Ortiz et al., 2016). Re-
search on the real-time mapping of weeds (e.g. Murdoch et al., 2010;
Tian et al., 2000) is also ongoing.

We focus here on Alopecurus myosuroides Huds. (black-grass), a
common grass weed of winter cereals in north-west Europe (Holm et al.,
1997). It is particularly problematic due to its fast reproductive rate,
strong competitive ability with the crop, and because its life-cycle is
largely synchronised with that of winter cereals (Maréchal et al., 2012).
Alopecurus myosuroides plants can produce large amounts of seeds
(Moss, 1980) meaning small failures in control can lead to rapid po-
pulation growth and dense infestations within fields. Currently, the
main means by which farmers choose to control this pernicious weed is
through broadcast application of herbicides. However, the decreasing
number of chemical products available for use, and increasing eco-
nomic and environmental pressures to reduce herbicide use puts a
growing emphasis on the optimisation of current techniques and
finding alternative approaches (Grundy, 2003). The within-field dis-
tribution of A. myosuroides is patchy (Wilson and Brain, 1991;
Krohmann et al., 2006; Metcalfe et al., 2016, 2018b) and as such this
presents an opportunity for site-specific management.

It has been shown that the patchy distribution of A. myosuroides in
fields can be related to variation in soil properties (Holm et al., 1997;
Lutman et al., 2002; Murdoch et al., 2014; Metcalfe et al., 2016,
2018b), particularly soil organic matter, pH, and water. Metcalfe et al.
(2018b) demonstrated that these relationships are strongest at coarse
scales (> 20m), making them ideal for the implementation of precision
management. This provides a basis upon which to identify weed vul-
nerable zones within fields for this species. However, a biological model
that elucidates the underlying processes and causality of these re-
lationships could potentially be used to assess the relative propensity of
other species to form patches based on their ecophysiology.

Moss (1990) constructed a basic life-cycle model of A. myosuroides.
Colbach et al. (2006, 2007) added more complexity to their life-cycle
model for A. myosuroides: ALOMYSYS. Most weed population dynamics
models ignore the within-field distribution of the weed and generally
simulate the average density (Holst et al., 2007). Paice et al. (1998),
however, considered the need for a spatial component to models of A.
myosuroides population dynamics. Building on basic models of the A.
myosuroides life-cycle they incorporated elements of stochasticity into
the life-cycle processes and included a binomial probability of weed
survival following herbicide application. They included both isotropic
and anisotropic dispersal processes derived from Howard et al. (1991).
They showed that when dispersal only occurs over short distances,
patchiness is maintained and even if the field is initialised with a uni-
form seed bank the population will develop patches in a homogeneous
environment. Gonzalez-Andujar et al. (1999) also considered spatial
patterns in the modelling of A. myosuroides in an array of hexagons
representing part of a field. Seed dispersal was assumed to be isotropic
and dispersal by the combine was also considered. The inclusion of
features such as seed dispersal in spatial models are often not sufficient
to describe the degree of patchiness observed in field populations. It is
thought that this may be due to the omission of the effect of soil vari-
ables (Paice et al., 1998; Rew and Cousens, 2001).

Dunker et al. (2002) included the effect of nutrients, soil pH and
particle size on A. myosuroides in their model, based on the results of a
pot experiment. They verified this model in one field where A. myo-
suroides counts and soil properties were measured on a 50m×50m
grid. Their model was based on the demographic data from Moss
(1990). In the Dunker et al. (2002) model, only the early parts of the
life-cycle are affected by soil as the experiment on which they based
their model was only conducted for 5 weeks post germination. They
found their simulations to be only weakly correlated with real data and
only 4 out of 20 simulations showed a significant correlation.

Our aim was to develop a model to help address the risk, associated
with current patch spraying techniques, of missing individuals that
disperse outside of currently established patches. We propose an ex-
tension to current techniques for mapping weeds, which addresses this
concern: that is to identify parts of the field that are vulnerable to weed
infestation. These “weed vulnerable zones” can then be used to guide
the precision application of herbicides. To do this, we develop a spa-
tially explicit model of the life-cycle model of A. myosuroides in-
corporating mechanistic responses to soil variability across the whole
life-cycle. The model is based on the work of Moss (1990), Colbach
et al. (2006) and Paice et al. (1998) but extended to include the direct
and indirect effect of soil on the weed based on experimental data. It
also introduces stochasticity into the system providing a more realistic
range of possible outcomes than could a deterministic model. By
modifying the life-cycle of the plant according to known responses to
variation in soil properties (including texture, organic matter, water
and pH) we tested the hypothesis that scale-dependent relationships
between soil properties (including soil organic matter, water content
and pH) and the density of A. myosuroides observed in fields by Metcalfe
et al. (2018b) can be modelled. Our model strikes a balance between
tractability and complexity—processes are only modelled mechan-
istically to capture the effect of different soil properties. It was built to
answer the specific hypothesis that the heterogeneous environment
impacts on population dynamics resulting in scale-dependent correla-
tions between soil properties and A. myosuroides distributions and does
not claim to predict absolute numbers but rather the relative fitness in
different within-field locations.

2. Model description

We developed a spatially explicit model of A. myosuroides popula-
tion densities within a field, incorporating various processes throughout
the plant's life-cycle. The model is described here and the para-
meterisation detailed in the following section. The modelled field is
described by a grid of square cells, the side length of which can be
defined in real units of distance. We define the relative position of these
cells in Cartesian coordinates and so a rectangular area of defined size
can be simulated allowing spatial processes, such as dispersal, between
cells. For each grid cell we define values for soil texture (% clay and
silt), soil pH, soil organic matter (%), soil gravimetric water content
(%), slope, and aspect, at a resolution consistent with the chosen grid
size.

2.1. Soil water content

Soil water content is dynamic and changes over time according to
weather and other soil properties. Plant available water, given as soil
volumetric water content (SVWC) is calculated by

= ×S S D
100

.b
VWC

GWC
(1)

where SGWC is the soil gravimetric water content set for the cell and Db

is the bulk density of the soil, which is calculated using the pedotransfer
function:

= + −

+ − − −

D S

S S S

0. 80806 0. 823844 exp ( 0. 27993 )

0. 0014065(100 ) 0. 0010299
b SOM

Clay Silt Clay (2)

derived by Hollis et al. (2012) for cultivated topsoil, where SSOM is the
soil organic matter (%), SClay is the soil clay content (%) and SSilt is the
soil silt content (%).

We modelled the change in volumetric water content of the soil on a
daily time step with additions from daily precipitation and losses from
evapotranspiration. Evapotranspiration was calculated for a bare soil
surface in the autumn, and a crop canopy at other times of the year. For
these calculations we followed the analysis by Penman (Frere and
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Popov, 1979; Penman, 1948, 1956, 1963). The Penman formulae are
dependent on the evaporative demand of the atmosphere and the net
absorbed radiation, which are calculated using daily temperature, solar
irradiation, vapour pressure and wind speed. Other required values
including reference values for albedo and constants used in the for-
mulae were taken from FAO guidelines for computing crop water re-
quirements (Allen et al., 1998).

We modify the solar irradiation from the input weather data ac-
cording to topography (shown to be an important determinant of A.
myosuroides patch location by Metcalfe et al., 2018b), before using it in
the Penman calculations. We split daily irradiation into its direct and
diffuse component parts according to the latitude (Kropff, 1993; Kropff
et al., 1993). Each cell, irrespective of topography, received the full
amount of diffuse irradiation, but the direct component was modified
according to the slope and aspect of the field in each cell by scaling it up
or down relative to a reference value for a flat field so that steep south
facing slopes received more direct radiation than shallow or north fa-
cing slopes (Frank and Lee, 1966).

As water potential of soil varies with soil type, we calculate this
using the van Genuchten pedotransfer function (van Genuchten, 1980;
as parameterised by Wösten et al., 1999), which allows conversion
between volumetric water content and water potential according to the
soil clay, silt, and organic matter content and the bulk density of the
soil. If the water potential exceeds 15,000mbar then we assume the
grid cell has reached wilting point and no more water can be lost.
Conversely if the water potential drops below 50mbar then the field is
at capacity and any additional water input will drain through and so the
water content of the soil does not increase (Wösten et al., 1999).

2.2. A. myosuroides life-cycle

The life-cycle of A. myosuroides is modelled in 4 main stages:
seedlings, mature plants, viable seed, and the seedbank, as described by
Moss (1990). In each iteration of the model there are two cohorts of
seeds in each of two soil layers; new seeds (shed in the previous year)
and old seeds (shed in any year prior). Each stage of the life-cycle is
connected to the next by one or more processes (see Fig. 1). The life-
cycle runs independently in each grid cell with various processes being
affected by the soil properties associated with that cell. We identified
the key transitions in the life-cycle that we expected to respond to
variability in soil properties (Table 1). We included additional functions
(described below) in the model to predict the effects of variable soil
properties on the whole life-cycle.

2.2.1. A. myosuroides emergence
We calculate the number of A. myosuroides seedlings that emerge by

taking the number of seeds in the soil surface layer and multiplying this

by the proportion of seeds germinating (G). We model the proportion of
seeds that germinate (G) as a function of hydrothermal time (θHT) fol-
lowing Colbach et al. (2006):

= − > +

=

− − −
−G M x a t

G

[1 e ] when

0 otherwise
a

( )k θ ta a
x a

c( HT )
50

(3)

where M is the maximum level of germination, a is the lag phase of
germination, c is a shape parameter, and x50 is the time to 50% ger-
mination. These parameters are modelled according to properties re-
lating to the seeds (see supplementary material for calculations) in-
cluding the age of the seed which allows different values of G for the old
and new seed cohorts, time from germination to maturity (Julian day of
maturity drawn from a normal distribution) of the mother plants, water
deficit between flowering (Julian day of flowering drawn from a normal
distribution) and maturity, depth of seed, hydrothermal time spent in
darkness prior to tillage, mean seed mass, and total available nitrogen.
The offset ta increases the delay before the commencement of germi-
nation. We calculate the water deficit experienced by the parent plants
from the previous flowering to previous harvest by taking the difference
between the daily evapotranspiration and the sum of the soil water
content and daily precipitation. If more water is lost to evapo-
transpiration than is available then this difference is added on to the
water deficit.

Hydrothermal time (θHT) is accumulated on a daily timestep from
the day of tillage (Julian day of tillage drawn from a normal distribu-
tion) for a maximum of 50 days by

=θ θ θ whereHT H T (4)

= − >
=

θ ψ ψ ψ ψ
θ

if
0 otherwise

b bH

H (5)

and

= − >
=

θ T T T T
θ

if
0 otherwise

b bT

T (6)

ψ is the daily water potential (MPa) and T is the daily temperature (°C).
ψb and Tb are the base water potential and temperatures required for
germination respectively.

Crop germination is much less variable than that of the weed due to
their larger seeds and breeding efforts toward uniform establishment
(Stratonovitch et al., 2012) and so is modelled by thermal time (it is
assumed to be unaffected by the soil) using a function from Storkey and
Cussans (2000) which divides the crop green area (AG, Eq. (7)) by the
area of the cell. If the crop green area index reaches 0.5 before day 50
then A. myosuroides germination is terminated at that point.

Fig. 1. Basic component structure of the A. myosuroides life-cycle
model. Processes are shown in italics and components of the A.
myosuroides life-cycle are boxed and capitalised. This life-cycle
component is based on the model by Moss (1990) and runs in each
cell of our spatially explicit model. Note: A. myosuroides seed is not
spread by the combine while still on plant and so movements by
cultivation only occur in the soil. This may not necessarily be the
case for other weed species that retain seed heads until harvest.
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(7)

where Cm is a maximum growth rate (g plant−1 °d−1), Gm is a maximum
relative growth rate (°d−1), tsum is the accumulated time from the day of
tillage, and t0 is the time at which the plant effectively reaches a linear
phase of growth (°d).

2.2.2. Herbicide mortality
The number of plants surviving herbicide application is drawn from

a binomial distribution:

= − −( )P i t p t
i p p( | , ) (1 )i t i

(8)

where P(i) is the probability of i plants surviving from an initial number
of t plants in the cell, given a probability, p of survival.

Pre-emergence herbicide efficacy is known to be reduced with in-
creasing organic matter, this can have an indirect effect on the life-cycle
of the weed as on some soils there will be an increased number of
survivors (Pederson et al., 1995; Metcalfe et al., 2018a). So to model the
proportion of plants surviving pre-emergence herbicide application the
value of p used to draw from the binomial distribution (Eq. (8)) is
modelled by:

=
+

+p
η S

ζ S
τ

1
,SOM

SOM (9)

where SSOM is the percentage soil organic matter.

2.2.3. Seed production
Seed head production is density dependent and so we model the

number of heads per cell (DHeads) by

=
+

D
β D

α D
T

1
· A PHeads

Plants

Plants
: (10)

where DPlants is the number of plants per cell (Moss et al., 2010) and
TA:P is the mean ratio of actual to potential soil transpiration (given by
Eq. (11)) over the growing season. This accounts for the effect of water
stress on plant yield (Osakabe et al., 2014).

=
+ ×

T
ρ F

1
1 ϵ exp( )A P:

TSW (11)

We calculate the fraction of transpirable soil water (FTSW) by taking the
average of the daily soil volumetric water contents from the start of
germination to the start of flowering as a proportion of the difference
between field capacity and wilting point for that soil type.

The number of seeds produced per head is stochastic and is sampled
from a log-normal distribution. A proportion of this total seed pro-
duction will be non-viable and is sampled stochastically from a normal
distribution.

2.2.4. Seed losses
The amount of seed lost, for example from predation, is sampled

from a lognormal distribution and seed survival in the soil is sampled
from a normal distribution.

2.2.5. Seed movement
We modelled both natural A. myosuroides seed dispersal and dis-

persal of seed by cultivation. The probability distribution for each
dispersal process was calculated by numerical integration as:

∫ ∫=
+

−

+

−

P m n f x y( , ) ( , ) dx dy
S n

S n

S m

S m

( 0.5)

( 0.5)

( 0.5)

( 0.5) (12)

where S is the side length of the cell, P(m, n) is the probability of a seed
falling into a cell at the distance from the source x=m, y= n and f(x,
y) is the dispersal probability function.

Natural dispersal. The natural dispersal of A. myosuroides seed is
assumed to be isotropic and to follow the rotated Gaussian distribution

= ⎡
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− ⎡
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⎝
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⎤
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f x y
πσ

x μ
σ

y μ
σ

( , ) 1
2

exp 0.52

2 2

(13)

(Paice et al., 1998). The probability of seed falling into each cell is
calculated in turn by Eq. (12) following the order indicated in Fig. 2
until a total proportion of 0.999 has been accounted for. If any seeds
remain these are dispersed to a randomly allocated cell to represent
other sources of seed dispersal not accounted for here. The resulting list
of proportions are stored and used throughout each yearly cycle of the
model to move seeds from one cell to nearby cells.

Seed movement by cultivation. Dispersal by cultivation is anisotropic
with seeds being dispersed in the direction of travel (Lutman et al.,
2002). In order to model the way in which seeds were moved by the
combine, we assumed

⎜ ⎟= ⎛
⎝

+ − ⎞
⎠

+ −f x y
γ ε γλ x

λ
( , )

2
exp erfc

2

γ ε γλ x2 (2 2 )
22

(14)

Table 1
Stages of the A. myosuroides life-cycle identified as being affected by soil variability.

Life-cycle stage Soil property Effect Source

Germination Plant available water Total germination increases with hydrothermal time Colbach et al. (2006) and supplementary pot
experiments

Germination Soil pH More seeds germinate at low pH Metcalfe et al. (2017)
Pre-emergence herbicide mortality Soil organic matter Probability of survival increases with increasing soil

organic matter
Metcalfe et al. (2018a)

Seed production Soil organic matter Seed production increases with soil organic matter Supplementary pot experiments
Seed production Water stress Seed production decreases when water is limiting Storkey and Cussans (2007)

Fig. 2. Numerical order of assessment of nearby squares for the natural dis-
persal of seeds from a plant in the centre square (labelled “1”). Cells with the
same number all receive the same proportion of seed from the starting cell. If
required, the pattern continues in the same manner expanding outwards.
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This distribution matches the shape of that described by Paice et al.
(1998) for anisotropic dispersal of seeds. The distribution is integrated
for each grid cell in turn for a maximum of five grid cells in the di-
rection opposite to the direction of travel and then towards the direc-
tion of travel until a total proportion of 0.999 is accounted for. Any
remaining seeds are randomly allocated to a grid cell in the direction of
travel, up to a maximum dispersal distance of 20m. The direction of
travel is set up along the x axis of the grid from west to east for the first
set of rows up to the width of the cultivator (40m). It is then switched
to travel east to west. The direction changes every time the number of
rows reaches a multiple of the cultivator width.

For both natural dispersal and the seed movement by cultivation, if
seeds are to be moved into a cell that lies outside of the model arena the
process is reflected such that there is no immigration or emigration of
seeds to and from the field. This is representative of a real field where
boundaries are a source of seed (Marshall, 1989).

Vertical movement of seed in the soil. Seeds are moved vertically be-
tween the shallow and deep soil layers. The tillage type can be set for
each year to one of 4 types: plough, 20 cm tine, 10 cm tine, or< 5 cm
tine. In years when the tillage is “plough” a proportion of seeds from the
shallow soil layer are buried into the deep soil layer, conversely some
seeds are brought up to the shallow soil layer. For all other tillage types
there is no upward movement of seed (from the deep soil layer to the
shallow soil layer) but a proportion of seeds are buried according to the
depth of tillage.

3. Model parameterisation

Where possible, each function in the life-cycle model was para-
meterised using data from the literature. However, the effect of soil
organic matter (and its influence on water holding capacity) on A.
myosuroides emergence and seed production was identified as a
knowledge gap and so we set up an experiment under controlled con-
ditions in order to parameterise these functions within the model (see
supplementary material for experimental details).

3.1. A. myosuroides emergence

Colbach et al.'s parameterisation of Eq. (3) (2006, see supplemen-
tary material) relies on information about the germinating seeds in-
cluding the age and seed mass. To determine whether this para-
meterisation works on soils with very different water holding capacities
we germinated seeds of known origin, age and size on soil with different
levels of organic matter (see supplementary material). The data from
this experiment supported the shape of the Colbach curve but the offset
parameter ta is increased to 49.169 in our fit (Fig. 3). This offset in-
creased the delay before the commencemenrt of germination to match
the mean of our four treatments (Fig. 3).

Germination counts on different levels of soil pH collected by
Metcalfe et al. (2017) show that the asymptote for germination is
higher when soil pH is low. We therefore included a pH threshold of 6.5
in our model. At pH levels below this threshold M (Eq. (3)) is increased
by the ratio of the values for the asymptote of the curves fitted to the
low and high pH treatments respectively (40.92/36.72) (Metcalfe et al.,
2017).

In the parameterisation of Eq. (3) (and Eqs. (18)–(26) in the sup-
plementary materials) we set the age of the old cohort of seeds to 818
days and the new cohort to 60 days. Changing this parameter allowed
the germination of seeds to occur at different rates. The mean Julian
day of tillage, flowering of A. myosuroides and maturity of A. myosur-
oides were set to be 258, 150, and 206 with respective variances 8, 3,
and 6. These were determined using field data from a series of field
experiments reported in Storkey and Cussans (2007) on A. myosuroides
competition in winter wheat sown in the autumn and managed ac-
cording to standard farm protocols except for the absence of herbicide.
Depth was set to 1.5 cm and mean seed mass, determined by weighing

100 seeds, was 0.0014 g. Total available nitrogen was set at 25 kg/ha.
Following Colbach et al. (2002a,b), the base temperature (Tb) and

water potential ψb for A. myosuroides (Eqs. (4)–(6)) were set at 0°C and
−1.53MPa respectively.

3.2. Herbicide mortality

We modelled the survival rate of A. myosuroides after the application
of pre-emergence herbicides using data from Metcalfe et al. (2018a).
We took the data points for the proportion of seedlings surviving an
application of pre-emergence herbicide at a dose equivalent to field rate
on different soils and plotted this against the organic matter (%) in the
soil and fitted Eq. (9) to the data. The fitted values were η=4.9,
ζ=3.8252, and τ=−1.0890 (see supplementary Figure S.3).

For post-emergence herbicide application we assume no effect of
soil variability on contact herbicide efficacy and so p was fixed at 0.3
(Bayer CropScience, 2017).

3.3. Seed production

Moss et al. (2010) parameterised their model of density dependent
head production (Eq. (10)) with data from 16 field experiments to give
parameter values β=8.71 and α=0.005741. We adjusted this equa-
tion to account for soil organic matter according to the results from our
experiment (see supplementary material). We only had one plant per
pot, in our experiment, and so we would not expect this to be re-
presentative of the number of heads produced under field conditions
but assumed the relative differences were representative of those seen
under field conditions. This allowed us to compute a generic relation-
ships between soil organic matter and the density dependent relation-
ship between plants and heads (see supplementary material for deri-
vation).

Parameters in Eq. (11) were derived for A. myosuroides as ϵ=6.88
and ρ=−4.61 from a series of glasshouse experiments reported in
Storkey and Cussans (2007).

The mean (4.58) and standard deviation (0.23) of the lognormal
distribution used to determine seed production per head are estimated
from data provided by Moss (1990). The normal distribution:
� (0.55, 0.126) is used to draw values for the proportion of viable seed,
the mean and standard deviation are again estimated from the data
provided by Moss (1990).

3.4. Seed losses

For the distributions used to calculate seed losses, data from Moss
(1990) were again used to estimate the means and standard deviations.
The distributions used were: Log-normal(−0.81, 0.13) for above
ground seed losses (e.g. through predation), and � (0.3,0.077) for seed
survival in the soil.

3.5. Seed movement

As was described by Paice et al. (1998), the mean (μ) of the natural
dispersal distribution (Eq. (13)) is set at 0 and the standard deviation
(σ) at 0.3. For seed movement by cultivation (Eq. (14)) parameters were
set to γ=10/3, λ=0.1 and ε=−0.15 to best match the shape of the
distribution described by Paice et al. (1998) for anisotropic dispersal of
seeds. The proportion of seeds moved vertically in the soil for each type
of tillage was described by Moss (1990). Here stochasticity is added by
drawing these from distributions estimated from the mean and range of
that original data (Table 2)

4. Model validation

Metcalfe et al. (2018b) linked A. myosuroides seedling counts to
various environmental properties within fields commercially producing
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winter wheat. They sampled 136 locations in each field using an un-
balanced nested sampling design, with pairs of points separated by
fixed distances. At each sampling point they counted the number of A.
myosuroides seedlings emerging in the autumn. They also took soil cores
to analytically determine the soil clay and silt content, soil organic
matter, soil pH and soil gravimetric water content. The nested design
structure allowed the partitioning of the components of variance for
both A. myosuroides and soil properties at each of the spatial scales
studied using the residual maximum likelihood (REML) estimator as
described by Metcalfe et al. (2016), and scale-dependent correlations
between A. myosuroides counts and soil properties were calculated.

4.1. Patch location

To validate our model, we simulated three UK fields, for which
complete datasets on soil properties and weed densities were available,
studied by Metcalfe et al. (2018b). The three fields were Harpenden
(Hertfordshire), Redbourn (Hertfordshire) and Haversham (Buck-
inghamshire) (see Metcalfe et al., 2018b). As an initial investigation, we
kriged the measured soil data to predict on a 1-m grid. We then used
this to parameterise the cells in the model. We simulated 40 years of
weed growth starting with an initial seed bed of 10,000 seeds per cell,
20% of which were in the top soil layer. As we did not know the tillage
history of the studied fields, we simulated three typical tillage systems:
(i) rotational cultivation with three years of tillage at< 5 cm followed
by one year using the plough, (ii) tillage at 10 cm, and (iii) tillage
at< 5 cm. We ran the model with all required input weather data on a
daily timestep from Rothamsted met station (Hertfordshire, UK) be-
ginning with data from 1966. We discarded the simulation results from

the first 10 years to allow the patches to stabilise following the initial
seeding. We recorded and mapped the average number of plants si-
mulated at each location in the field (1m×1m grid cell) across years
11–40 and for 10 different simulations of the model (a total of 300
realisations of the field), we then compared these maps with the kriged
distribution of A. myosuroides plants obtained by Metcalfe et al. (2018b)
for that field.

4.2. Scale-dependent correlations

We wanted to see if the scale-dependent relationships between A.
myosuroides and soil properties found in the field by Metcalfe et al.
(2018b) were an emergent property of the model. To do this we needed
to simulate soil realistic of that found in the fields, but that maintained
fine-scale variation, which is lost in the kriged maps. We simulated soil
properties on a 1m×1m grid using lower upper decomposition of the
covariance matrix, also known as the Cholesky decomposition tech-
nique (Webster and Oliver, 2007, chapter 12). We created the covar-
iance matrix for each soil property in each field from the covariance
function corresponding to the spherical variogram fitted to the soil data
and conditioned the simulation to include our measured soil properties
at the location where they were measured. The R conditioning data
were transformed to standard normal form (denoted by the vector z)
and the values at S unsampled positions were drawn independently at
random from a standard normal distribution (vector g). To obtain the
vector of conditionally simulated values (y) we used

= ⎡
⎣⎢ +

⎤
⎦⎥

−y
z

L L L g
R

SSR SS
1

RR (15)

where L is the lower triangular matrix obtained from the decomposition
of the covariance matrix for the field.

Following the simulation of the soil, we scaled the simulated values
to match the mean and range of the original data values:

= − × +y x m
s

s mobs obs (16)

where x is a simulated value, m and s are the mean and standard de-
viation respectively of all the simulated values for that soil property and
mobs and sobs are the mean and standard deviation respectively for the
observed data. Ideally we would have simulated all soil properties
based on their covariances. However, due to the size of the field and the
spatial scale of simulation this was not possible and so we performed a

Fig. 3. Germination counts plotted against hydrothermal time.
Grey is low soil organic matter, Yellow is medium soil organic
matter. Solid lines show high water input and dashed lines are low
water input. The solid black line shows the resulting germination
counts from Eq. (3) when parameterised for the seeds used in the
experiment. See supplementary material for experimental detail.

Table 2
Distributions used to sample the proportion of seeds to be moved between soil
layers due to tillage.

Tillage type Direction of movement Distribution type Mean Variance

Plough Shallow to deep Lognormal −0.0515 0.0191
Deep to shallow Lognormal −1.0670 0.1199

20 cm tine Shallow to deep Normal 0.2000 0.0510
Deep to shallow None

10 cm tine Shallow to deep Normal 0.4000 0.1010
Deep to shallow None

< 5 cm tine Shallow to deep None
Deep to shallow None
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number of checks to prevent the simulation of impossible soil dis-
tributions. We checked that the scaled simulated values did not exceed
realistic ranges for these soil properties and discarded any simulations
falling outside of the acceptable range. We also checked that the si-
mulated clay and silt values did not sum to values greater than 100 and
so we paired simulations accordingly. We produced 35 suitable simu-
lations for each soil property for the Harpenden and Haversham fields
(the Redbourn field was too large to simulate in this way).

We simulated 40 years of weed growth starting with an initial seed
bed of 10,000 seeds per cell, 20% of which were in the top soil layer.
We implemented 10 cm tine as the tillage type. We ran the model with
weather data from Rothamsted met station (Hertfordshire, UK) begin-
ning with data from 1966.

We took the output of the model only for years 11–40 from each
simulation and extracted the number of simulated A. myosuroides plants
at each of the sampling locations from the original study (Metcalfe
et al., 2018b). We did the same analysis of the nested sampling design
as described by Metcalfe et al. (2016) to give scale-dependent corre-
lation coefficients between the simulated A. myosuroides counts and
each soil property present in the model (clay, organic matter, pH and
water) for each of the 1050 realisations of the field. We plotted a his-
togram to look at the frequency of these correlations across all 1050
realisations of the field given by the model and compared this dis-
tribution to the value obtained in the field data for each spatial scale
and each soil property (Metcalfe et al., 2018b).

5. Results

5.1. Patch location

The locations of the patches predicted by the model were broadly

similar to those observed in the field study (Fig. 4). At a coarse scale
there are broad similarities between the distribution of A. myosuroides
observed in the field and the predicted distributions from the model for
all fields. In Harpenden, the rotational ploughing system led to very
similar distributions, whereas the other two tillage systems (10 cm tine,
and< 5 cm tine) showed much more uniform distributions across the
field (Fig. 4a–d). For the field in Redbourn the A. myosuroides counts in
the eastern part of the field were reflected in the predictions, as were
the low counts in the southern part of the field. However, in the west
the observed and predicted distributions differ (Fig. 4i–l). Finally, in
Haversham the western part of the field shows similar patch locations
to those observed in the field (Fig. 4e–h). In all cases the predicted
seedling densities are larger than were observed in the field and the
patches more extensive.

5.2. Scale-dependent correlations

The scale-dependent correlations between A. myosuroides and clay
were fairly consistent with those observed in the field. At coarse scales
the model simulations largely resulted in large positive correlations
(Figs. 5a and 6 a). For Harpenden, this was close to the observed cor-
relation in the field of 0.85 and for Haversham the simulated correla-
tions were often larger than that observed in the field (0.55), whereas at
intermediate scales (Figs. 5b–d and 6 b–d) where the observed corre-
lation in the field were weaker the prediction from the models were less
conclusive with a range of correlation coefficients that included both
positive and negative values. At the finest scale all correlations between
clay content and the simulated A. myosuroides seedling densities were
small and often close to zero. This reflects the non-significant correla-
tions observed in Harpenden and Haversham fields.

The results were similar for the relationships predicted between soil

Fig. 4. Maps of Harpenden (top row: a–d), Haversham (middle row: e–h) and Redbourn (bottom row: i–l) showing the kriged log seedling counts (first column: a, e
and i) and model outputs (columns 2–4: b–d, f–h, and j–l). Each model output shows the average log seedling density in each cell across 300 realisations of the field.
The simulations in the second column (b, f, and j) are the output from the model simulations with rotational ploughing as the cultivation type — ploughing every
fourth year with tining at< 5 cm in the intermediate years. The simulations in the third column (c, g, and k) used 10 cm tining each year, and the simulations in the
fourth column (d, h, and l) used<5 cm tining. Colour scales are maintained within columns and are applicable to each cultivation type separately.
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organic matter and A. myosuroides seedling densities with the model
predicting large positive relationships with organic matter at coarse
scales (Figs. 5f and 6 f). There was no distinct pattern in the correlation
coefficients at intermediate scales in Harpenden (Fig. 5g–i) and only
small positive correlations at intermediate scales in Haversham (Fig. 6g
and h), which were similar to the observed correlations of 0.22 and
0.62 at those scales. In both fields there were correlation coefficients
close to zero at the finest scale between soil organic matter and A.
myosuroides (Figs. 5j and 6 j).

When we consider pH and its relationship with A. myosuroides
seedling densities in the Harpenden field we find a large peak of posi-
tive correlation coefficients at coarse scales (Fig. 5k), which is in con-
trast to the negative correlation coefficient observed int he field. Again,
at intermediate scales (Fig. 5l–n) there is no distinct pattern in the
correlation coefficients and at fine scales all correlation coefficients are
close to zero. In Haversham the REML model used to partition the
variance across scales could not be fitted to the field data and so no
comparison can be made with the simulated model outputs.

We found positive relationships with soil moisture content at the
coarse-scale in the majority of simulations (Figs. 5p and 6 p). This result
matched the significant positive correlation we found in the fields at
this spatial scale. At intermediate scales (Figs. 5q–s and 6 q–s), the
correlations between soil water content and A. myosuroides densities
predicted by the model were less consistent. At the finest scale (Figs. 5t
and 6 t) the relationship between soil water content and A. myosuroides
seedling counts predicted by the model was often close to zero in both
fields. However, at this fine scale our field observations gave quite large
correlations and lay outside of the distribution of correlations predicted
by our model.

6. Discussion

Our results support in-field studies (Lutman et al., 2002; Murdoch
et al., 2014; Metcalfe et al., 2018b) that show soil is an important de-
terminant in the within-field distribution of A. myosuroides. Our results
suggest that our model can provide a good prediction of the location of
patches within fields. Irrespective of the tillage type implemented in the
model the spatial distribution of A. myosuroides seedlings across 300
realisations was consistent with observed field distributions (Fig. 4).
This indicates the usefulness of this model in locating A. myosuroides
vulnerable zones within fields.

Simulated seedling densities were quite different under the different
tillage types, yet all provided a good estimation of patch location. This
supports the conclusions from Colbach et al. (2000) that densities are
often highly variable and so the prediction of densities is less accurate
than the prediction of patch location. This means that it is possible to
predict patch locations or weed vulnerable zones irrespective of the
tillage practices in place on a farm, making the model useful as a de-
cision support tool as it is not necessary to provide all the information
about cultivation history in order to locate weed vulnerable zones. Our
model was built to answer the question of the impact of soil variation
on the distribution of the weed and so relative abundances are a useful
output, and absolute values are not particularly important.

Strong coarse-scale relationships between soil properties and A.
myosuroides distributions are an emergent property of our model. These
matched those observed in-field. This is important as it is at these
coarse scales that in-field correlations are strongest (Metcalfe et al.,
2016, 2018b) and so it is important that our model corroborates these
observations. In the application of site-specific weed management most
farm machinery operates at coarse scales. As such, if we can input pre-

Fig. 5. Frequency distribution of scale-dependent correlation coefficients between the simulated number of A. myosuroides seedlings and simulated soil properties
used as inputs into the model simulations for the field in Harpenden. The dotted line represents the observed scale-dependent correlation in the field (Metcalfe et al.,
2018b). The correlations shown are between A. myosuroides seedlings and the soil properties clay (a–e), soil organic matter (f–j), pH (k–o) and water (p–t) and for
each soil property a range of spatial scales are considered ranging from coarse-scale in the first column to fine-scale in the last column: 50+m (a, f, k, p), 20m (b, g, l,
q), 7.3 m (c, h, m, r), 2.7 m (d, i, n, s), and 1m (e, j, o, t).
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existing or supplemented soil maps, already in use on farm for other
site-specific management practices, then we should be able to predict
the likelihood of parts of the field being vulnerable to A. myosuroides
and so be able to develop maps for patch spraying based on the output
of this model.

As with all models of weed population dynamics there are some
limitations to this model including a lack of field data, and the adoption
of number of assumptions. However these are necessary in order to
keep the model simple enough to be functional whilst retaining enough
detail to understand the system (Fernandez-Quintanilla, 1988). Initially
some of the limitations of the model come due to a lack of field data and
are also under-represented in other models of A. myosuroides such as
those by Moss (1990) and Colbach et al. (2006). These include the fate
of seeds after shedding, where we have included a certain amount of
seed loss but this is an all encompassing figure, including predation and
decay, which would be difficult to model mechanistically. Similarly for
other life-cycle processes where we only have information on the range
and mean of field data such as seed production. In these cases we draw
values stochastically but the chosen values remain unaffected by other
processes within the life-cycle. In our model we assume that the density
of the crop and other weeds are uniform across the field and so spatial
variability in interspecific competition is excluded. As we base this
model on the premise that the field is a heterogeneous environment this
may not be a correct assumption to make, however, it is an assumption
that is also made in other models for patch spraying purposes (e.g. Paice
et al., 1998). In this regard, our model could be improved by modelling
interspecific competition mechanistically. In order to simplify the
model we have divided the soil into two layers: a shallow layer from
which seeds can germinate and a deep layer. However, in reality the
soil is a continuum and there will be a gradient over which seeds can

germinate at different rates. Finally, natural seed dispersal is bar-
ochorous in our model and seeds are moved by the combine and cul-
tivator. Both of these methods of dispersal are independent of other
factors, yet it has been shown that there can be some influence of wind
speed on seed dispersal of A. myosuroides (Colbach and Sache, 2001)
and equally, seed movement in the soil can depend on soil properties
(Benvenuti, 2007).

In our model validation, the large scale correlations between A.
myosuroides and soil properties were generally similar to those observed
in the field. However, for soil pH our simulations predicted positive
correlations at large scales, whereas the observed data showed a ne-
gative correlation. The only role of soil pH in our model is in altering
the asymptote reached in germination. We implemented this using a
threshold approach, where the asymptote for germination is increased
when soil pH is below 6.5. It is possible that this is insufficient to de-
scribe the true nature of the impact of soil pH on germination as by only
changing the asymptote we will only see these differences in years
when there are very large numbers of seeds germinating. It is likely that
the observed response to pH in the field data is a product of additional
processes to do with growth and competition in the established phase
that are not currently captured in the model.

The usefulness of our model in its ability to predict patch locations
for A. myosuroides highlights the possibility of using similar models for
other species where data are available on the response of the species to
various soil properties. This model could be used for other grass weeds
with similar life-cycles and the key aspects of the life-cycle altered to fit
with known responses of that species to environmental properties. This
would allow the prediction of patches of problematic weed species
based on soil maps and could be used in conjunction with current patch
mapping activities to zone fields for site-specific weed management at

Fig. 6. Frequency distribution of scale-dependent correlation coefficients between the simulated number of A. myosuroides seedlings and simulated soil properties
used as inputs into the model simulations for the field in Haversham. The dotted line represents the observed scale-dependent correlation in the field (Metcalfe et al.,
2018b). The correlations shown are between A. myosuroides seedlings and the soil properties clay (a–e), soil organic matter (f–j), pH (k–o) and water (p–t) and for
each soil property a range of spatial scales are considered ranging from coarse-scale in the first column to fine-scale in the last column: 50+m (a, f, k, p), 20m (b, g, l,
q), 7.3 m (c, h, m, r), 2.7 m (d, i, n, s), and 1m (e, j, o, t).
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the appropriate scale.

7. Conclusions

We have drawn together experimental data on the impact of soil
properties on the life-cycle and management of this important agri-
cultural species and through a modelling approach demonstrated the
important role played by soil properties in determining the within-field
distribution of A. myosuroides. We have also shown that scale-depen-
dent correlations between A. myosuroides and soil properties observed
in the field are an emergent property of this model, which incorporates
small changes to individual components of the life-cycle due to soil
properties. This could allow it to become an effective management tool
as the coarse-scale correlations, which are shown to be of the greatest
importance, are the ones that have the most relevance to management.

Acknowledgements

Rothamsted Research receives grant aided support from the
Biotechnology and Biological Sciences Research Council (BBSRC) of the
United Kingdom. This research was funded by the Natural Environment
Research Council (NERC) and the Biotechnology and Biological
Sciences Research Council (BBSRC) under research programme NE/
N018125/1 LTS-M ASSIST Achieving Sustainable Agricultural Systems.
The project was funded by a BBSRC Doctoral Training Partnership in
Food Security BB/J014451/1 and the Lawes Agricultural Trust. We
thank the Lawes Agricultural Trust and Rothamsted Research for
weather data from the e-RA database.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at https://doi.org/10.1016/j.ecolmodel.2018.11.002.

References

Allen, R.G., Pereira, L.S., Raes, D., Smith, M., 1998. Crop Evapotranspiration – Guidelines
for Computing Crop Water Requirements – FAO Irrigation and Drainage Paper 56.
FAO, Rome 300 (9).

Bayer CropScience, 2017. Atlantis WG – Don’t wait until March. Available at: http://
cropscience.bayer.co.uk/our-products/herbicides/atlantis-wg/dont-wait-until-
march/ [Accessed 17 August 2017].

Benvenuti, S., 2007. Natural weed seed burial: effect of soil texture, rain and seed
characteristics. Seed Sci. Res. 17 (3), 211–219.

Castaldi, F., Pelosi, F., Pascucci, S., Casa, R., 2016. Assessing the potential of images from
unmanned aerial vehicles (UAV) to support herbicide patch spraying in maize. Precis.
Agric. 18 (1), 76–94.

Christensen, S., Søgaard, H.T., Kudsk, P., Norremark, M., Lund, I., Nadimi, E.S.,
Jorgensen, R., 2009. Site-specific weed control technologies. Weed Res. 49, 233–241.

Colbach, N., Forcella, F., Johnson, G.A., 2000. Spatial and temporal stability of weed
populations over five years. Weed Sci. 48 (3), 366–377.

Colbach, N., Sache, I., 2001. Blackgrass (Alopecurus myosuroides Huds.) seed dispersal
from a single plant and its consequences on weed infestation. Ecol. Model. 139 (2),
201–219.

Colbach, N., Chauvel, B., Dürr, C., Richard, G., 2002a. Effect of environmental conditions
on Alopecurus myosuroides germination. I. Effect of temperature and light. Weed Res.
42 (3), 210–221.

Colbach, N., Dürr, C., Chauvel, B., Richard, G., 2002b. Effect of environmental conditions
on Alopecurus myosuroides germination. II. Effect of moisture conditions and storage
length. Weed Res. 42 (3), 222–230.

Colbach, N., Dürr, C., Roger-Estrade, J., Chauvel, B., Caneill, J., 2006. AlomySys:
Modelling black-grass (Alopecurus myosuroides Huds.) germination and emergence, in
interaction with seed characteristics, tillage and soil climate: I. Construction. Eur. J.
Agron. 24 (2), 95–112.

Colbach, N., Chauvel, B., Gauvrit, C., Munier-Jolain, N.M., 2007. Construction and eva-
luation of ALOMYSYS modelling the effects of cropping systems on the blackgrass
life-cycle: from seedling to seed production. Ecol. Model. 201 (3), 283–300.

Department for Environment, Food & Rural Affairs (Defra), 2013. Farm Practices Survey
Autumn 2012 – England.

Dieleman, J.A., Mortensen, D.A., Buhler, D.D., Cambardella, C.A., Moorman, T.B., 2000.
Identifying associations among site properties and weed species abundance. I.
Multivariate analysis. Weed Sci. 48 (5), 567–575.

Dunker, M., Nordmeyer, H., Richter, O., 2002. Modellierung der Ausbreitungsdynamik
von Alopecurus myosuroides Huds. Für eine teilflächenspezifische
Unkrautbekämpfung. Z. Pflanzenkrankh. Pflanzenschutz Sonderh. 18, 359–366.

Fernandez-Quintanilla, C., 1988. Studying the population dynamics of weeds. Weed Res.
28 (6), 443–447.

Frank, E.C., Lee, R., 1966. Potential solar beam irradiation on slopes, U.S. Forest Service
Research Paper RM-18.

Frere, M., Popov, G.F., 1979. Agrometeorological Crop Monitoring and Forecasting. FAO.
Garibay, S.V., Richner, W., Stamp, P., Nakamoto, T., Yamagishi, J., Abivardi, C., Edwards,

P.J., 2001. Extent and implications of weed spatial variability in arable crop fields.
Plant Prod. Sci. 4 (4), 259–269.

Gebbers, R., Adamchuk, V.I., 2010. Precision agriculture and food security. Science 327,
828–831.

Gonzalez-Andujar, J.L., Perry, J.N., Moss, S.R., 1999. Modelling effects of spatial patterns
on the seed bank dynamics of Alopecurus myosuroides. Weed Sci. 47 (6), 697–705.

Grundy, A.C., 2003. Predicting weed emergence: a review of approaches and future
challenges. Weed Res. 43 (1), 1–11.

Hollis, J.M., Hannam, J., Bellamy, P.H., 2012. Empirically-derived pedotransfer functions
for predicting bulk density in European soils. Eur. J. Soil Sci. 63 (1), 96–109.

Holm, L.G., Doll, J., Holm, E., Pancho, J., Herberger, J., 1997. World Weeds: Natural
Histories and Distribution. John Wiley & Sons, New York, USA.

Holst, N., Rasmussen, I.A., Bastiaans, L., 2007. Field weed population dynamics: a review
of model approaches and applications. Weed Res. 47 (1), 1–14.

Howard, C.L., Mortimer, A.M., Gould, P., Putwain, P.D., Cousens, R., Cussans, G.W.,
1991. The dispersal of weeds: seed movement in arable agriculture. Brighton Crop
Protection Conference – Weeds, vol. 2 821–828.

Krohmann, P., Gerhards, R., Kühbauch, W., 2006. Spatial and temporal definition of weed
patches using quantitative image analysis. J. Agron. Crop Sci. 192 (1), 72–78.

Kropff, M.J., 1993. Mechanisms of competition for light. Modelling Crop-Weed
Interactions. pp. 33–61.

Kropff, M.J., van Kraalingen, D.W.G., van Laar, H.H., 1993. Program Structure of the
Model INTERCOM.

López-Granados, F., Torres-Sánchez, J., De Castro, A.I., Serrano-Pérez, A., Mesas-
Carrascosa, F.J., Peña, J.M., 2016a. Object-based early monitoring of a grass weed in
a grass crop using high resolution UAV imagery. Agron. Sustain. Dev. 36 (4), 67.

López-Granados, F., Torres-Sánchez, J., Serrano-Pérez, A., de Castro, A.I., Mesas-
Carrascosa, F.J., Peña, J.M., 2016b. Early season weed mapping in sunflower using
UAV technology: variability of herbicide treatment maps against weed thresholds.
Precis. Agric. 17 (2), 183–199.

Lutman, P.J.W., Perry, N.H., Hull, R.I.C., Miller, P.C.H., Wheeler, H.C., Hale, R.O., 2002.
Developing a Weed Patch Spraying System for Use in Arable Crops. Home Grown
Cereals Authority, London.

Maréchal, P.Y., Henriet, F., Vancutsem, F., Bodson, B., 2012. Ecological review of black-
grass (Alopecurus myosuroides Huds.) propagation abilities in relationship with her-
bicide resistance. Biotechnol. Agron. Soc. Environ. 16 (1), 103.

Marshall, E.J.P., 1989. Distribution patterns of plants associated with arable field edges.
J. Appl. Ecol. 26 (1), 247–257.

Metcalfe, H., Milne, A.E., Webster, R., Lark, R.M., Murdoch, A.J., Storkey, J., 2016.
Designing a sampling scheme to reveal correlations between weeds and soil prop-
erties at multiple spatial scales. Weed Res. 56 (1), 1–13.

Metcalfe, H., Milne, A.E., Murdoch, A.J., Storkey, J., 2017. Does variable soil pH have an
effect on the within-field distribution of A. myosuroides? Asp. Appl. Biol. 134,
145–150.

Metcalfe, H., Milne, A.E., Hull, R., Murdoch, A.J., Storkey, J., 2018a. The implications of
spatially variable preemergence herbicide efficacy for weed management). Pest
Manage. Sci. 74 (3), 755–765.

Metcalfe, H., Milne, A.E., Webster, R., Lark, R.M., Murdoch, A.J., Kanelo, L., Storkey, J.,
2018b. Defining the habitat niche of black-grass (Alopecurus myosuroides) at the field
scale. Weed Res. 52 (3), 165–176.

Moss, S.R., 1980. The agro-ecology and control of black-grass, Alopecurus myosuroides
Huds., in modern cereal growing systems. ADAS Quart. Rev. 38, 170–191.

Moss, S.R., 1990. The seed cycle of Alopecurus myosuroides in winter cereals: a quanti-
tative analysis. In: EWRS (European Weed Research Society) Symposium. Helsinki,
Finland.

Moss, S.R., Tatnell, L.V., Hull, R., Clarke, J.H., Wynn, S., Marshall, R., 2010. Integrated
management of herbicide resistance, HGCA Project Report 466.

Murdoch, A.J., Pilgrim, R.A., de la Warr, P.N., 2010. Proof of concept of automated
mapping of weeds in arable fields, HGCA Project Report. pp. 471.

Murdoch, A.J., Flint, C., Pilgrim, R.A., de la Warr, P.N., Camp, J., Knight, B., Lutman, P.,
Magri, B., Miller, P., Robinson, T., Sandford, S., Walters, N., 2014. Eyeweed: auto-
mating mapping of black-grass (Alopecurus myosuroides) for more precise applications
of pre- and post-emergence herbicides and detecting potential herbicide resistance.
Asp. Appl. Biol. – Crop Production in Southern Britain: Precision Decisions for
Profitable Cropping 127, 151–158 Association of Applied Biologists,
Wellesbourne, UK.

Osakabe, Y., Osakabe, K., Shinozaki, K., Tran, L.S.P., 2014. Response of plants to water
stress. Front. Plant Sci. 5, 86.

Paice, M.E.R., Day, W., Rew, L.J., Howard, A., 1998. A stochastic simulation model for
evaluating the concept of patch spraying. Weed Res. 38, 373–388.

Pederson, H.J., Kudsk, P., Helwig, A., 1995. Adsorption and ED 50 values of five soil-
applied herbicides. Pestic. Sci. 44, 131–136.

Penman, H.L., 1948. Natural evaporation from open water, bare soil and grass. Proc. R.
Soc. Lond. A: Math. Phys. Eng. Sci. 193 (1032), 120–145.

Penman, H.L., 1956. Estimating evaporation. EOS Trans. Am. Geophys. Union 37 (1),
43–50.

Penman, H.L., 1963. Vegetation and hydrology. Soil Sci. 96 (5), 357.
Pérez-Ortiz, M., Peña, J.M., Gutiérrez, P.A., Torres-Sánchez, J., Hervás-Martínez, C.,

López-Granados, F., 2016. Selecting patterns and features for between- and within-
crop-row weed mapping using UAV-imagery. Expert Syst. Appl. 47, 85–94.

H. Metcalfe et al. Ecological Modelling xxx (xxxx) xxx–xxx

10

https://doi.org/10.1016/j.ecolmodel.2018.11.002
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0005
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0005
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0005
http://cropscience.bayer.co.uk/our-products/herbicides/atlantis-wg/dont-wait-until-march/
http://cropscience.bayer.co.uk/our-products/herbicides/atlantis-wg/dont-wait-until-march/
http://cropscience.bayer.co.uk/our-products/herbicides/atlantis-wg/dont-wait-until-march/
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0015
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0015
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0020
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0020
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0020
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0025
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0025
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0030
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0030
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0035
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0035
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0035
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0040
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0040
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0040
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0045
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0045
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0045
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0050
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0050
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0050
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0050
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0055
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0055
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0055
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0060
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0060
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0065
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0065
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0065
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0070
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0070
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0070
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0075
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0075
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0080
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0080
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0085
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0090
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0090
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0090
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0095
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0095
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0100
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0100
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0105
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0105
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0110
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0110
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0115
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0115
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0120
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0120
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0125
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0125
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0125
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0130
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0130
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0135
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0135
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0140
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0140
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0145
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0145
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0145
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0150
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0150
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0150
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0150
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0155
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0155
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0155
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0160
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0160
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0160
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0165
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0165
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0170
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0170
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0170
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0175
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0175
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0175
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0180
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0180
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0180
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0185
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0185
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0185
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0190
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0190
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0195
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0195
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0195
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0200
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0200
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0205
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0205
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0210
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0210
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0210
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0210
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0210
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0210
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0210
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0215
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0215
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0220
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0220
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0225
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0225
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0230
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0230
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0235
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0235
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0240
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0245
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0245
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0245


Rew, L.J., Cousens, R.D., 2001. Spatial distribution of weeds in arable crops: are current
sampling and analytical methods appropriate? Weed Res. 41 (1), 1–18.

Storkey, J., Cussans, J.W., 2000. Relationship between temperature and the early growth
of Triticum aestivum and three weed species. Weed Sci. 48 (4), 467–473.

Storkey, J., Cussans, J.W., 2007. Reconciling the conservation of in-field biodiversity with
crop production using a simulation model of weed growth and competition. Agric.
Ecosyst. Environ. 122 (2), 173–182.

Stratonovitch, P., Storkey, J., Semenov, M.A., 2012. A process-based approach to mod-
elling impacts of climate change on the damage niche of an agricultural weed. Global
Change Biol. 18, 2071–2080.

Tian, L.F., Steward, B.L., Tang, L., 2000. Smart sprayer project: sensor-based selective
herbicide application system. Environ. Ind. Sens. 73–80.

van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic con-
ductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44 (5), 892–898.

Webster, R., Oliver, M.A., 2007. Geostatistics for Environmental Scientists, 2nd ed. John
Wiley & Sons, Chichester.

Wilson, B.J., Brain, P., 1991. Long-term stability of distribution of Alopecurus myosuroides
Huds. within cereal fields. Weed Res. 31 (6), 367–373.

Wösten, J.H.M., Lilly, A., Nemes, A., Le Bas, C., 1999. Development and use of a database
of hydraulic properties of European soils. Geoderma 1999 (90), 169–185.

H. Metcalfe et al. Ecological Modelling xxx (xxxx) xxx–xxx

11

http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0250
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0250
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0255
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0255
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0260
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0260
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0260
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0265
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0265
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0265
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0270
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0270
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0275
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0275
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0280
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0280
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0285
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0285
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0290
http://refhub.elsevier.com/S0304-3800(18)30364-8/sbref0290

	Modelling the effect of spatially variable soil properties on the distribution of weeds
	Introduction
	Model description
	Soil water content
	A. myosuroides life-cycle
	A. myosuroides emergence
	Herbicide mortality
	Seed production
	Seed losses
	Seed movement


	Model parameterisation
	A. myosuroides emergence
	Herbicide mortality
	Seed production
	Seed losses
	Seed movement

	Model validation
	Patch location
	Scale-dependent correlations

	Results
	Patch location
	Scale-dependent correlations

	Discussion
	Conclusions
	Acknowledgements
	Supplementary data
	References




