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ABSTRACT
Various methods, including random regression, structured antedependence models, and character

process models, have been proposed for the genetic analysis of longitudinal data and other function-
valued traits. For univariate problems, the character process models have been shown to perform well in
comparison to alternative methods. The aim of this article is to present an extension of these models to
the simultaneous analysis of two or more correlated function-valued traits. Analytical forms for stationary
and nonstationary cross-covariance functions are studied. Comparisons with the other approaches are
presented in a simulation study and in an example of a bivariate analysis of genetic covariance in age-
specific fecundity and mortality in Drosophila. As in the univariate case, bivariate character process models
with an exponential correlation were found to be quite close to first-order structured antedependence
models. The simulation study showed that the choice of the most appropriate methodology is highly
dependent on the covariance structure of the data. The bivariate character process approach proved to
be able to deal with quite complex nonstationary and nonsymmetric cross-correlation structures and was
found to be the most appropriate for the real data example of the fruit fly Drosophila melanogaster.

THE need for a rigorous method of analysis for bio- ances. A comparison among these methods revealed
logical characters that are best considered as func- that, in many cases, character process models performed

tions of some independent and continuous variable is well in comparison to alternative methods, especially
rapidly growing. Important examples of these so-called random regression, often providing a better fit to the
function-valued traits include growth curves (Meyer covariance structure (genetic and nongenetic) with
2001), age-specific components of organismal fitness fewer parameters (Jaffrézic and Pletcher 2000).
such as survival or reproductive output (Pletcher et al. A parsimonious method for the analysis of two or
1998), lactation curves in dairy cattle (Meuwissen and more correlated function-valued traits is needed. Al-
Pool 2001; Jaffrézic et al. 2002), and gene expression though a multivariate extension of random regression
profiles across age or environmental treatments (DeRisi models is straightforward, their sometimes poor perfor-
et al. 1997; Pletcher et al. 2002). mance in the univariate case argues for the development

Several techniques have been proposed for single- of alternative methods. Moreover, the nature of the
trait (univariate) analyses. These include random re- parameterization results in a dramatic increase in the
gression models, which are based on a parametric mod- number of parameters required to describe complicated
eling of individual curves (Diggle et al. 1994), character covariance structures, which is often problematic. The
process models, which focus on parametric modeling data sets that are generated in experimental sciences,
of the covariance structure (Pletcher and Geyer 1999), such as genetics, and that are used to estimate different
and structured antedependence models (SAD; Nunez- types of covariance structures (e.g., genetic and nonge-
Anton and Zimmerman 2000; Jaffrézic et al. 2003), netic) are often too small to support the estimation of
where an observation at time t is modeled via a regres- many parameters (Pletcher et al. 1998). This would
sion over the preceding observations. The number of also preclude the use of other models such as spline
parameters is considerably reduced in the SAD approach functions.
compared to the traditional antedependence models The aim of this article is to investigate an extension
(Gabriel 1962), thanks to a parametric modeling of of the character process (CP) models (Pletcher and
the antedependence coefficients and innovation vari- Geyer 1999) to the multivariate case. The advantages

that apply to the CP models in the univariate setting, i.e.,
a small number of parameters to model the covariance
structure and a high degree of flexibility, are crucial1Corresponding author: INRA-SGQA, 78352 Jouy-en-Josas Cedex,

France. E-mail: florence.jaffrezic@dga2.jouy.inra.fr for developing practical multivariate models. Several
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cross-correlation and cross-covariance functions are Cov(g(t), g(s)�) � �Cov(g1(t), g1(s)) Cov(g1(t), g 2(s))
Cov(g 2(t), g1(s)) Cov(g 2(t), g 2(s))�. (4)

studied, and their behavior is compared to multivariate
random regression and structured antedependence As the covariance function has to be symmetric, it is required

thatmodels in a simulation study and in an example for the
genetic analysis of age-specific fecundity and mortality Cov(g(s), g(t)�) � Cov(g(t), g(s)�). (5)
in the fruit fly, Drosophila melanogaster.

Definition of matrix �(t � s): In the bivariate case, matrix
�(t � s) is of dimension 2 � 2. The requirements on this
matrix are that it is positive definite, equal to the identity

MATERIALS AND METHODS matrix when t � s, and should verify the symmetry property
�(t � s) � �(s � t). It corresponds to a bivariate extension

Bivariate character process models: A detailed description of the correlation functions proposed for univariate character
of the quantitative genetic model for univariate function-val- process models by Pletcher and Geyer (1999). All the func-
ued traits is given by Jaffrézic and Pletcher (2000) and tions proposed in their article can be extended. Among them,
Pletcher and Geyer (1999). In the genetic analysis of two however, the most commonly used are the exponential, the
correlated function-valued traits, it is assumed that the ob- Gaussian, and the Cauchy correlations. These functions are
served phenotypic characters can be decomposed as defined as follows:

Y(t) � �(t) � g(t) � e(t), (1) Exponential: �(t � s) � exp(��(|t � s|)).
Gaussian: �(t � s) � exp(��(t � s)2).

where Y(t) � (Y1(t), Y2(t))� represent the observed phenotypic Cauchy: �(t � s) � (I � �(t � s)2)�1.
trajectories for the two characters Y1(t) and Y2(t), t represents

In the bivariate case, I is the 2 � 2 identity matrix and �any continuous independent variable, which for clarity we
is a 2 � 2 matrix, not necessarily symmetric, with positiveassume is time, �(t) � (�1(t), �2(t))� are nonrandom func-
eigenvalues. The matrix exponentiation corresponds to a se-tions that correspond to the genotypic mean functions of Y1(t)
ries expansion and can be calculated using an eigenvalueand Y2(t), respectively, and g(t) � (g1(t), g2(t))� represent the
decomposition as shown in appendix a.genetic deviations for the two characters. Both deviations are

The bivariate exponential function is also used in the statisti-correlated over time and g(t) is a bivariate Gaussian process.
cal literature for the Ornstein-Uhlenbeck process (Sy et al.Similarly, e(t) � (e1(t), e2(t))� are the environmental devia-
1997).tions. Processes g(t) and e(t) are assumed independent of one

Further extension to this framework includes a relaxationanother, with mean zero at each age and with covariance
of stationarity of the correlation function. The nonstationaryfunctions G(t, s) and E(t, s). Focus is on the modeling of these
extension of the CP models proposed by Jaffrézic andcovariance functions.
Pletcher (2000) is implemented by replacing time lags (t �In the univariate character process approach, there is only
s) by a transformation (f(t) � f(s)). Considering a Box-Coxone function-valued trait, Y(t), and its covariance functions
transformation, as suggested by Nunez-Anton and Zimmer-(genetic and environmental) are modeled as
man (2000), and an exponential CP model, the correlation
function can be written asG(t, s) � v(t)v(s)�(t, s), (2)

�(t, s) � exp(��((t � � s �)/�)) (6)where v2(t) represents the variance function and is usually
a parametric function of the continuous variable such as a for � � 0 and
polynomial and �(t, s) is the correlation function. Assuming

�(t, s) � exp(��(Log(t) � Log(s))) (7)stationarity in the correlations, Pletcher and Geyer (1999)
proposed parametric forms for the correlation function in- when � � 0.
cluding an exponential (�(t, s) � exp(��|t � s|)), a Gaussian Definition of matrix V(t): In the bivariate case, matrix V(t)
(�(t, s) � exp(��(t � s)2)), and a Cauchy (�(t, s) � 1/(1 � � is also of dimension 2 � 2. The requirements for this matrix
(t � s)2)) function. Jaffrézic and Pletcher (2000) suggested are that it is symmetric and positive definite. It in fact corre-
a nonstationary extension of the models based on a nonlinear sponds to the covariance of the process at a given time t, as
transformation of the timescale, f(t) (Nunez-Anton and Zim- matrix �(t � s) is the identity matrix when t � s :
merman 2000). Correlation stationarity is assumed to hold on
the transformed scale �(t, s) � �(|f(t) � f(s)|). V(t) � Var(g(t)) � � Var(g1(t)) Cov(g1(t), g 2(t))

Cov(g1(t), g 2(t)) Var(g 2(t)) � . (8)
Models for bivariate Gaussian processes have been investi-

gated previously (Sy et al. 1997) as, for example, the bivariate
We present here two possible ways of modeling matrix V(t).Ornstein-Uhlenbeck process. It corresponds to a continuous-

It is possible to use a polynomial of time to model functiontime extension of a first-order autoregressive process [AR(1)],
V(t). That would correspond to a direct bivariate extensionwhich is also equivalent to a CP model with an exponential
of the variance function of the character process modelcorrelation and a constant variance. We adapt these ideas to (Pletcher and Geyer 1999).extend the character process methodology. When considering, for example, a quadratic function ofLet the continuous variable of interest be time and the time, the bivariate variance function can be written as

object of analysis be the genetic covariance function. In the
bivariate case, let g(t) � (g1(t), g2(t))� be the genetic character ln(V(t)) � A � Bt � Ct 2, (9)
process, where g1(t) is associated with trait 1 and g2(t) with

where A, B, and C are 2 � 2 symmetric matrices. The ln( )trait 2. The bivariate covariance function of the process can
of the variance again corresponds to a series expansion andbe written as
can be calculated as the exponential in the � matrix by using
an eigenvalue decomposition as explained in appendix a.Cov(g(t), g(s)�) � V(t)1/2�(t � s)(V(s)1/2)� (3)

The covariance matrix V(t) can also be decomposed in
terms of variance and correlation functions such as(for 0 	 s 	 t), where
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TABLE 1

Likelihood values for the simulated data sets based on unstructured covariance matrices

Model NPCov Example 1 Example 2 Example 3

US 55 2746.7 2401.8 3801.9
CP Quad-Exp 13 551.0 799.4 588.1
CP Quad-ExpNS 14 566.3 1478.9 703.0
SAD(1) 12 262.2 1008.4 545.0
SAD(2) 14 430.8 1380.2 864.4
RR1 13 980.0 200.7 472.6

US, unstructured covariance matrix; CP Quad-ExpNS, quadratic polynomial used to model V(t), exponential
function for �(t � s) with the nonstationary extension (Equation 6); RR1, linear random regression model
with three additional parameters for the residual structure; NPCov, number of parameters in the covariance
structure.

that the first-order bivariate structured antedependenceV(t) � � v2
1(t) v1(t)v2(t)�12(t)

v1(t)v2(t)�12(t) v2
2(t) � . (10)

model [SAD(1)] was well able to capture the covariance
structures simulated under all these different assump-Variance functions can be modeled as for univariate character
tions (results not shown). The similarity between theseprocess models with polynomial functions of time. For a qua-

dratic function, for instance, v2
1(t) � Var(g1(t)) � exp(a 1 � two approaches had already been pointed out in the

b 1 t � c 1 t 2) and v2
2(t) � Var(g2(t)) � exp(a 2 � b 2t � c 2t 2). univariate case for SAD(1) models and CP with an expo-

Function �12(t) represents the cross-correlation between the nential correlation function (Jaffrézic et al. 2003). Ontwo traits at a given time t. A possible parametric modeling
the other hand, random regression models dealt poorlyfor this cross-correlation function is
with all the different covariance structures considered

Corr(g1(t), g2(t)) � �12(t) � exp(�
1t) � exp(�
2t) (11) here, even when a cubic polynomial was used (involving
36 parameters for the covariance structure).for 
1, 
2 � 0. For practical purposes, it is interesting to note

that this correlation function is equal to 0 at t � 0, increases Simulations with unstructured covariance models: To
to a maximum at t � [ln(
2/
1)]/(
2 � 
1), and then decreases understand better the abilities and limitations of the
to 0 at infinity. different models, several patterns of covariance struc-A likelihood-ratio test can be used to examine specific

tures were investigated. To avoid favoring any of thehypotheses about the parameters. For example, testing if the
methodologies, data were simulated with unstructuredcross-correlation between the two processes at all times t is

equal to zero is equivalent to testing if 
1 � 
2. The cross- covariance matrices. A total of 2000 animals were consid-
correlation function �12(t) can also be assumed constant: ered with five observations for each trait. As focus was
�12(t) � r, which would imply that the cross-correlations are

on the cross-correlation modeling, quite simple struc-equal for all t.
tures for the variances and correlations of both variablesEstimation procedure: Parameters of these bivariate charac-

ter process models can be estimated with REML procedures, were chosen. Three examples are presented here.
using, for example, the OWN function of ASREML (Gilmour In the first case, the data were generated using a cross-
et al. 2002) as presented in appendix a. The nonstationary correlation that was stationary, symmetric, with quite
parameter � (Equation 6) is estimated at the same time as the

high values. With regard to the likelihood value (seeother covariance parameters with standard REML procedures.
Table 1), a simple bivariate linear random regressionThe properties of the proposed bivariate covariance function

are studied in appendix b. model was found to be the most appropriate, followed
by the bivariate CP models and then the SAD models
(all models had about the same number of parameters:

EXAMPLE from 12 to 14). Estimated cross-correlations obtained
with the unstructured model and the bivariate linearSimulation study: A simulation study was performed
random regresssion model are presented in Figure 1.to understand better the analogies between the differ-

In the second example, the cross-correlation was moreent methodologies: the bivariate CP model proposed
complex. Although the correlations between the traitshere, the bivariate structured antedependence models
were still quite high, they were nonstationary and non-presented in Jaffrézic et al. (2003), and the random
symmetric. The bivariate quadratic random regressionregression models. In a first set of simulations, data were
model did not converge and, on the other hand, thegenerated according to a bivariate CP model, with an
linear bivariate model was not able to deal adequatelyexponential “correlation” function (exp(��(t � s)))
with this cross-correlation pattern. It was found for theand a V(t) structure defined as ln V(t) � A � Bt � Ct 2.
character process model that the nonstationary exten-Different assumptions on parameters of �, A, B, and C
sion, using only one extra parameter (parameter � inwere investigated, setting some elements to zero or giv-

ing various values to these parameters. It was found Equation 6), considerably improved the fit as shown in
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Figure 1.—Estimated cross-correlations for example 1 of the simulation study for the unstructured model (US) and a bivariate
linear random regression model (RR).

Table 1. The likelihood value was then higher than that early ages and then increasing and decreasing for late
ages. The likelihood value was higher for SAD(2) thanfor the second-order SAD model with the same number

of parameters. Figure 2 gives the estimated cross-correla- for all the other models. It can be seen, however, in
Figure 3, that this model was not able to adequately fittions obtained with the unstructured model and with

the chosen bivariate CP model. the diagonal cross-correlation terms. On the other hand,
although the likelihood value was a little lower thanIn the third example, the data were also generated

with nonsymmetric and nonstationary cross-correla- that with the second-order SAD model, the character
process model was better able to capture the diagonaltions, with lower values than those for the first two exam-

ples. The diagonal cross-correlations were lower for cross-correlation pattern. These figures do show, how-

Figure 2.—Estimated cross-correlations for example 2 of the simulation study for the unstructured model (US) and the chosen
bivariate CP model: quadratic polynomial used to model V(t), exponential function for �(t � s) with the nonstationary extension
(Equation 6).
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Figure 3.—Estimated cross-correlations for example 3 of the simulation study, with data simulated with an unstructured
covariance matrix. [US, unstructured covariance matrix; CP, quadratic polynomial used to model V(t), exponential function for
�(t � s) with the nonstationary extension (Equation 6); SAD, second-order bivariate structured antedependence model; RR,
linear random regression model.]

ever, that even for the chosen models, there is still scope output were collected simultaneously from two replicate
cohorts for each of 56 RI lines. Deaths were observedfor improving the fit, although this might be difficult

while keeping the number of parameters reasonably low. every day, while egg counts were made every other day.
For both mortality and reproduction, the data wereEmpirical data—joint analysis of fecundity and mor-

tality in Drosophila: Age-specific measurements of re- pooled into 11 5-day intervals for analysis. Mortality rates
were log transformed and reproductive measures wereproduction and mortality rates were obtained from 56

different recombinant inbred (RI) lines of D. melanogas- square-root transformed so that the age-specific mea-
sures were approximately normally distributed.ter, which are expected to exhibit genetically based varia-

tion in longevity and reproduction (J. W. Curtsinger Parameter estimates for the different methodologies
were obtained with ASREML using the OWN functionand A. A. Khazaeli, unpublished results). Age-specific

measures of mortality and average female reproductive (Gilmour et al. 2002). Models were compared using the
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TABLE 2

Likelihood values and BIC criterion (Schwarz 1978) for univariate and bivariate genetic analyses
of fecundity and mortality in Drosophila

Genetic Environmental

Corr. Var. Corr. Var. NPCov Log L BIC

Univariate
Mortality Cauchy Quad. Cauchy Lin.
Fecundity Exp. NS Const. Cauchy NS Quad. 15 329.0 186.7

Mortality Cauchy NS Quad. Cauchy NS Quad.
Fecundity Cauchy NS Quad. Cauchy NS Quad. 20 337.2 175.6

Bivariate Cauchy NS Quad-Const. Cauchy NS Lin-Quad. 23 377.9 204.8
Cauchy NS Quad. Cauchy NS Quad. 28 380.6 188.2
Exp. NS Quad. Cauchy NS Quad. 28 370.2 177.8
Cauchy Quad. Cauchy Quad. 26 352.9 168.2
Exp. NS Quad. Exp. NS Quad. 28 354.6 162.2

In both cases the logarithms of the variances were modeled, such as ln v 2(t) � a � bt � c t 2 and ln(V(t)) �
A � Bt � Ct 2 with A, B, and C 2 � 2 symmetric matrices. Corr., correlation; Var., variance; Quad., quadratic;
Lin., linear; Exp., exponential; Const, constant.

BIC criterion (Schwarz 1978; Jaffrézic and Pletcher in the methodology section). The main improvement
of the bivariate model lies in its ability to model the2000): BIC � ln L � 0.5ncln(N � p), where ln L is the

REML likelihood value, nc is the number of covariance cross-covariance structure. The likelihood value of the
bivariate model (Log L � 377.9) was indeed muchparameters in the model, p is the number of fixed ef-

fects, and N is the total number of observations. Stan- higher than that for the two univariate analyses (Log L �
329.0). Therefore, taking into account the correlationdard likelihood-ratio tests could be used for nested mod-

els. Specific cases include testing if certain parameters function between the two variables fits the actual process
much better. Estimates obtained for the chosen bivari-in matrices V(t) or � are equal to zero. A nonparametric

mean function was used for both traits (i.e., a separate ate model are given in Table 3 and the first graph of
Figure 4 gives the genetic cross-correlation estimates.mean was fitted for each distinct age in the data), which

ensures a consistent estimate of the covariance structure They were found to be negative at all ages, nonstationary
and nonsymmetric. Fecundity and mortality were more(Diggle et al. 1994).

The best models chosen in the univariate analyses are strongly negatively correlated at a similar age (diagonal
terms), and the correlation intensity decreased whengiven in the first part of Table 2. For the genetic part,

a Cauchy correlation with quadratic variance was chosen ages became farther apart.
As they allow a simple and straightforward extensionfor mortality and a nonstationary exponential correla-

tion with a constant variance was chosen for fecundity. to the multivariate case, random regression models
(RRM) are most often used for multivariate analyses ofMany different correlation and variance functions were

investigated for the bivariate analysis and the best ones longitudinal data. They may not always, however, be the
most appropriate methodology. In this example, forregarding the likelihood value and BIC criterion are

given in Table 2. In the bivariate model, the correlation instance, the likelihood value was much higher for the
character process approach (Log L � 377.9) than forfunction has to be the same for the two variables and

was chosen here to be a nonstationary Cauchy correla- a bivariate quadratic random regression model (Log
L � 134.7), despite having far more parameters (42 fortion (with parameter � of the nonstationary extension

as in Equation 6). For the variance function, more flex- the RRM compared to 23 for the CP model). Moreover,
increasing the order of the polynomials dramaticallyibility can be achieved in the choice of the function by

setting some parameters of matrices A, B, and C to zero. increases the number of parameters (for instance, from
quadratic to cubic: 42 to 72 parameters).In the bivariate model, the chosen function was, as in

the univariate case, quadratic for mortality and constant Although the difference was not as important as for
random regression models, the likelihood value was alsofor fecundity. Estimates obtained for the variance and

correlation functions for fecundity and mortality were higher, in this example, for the bivariate CP model
than for a bivariate structured antedependence modelvery similar with the univariate and bivariate models

(although their analytical forms were different, as shown (Jaffrézic et al. 2003; Log L � 322.8, 24 parameters).
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TABLE 3

Parameter estimates (and standard errors) for the bivariate genetic analysis of fecundity and mortality in
Drosophila with the best-fitting bivariate character process model, for the BIC criterion, given in Table 2

Parameters Genetic Environmental Parameters Genetic Environmental

�1 0.49(0.22) 5.82(2.45) b1 14.91(2.14) �0.04(0.19)
�2 1.20(0.61) 18.17(8.57) b 2 0.0 0.04(0.70)
�1 �0.71(0.44) �1.16(0.30) b 3 0.0 �2.22(0.44)
�2 0.18(0.31) 2.32(0.83) c 1 �16.64(2.19) 0.0
a 1 �2.71(0.46) �0.92(0.13) c 2 0.0 0.75(0.56)
a 2 �1.99(0.14) �2.40(0.18) c 3 0.0 1.46(0.36)
a 3 �0.59(0.07) 0.41(0.12) � 0.37(0.14) 0.43(0.11)

The variance functions are defined by ln(V(t)) � A � Bt � C t 2, where t � age/10 and

A � �a1 a3

a3 a2
�

and similarly for matrices B and C. Parameters �1, �2, �1, and �2 define matrix � as specified in appendix a
for the Cauchy correlation function, and � is the nonstationary parameter (Equation 6).

The estimated genetic cross-correlations obtained estimated phenotypic cross-correlations and the un-
structured estimates, the Vonesh concordance coeffi-with the three methodologies are presented in Figure
cient (Vonesh et al. 1996) was used, as presented by4. Their patterns were found to be very different, even
Jaffrézic and Pletcher (2000), considering the un-between the bivariate CP and SAD models, although
structured estimates as the correct values.there was only a small difference in their likelihood

The concordance coefficients were 0.77 for the CPvalues. As the true genetic cross-correlations are not
model, 0.52 for the SAD model, and 0.73 for the RRknown, it is difficult, however, to know which pattern
model (a perfect fit being at 1.0). As shown with theis the closest to reality and how much discrepancy still
likelihood value, the bivariate character process modelremains compared to the actual values.
fit best the phenotypic cross-correlation structure. OnTo address these issues, a phenotypic analysis was
the other hand, the goodness of fit was found higherperformed on these data, which allows us to obtain
for the bivariate random regression model than for theestimates for an unstructured covariance matrix (22 �
structured antedependence model (0.73 compared to22). This was not possible in the genetic study due to
0.52), although the likelihood value was much higherthe very large number of parameters to be estimated.
for the SAD model (Log L � 183.8) than for the RREstimated phenotypic cross-correlations obtained with
model (Log L � 67.7). The SAD models were thereforethe different models are presented in Figure 5 and the
in this case better able to model the covariance structureunstructured estimates were considered as the reference
for each trait separately, as in univariate analysis,model. Once again, the four estimated patterns were
whereas the random regression models were better ablefound to be very different. As in the genetic analysis,
to fit the cross-correlation structure. The choice of thethe likelihood value was the highest for the character
model should therefore not be made regarding theprocess model (� 197.1 with a nonstationary Cauchy
likelihood value only, but also depends on the prioritiescorrelation function and quadratic V(t) function, with
of the study. In any case, in this particular study, the14 parameters, BIC � 58.6), compared to a bivariate
character process model was more appropriate than theSAD(1) model (Log L � 183.8, with 12 parameters,
other two methodologies.BIC � 53.0), a bivariate SAD(2) model (Log L � 185.9,

Figure 5 shows, however, that the obtained cross-cor-with 14 parameters, BIC � 47.4), and a quadratic bivari-
relation patterns were still all quite different from theate random regression model (Log L � 67.7, 21 parame-
unstructured phenotypic estimates and that there is still,ters, BIC � �97.7). The highest likelihood value, ob-
therefore, scope for improvement.tained here with the bivariate CP model, is still, however,

quite far away from that of the unstructured model (Log
L � 535.6). But as the number of parameters in the

DISCUSSIONunstructured model is very large (� 253), its BIC value
is extremely low (� �522.4), and the best model with The character process model, originally proposed by
regard to the BIC criterion here, therefore, is the bivari- Pletcher and Geyer (1999) to analyze function-valued
ate CP model. traits, is based on a parametric modeling of the variance

and correlation functions of a stochastic process. It mod-To have a measure of the discrepancy between the
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Figure 4.—Estimated genetic cross-correlations between fecundity and mortality obtained with the chosen CP model, a bivariate
SAD(1) model, and a quadratic random regression model.

els the covariance structure with a small number of properties of the univariate character process approach
and simultaneously allow a parametric modeling of theinterpretable parameters. A special case of these models

has been independently proposed in the statistical litera- cross-covariance structure. The proposed extension was
based on an idea presented by Sy et al. (1997) for theture, namely the Ornstein-Uhlenbeck process (Taylor

et al. 1994). It is equivalent to a character process model Ornstein-Uhlenbeck process and was generalized to
other kinds of correlation functions, including thosewith an exponential correlation function and constant

variances and represents a continuous time extension that are nonstationary.
Models were presented here in the bivariate case, butof a first-order autoregressive model.

We proposed an extension of the univariate character extension to the analysis of more than two correlated
function-valued traits is straightforward and accom-process model to the multivariate case. Our goal was to

develop a method of analysis for two or more correlated plished by increasing the dimensions of matrices V and
� in accord with the number of traits analyzed.function-valued traits that would retain all the desirable
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Figure 5.—Estimated phenotypic cross-correlations between fecundity and mortality obtained with the unstructured model
(US); a character process model CP Quad-CauchyNS: quadratic polynomial used to model V(t), Cauchy function for �(t � s)
with the nonstationary extension; a bivariate SAD(1) model; and a quadratic random regression model.

The first part of the simulation study highlighted the data and that the three models (random regression,
structured antedependent, or character process) cansimilarities between the bivariate CP models with an

exponential correlation and bivariate first-order SAD be worthwhile depending on the particular biological
phenomenon studied. When the cross-covariance struc-models (Jaffrézic et al. 2003), as in the univariate case.

Further differences between the two approaches appear ture is symmetric and stationary with quite high correla-
tions, the most appropriate model to use might be awhen higher orders of antedependence are considered

or when other parametric correlation functions are used simple random regression model. When the cross-corre-
lation structure becomes more complex it should bein the CP models.

It was found in the second part of the simulation study either structured antedependence or character process
models, especially because the number of parametersthat the choice of the most appropriate methodology is

highly dependent on the covariance structure of the required in a more complex random regression model
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Sy, J. P., J. M. G. Taylor and W. G. Cumberland, 1997 A stochasticdramatically increases. For the Drosophila analysis, the
model for the analysis of bivariate longitudinal AIDS data. Biomet-

bivariate character process model proved to be the most rics 53: 542–555.
Taylor, J. M. G, W. G. Cumberland and J. P. Sy, 1994 A stochasticappropriate.

model for analysis of longitudinal AIDS data. J. Am. Stat. Assoc.The multivariate extension of the character process
89: 727–736.

models represents a flexible and powerful technique Vonesh, E., V. Chinchilli and K. Pu, 1996 Goodness-of-fit in gener-
alized nonlinear mixed-effects models. Biometrics 52: 572–587.for the genetic analysis of two or more function-valued

traits. Although the observed measurements are avail- Communicating editor: M. K. Uyenoyama
able only on a discrete timescale, this approach can
model the fact that the underlying process is continuous
and therefore can deal with highly unbalanced data. As APPENDIX A: IMPLEMENTATION
variance parameters are assumed to change with time,

As suggested by Sy et al. (1997), to calculate the matrixother environmental factors of heterogeneity could be
exponentiation used in the correlation functions, diago-included in the variance modeling, as suggested by
nalization of matrix � is used,Foulley and Quaas (1995). Further research might

extend these multivariate models to include the genetic � � ����1, (A1)
analysis of nonnormally distributed traits, as studied by

where � is a diagonal matrix of the distinct eigenvaluesPletcher and Jaffrézic (2002) in the univariate case.
�1 and �2 of �, and � is a 2 � 2 matrix whose columns

We are most grateful to Jean-Louis Foulley, William G. Hill, Nancy are the right eigenvectors. The matrix exponential is
Heckman, Jay Beder, and two anonymous referees for very interesting

then written and evaluated ascomments and ideas. Thanks go to J. Curtsinger and A. Khazaeli for
generously providing published and unpublished data.

e��(t�s) � �e��(t�s)��1. (A2)
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Jaffrézic, F., and S. D. Pletcher, 2000 Statistical models for esti- (I � �(t � s)2)�1 � � 1 �2

�1 1 �
mating the genetic basis of repeated measures and other function-
valued traits. Genetics 156: 913–922.
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whole genetic covariance matrix G of dimension (2J � nential function is considered. In this case, matrix � is
defined as for the bivariate Ornstein-Uhlenbeck process2J ) can be written as G � V�V �. By construction (Equa-

tion 5), matrix G will be symmetric. Matrix V is block (Sy et al. 1997) and therefore satisfies the positive defi-
niteness property. When considering other functions asdiagonal: V � (Vj)j�1,J, where Vj are 2 � 2 matrices de-

fined by Vj � (V(tj))1/2, where ln V(tj) � A � Btj � proposed in the univariate case by Pletcher and Geyer
(1999), such as Gaussian or Cauchy, the property isCt 2

j , or is specified as in Equation 10. In both cases, matri-
ces Vj, for j � 1, . . . , J, are positive definite. Matrix � maintained. Therefore, the proposed function for the

bivariate CP model satisfies the theoretical require-is a 2J � 2J symmetric matrix defined, for (i, j � 1, . . . ,
J ), by �(2(i � 1) � 1:2i, 2(j � 1) � 1:2j) � �ij, where ments of a covariance function as it is symmetric and

positive definite.�ij � (exp(��(ti � tj)))1	j	i and �ji � ��ij, if an expo-




