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ABSTRACT 

High temperature (HT) stress during wheat male reproductive development 

causes irreversible damage to the anther tapetum layer and the developing 

microspores it supports, resulting in reduced yield. With the frequency of pre-

flowing temperature stress events likely to increase, a better understanding of 

the effects of high temperature stress on anther developmental regulation is 

required. Gibberellin (GA) signalling has been shown to regulate tapetum 

programmed cell death (PCD) and pollen coat formation via the transcription 

factor (TF) GAMYB. This project aimed to investigate the function of two 

putative GA-signalling components in wheat anther development and 

characterise the global hormonal and transcriptional anther responses to HT. 

RNAi and TILLInG mutants for TaGAMYB and a putative orthologue of a rice 

tapetum PCD component, TabHLH141, revealed that both are required for 

male fertility. Tagamyb mutants displayed stunted anther development with 

irregular tapetum vacuolisation and reduced pollen viability.  An interaction 

between RHT-D1 and TabHLH141 suggests that GA may mediate anther 

development through regulation of DELLA-TF interactions.  

Having characterised and developed a non-destructive staging method for 

wheat anther development, RNA-Seq and global hormone analysis was used 

to investigate the response to HT stress around pollen mother cell meiosis. 

Significant changes in expression of tapetum metabolism and PCD annotated 

transcripts and anther GA, auxin and jasmonate concentrations indicates that 

hormonal regulation of HT-responsive transcription may contribute to 

defective anther development.  

The work in this project demonstrates that advanced functional genomics 

techniques can be now be applied to the dissection of complex signalling 

pathways in hexaploid wheat.  
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CHAPTER 1: GIBBERELLIN SIGNALLING DURING MALE 

REPRODUCTIVE DEVELOPMENT IN WHEAT AND THE IMPACT OF 

HIGH TEMPERATURE STRESS 

1.1. Wheat production, food security and climate change 

Wheat (Triticum aestivum) is one of the world’s most important plants, with 

over 600 million tonnes harvested annually, it contributes 19% of global 

dietary energy and even holds significance in human cultures and religions 

around the world (Shewry, 2009; Ray et al., 2013). Modern bread wheat is an 

allohexaploid (2n = 6x = 42, AABBDD), the result of a spontaneous 

hybridisation between the tetraploid wheat T. turgidum (2n = 4x = 28, AABB) 

and goat grass Aegilops tauschii (2n = 2x = 14, DD) around 10,000 years ago in 

the near-eastern region often referred to as the fertile crescent (McFadden 

and Sears, 1946; Simons et al., 2006; Shewry, 2009). Selection for 

domestication traits such as a non-shattering and free threshing ears, which 

reduced loss of grains and labour required to harvest them, further separated 

cultivated hexaploid wheat from its wild relatives as cultivation spread across 

central Asia and Europe, (Salamini et al., 2002). Hexaploid bread wheat has 

now come to dominate agriculture in temperate regions due to its high yields, 

nutritional and culinary value and genetic diversity which allows its adaptation 

to a range of environments and changing cultivation practices (Shewry, 2009). 

During the mid-20th century, dramatic advances in the way in which wheat is 

bred and cultivated led to unprecedented yield improvement. This remarkable 

acceleration in the rate of wheat yield gains can be traced in the Broadbalk 

long-term wheat experiment at Rothamsted Research. Started by Sir John 

Bennett Lawes in 1843 as a means to demonstrate the effectiveness of his 

commercial fertiliser, the experiment records annual wheat yield data across a 

range of treatments and is thought to be the oldest continuous field 

experiment in the world (Fig. 1.1).  
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Figure 1.1. Wheat grain yields 1855-2010 at Broadbalk long term experiment, 

Rothamsted Research, UK. Lines show mean average grain yields (t ha-1) under 

either continuous or 1st in rotation cultivation with farm yard manure (FYM) or 

synthetic fertiliser (NPK) fertilisation. Additional labels denote introduction of 

improved cultivar and/or agronomic practice (used with permission from 

Rothamsted Research).  

The post-war period from 1945 onwards marks an important shift in the 

approaches taken to augmenting wheat yields in a period which became 

known as the “green revolution” (Evenson and Gollin, 2003). Multiple factors 

contributed to the green revolution ranging from advances in mechanisation 

and synthetic chemistry to socio-economic transitions but arguably the most 

important change to occur was the integration of improved understanding of 

plant physiology and genetics with breeding approaches.  

One such wheat breeding programme led by Dr. Norman Borlaug at the Centro 

Internacional de Majoremeinto de Maís y Trigo (CIMMYT) in Mexico produced 

a semi-dwarf varieties using a novel Japanese cultivar; Norin 10 (Hedden, 

2003). The restricted stem elongation trait of this variety made it resistant to 

lodging, meaning that increased quantities of nitrogenous fertiliser could be 

applied resulting in increased partitioning of assimilate to grain rather than 

vegetative biomass (Flintham et al., 1997). The introduction of dwarfing genes 

contributed to an increase in average wheat yields from just over 5 t ha-1 to 
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nearly 10 t ha-1 (Fig. 1.1.). The introduction of these high yielding varieties at a 

time of rapid population expansion is credited with preventing a billion people 

from suffering malnourishment and preventing hundreds of millions of 

hectares from being converted to agricultural use (Evenson and Gollin, 2003; 

Stevenson et al., 2013). For this achievement Dr. Borlaug was awarded the 

Nobel Peace Prize in 1970. 

Since then however, average farm yields have closed on the genetic potential 

maximum of many crops including wheat (Cassman, 1999). Therefore, 

providing any further yield gains in regions in which yield improvements have 

plateaued without inflicting significant environmental damage requires an 

unprecedented intensification of plant breeding, agronomy, ecology and 

environmental science research.  

1.1.1. The impact of high temperature stress on wheat production 

The world’s population is anticipated to reach 9 billion around the year 2050. 

This increase in people will place significant pressure on the global agricultural 

system and at the same time place limitations upon the land, resources and 

acceptable level of environmental impact available to agriculture (Godfray et 

al., 2010). Crop production alone needs to have doubled from current levels 

by this point to meet projected demand, however, if current rates of 

improvement are maintained wheat yields will only be 38% of that required 

(Ray et al., 2013). Further confounding efforts to increase wheat yields is the 

negative consequences of global climate change for crop production. Climate 

change models suggest that rising average temperatures are already slowing 

yield gains in most wheat growing regions and that for every 1 °C increase in 

temperature further losses of 6% of global production can be expected 

(Asseng et al., 2014). Development of mitigation strategies aimed at reducing 

future yield losses requires a comprehensive understanding of physiological 

responses of wheat to the abiotic stresses expected to accompany various 

climate change scenarios. By understanding the impact of stress on vulnerable 

processes and periods of development, desirable traits for breeding of stress 
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tolerant varieties and stress avoidance alterations to cultivation practices can 

be developed.  

Yield penalties are associated with chronic temperature stress throughout the 

growing period and heat shock events which coincide with reproductive 

development and grain filling (Farooq et al., 2011; Cossani & Reynolds, 2012). 

High temperature (HT) stress during grain filling reduces plant photosynthetic 

capacity which also reduces assimilate available for grain filling, grain quality, 

metabolic capacity to partition assimilate to grain and can induce grain 

abortion (Cossani & Reynolds, 2012; Hays et al., 2007; Ortiz et al., 2008). 

Furthermore, the phenological effect of increased temperature is to 

accelerate developmental rate and therefore post-anthesis HT stress shortens 

the grain filling period resulting in reduced grain weight (Ferris et al., 1998). 

Grain filling generally coincides with the hottest part of the growing season 

(Gourdji et al., 2013), therefore, it has been suggested that modification of 

wheat phenology to shift completion of grain filling to avoid peak daily 

maximum temperatures and terminal drought combined with further genetic 

improvement for heat tolerance is the best route to yield stability in warmer 

climates (Gouache et al., 2012; Sadras & Monzon, 2006; Sadras et al., 2007; 

Semenov et al., 2014).  

Short periods of HT stress overlapping pre-anthesis and early reproductive 

development are known to have a negative impact on reproductive 

development in flowering plants, including cereal crops such as wheat, rice 

and barley (Saini and Aspinall, 1982; Saini et al., 1984; Sakata et al., 2000; 

Barnabas et al., 2008; Endo et al., 2009; Oshino et al., 2011). Male 

reproductive development in particular is highly sensitive to fluctuation in 

temperature at various stages of anther and pollen development, pollen 

release and pollen tube growth (Saini and Aspinall, 1982; Saini et al., 1983; 

Giorno et al., 2013; Müller and Rieu, 2016). Saini and Aspinall (1982) 

demonstrated that early anther development in wheat can be severely 

impaired by brief induction of HT stress. Exposure to 1 day at 30 °C or 3 days 

at 30 °C / 20 °C day/night around meiosis of the pollen mother cells in wheat 
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reduced grain set by 23.75 and 34.9% respectively due to a loss of pollen 

fertility (Saini and Aspinall, 1982). As wheat is a predominately self-fertilising 

plant (De Vries, 1971) any reduction in either male or female fertility will 

negatively affect fecundity.  

The tapetum, an internal anther cell layer responsible for critical processes in 

pollen development, has been shown to be highly sensitive to abiotic stress in 

many species including cereals such as rice and wheat (Saini et al., 1984; 

Oshino et al., 2007; Parish et al., 2013). Developing anthers are major sinks for 

assimilate and protecting their development and ability to maintain 

carbohydrate supply via the tapetum is crucial to ensuring fertility under 

abiotic stress conditions (Ji et al., 2010). Furthermore, the tapetum also has a 

vital role in the formation of the pollen exine which is critical for its 

attachment and recognition by the style (Mizelle et al., 1989; Shi et al., 2015). 

Extremes of temperature during critical periods of tapetum activity have been 

shown to reduce its ability to transfer carbohydrates to developing pollen cells 

and disrupts tapetum cell lifecycle leading to reduced fertility (Parish et al., 

2013). Hormonal signaling pathways exert a strong influence on normal 

tapetum function (Plackett et al., 2011; Zhang and Yang, 2014) and changes to 

function and structure under HT stress (Sakata et al., 2010; Ji et al., 2011; 

Higashitani, 2013). However, our understanding of the precise regulatory 

mechanisms which control the function of the tapetum remain limited. 

Climate change models predict that more frequent, extreme HT events 

coinciding with periods of early wheat reproductive development will become 

a significant source of yield loss over the next 30 years (Semenov and Shewry, 

2011). The vulnerability of the tapetum under these conditions will make a 

significant contribution to these losses if a means of reinforcing tapetum cells 

against HT stress cannot be found. Unlike terminal HT and drought stress, 

sporadic and unpredictable periods of extreme temperature cannot simply be 

avoided by altering phenology. It is therefore timely that the mechanisms 

underlying the anther response to HT is better understood in order to begin 

identifying the breeding traits required to produce HT-tolerant cultivars.  
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1.2. Anther and pollen cell morphology and development 

The male reproductive gamete, pollen, is manufactured in floral organs 

called anthers. This begins with the formation of stamen primordia by the 

sporophyte and the differentiation of specialised anther tissues which 

support the development of sporophytic cells followed by meiosis to form 

gametophytes and the eventual release of mature haploid pollen (Ma, 

2005). This is a developmentally complex process which requires the 

coordination of cellular processes such as division, differentiation and cell 

death which result in observable cytological changes which are broadly 

conserved across flowering species but have mostly been studied in model 

species Arabidopsis, barley and rice (Ma, 2005; Wilson and Zhang, 2009; 

Gómez and Wilson, 2012). Some attention has been given to 

characterisation of wheat anther and pollen development in the context of 

abiotic stress response, development of male sterile hybrid breeding 

varieties and hybridisation agents (De Vries, 1971; Saini et al., 1984; Ji et al., 

2010). In rice and barley, male reproductive development spanning from 

anther primordia differentiation to dehiscence has been morphologically 

characterised and divided into discrete stages based on distinctive 

cytological features (Wilson and Zhang, 2009; Gómez and Wilson, 2012) 

which can be considered broadly analogous to the pollen development 

process in wheat although some differences may occur.  

1.2.1. Pollen development 

Pollen development is the process of producing haploid reproductive gametes 

with adequate nutrient reserves and outer protective coating to ensure 

fertilisation (Fig. 1.2.). After the formation of the stamen primordia, mitotic 

division of archesporial cells give rise to the four cell layers of the anther. 

Initially a primary sporogenous and a primary parietal layer are formed. These 

cells undergo further divisions to form pollen mother cells (PMCs) and the 

somatic layers of the anther wall (endothecium, middle layer and tapetum) all 

of which is surrounded by an outer epidermis (Wilson and Zhang, 2009, Zhang 
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and Yang, 2014). PMCs divide by meiosis to form tetrads of haploid 

microspore cells surrounded by a callose wall. Free microspores are released 

from the tetrads into the anther locule after degeneration of the callose 

envelope. During the second phase of pollen development the newly released 

gametophytes undergo two rounds of mitosis to form two sperm cells which 

will complete the fertilisation of the ovary and endosperm, begin toand a 

vegetative cell which maintains pollen cell function (McCormick, 1993). 

Coinciding with mitosis is the vacuolation of pollen cells and the initiation of 

carbohydrate accumulation during which pollen cells begin to take on their 

familiar spherical form and appear filled (Mizelle et al., 1989).  

 

Figure 1.2. Typical progression of pollen development in angiosperms. Haploid 

microspores are released into the anther locule in tetrads after meiosis of 

PMCs. Young microspores then undergo mitosis, accumulate carbohydrates 

and pollen coat formation before they are released as mature pollen cells 

(adapted from McCormick, 1993).  

Upon completion of PMC meiosis, the process of pollen wall synthesis begins. 

The pollen wall is formed of two layers, the inner intine and the outer exine 

comprised mostly of pectocellose and sporopollenin respectively (Mizelle et 

al., 1989; McCormick, 1993). The sporopollenin forms a species-specific 
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pattern as it is laid down on the exine which is determined by the sporophyte 

and is required for cell-cell recognition during fertilisation (McCormick, 1993; 

Ma, 2005). In the later stages of pollen development once the pollen coat has 

formed, the swelling of the pollen cells coincides with degradation of anther 

wall tissues leading to dehiscence, the splitting of the anther theca which 

releases pollen into the environment (Matsui et al., 1999).  

1.2.2. The role of the tapetum in pollen development 

The events leading up to the release of mature, viable pollen cells from the 

anther are dependent upon the prior competence of the tapetum. The 

tapetum is a layer of cells lining the anther locule which provide microspores 

with nutrients, enzymes required for their release from meiotic tetrad callose 

envelopes and later the molecular components of the pollen exine wall are 

provided by the secretory tapetum layer (Parish and Li, 2010, Plackett et al., 

2011, Liu and Fan, 2013, Plackett et al., 2013, Lui et al., 2014). Beyond its 

nutritive and structural support function (Ma, 2005) the tapetum has been 

shown to have a crucial role in developmental signalling required to support 

post-meiotic pollen processes such as mitosis (Ma, 2005; Yang et al., 2007; Xu 

et al., 2010; Plackett et al., 2014).  

During pollen mitotic division and exine wall formation the tapetum layer 

undergoes programmed cell death (PCD), releasing further components 

essential to pollen formation (Parish and Li, 2010, Lui and Fan, 2013). The 

timing and execution of tapetum PCD is a highly regulated process which 

depends on a complex and poorly understood signalling network which if 

interrupted results in male sterility (Aya et al., 2009, Parish and Li, 2010, Nui et 

al., 2013, Min et al., 2013). Wheat tapetum cells are highly metabolically active 

at PMC meiosis with plastids and the cytosol becoming dense and the initiation 

of vacuole formation (Mizelle et al., 1989). At some point during this period, an 

as of yet poorly understood signal is received which commences tapetum PCD. 

As tapetum cell walls degrade, lipidal Pro-Ubisch bodies collect on the locule 

surface on which sporopollenin accumulates although it is not clear exactly 
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what role orbicular Ubisch bodies play in delivery of these vital pollen wall 

components (Mizelle et al., 1989; Parish and Li, 2010). Tapetum cells then 

disintegrate as the pollen cells swell during their vacuolation phase giving the 

appearance that the tapetal cells are collapsing under the pressure. Tapetum 

cells have completely degraded by the time pollen cells enter the second 

round of mitosis (Zhang et al., 2011). 

Tapetum PCD is apoptotic-like, occurring rapidly and characterised by cellular 

collapse, remobilisation of components and detectable DNA fragmentation 

(Varnier et al., 2005; Parish and Li, 2010). Synchronisation of tapetum PCD with 

pollen development is crucial for male fertility. Abiotic stress disrupts this 

developmental programme by modifying complex hormone and secondary 

signals signalling cascades which regulate the activity of PCD executing 

enzymes (Parish et al., 2013).  

1.3. Genetic regulation of pollen development 

Anther and pollen development involves a number of complex developmental 

steps, beginning with stamen meristem specification and ending with the 

release of viable pollen cells. During these processes tens of thousands of 

unique transcripts are expressed in anther and gametophytic cells (Guo and 

Liu, 2012). Many of the most important genes which regulate anther and 

pollen development have been identified in model species such as rice and 

Arabidopsis for which considerable genetic and genomic resources are 

available (Gómez et al., 2015). Pollen development in both species involves 

similar stages and the analysis of male sterile mutants of orthologueous genes 

in both species reveal that the underlying genetic regulatory mechanism is 

highly conserved (Wilson and Zhang, 2009; Gómez et al., 2015). The challenge 

now is to translate this knowledge into more genetically complex, non-model 

crop species such as wheat to allow the dissection of agronomically important 

traits such as heat stress tolerance.  



10 
 

1.3.1. Floral organ identity and differentiation 

Molecular studies have identified a suite of genes and their specific temporal 

and spatial expression profiles which form the ABCE model of floral organ 

identity specification including the male reproductive organ, the stamen. 

Floral organs (sepals, petals, stamen and gynoecium) are each confined to 

within one of four concentric whorls where the localised, overlapping 

expression of specific ABCE genes determines the organ identity in each whorl 

(Chandler, 2011). Reduced or ectopic expression of ABCE genes result in the 

interchangeable conversion of organ identities (Goto et al., 2001). The A 

function genes determining sepal and petal identity are APETALA1 (AP1) and 

APETALA2 (AP2), B function gene APETALA3 (AP3)/PISTILATA determine petal 

and stamen identity, C function gene AGAMOUS (AG) determines stamen and 

carpel development whilst E function genes SEPELLATA1, -2, -3 and -4 are 

required for all functions (Ma, 2005).  Therefore, the B and C functions are 

required for the determination of stamen identity in the floral meristem (Fig. 

1.3.).  
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Figure 1.3. The ABCE model of floral organ identity determination. Whorl-

specific expression of floral-homeotic family genes determines organ 

differentiation on the floral meristem. Determination of stamen identity arises 

from combined gene-family expression; A+E = sepals, A+B+E = Petals, B+C+E= 

stamen and C+E = carpels (from Ma, 2005). 

1.3.2. Genetic regulation of pollen and tapetum development 

An extensive body of research characterising the roles of genetic signalling 

components in anther development now exists in model species Arabidopsis 

and rice (Fig. 1.4.) which shows although there are some differences the 

fundamental principles are conserved (Wilson and Zhang, 2009; Gómez et al., 

2015). After the initiation of stamen primordia anther lobes consisting of four 

non-reproductive cell layers surrounding the microsporocytes are formed. In 

Arabidopsis, the genes SPOROCYTELESS (SPL)/NOZZLE (NZZ) are required in 

early anther development and are crucial for differentiation and the correct 

formation of sporogenous cells and the tapetum (Yang et al., 1999). 

Furthermore, it appears that expression of SPL/NZZ is under the regulation of 

AG (Ito et al., 2004). 
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Figure 1.4. Anther development genetic regulatory network in Arabidopsis 

and rice. Colour of gene names relate to equivalent orthologues. Solid arrows 

indicate characterised relationships, dashed arrows are unconfirmed. Adapted 

from Gòmez et al., (2015) 

The expression of two Arabidopsis meiocyte and tapetum precursor cell 

specific genes, EXCESS MALE SPOROCYTES1 (EMS1) and TAPETUM 

DETERMINANT1 (TDR1), produce a receptor-ligand cell signalling pathway that 

ensures the correct differentiation of meiocytes and tapetal cells (Canales et 

al., 2002; Ma, 2005). Both genes are required for tapetum identity with 

mutant phenotypes displaying excess male sporocytes, the lack of a tapetum 

and male sterility. 

The basic helix-loop-helix (bHLH) transcription factor DYSFUNCTIONAL 

TAPETUM1 (DYT1) acts downstream of EMS1/EXS and TAPETAL 

DETERMINANT1 (TPD1) and is required for tapetum development (Zhang et 

al., 2006). During meiosis and young microspore stages in dyt1 loss-of-

function mutants the tapetum becomes vacuolated, with deposition of thin 

callose walls and a reduction in the expression of other tapetum-preferential 

genes, including two other transcription factors required for tapetum and 
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pollen development, MALE STERILE1 (MS1) and ABORTED MICROSPORES 

(AMS) (Zhang et al., 2006). MS1 is a PHD-finger class transcription factor 

which is expressed in the tapetum during callose breakdown and appears to 

regulate the expression of at least 260 genes primarily involved in pollen wall 

and coat formation but also other transcription factors and Cysteine 

proteases (Yang et al., 2007). The other potential target of DYT1, AMS, is also 

a bHLH transcription factor and is also necessary for the expression of tapetal 

function and postmeiotic pollen wall formation genes (Xu et al., 2010).  

A number of genes with important roles in the formation of the pollen coat 

have been identified but their relationship to the anther regulatory signalling 

cascade is not yet clear. DEFECTIVE EXINE 1 (DEX1) and NO EXINE FORMATION 

1 (NEF1) are plasma membrane proteins required for pollen exine formation 

and sporopollenin transport, without which pollen abortion occurs after 

microspore release from tetrads (Ariizumi et al., 2004; Ma et al., 2013). 

Similarly, RAFTIN (OsRAFTIN) is a cereal specific BURP-domain protein 

expressed in the tapetum and microspores which is critical for the formation 

of Ubisch bodies, thought to be instrumental in transporting and depositing 

sporopollenin from the tapetum on the pollen exine (Wang et al., 2003). 

Rice TFs OsTDR, OsUDT1 and OsGAMYB mutants all have defective tapetum 

development phenotypes which suggests that either the tapetum pathway 

involved in multiple pathways or all of these TFs are upstream of a single PCD 

“master switch” (Kaneko et al., 2004; Jung et al., 2005; Li et al., 2006a; Parish 

and Li, 2010). Whilst some information about the likely positions of these TFs 

in the anther regulatory network can be inferred from their mutant 

phenotypes and transcription of downstream response genes, expression 

patterns and protein-protein interaction studies, the precise mechanism 

through which they bring about tapetum PCD remains unknown.  

OsGAMYB is an anther expressed TF which is also involved in mobilisation in 

the seed aleurone layer suggesting that it may perform a similar function in 

the tapetum (Millar and Gubler, 2005; Wilson and Zhang, 2009) (see section 
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1.4.4.). Indeed conversion and transport of carbohydrates is a significant part 

of the role of the tapetum and is measurably perturbed by abiotic stress 

(Oliver et al., 2005; Ji et al., 2011). So far however, OsGAMYB has been 

associated only with tapetum PCD regulation and pollen exine formation 

(Kaneko et al., 2004; Aya et al., 2009). 

The absence of PCD in rice Osgamyb mutants may be explained by its positive 

regulation of a group of protease genes which are involved in apoptosis (Aya 

et al., 2009, Alonso-Pearl et al., 2010). OsGAMYB converges with OsUDT1, a 

GA-independent regulator of early tapetum development, to regulate 

TAPETUM DEGENERATION (OsTDR) which encodes a basic helix-loop-helix 

(bHLH) transcription factor which is upstream of essential tapetum and pollen 

development genes (Li et al., 2010). OsTDR is a member of a sequential bHLH 

signalling cascade which operates from early anther cell specification to the 

execution of tapetum PCD. TDR INTERACTING PROTEIN2 (OsTIP2) promotes 

the specification of anther cell wall identities and interacts directly with TDR 

and promotes its expression alongside ETERNAL TAPETUM 1 (OsEAT1; 

bHLH141) (Fu et al., 2014). OsTIP2 promotes the expression of OsEAT1 by 

forming a heterodimer with OsTDR and binding to the OsEAT1 promoter (Ko 

et al., 2014). OsEAT1 is a bHLH transcription factor which binds with TDR and 

the promoter region of at least two aspartic protease genes, OsAP25 and 

OsAP37, to promote tapetum PCD (Nui et al., 2013). In Arabidopsis further 

interactions between these bHLH TFs in anther development have been 

described. DYT1 promotes the expression of AtbHLH10/AtbHLH89/AtbHLH91, 

putative orthologues of OsEAT1, which interact with DYT1 and promote its 

specific nuclear localisation which is thought to alter its transcriptional activity 

(Cui et al., 2016) 

A possible pathway through which GAMYB promotes tapetum PCD by 

enhancing the TDR-EAT1 upregulation of aspartic proteases can be envisaged 

(Fig. 1.5). However, as both OsGAMYB and OsUDT are upstream of OsTDR and 

the bHLH signalling cascade, it remains unclear as to precisely which aspects 

of tapetum development and PCD GA and non-GA-mediated signalling 
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pathways control. OsUDT1 is an early anther development gene whose 

interaction with OsTIP2 appears to be crucial for early tapetum differentiation 

processes (Liu et al., 2010) and is down-regulated by OsTIP2 in a feedback 

loop (Fu et al., 2014), whereas Ostip2, Osgamyb, and Ostdr mutants share a 

similar tapetum-hypertrophy phenotype (Li et al., 2006, Aya et al., 2009, Fu et 

al., 2014), suggesting their roles are in controlling tapetum size and the 

initiation of PCD (Fu et al., 2014). Furthermore, whilst the Oseat1 mutant also 

displays non-initiation of PCD, it is not accompanied by the increase in 

tapetum cell enlargement seen in Osgamyb, Ostip2 and Ostdr (Nui et al., 

2013, Fu et al., 2014). This confirms the post-initiation, PCD execution role of 

OsEAT1 and suggests that the temporal expression and accumulation patterns 

of these transcription factors depends upon the initial “commitment” to 

tapetum PCD which may be GA-mediated via OsGAMYB up-regulation of the 

bHLH signalling cascade. 

Figure 1.5 Proposed GA-signalling pathway regulating tapetum PCD in rice. 

Arrows indicate positive regulation; flat bars indicate negative regulation. 

Dashed lines represent hypothetical pathway. Signalling pathway is based on 

interactions described in literature.  

1.4. Gibberellin signalling in anther development 

Gibberellins (GAs) are a group of tetracyclic diterpenoid carboxylic acids 

produced by plants, some of which have biological activity promoting growth 

and development (Hedden, 2012). GAs are essential for seed germination, 

Tapetum 
PCD                
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stem elongation, trichome formation, floral transition and male reproductive 

development (Sun, 2010; Plackett et al., 2012; Daviere and Achard, 2013).  

Plants tightly regulate cellular levels of precursor and active forms of 

gibberellins in response to developmental and environmental cues (Hedden, 

2012). Active gibberellin (GA1 and GA4) is a biochemical signal which needs to 

be perceived and relayed to induce transcriptional changes in response to the 

stimulus. Although not strictly the correct nomenclature, here the shorthand 

GA refers to gibberellin generally unless otherwise specified. Through study of 

GA-deficient and insensitive mutants in model species, a “relief of repression” 

model of GA-signalling has emerged in which active GA promotes growth and 

development by promoting the degradation of growth-inhibiting DELLA 

proteins (Peng et al., 1997; Silverstone et al., 2001).  

GA-biosynthesis is a multi-step process requiring the expression of widely 

conserved gene families, some of which contain multiple, functionally diverse 

paralogues (Plackett et al., 2012). The primary biologically active GAs in higher 

plants are GA1 and GA4 and their relative abundance varies between species 

and tissue, with the highest concentrations being found in anthers and 

developing seeds (Hedden, 2012). GA-biosynthesis occurs in three stages. 

Firstly, trans-geranylgeranyl diphosphate (GGPP) is converted by ent-copalyl 

diphosphate synthase (CPS) and ent-kaurene synthase (KS) into ent-kaurene in 

plastids (Hedden, 2016). Two endoplasmic reticulum associated P450s, ent-

kaurene oxidase (KO) and ent-kaurenoic acid oxidase convert ent-kaurene into 

GA12. At this point the GA-biosynthesis bifurcates into two parallel pathways; 

the 13-hydroxylation pathway, resulting in GA1 and the non-13-hydroxylation 

pathway resulting in GA4, depending on whether or not GA12 is 13-

hydroxylated by GA13OX to form GA53 (Hedden, 2012, 2016).  

Formation of the bioactive GA1 and GA4 requires the oxidation of 

intermediates by soluble 2-oxogluterate dependent dioxygenases GA 20-

oxidases (GA20OX) and GA 3-oxidases (GA3OX) whilst deactivation of GAs is 

carried out primarily by GA 2-oxidases (GA2OX) (Hedden, 2012, 2016).  
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Figure 1.6. shows a simplified GA-biosynthesis pathway in which modifications 

by GA-oxygenase family enzymes creates precursor compounds which can be 

readily converted into active and inactive forms. There are multiple GA20OX 

and GA3OX genes with varying, but often overlapping, expression profiles in 

specific tissues depending on developmental stage (Rieu et al., 2007; Plackett 

et al., 2012; Hedden, 2012). A number of genes encoding GA-biosynthesis 

enzymes have been identified in wheat (Huang et al., 2012) and their tissue 

specific expression patterns investigated (Pearce et al., 2015) but little is 

known about their expression during wheat reproductive development. 

Figure 1.6. The Gibberellin biosynthesis pathway. Coloured arrows represent 

enzyme or enzyme families which convert precursor compounds into GAs 

named in black. Green and red highlighting of GA compound and position on 

chemical structure indicates modification confers or inhibits biological activity 

respectively (from Plackett et al., 2011).  
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GA metabolism is an important mechanism of regulating GA-responsive 

growth. The concentration of bioactive and precursor forms of GA is 

controlled via the developmental, homeostatic and environmental regulation 

of GA-biosynthesis and deactivation genes (Hedden, 2012; Colebrook et al., 

2014). Over-accumulation of bioactive GAs is prevented by the upregulation 

of GA2OX genes whilst GA20OX and GA3OX genes are promoted by the 

repression of GA-signalling and other growth promoting signals such as the 

hormone auxin (Hedden, 2012). Likewise, environmental stresses which result 

in the restriction of growth and reduction in GA levels is bought about by the 

upregulation of GA2OX genes and stabilisation of GA-signalling repressors 

(Achard et al., 2008; Colebrook et al., 2014).  

Plants which lack the ability to produce bioactive forms of GA are severely 

dwarfed but can be rescued by exogenous GA application (Koornneef and van 

der Veen, 1980; Dawson et al., 1993; Cheng et al., 2004). The identification of 

a GA-insensitive mutant, gai-1, which had a similar appearance to GA-

deficient mutants but did not respond to either GA or a GA-inhibitor, 

paclobutrazol (PAC), led to the discovery of DELLA proteins, the negative 

regulators which GA opposes (Peng et al., 1997; Silverstone et al., 1997; Dill 

and Sun, 2001; Silverstone et al., 2001). Since then, a comprehensive 

understanding of the mechanisms through which GA stimulates growth and 

development by relieving the repression imposed by DELLAs has emerged 

primarily through the study of GA-signalling mutants in model species 

Arabidopsis and rice (Fig. 1.7.). 
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Figure 1.7. The Gibberellin signalling pathway. Arrows indicate positive 

regulation whilst closed arrows denote negative regulation, likewise growth 

promoting and repressive components are green and red respectively. Ub – 

Ubiquitin, SCF – Skp, Cullin, F-box tripartite complex. (Adapted from Colebrook 

et al., 2014) 

In the absence of GA DELLA proteins constitutively repress GA responses. The 

presence of bioactive GA is perceived by the soluble receptor protein 

GIBBERELLIN INSENSITIVE DWARF (GID1) which has a binding affinity for GA 

(Ueguchi-Tanaka et al., 2005). The binding of GA by GID1 causes a 

conformational change which allows GID1 to bind directly with DELLA 

(Ueguchi-Tanaka et al., 2005; Griffiths et al., 2006). The rice GID1 receptor 

contains a binding pocket with a strong affinity for GA4. Binding with GA4 

causes the N-terminal lid to fold over the pocket, creating a hydrophobic 

surface which is involved in the interaction with SLR1 (Shimada et al., 2008). 

The formation of a GID1-DELLA complex promotes the interaction between 

DELLA and the SLEEPY1 (SLY1) F-box  component of the SCFSLY1 complex 

(Griffiths et al., 2006).). The SCF E3 ubiquitin ligase complex rapidly tags DELLA 

with ubiquitin resulting in its proteolysis via the ubiquitin/26S pathway 

(McGinnis, 2003; Sasaki et al., 2003). The degradation of DELLA via this 

pathway results in rapid, GA-responsive transcriptional changes (Zentella et 

al., 2007; Locascio et al., 2013).   

However, the absence of a DNA-binding domain make it unclear through 

which mechanisms DELLAs enact transcriptional regulation (Chandler et al., 

2002; Zentella et al., 2007; Locascio et al., 2013). The C-terminal GRAS domain 

region of DELLAs contain two Leucine heptad repeats which are thought to be 

involved in protein and nucleic acid binding (Dill et al., 2004; Sun et al., 2012; 

Hirano et al., 2012). Direct interaction with transcription factors by DELLAs is 

one mode through which they regulate the expression of target genes. The 

first such interaction was demonstrated with the DNA binding domains of 

Arabidopsis transcription factor PHYTOCHROME INTERACTING FACTOR 4 and 

3 (de Lucas et al., 2008; Davière et al., 2008). PIFs are bHLH family TFs which 
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promote hypocotyl elongation in the absence of light-activated Phytochrome 

B (de Lucas et al., 2008). The sequestration of PIFs by DELLA into deactivated 

complexes prevents them from binding to cognate promoter regions of cell 

elongation genes until their release by GA-induced DELLA degradation (Fig. 

1.8. a). 

Figure 1.8. Transcriptional regulation by DELLAs. a) Under low GA-levels 

DELLAs bind directly to TFs (demonstrated with bHLHs) and prevent 

association with target gene promoter. GA-mediated DELLA degradation 

releases repression of TF and transcription is promoted. b) DELLAs promote 

expression of growth restricting genes by enhancing the association of a co-

activating TF with downstream promoter regions. In this case increasing GA 

concentration downregulates transcription.  

DELLAs also possess transactivational ability, regulating target gene 

expression through interaction with its promoter region facilitated by an 

intermediary co-factor (Fig. 1.8. b). IDD2/GAF1 interacts with GAI to 

upregulate GA-biosynthetic and perception genes, GA20ox2, GA3ox1 and 

GID1b (Fukazawa et al., 2015). The ability of DELLAs to not only repress GA 

signalling but also regulate the expression of GA-biosynthesis genes enables a 

homeostatic feedback mechanism (Zentella et al., 2007).  

The molecular mechanisms through which GA regulates transcription via 

DELLAs remain unclear, with only a number of downstream targets identified 
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so far. To date, only one GA-responsive TF, GAMYB, downstream of DELLA 

with a role in anther development has been characterised (Aya et al., 2009). 

1.4.1. GAMYB is a GA-responsive transcription factor crucial for anther 

development 

The R2R3-MYB family transcription factor GAMYB was first identified as a GA-

signalling component in cereal seed aleurone where it mediates GA-induction 

of α-amylase expression during germination (Gubler et al., 1995). GAMYB 

activates α-amylase by binding directly to cis-acting 21 bp gibberellin 

responsive element (GARE) (Skriver et al., 1991; Gubler et al., 1999; Woodger 

et al., 2003). α-amylase is secreted by the aleurone to hydrolyse starch 

endosperm to provide carbohydrates during germination (Gubler et al., 2002; 

Aoki et al., 2014). During this process, the aleurone layer undergoes PCD in 

which GA-signalling has been implicated (Ishibashi et al., 2012; Aoki et al., 

2014). Clearly, the aleurone and the tapetum share some similarities; they 

both have secretory functions, undergo PCD and require GAMYB.  

PCD of the anther tapetum layer also requires GAMYB. Overexpression of 

HvGAMYB results in smaller and paler anthers than wild type which, despite 

apparently otherwise normal development, fail to dehisce (Murray et al., 

2003). By contrast, sterility in rice Osgamyb mutants (Kaneko et al., 2004; Aya 

et al., 2011; Liu et al., 2010) is due to failure of the tapetum layer to vacuolate 

and initiate PCD after PMC meiosis. Instead, the tapetum layer becomes 

hypertrophic, swelling to fill the anther locule and crushes the developing 

microspores (Fig 1.9.).  
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Figure 1.9.  Cross sections of rice gamyb-2 mutant and wild type anthers 

during young microspore, vacuolated microspore and mature pollen 

development stages. Failure to initiate tapetum PCD prevents microspore 

development beyond young microspores. En – Endothecium, Ep – Epithecium, 

MP – Mature pollen, T – Tapetum, YM – Young microspore, VP – Vacuolated 

microspore. Scale bars = 25 µm. (Taken from Aya et al., 2009).  

The timing of GAMYB expression appears to be critical for anther 

development and induction of tapetum PCD. A number of downstream 

targets have been identified which give some explanation as to the  

mechanisms through which GAMYB co-ordinates pollen and tapetum 

developmental processes (Tsuji et al., 2006; Aya et al., 2009). However, 

further work is needed to extend this understanding to anther development 

in wheat.  
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1.4.2. GA-dependent regulation of GAMYB 

Expression of GAMYB in the aleurone is promoted by GA (Gubler et al., 1999; 

Woodger et al., 2003). Embryoless half seedlings secrete α-amylase when 

treated with GA3. In rice gamyb mutants, exogenous GA application does not 

induce α-amylase expression (Kaneko et al., 2004), whilst α-amylase is 

induced constitutively in the absence of GA3 in Slr-1 mutants (Ikeda et al., 

2001) demonstrating that GAMYB expression is regulated by the GA-DELLA 

pathway. Indeed, microarray analysis confirms that almost all GA-mediated 

gene expression in the aleurone is mediated via DELLA and GAMYB (Tsuji et 

al., 2006). 

GAMYB expression in the anther appears also to be negatively regulated by 

DELLAs and induced by GA (Murray et al., 2003). Osgamyb and upstream GA-

signalling and biosynthesis mutants, Osgid-1 and Oscps1-1 share common 

defective anther phenotypes, confirming the GA signal promoting PCD is 

transduced via DELLA regulation of GAMYB (Aya et al., 2009). However, unlike 

in the aleurone, post-transcriptional regulation of GAMYB by a microRNA 

(miR159) also occurs in anther tissue (Alonso-Peral et al., 2010). In all other 

tissue, GAMYB is expressed but post-transcriptionally cleaved via repression 

by microRNA (miR159) (Wang et al., 2012). This is also true in the anthers 

until a repression of miR159 expression stabilises GAMYB transcript levels, 

demonstrated by the negative correlation in abundance of both transcripts 

(Tsuji et al., 2006). When miR159 is over expressed plants show delayed 

flowering and severe anther defects to the point of sterility, similar to that of 

gamyb knockout mutants (Kaneko et al., 2004; Tsuju et al., 2006; Aya et al, 

2009; Wang et al., 2012). As expression of miR159 is not regulated by GA 

(Tsuji et al., 2006), the question remains as to what exactly is the 'master 

switch' which permits the upregulation of GAMYB, and therefore enables GA 

mediated anther development.  
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1.4.3. GAMYB regulates secretory functions and PCD 

Despite the many functional similarities between tapetum and aleurone 

tissue, GAMYB appears to have diverse mechanisms of transcriptional 

regulation. Microarray studies of rice gamyb plants show that there is very 

little overlap between GAMYB-activated genes in aleurone and post-meiotic 

anthers (Tsuji et al., 2006). Whilst many of these target genes contain the cis-

acting GARE elements which allow GAMYB to directly interact with target 

gene promoters, some do not. This further suggest that, like DELLAs, GAMYB 

may require interaction with additional co-factors to affect transcriptional 

regulation (Washio, 2003; Tsuji et al., 2006).  

GAMYB has been shown to form heterodimers with other MYB TFs during the 

regulation of carbohydrate metabolism in germinating seeds (Hong et al., 

2012). In response to sugar starvation conditions, GA-signalling promotes the 

formation of GAMYB-MYBS1 complex which facilitates their redistribution 

from the cytoplasm to the nucleus where simultaneous binding to both GARE 

and TA-box elements enhances α-amylase expression (Hong et al., 2012). A 

major function of the tapetum is the delivery of soluble carbohydrates to 

developing pollen cells which at this point have become a major resource sink 

(Oliver et al., 2005) and indeed, initiation of AtMYB33/65 expression coincides 

with mobilisation of tapetum soluble carbohydrates to pollen cells (Millar and 

Gubler, 2005; Parish and Li, 2010). However, no direct link between GAMYB 

gene expression in anthers and expression of carbohydrate metabolism genes 

has yet been established. 

GAMYB also directly interacts with the promoter regions of two lipid 

metabolism genes cytochrome P450 hydroxylase (CYP703A3) and β-ketoacyl-

reductase (KAR), to promote their expression between meiosis and pollen 

maturation (Aya et al., 2009). Both genes are thought to be involved in lipid 

metabolism and given the role of the tapetum in biosynthesis and transport of 

sporopollenin precursors and pollen coat formation (Scott et al., 2004; Huang 

et al., 2009), supporting the role of GAMYB in tapetum secretory function. 
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Indeed, GA-biosynthesis mutant Ososcps1-1, signalling mutants Osgid-2 and 

Osgamyb-2, and Oscyp703a are all lacking or deficient in Ubisch body 

formation, the tapetum vesicles which supply sporopollenin, proteins, 

phenolic and fatty acid compounds to microspores (Aya et al., 2009).  

GA-mediated PCD occurs in both tapetum and aleurone cell layers (Guo and 

Ho, 2008; Aya et al., 2011). PCD of tapetum cells is an apoptotic process which 

requires GAMYB (Parish and Li, 2010), whilst PCD of barley aleurone 

protoplasts is enhanced by, but does not require HvGAMYB (Guo and Ho, 

2008) suggesting aleurone cell PCD may occur via a different pathway. The 

repression in Osgamyb of protease genes encoding enzymes known to be 

involved in the execution of apoptotic PCD (Tsuji et al., 2006; Aya et al., 2009) 

suggest that GAMYB is upstream of a signalling cascade which commits the 

tapetum to PCD (see section 1.3.2). One such TF, OsC6 is a Cysteine protease 

known to be involved in PCD and contains a GAMYB-binding element in its 

promoter region (Li et al., 2006a; Aya et al., 2009; Plackett and Wilson, 2016).  

Tsuji et al., (2006) hypothesised that GAMYB aleurone/tapetum specific 

function is achieved via interaction between GAMYB and other differentially 

expressed transcription factors to activate distinct downstream targets. MYB 

proteins have been shown to form a transcriptional complex with bHLH and 

WD-repeat transcription factors which are directly regulated by GA and JA 

signalling components during trichome formation (Qi et al., 2011; Tian et al., 

2016). The ability of MYB proteins to form hormonally regulated complex with 

bHLH transcription factors may be relevant to the role of GAMYB in tapetum 

PCD as a number of bHLHs have been implicated in the initiation of PCD via 

direct interactions with aspartic protease gene promoters (Niu et al., 2013)  

The accumulation of cell damaging reactive oxygen species (ROS) in both the 

tapetum and aleurone is also thought to contribute to the initiation of PCD 

(Ishibashi et al., 2012; Zhang and Yang, 2014; Yi et al., 2016) A burst of ROS is 

observed in tapetal cells at the initiation of PCD and loss of DEFECTIVE 

TAPETUM CELL DEATH 1 (DTC1), a TF downstream of the TDR/UDT/EAT1 bHLH 
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cascade (see section 1.3.2.) which regulated ROS-scavenging activity, resulting 

in failure to initiated tapetum PCD and microspore abortion (Hu et al., 2011; Yi 

et al., 2016) as seen in gamyb mutants. DELLAs and ABA promote the 

expression of ROS-scavenging enzymes and GA induces their production in 

aleurone cells (Achard et al., 2008; Ishibashi et al., 2012; Kocheva et al., 2014; 

Aoki et al., 2014), suggesting that GAMYB could bring about PCD through the 

upregulation of ROS producing enzymes. However, ROS instead appear to be 

a GA-inducible signalling molecule which promote GAMYB expression in 

aleurone cells prior to PCD rather than the executors of it themselves 

(Ishibashi et al., 2012). It therefore remains unclear what link, if any, there is 

between GAMYB and ROS in the induction of PCD. 

1.4.4. GA controls multiple aspects of male reproductive development   

The genetic signalling network governing anther development (see section 

1.3.2.) is subject to regulation by hormone signalling (Chandler, 2010). 

Gibberellin signalling in particular is critical to anther and pollen development 

and exerts control over tapetum PCD via the TF GAMYB (see section 1.4.3.). 

Furthermore, GA has been shown to regulate the expression of hundreds of 

anther specific genes in developing anthers via DELLA (Hou et al., 2008). 

Numerous GA-biosynthesis and signalling mutants have further revealed some 

information about the developmental processes regulated by GA, however, 

the precise mechanisms through which GA regulation controls anther 

development are not well understood.  

The Arabisopsis and rice GA-deficient mutants (ga1-3 and Oscps1-1 

respectively) fail to complete pollen development beyond the uninuclear 

microspore stage apparently due to disruption of the tapetum (Cheng et al., 

2004; Aya et al., 2009). A complex picture of the GA-biosynthesis regulation in 

anthers is emerging; single enzyme, early biosynthesis pathway mutants are 

severely dwarfed and infertile whereas the partial functional redundancy and 

specificity within multigene families encoding  downstream steps results in 

variable, semi-fertile phenotypes (Rieu et al., 2007; Plackett et al., 2012). 



27 
 

GA20OX and GA3OX family member expression has been reported in the 

tapetum prior to its degradation and PMCs during meiosis, supporting the 

observed points of developmental arrest seen in mutant phenotypes (Hu et 

al., 2008; Chandler, 2010; Plackett et al., 2012). Like ga1-3, Atga20ox triple 

mutants are also male sterile but pollen cells appear to progress beyond the 

uninuclear stage and sterility is instead attributed to failure of the tapetum to 

undergo PCD (Plackett et al., 2012). Clearly there is functional significance to 

the location and timing of GA-biosynthesis in the developing anther, 

especially in relation to tapetum PCD and PMC meiosis which is currently not 

well understood.  

Signalling mutants demonstrate a range of phenotypes; gid1 mutants fail to 

undergo differentiation between stamen and filament tissue resulting in a 

mechanical barrier to fertilisaton (Griffiths et al., 2006), whilst DELLA loss-of-

function mutants in GA-deficient background show varying degrees of 

reduced filament extension and post-meiotic microspore abortion (Wen and 

Chang, 2002; Cheng et al., 2004; Plackett et al., 2014). However, in most early 

studies spontaneous recovery and maintenance of basal levels of fertility was 

observed in DELLA mutants in the Ler Arabidopsis background. Plackett et al., 

(2014) demonstrated that DELLA mediated GA-signalling is required to 

maintain male fertility in the Col-0 background; in rga-28.gai-td1 mutants 

male fertility was completely abolished due to post-meiotic developmental 

defects. Reintroduction of a functional DELLA could restore pollen 

development to these mutants and the observation that its expression in 

either the microspores or tapetum cell layer could reinstate fertility supports 

the hypothesis that the role of DELLAs in anther development may be to 

ensure synchrony between microspore and tapetum development (Plackett et 

al., 2014).  

DELLA mutants demonstrate that GA-signalling is dependent upon functional 

domains within the protein. Semi-dwarf wheat varieties associated with the 

green revolution (see section 1.1.) carry an in-frame premature stop codon 

mutation in the N-terminal domains of Rht-B1 or Rht-D1 which abolished 
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binding with GID1, resulting in GA-insensitivity (Peng et al., 1999; Pearce et 

al., 2011). It is hypothesised that transcriptional re-initiation after the N-

terminal stop codons creates a truncated RHT-1 protein which lacks the 

domains required for GA-mediated degradation but retains C-terminal 

domains which repress the expression of growth promoting genes (Pearce et 

al., 2011). In comparison, mutations in the C-terminal coding region of DELLA 

genes result in a “slender” phenotype which are hypersensitive to GA and lack 

the ability to repress growth promoting gene expression (Ikeda et al., 2001; 

Chandler et al., 2002; Chandler and Harding, 2013). However, there are no 

further reports upon the specific effect of Rht-1 mutations on male fertility.  

1.5. Anther hormonal signalling responses to HT-stress 

HT-stress responses during anther and pollen development have been shown 

to involve several hormone signalling pathways. Indeed, a complex network of 

crosstalk between hormone and secondary metabolic signals elicits the 

physiological and genetic responses seen in HT-injured anthers (Parish et al., 

2013; Müller and Rieu, 2016) (Fig. 1.10.), however the significance of many 

individual components remains unclear.  

 

Figure 1.10. Hormonal regulation of anther HT-defects. Common anther and 

pollen HT-induced defects are under the regulation of hormone signalling 
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pathways. GA-signalling is required for correct tapetum PCD, pollen exine 

formation and developmental synchronicity between tapetum and pollen cells, 

all of which are perturbed by HT-stress. ROS may contribute to PCD either by 

causing oxidative damage or as secondary signalling molecules. GA and ABA 

have characterised roles in ROS-homeostatic regulation. Carbohydrate 

transport and uptake via invertase proteins is antagonistically regulated by GA 

and ABA and modulated by ethylene under HT. Auxin is required for pollen cell 

mitosis which is also negatively affected by HT. (Adapted from Müller and Rieu, 

2016).  

The overall effect of HT-stress during male reproductive development of self-

fertilising plants is to reduce yield by inhibiting the formation of viable pollen 

(see section 1.1.1.). Numerous physiological symptoms of HT-stress in the 

anther have been observed under varying experimental conditions but which 

of these are the primary causes of infertility is yet to be established (Müller and 

Rieu, 2016). However, the most common anther developmental defects 

(premature tapetum PCD, aberrant microspore nuclear division and disrupted 

sugar metabolism) to some extent all involve hormone signalling pathways.  

1.5.1. GA-signalling in anther HT-responses 

The role of GA in ensuring the correct timing of tapetum PCD (see section 1.4.3.) 

and the hastening of PCD by HT suggest that the tapetum GA-signalling 

pathway may be involved in HT responses. Indeed, downregulation of tapetum-

specific GAMYB-responsive genes during HT-stress has been reported in rice 

(Endo et al., 2009) whilst the Osgamyb-1 mutant phenotype is enhanced at 

higher temperature (Kaneko et al., 2004). Anther GA concentration declines 

under HT conditions (Tang et al., 2007), perhaps explaining the increased 

frequency of Osgamyb-1 phenotypes and downregulation of GAMYB targets. 

Without further information about GAMYB expression under HT or the 

downstream mechanisms through which GAMYB elicits PCD, it’s unclear 

whether HT-induced premature PCD is a direct consequence of HT-effects in 

GAMYB function.  
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HT-stress occurring post-meiosis adversely affects the transport of 

carbohydrates to young microspores (Firon et al., 2006, De Strome and Geelen, 

2013) instead resulting in an accumulation of soluble sugars in the locular fluid 

(Pressman et al., 2002). In drought stressed plants, tapetum and microspore 

invertases, which cleave hexose units from sucrose, are specifically down-

regulated by ABA (Oliver et al., 2005; Ji et al., 2011). GA promotes the 

expression of tomato invertase Lin7 in both the tapetum and microspores 

(Proels et al., 2006). In the aleurone, a similar secretory tissue type, GAMYB is 

required for the mobilisation of carbohydrates (see section 1.4.1.). During 

germination and seedling growth GA promotes the co-nuclear import of a 

GAMYB/sugar-responsive MYBS1 complex and enhances their binding to α-

amylase promoter GAREs (Hong et al., 2012), whilst under conditions of abiotic 

stress, ABA, the GA-antagonist, promote the sequestration of MYBS1 in the 

cytoplasm (Lin et al., 2014). Whether changes to anther carbohydrate 

metabolism are mediated via GAMYB has not been resolved, although the 

downregulation of one hexokinase, a sugar metabolic regulator, has been 

reported in gamyb anthers (Tsuji et al., 2006).  

After exposure to 39/30 °C day/night at the microspores stage, rice pollen 

grains appear normal but fail to adhere to and germinate on receptive styles 

(Endo et al., 2009), showing that HT at this stage prevents pollen exine from 

developing correctly. GAMYB is known to contribute to the development of 

Ubisch bodies which are required for the correct deposition of sporopollenin 

on the exine through upregulation of tapetum lipid metabolism genes 

CYP703A3 and KAR (Aya et al., 2009) (see section 1.4.3.). It is not yet known if 

the malformation of the pollen coat is due to disruption of tapetal or 

microspore function or premature collapse of tapetum cells before 

sporopollenin deposition is complete.  

Many modern wheat varieties have GA sensitivity reduced by the presence of 

Rht-1 alleles (see section 1.1.), which might be expected to affect response to 

anther HT. Given the effect of gamyb and gid-1 signalling mutations on 

tapetum function and PCD, the constitutive repression of GAMYB in GA-
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insensitive Rht-1 plants may affect their response to HT-stress. Indeed, Law 

and Worland, (1984) demonstrated an increase in susceptibility to HT during 

reproductive development associated with GA-insensitivity in Rht-1 allele 

carrying lines. However, this effect has found to also depend heavily on water 

status and genetic background, making a strong link between GA-sensitivity 

and male reproductive vulnerability to HT difficult to establish (Alghabari et 

al., 2014).  

On the other hand, DELLAs have been shown to promote stress tolerance by 

restraining the accumulation of ROS (Achard et al., 2008; Colebrook et al., 

2014). Wheat DELLA mutants carrying the Rht-B1b and Rht-B1c mutations are 

more able to supress osmotic stress-induced ROS damage, presumably through 

constitutive expression of ROS-scavenging genes (Achard et al., 2008; Kocheva 

et al., 2014). A short-lived burst of  ROS occurs in tapetum cells prior to PCD 

which is brought about through genetic regulation (Hu et al., 2011; Xie et al., 

2014; Yi et al., 2016). Damage caused to tapetum mitochondrial membranes by 

ROS may contribute to the initiation and execution of PCD (Parish and Li, 2010). 

Alternatively they may act as secondary signals which enhances the execution 

of PCD via other pathways; ROS production in the barley aleurone is promoted 

by GA but does not contribute to PCD, instead appearing to act as a GAMYB 

upregulating signal (Ishibashi et al., 2012; Aoki et al., 2014).  

1.5.2. Other hormone signalling pathways in anther HT-responses  

Anther ABA levels increase and IAA levels decrease in rice in response to HT 

(Tang et al., 2014,). HT represses the expression of auxin biosynthesis YUCCA 

genes in barley and Arabidopsis and is associated with a further down-

regulation of auxin-promoted DNA replication genes (Oshino et al., 2011, 

Higashitani et al., 2013). Application of exogenous auxin to barley ears prior to 

HT was sufficient to reverse male sterility (Sakata et al., 2010), suggesting that 

auxin depletion is an HT-effect rather than an acclimation response (Müller and 

Rieu, 2016). Auxin accumulates in anthers after PMC meiosis and is required for 

microspores to undergo mitosis (Feng et al., 2006). Failure to progress beyond 
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mitosis I is a common observation in HT-treated anthers along with 

downregulation of auxin-responsive nuclear and organellar DNA-proliferation 

(Oshino et al., 2011).  

Carbohydrate metabolism also links ethylene signalling to anther HT-responses. 

HT-induces the expression of an ethylene biosynthesis and signalling transcripts 

in tomato pollen and ethylene-insensitivity increases HT-sensitivity and 

reduced pollen sucrose accumulation (Firon et al., 2012). A cotton casein kinase 

(GhCK1) which inhibits starch synthase activity is induced in anthers by HT (Min 

et al., 2013). Overexpression of GhCK1 down-regulates starch synthase activity. 

The resultant increase in glucose in early-stage anthers promotes the 

accumulation of ABA which disrupts ROS homeostasis causing premature 

tapetum PCD (Min et al., 2013). Conversely, in a HT-sensitive cotton line, HT 

results in a decline in anther glucose levels and increased auxin accumulation 

in later stage anthers (Min et al., 2014). The authors hypothesise that in the HT-

sensitive lines, auxin biosynthesis is regulated by soluble sugars via PIFs, which 

have previously been shown to upregulate auxin biosynthesis under HT 

(Franklin et al., 2011) and interact with DELLAs (de Lucas et al., 2008) (see 

section 1.4.), demonstrating a potential hormonal crosstalk mechanism in HT-

response regulation involving GA, auxin and ABA.   

It is likely that the overlapping roles and crosstalk between hormones during 

anther development and in response to HT will require any approach to 

improving fertility under HT to consider the “fine balance” of all components 

rather than individual hormones in isolation.  

1.6. Aims and objectives 

The sensitivity of wheat anther development to HT is an issue with potential 

ramifications for global food security in the near future (See section 1.1.1.). 

Much work has been done in model species to understand the hormonal and 

genetic signalling networks which control reproductive development the 

effects of HT upon them (see section 1.5.). With the publication of a high-

coverage reference genome (IWGSC., 2014), the powerful tools of modern 



33 
 

functional genomics can now be applied to wheat. This project aims to begin 

the process of translating the understanding of reproductive development in 

rice and barley into wheat with a view to identifying potential targets for 

improving anther and pollen HT-tolerance. 

As described above, it is clear that GA-signalling is crucial to male 

reproductive development and many of the processes it regulates, particularly 

tapetum PCD and pollen exine formation, are common HT-induced defects. 

This project will therefore seek to identify important genetic components 

involved in wheat anther and pollen development downstream of Rht-1 and 

investigate the response of anther hormone and genetic signalling to HT-

stress. To achieve this there are three main aims of this project: 

1. Develop procedures for non-destructive staging of wheat anther 

development.  

2. Identify and characterise wheat orthologues of OsGAMYB and OsEAT, 

potential GA-signalling components in tapetum function and PCD 

3. Use whole transcriptomic and global hormone profiling approaches to 

characterise the response of wheat anthers to HT-stress.  
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CHAPTER 2: GENERAL MATERIALS AND METHODS 

2.1. Plant Material and Growing Conditions 

Triticum aestivum cv. Cadenza, a spring variety, was used for all molecular, 

physiological, TILLInG and transformation experiments unless otherwise 

stated. Plants were grown in 13 cm diameter plastic pots also containing 

Rothamsted prescription mix compost (75% peat, 12% sterilised loam, 3% 

vermiculite, 10% grit). Controlled environment (CE) growth conditions in 

rooms and cabinets were 20 °C/15 °C day/night temperatures under 16 hour 

photoperiods provided by tungsten fluorescent lamps providing 500 µmolm-

2s-1 PAR unless otherwise specified. Irrigation and relative humidity was 

maintained at 65 %/75 % day/night in all experiments. Standard glasshouse 

conditions used the same pots and compost mixture. Temperature was 

maintained at 18-20 °C day and 14-15 °C night under a 16 h photoperiod using 

natural light supplemented with 400-1000 500 µmolm-2s-1 PAR from SON-T 

sodium lamps.  

2.2. Molecular biology 

2.2.1 DNA Extraction 

Approximately 1 g of young leaf tissue (GS13) was freeze dried and ground 

into a fine powder using a GenoGrinder (SPEX SamplePrep, Metuchen, New 

Jersey, U.S.A.). The homogenate was incubated in 1 ml PVP-extraction buffer 

(pH 9.5) at 65 °C for 1 hour. Extraction buffer contained 1.2% w/v Trizma base, 

7.5% w/v potassium chloride, 2% v/v 0.5M EDTA, 0.75% w/v 

polyvinylpyrrolidone and 0.36% w/v sodium bisulphate. All reagents 

manufactured by Sigma-Aldridge, St. Louis, Missouri, U.S.A. 333 µl 5 M 

Potassium acetate (pH 5.8) was added to each sample before spinning in a 

bench microfuge for 2 minutes to pellet tissue debris at the bottom of the 

tubes. 1 ml of cleared supernatant was transferred to fresh tubes and 500 µl 

pre-chilled isopropanol was added, mixed and allowed to incubate at room 

temperature for 10 minutes. Samples were spun at 13,000 rpm for 10 minutes 
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after which supernatant was discarded. Pelleted gDNA was washed in 500 µl 

70% ethanol, spun briefly and allowed to dry at room temperature. gDNA was 

resuspended in 200 µl TER buffer (containing Pancreatic RNase), incubated at 

50 °C for 1 hour and stored overnight at 4 °C. gDNA was quantified using a 

Nanodrop™ ND-1000 spectrophotometer (LabTech International Ltd, U.K.).  

2.2.2 Polymerase Chain Reaction 

PCR conditions vary depending upon primer, target, template properties and 

downstream purpose of product. For general genotyping GoTaqⓇ Flexi DNA 

polymerase (Promega, Madison, Wisconsin, U.S.A.) was used to amplify target 

sequences in 20 µl reactions consisting of:  

5X reaction buffer (7.5 mM MgCl2)   6 µl  

dNTP mix (10 mM)     0.5 µl  

Forward primer mix (10 µM)     0.5 µl 

Reverse primer mix (10 µM)    0.5 µl  

Distilled, purified H2O     11.35 µl   

DNA polymerase      0.15 µl  

Template DNA       1 µl 

Reactions were carried out in a DNA Engine Tetrad 2 thermal cycler (Bio-Rad 

Laboratories, Hercules, California, U.S.A.) using the following standard 

conditions: 

98 °C  5 minutes  

97 °C  30 seconds 

55-70 °C 30 seconds            30 – 40 cycles 

72 °C 1 minute/kb target 

72 °C  6 minutes 
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4 °C Hold 

Where synthesised product was intended for cloning, a high-fidelity 

proofreading PhusionⓇ High-Fidelity DNA Polymerase (New England Biolabs 

UK Ltd, Hitchin, U.K.) was used. Reactions were 20 µl in volume and 

proceeded as follows: 

5X Phusion GC Buffer      4 µl 

 dNTP mix (10 mM)     0.4 µl 

Forward primer mix (10 µM)    1 µl 

Reverse primer mix (10 µM)     1 µl  

Distilled, purified H2O     14.4 µl  

Phusion DNA polymerase     0.2 µl  

Template DNA      1 µl  

PCR cycling conditions: 

98 °C  1 minute  

98 °C  10 seconds 

55-70 °C 30 seconds        30 – 40 cycles 

72 °C 1 minute/kb target 

72 °C  6 minutes 

4 °C Hold 

2.2.3 Agarose Gel Electrophoresis  

Completed PCR reactions were mixed with 1X Loading Dye containing 

bromophenol blue and xylene cyanol FF, (Thermo Scientific, Hemel 

Hempstead, U.K.)  (Phusion reactions only) and run on TBE-buffered (45 nM 

Tris-borate, 1 mM EDTA, pH 8.3) 1-2 % (w/v) agarose gel (Fisher Scientific, 
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Loughborough, U.K.)  containing 0.5 µg/µl Ethidium bromide. 1 kb 

GeneRulerTM DNA ladder or 100 bp DNA ladder (Thermo Scientific, Hemel 

Hempstead, U.K.) was run alongside products to assist band size estimation. 

Electrophoresis was usually carried out at 100 mV for 35 minutes. PCR 

products were visualised by ethidium bromide fluorescence under UV 

excitation using SynGene GelDoc imaging equipment (Synoptics Ltd, 

Cambridge, U.K.).  

2.2.4 Extraction and Purification of PCR Products from Agarose Gel 

Gel fragments containing amplified DNA products were excised from agarose 

gel under UV light and purified using the QIAquickⓇ Gel Extraction kit (QIAgen, 

Hilden, Germany) according to the manufacturer’s instructions. 

2.2.5 Primer Design 

PCR primers were designed using Primer3Plus online interface (Untergasser et 

al., 2007) and its respective plugin interface in Geneious (v. 8.1.3, Biomatters 

Ltd, Auckland, New Zealand). Optimal primer conditions were set to Tm 58 - 62 

°C, GC content 50 - 60 % and 18 - 24 bp in size. Primer target specificity was 

analysed using the Basic Local Alignment Tool (BLAST) against the 

IWGSC1+popseq wheat genome assembly (IWGSC, 2014; Chapman et al., 

2015) on the EnsemblPlants online genome browser (EMBL-EBI, Hinxton, 

U.K.).  

The following primers were used in this project: 
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Table 2.1. PCR primers, oligonucleotide sequences, predicted melting 

temperatures and experimental purpose.  

2.2.6 PCR Product Sequencing 

Purified DNA was sent pre-mixed with appropriate sequencing primers to 

Eurofins Genomics (Wolverhampton, U.K.). Reading and alignment of DNA 

and amino acid sequences were carried out using Geneious (v 8.1.3, 

Biomatters Ltd, Auckland, New Zealand).  

2.2.7 DNA Cloning and Modification   

Purified DNA fragments, amplified using proof-reading PhusionⓇ (New 

England Biolabs UK Ltd, Hitchin, U.K.) polymerase, were cloned into vectors in 

10 µl ligation reactions in which insert and vector were present at a molar 

ratio of 3:1 respectively. The ligation reaction was mixed with 1 µl T4 DNA 

Ligase (5u/µl) and 1X T4 DNA ligase buffer (Promega, Madison, Wisconsin, 

U.S.A.) and incubated at room temperature for one hour. Self-ligation of cut 

Primer name Sequence Tm °C Purpose 

qGAMYB_RNAi_F1 GGAGCTCCCTTCACTCCAAG 61.4 qRT-PCR

qGAMYB_RNAi_R1 TTCCAAGAGACCGCTGTTCC 59.4 qRT-PCR

qTabHLH_RNAi_F1 ATGTTGCAAGGTTCTTGATG 57.3 qRT-PCR

qTabHLH_RNAi_R1 GGTTGGAAGTGTCGGAGGAG 61.4 qRT-PCR

TaActin_F CCTCTCTGCGCCSSTCGT 58.2 qRT-PCR

TaActin_R TCAGCCGAGCGGGAAATTGT 59.4 qRT-PCR

bHLH_BamHI_R TTGGATCCTTTCATCCTCAACTG 65.1 RNAi cloning

bHLH_BglII_F AAAGATCTACAGGAGTGGCAGCA 66 RNAi cloning

GAMYB_BamHI_R TTHHATCCTAGTCCCTGAGCTT 65 RNAi cloning

GAMYB_BglII_F AAAAGATCTATAGCTGGCTAAG 59.6 RNAi cloning

AdH_F1 CCTTCTTGGCGGCTTATCTG 62.1 Sequencing

Nos_R1 AAGACCGGCAACAGGATTCA 62.9 Sequencing

Nos_R2 CGGCCGCGATCTAGTAACAT 59.4 Sequencing

OsAct_F1 GTGACAAATGCAGCCTCGTG 59.4 Sequencing

MzeADHInF3 TCTAATCAGCCATCCCATTTGTG 58.9 TaqMan Zygosity

MzeADHInR3 GGAGTCTGCCCCTAAGACAGATAA 62.7 TaqMan Zygosity

MzeADHInP Fam-AACAACTCGCGGTTGACTTGCGC-Tamra 67.5 TaqMan Zygosity

HvCon2F1 TGCTAACCGTGTGGCATCAC 59.4 TaqMan Zygosity

HvCon2R1 GGTACATAGTGCTGCTGCATCTG 62.4 TaqMan Zygosity

HvCon2P VIC-CATGAGCGTGTGCGTGTCTGCG-TAMRA 71.1 TaqMan Zygosity

106_GAMYB_B_F TCAGTAAATCGGAGTGTGC 57.3 TILLInG

106_GAMYB_B_R CAGGAGAAAGTTTGGAGAGCTG 60.3 TILLInG

317_GAMYB_D_F ATTTCTCAAAAGAAGTACTGTACTACA 57.4 TILLInG

317_GAMYB_D_R AGGAAGAAATCATGCAAGGCT 55.9 TILLInG

664_GAMYB_A_F CCGACCCCATTGAAAAATAG 55.3 TILLInG

664_GAMYB_A_R CTCGCCGCAGTTGAAATCG 58.8 TILLInG

Rht-D1_GRAS_F1 ATGGATCCCCGCGCTGCCGGTCGT 84.3 Yeast 2-Hybrid cloning

Rht-D1_GRAS_R1 ATGATATCACGGCCCGGCCAGGCG 81.2 Yeast 2-Hybrid cloning

TaHLH141_F1 ATCCATGGTCATGATTGTTGGAGGTGACTAT 73.2 Yeast 2-Hybrid cloning

TaHLH141_F2 GGATGAGCAAGACAATCAGCT 63.3 Yeast 2-Hybrid cloning

TaHLH141_R1 ATCTCGAGCTAGTTGAATATGTCAAGTGCC 70.2 Yeast 2-Hybrid cloning
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vector was reduced by treatment with calf intestinal alkaline phosphatase 

(CIAP) (Invitrogen) which removes 5’ phosphate groups. 1 µl CIAP (10 u/µl) 

was used in 10 µl reactions with 1X CIAP buffer (Invitrogen, Carlsbad, 

California, U.S.A.) which were incubated at 37 °C for one hour. Inactivation of 

CIAP required 15-minute incubation at 65 °C.  

Blunt-ended PCR fragments - amplified using proof-reading polymerase - were 

ligated into the blunt cloning vector pSC-B (Stratagene, San Diego, California, 

U.S.A.). Plasmids were transformed into SoloPack competent cells 

(Stratagene, San Diego, California, U.S.A.) by heat shock and plated onto 2YT 

plates supplemented with 0.01 mg/ml X-Gal and 0.1 mg/ml carbenicillin. 

Positive transformants were selected using blue-white screening. 

The following plasmids and their selection methods were used in this project: 

 

Table 2.2. Plasmids and their respective selection methods used for cloning 

and transformation in this project. 

2.2.8. Bacterial strains used 

Routine cloning and amplification of plasmid was carried out using chemically 

competent cells of the Escherichia coli bacterial strain DH5α (φ80dlacZΔM15, 

recA1, endA1, gyrAB, thi-1, hsdR17(rK-, mK+).  

Competent bacterial cells were produced according to Inoue et al., (1990). 

Cells were cultured on Luria-Bertani (LB) plates containing 1.5% (w/v) agar 

and incubating overnight at 37°C. Twelve colonies were added to 250 ml of 

sterile SOB media (0.5% (w/v) yeast extract, 2% (w/v) tryptone, 10mM NaCl, 

2.5mM KCl, 10mM MgCl2, 10mM MgSO4 (pH 7.0)) in a 1 litre flask and 

cultured at 19°C to an OD600 of 0.5 – 0.6. The flask was then chilled on ice for 

10 minutes and cells pelleted by centrifuging at 2500 g for 10 minutes at 4°C. 

Plamid Selection Purpose

pSC-b Carbenicillin, LacZ Blunt-end PCR product cloning

pRRes::HMW::AdH::Nos Carbenicillin, RNAi expression sub-cloning

pENTR-11 Dual Selection Chloramphenicol, Kanamycin Yeast 2-Hybrid sub-cloning

pDEST-22 Carbenicillin, Chloramphenicaol Yeast 2-Hybrid Prey expression vector

pDEST-32 Chloramphenicol, Gentamicin Yeast 2-Hybrid Bait expression vector
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The cell pellet was re-suspended in 80 ml ice-cold TB solution (10mM PIPES, 

15mM CaCl2, 250mM KCl, 55mM MnCl2, pH 6.7 and 1.4 ml dimethyl 

sulphoxide (DMSO) and stored on ice for a further 10 minutes. Cells were 

pelleted once more by centrifuging at 2500 g for 10 minutes at 4°C and re-

suspended in 20 ml TB solution Cells were dispensed into 50 µl aliquots and 

imm ediately frozen in liquid nitrogen before storing at -80°C. 

StrataClone SoloPack (Stratagene, San Diego, California, U.S.A.) competent 

cells (Tetr. ∆(mcrA)183 ∆(mcrCB-hsdSMR-mrr)173, endA1, supE44, thi-1, 

recA1, gyrA96, relA1, lac, Hte [F´proAB, lacIqZ∆M15, Tn10, (Tetr), Amy, Camr]) 

were used for blunt-end cloning with pSC-b 

2.2.9. E-coli transformation 

Plasmids were transformed into competent DH5α E. coli cells by incubation on 

ice for 45 - 60 minutes followed by a 42 °C heat shock for 45 seconds and 2-

minute incubation on ice. 500 µl SOC media (20 g/l Bacto-tryptone, 5 g/l 

Bacto-yeast extract, 0.5 g/l NaCl, 20 mM glucose, 2.5 mM KCl, 10 mM MgCl2 

pH 7.0) was added and then incubated at 37 °C rotating at 180 rpm for 1 hour. 

Reaction mixture was plated on 2YT agar plates (16 g/l Bacto-tryptone, 10 g/l 

Bacto-yeast extract, 5 g/l NaCl, 1.5% (w/v) agar pH 7.0) supplemented with 

0.1 mg/ml carbenicillin and 0.01 mg/ml X-Gal to allow positive selection and 

identification of transformants by blue/white screening. Plates were 

incubated overnight at 37 °C. 

Single, positive transformant colonies were picked and cultured overnight at 

37 °C in 5 ml SOC media supplemented with 0.1 mg/ml carbenicillin. Purified 

plasmid DNA was obtained from the culture using the QIAprep Plasmid Mini 

Kit (QIAgen, Hilden, Germany) as per the manufacturer’s instructions. 

Confirmation of fragment insertion was then obtained by appropriate 

restriction enzyme digestion and subsequent sequencing using the M13 or 

custom sequencing primers (Eurofins Genomic, Wolverhampton, UK). 
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Alternatively, colony-PCR was used to select positive transformants. Single 

colony plaques were nicked with a sterile toothpick and used as the template 

in standard GoTaq PCR for genotyping. 

2.2.10. Yeast strains used 

Colonies of yeast strain MaV203 were streaked from glycerol stock onto YPED 

agar plates (20 g/L Peptone, 10 g/L yeast extract, 5 g/L ammonium sulphate, 

1.8 % [w/v] agar) and grown at 30 °C for three days. Single colonies were 

selected and cultured overnight in YPED broth at 30 °C at 160 rpm rotation 

until the culture reached OD600 1 - 1.5. Cells were harvested by centrifugation 

at 8,000 rpm for 10 seconds and washed twice with TE buffer and 

resuspended in 0.1 M LiAC followed by incubation at 30 °C for 1 hour rotating 

at 160 rpm. 50 µl aliquots were stored at -80 °C.  

2.2.11. Gateway cloning for yeast expression 

Yeast expression plasmids were cloned using the Gateway® LR reaction as 

described by the manufacturer (Invitrogen, Carlsbad, California, U.S.A.) as 

follows: 

In a 1.5 µl microfuge tubes mix: 

pENTR-11::GOI (50 - 150 ng)  1 µl  

Destination vector (150 ng) 1 µl  

TE Buffer (pH 8)  6 µl 

LR Clonase II   2 µl    

The reaction was mixed by vortexing and incubated at room temperature for 

at least 1 hour. The reaction was terminated by the addition of 1 µl Proteinase 

K solution and incubation at 37 °C for 10 minutes. The expression clones were 

then transformed, cultured and purified from E. coli as described above 
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For Yeast 2-Hybrid interaction assays, bait and prey plasmids were cloned, 

amplified and tested using the ProQuestTM Two-Hybrid System (Invitrogen, 

Carlsbad, California, U.S.A.) as per the manufacturer’s instructions.  Co-

transformation of yeast cells with bait and prey expression vectors proceeded 

by mixing 1 µg of each plasmid with 150 µl of competent yeast cells, 350 µl  50 

% PEG3350 and 1 µl salmon sperm. The reaction mixture was mixed by 

inversion and incubated at 30 °C for 1 hour. Cells were then heat shocked at 

42 °C for 30 minutes. 200 µl of this reaction mix was plated on SD Agar plates 

supplemented with -Leu -Trp/-His mixture for positive selection of His3 

reporter gene expression. To confirm interactions, replica plating of master 

plates on to SC-Leu-Trp-His plates containing 5 mM, 10 mM, 20 mM, 30 mM, 

40 mM and 50 mM 3--Amino-1,2,4-Triazole to test HIS3 induction 

2.2.12. Restriction enzyme digests 

Restriction enzyme digests were carried out in 20 µl volumes consisting of 1 µl 

total restriction enzyme(s) (10-12 units), 2 µl of the appropriate buffer, 0.2 µl 

Bovine Serum Albumen, the required volume for 1 µg of plasmid DNA and the 

remaining volume made up with sterile, distilled water. Enzymes and 

associated reagents were manufactured by Promega, Madison, Wisconsin, 

U.S.A. Incubation was carried out as specified by the enzyme manufacturer. 

Where double digestion was not possible a sequential digest was performed. 

Cut plasmid was purified after digestion with the first enzyme using the 

QIAgen PCR Purification Kit (QIAgen, Hilden, Germany) as described by the 

manufacturer. Eluted plasmid was then subjected to digestion by the second 

enzyme and fragments separated and purified from agarose gel 

electrophoresis as described above.  

2.3. Quantitative reverse-transcription PCR 

2.3.1 Extraction of RNA 

Tissue samples were harvested and flash-frozen using liquid nitrogen prior to 

storage at -80 °C. Samples were ground to a fine powder using pre-cooled 
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stainless steel ball bearings in a TissueLyser (QIAgen, Hilden, Germany). RNA 

was extracted from ground tissue samples (in most cases >100 mg) using the 

RNeasy Extraction Kit (QIAgen, Hilden, Germany) in accordance with the 

manufacturer’s instructions. This included the incorporation of the on-column 

DNase I protocol to remove DNA contamination. A modified DNase incubation 

step was used in which 80 µl of the DNase/RDD buffer solution was added to 

the column and allowed to incubate for 1 hour at 37 °C after which a further 

80 µl was added and allowed to incubate at 37 °C for an additional hour. 

Alternatively, 10 µg of eluted RNA (as determined by NanoDrop (LabTech 

International Ltd, U.K.) quantification) was treated with Turbo DNase 

(Invitrogen, Carlsbad, California, U.S.A.)  as per the manufacturer’s 

instructions. RNA quality and accurate quantification was carried out on an 

Agilent Bioanalyser 2100 using Agilent RNA 6000 Nano Reagent Kit (Agilent, 

Santa Clara, California, U.S.A.) according to the manufacturer’s instructions 

DNase treated RNA samples were stored at -80 °C. 

2.3.2. cDNA Synthesis 

cDNA was synthesised from 1 µg total RNA (samples were normalised to 100 

ng/µl) using the SuperScript III First Strand Synthesis System for Reverse-

Transcriptase PCR with an Oligo dT(20) primer (Invitrogen, Carlsbad, California, 

U.S.A.). The modified protocol for First Strand Synthesis of Transcripts with 

High GC content included in manufacturer’s online instructions was used. 

cDNA samples were stored at -20 °C.  

2.3.3. Quantitative Reverse-Transcription PCR 

qRT-PCR was carried out using the ABI 7500 Real Time PCR System (Applied 

Biosystems, Foster City, California, U.S.A.) using the cDNA equivalent of 1 µg 

diluted by a factor of 1.5. 20µl reactions were prepared as follows: 
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 SYBR Green Master Mix (0.2 % ROX) 10 µl 

 Primer mix (250 nM / primer)  5 µl 

 cDNA     5 µl 

PCR conditions were: 

95 °C  10 minute  

95 °C  1 minute 

59-61 °C 30 seconds     50 cycles 

72 °C   1 minute   

Dissociation curve 

Non-RT control samples (cDNA synthesis mixture minus Reverse 

Transcriptase) corresponding to cDNA samples were also tested to assess the 

level of genomic DNA contamination of cDNA samples. Amplification of target 

genes was assessed by measurement of reaction well fluorescence during the 

72 °C elongation step of each cycle. Genomic DNA contamination, non-specific 

amplification and primer-dimer formation was assessed by visual inspection of 

reaction well dissociation curves.  

2.3.4. Data Analysis 

Ct and Rn (cycle fluorescence) values for each reaction were obtained using 

ABI 7500 software (v2.0.5). Primer efficiencies for each reaction were 

calculated using LinRegPCR software (v12.3 (Ruijter et al., 2010)). All qRT-PCR 

reactions were carried out in duplicate for three replicates of each biological 

sample. Ct values were normalised using the following equation: 

NE = Primer Efficiency-Ct 

Normalised relative expression (NRQ) of target genes were then determined: 

  Target NRQ = Target NE ÷ Reference NE 
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The mean NRQ value across the biological replicates and its respective 

standard error was then calculated.  

2.4. Generation of transgenic plants 

2.4.1. Cloning of wheat RNAi vectors 

RNAi trigger constructs were cloned using the HWM::AdH::Nos modular sub-

cloning system developed by Drs Hutley and Vaughan at Rothamsted 

Research, U.K. which takes advantage of cross-compatibility between BglII 

and BamHI restriction sites.  

Short fragments of target sequences were amplified by PCR using Phusion Taq 

and anther cDNA template. Forward and reverse primers with 5’ BglII and 

BamHI extensions respectively were used. The amplified products were gel 

extracted and purified before being blunt sub-cloned into the pSC-b amp/kan 

holding vector and transformed into DH5α E. coli competent cells. 

The transformation mixture was plated on selective agar plates containing 1 

mg/ml carbenicillin (ampicillin analogue). Transformant colonies were 

selected and cultured overnight in SOC broth also containing 1 mg/ml 

carbenicillin. Bulk plasmid was obtained by column miniprep (QIAgen, Hilden, 

Germany).  

RNAi trigger sequences with 5’ BglII and 3’ BamHI overhangs were obtained 

by digesting the holding vectors with BglII/BamHI and gel extracting the 

product.  Simultaneously, HMW::AdH:Nos was digested with BglII, creating a 

compatible site with which the target fragment and also gel purified. The 

target fragment was ligated in a sense orientation between HMW and the 

AdH intron. This vector was then transformed into E. coli and bulked up as 

above. The sense fragment-containing vector was digested with BamHI, 

creating a ligation site between the AdH intron and Nos terminator with which 

the target fragment overhangs are only compatible in an antisense 

orientation. The fragment and vector were ligated as such and bulked as 

described. 
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A HindIII/SalI digest of this construct was then conducted to remove the HMW 

promoter. The OsAct promoter, previously shown to drive expression of 

transgenes in wheat anther and pollen tissue (S. Vaughan, pers. comm.) 

pGEM-t::OsAct (obtained from Dr. David Lloyd) was also digested with 

HindIII/SalI and the OsAct  with 5’ HindII and 3’ SalI overhangs was gel 

purified. The promoter was then ligated into the RNAi expression vector 

which was transformed and bulked as described. Sequencing confirmed the 

insertion and orientation of the RNAi trigger and OsAct promoter sequences.  

2.4.2. Transformation of wheat by biolistics 

Purified plasmid was delivered to the Rothamsted Transformation Unit at a 

concentration of 1 µg/µl for transformation into wheat (var. Cadenza) via 

biolistics (see Sparks and Jones, 2009). Transfomant plants were selected in 

tissue culture for herbicide resistance due to Barnase gene included in 

transformation vector. Selected plants were grown under standard glasshouse 

conditions. Further validation of transformation was obtained by PCR 

genotyping.  Positive lines were allowed to self-seed and taken through to T1 

generation. Null lines and suspected somatic clones were discarded. 

2.4.3. TaqMan Zygosity Assay 

The TaqMan zygosity assay indicates dosage of a target gene relative to an 

endogenous control gene of known copy number. In this work the assay was 

used to determine the zygosity of RNAi constructs in the progeny of 

transformed wheat lines based on amplification of the MaizeADH intron 

region of the construct. The assay had previously been developed by Dr. 

Archana Patil at Rothamsted Research.  

Genomic DNA from wheat leaf tissue was extracted as described in 2.2.1 and 

normalised to 10 µg/µl. Primer and probe mixes made from 100 nM stocks 

were prepared as follows: 
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 ADH F3  1.2 µl 

 ADH R3  1.2 µl 

 ADH Probe 2  1.2 µl 

 HvCon2 F  2.4 µl   

 HvCon2 R  2.4 µl 

 HvCon Probe  2.4 µl 

 Sterile, distilled water 49.2 µl 

The following reaction mix was then prepared in 96-well PCR plates: 

Primer/Probe mix   2 µl 

2X Absolute* qPCR Master mix 10 µl 

Sterile, distilled water   3 µl 

gDNA      5 µl 

*(Thermo Fisher Scientific, Hemel Hempsted, U.K.) 

qPCR was then carried out on the samples with conditions as in 2.3.3. with the 

modification of 40 cycles, annealing temperature 60 °C, the removal of the 

elongation step and the detection of specific fluorophores to either TaqMAN 

probe (ADH Probe 2 - FAM, HvCon Probe - VIC) 

Fluorescence was measured during the annealing step of each cycle. Primer Ct 

and amplification efficiency for each sample was calculated as described in 

2.3.4. The dCt value for each sample was calculated as the difference between 

the AdH Ct and HvCon Ct. More negative dCt values indicate high transgene 

copy number and/or homozygosity. dCt values were also plotted on XY scatter 

plots to identify distinctive clustering of values which may further suggest 

homozygosity within the population.   
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2.5. Breeding of TILLInG mutants 

2.5.1. Plant Breeding 

Selected female parents were emasculated by excision of pale green/yellow 

immature anthers 1-2 days prior to anthesis. The first 3 and last 2 spikelets 

and innermost two florets of all remaining spikelets were removed and the 

tips of lammela cut off. Emasculated spikes were enclosed in transparent 

plastic crossing bags. When selected male parents entered anthesis, single 

pollen shedding spikes were excised and placed upside-down inside the 

crossing bag with the emasculated spike. After agitation to spread pollen 

around all available floret positions, pollen donor spikes were held in place 

upside-down against the female parent using paperclips. Pollen donor spikes 

were replaced as required.  

2.5.2. Embryo Rescue 

Spikes containing immature grain no older than 25 days post-fertilisation were 

excised and seeds removed. Seeds were surface-sterilised by washing first in 

70% Ethanol for 5 minutes followed by 15 minutes in 0.5% Sodium 

Hypochlorite and 1 drop of Tween20 (Sigma-Aldridge, St. Louis, Missouri, 

U.S.A.) solution before 3 rinses in sterile, distilled water.  

Embryos were extracted from grain under a Leica MZ6 dissecting microscope 

(Leica, Wetzlar, Germany) and mounted upon autoclave-sterilized growth 

medium contained in plastic blood cell counter vials. Growth medium 

consisted of the following: 

0.5% w/v Type A agar (Sigma-Aldridge, St. Louis, Missouri, U.S.A.) 

1X Standard Murashige and Skoog powder (Duchefa Biochemie, 

Haarlem, Netherlands) 

0.05% w/v MES buffer (Melford Laboratories Ltd, Ipswich, U.K.) 

1X Sucrose (Sigma-Aldridge, St. Louis, Missouri, U.S.A.) 
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Potassium hydroxide (Sigma-Aldridge, St. Louis, Missouri, U.S.A.) as 

required to achieve pH 5.8 

Vials containing mounted embryos were stored in controlled environment 

conditions as described above. Embryos which successfully germinated were 

transplanted to Rothamsted prescription mixture compost in P24 plastic trays 

and allowed to continue growing under glasshouse conditions. 

2.6. Histology 

2.6.1 Fixation of Tissue 

Samples were excised and placed immediately in cold vials of 4% 

Paraformaldehyde + 0.05% Gluteraldehyde solution. Vials were allowed to 

rotate for 4 hours at room temperature before storage overnight at 4 °C. 

Samples were then loaded into a Leica EM TP automatic sample preparation 

machine (Leica, Wetzlar, Germany) and subjected to a fixation and agitation 

with continuous agitation. Samples were submerged for 1 hour in 0.05M 

Phosphate buffer (pH 7.2), followed by an ethanol dehydration series, 

beginning with 10% and increasing by 10% increments, 1 hour at each 

concentration. At the 70% ethanol step samples were submerged for 12 hours 

and the temperature was dropped from ambient to 4 °C. The dehydration 

series up to 100% ethanol was then completed at ambient temperature. 

Infiltration of samples with LR Resin (Agar Scientific, Standted, U.K.) was also 

carried out in a sequential concentration series; ethanol 100% : LR resin 1:4, 

3:2, 2:3 and 4:1 (v/v) for 1 hour followed by 100% LR white for 6 hours at 4 °C. 

Infiltrated tissue was then placed in a 0.5 ml thin-walled PCR reaction tube, 

orientated as desired and filled with fresh LR resin. Samples were embedded 

in the resin by baking for at least 24 hours in a 60 °C oven purged of oxygen.  

2.6.2 Sectioning, Staining and Visualisation of Samples 

Thin sections (1-2 µm) of samples were taken using a glass knife in a Reichert-

Jung Ultracut microtome (Leica, Wetzlar, Germany). Samples were mounted 
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on glass slide cover slips and allowed to dry at room temperature overnight. A 

drop of Toluidine blue (0.05%) was placed on each section for 0.5 - 1 minute 

and then gently rinsed off using sterile, distilled water. Sections were placed 

on a warm plate and allowed to dry. Sections were then mounted on a glass 

microscope slide using DPX (Sigma-Aldridge, St. Louis, Missouri, U.S.A.). 

Initial inspection of sections was carried out using Olympus BH-2 light 

microscope (Olympus, Shinjuku, Japan). For digital image capture slides were 

visualised using a Zeiss Axiophot light microscope (Zeiss, Jena, Germany) 

equipped with a Retiga digital camera (Q-Imaging, Surrey, Canada). Images 

were processed and captured using MetaMorphⓇ (Molecular Devices (UK) Ltd, 

Wokingham, U.K.) imaging software.  

2.6.3 Alexander Pollen Viability Staining 

Anthers on the cusp of dehiscence were excised and placed in 2 ml microfuge 

tubes containing Carnoy’s fixative (Ethanol: Chloroform: Acetic Acid 6:3:1 

[v/v]) and stored at room temperature. After at least 24 hours anthers were 

removed from the fixative, placed under a dissecting microscope and sliced 

longitudinally using a razor blade. Anthers were then placed in microfuge 

tubes containing 100 µl Alexander stain which was prepared as follows: 

For 100 ml add (in order): 

10 ml 90% ethanol (Sigma-Aldridge, St. Louis, Missouri, U.S.A.) 

1 ml Malachite green (1% solution in 95% ethanol) (Hopkins and 

Willliams Ltd, Chadwell Heath, U.K.) 

50 ml distilled water 

25 ml glycerol (Sigma-Aldridge, St. Louis, Missouri, U.S.A.) 

5 ml Acid fuchsin (1% (w/v) solution in water) (Hopkins and Willliams 

Ltd, Chadwell Heath, U.K.) 

0.5 ml Orange G (1% (w/v) solution in water) (Hopkins and Willliams 

Ltd, Chadwell Heath, U.K.) 

4 ml Glacial acetic acid (Sigma-Aldridge, St. Louis, Missouri, U.S.A.) 

 Add 8.5 ml distilled water to bring up to 100 ml 
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Samples were incubated at 30 °C for 30 minutes and mixed by vortexing 

regularly. A known volume of the Alexander stain solution was placed on a 

glass slide and covered with a coverslip. Total viable and nonviable cells visible 

in the aliquot were counted using a light microscope and multiplied by 

dilution factor to obtain a total anther value.   
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CHAPTER 3: NON-DESTRUCTIVE STAGING OF MALE 

REPRODUCTIVE DEVELOPMENT IN WHEAT 

3.1. Introduction    

Much of the regulatory networks which control anther cell identity 

specification, anther cell division and differentiation, gametophyte meiosis, 

pollen development and anthesis have been described in model species 

Arabidopsis  and rice (Ma, 2005; Wilson and Zhang, 2009; Ge et al., 2010; 

Plackett et al., 2011; Zhang et al., 2011) (see section 1.3.). Indeed there 

appears to be a great deal of conservation of signalling pathways between 

Arabidopsis, a brassicaceous eudicot, and monocot species (Wilson and 

Zhang, 2009), allowing the identification of many genes of interest in crop 

species based on sequence homology with already annotated genes in related 

species. An improved understanding of these genetic regulatory pathways in 

major cereals such as wheat, barley, rice and maize is imperative for 

development of hybrid and double haploid varieties, genetic containment and 

breeding for abiotic stress tolerance in preparation for future climate change 

scenarios (see section 1.1.). So far there has been very little study of genetic 

regulation of anther and pollen development in wheat, but with recent 

developments in genome sequence availability (Chapman et al., 2015; 

Pingault et al., 2015) and reverse genetics tools (Chen et al., 2014) further 

accelerated progress is anticipated.  

Wheat progresses through a series of phenological changes which can be 

easily recognised by external morphological features, allowing the definition 

of distinct developmental stages (Zadoks et al., 1974). These developmental 

scales have proven useful, becoming embedded within national agronomic 

advice and the global agricultural vocabulary. Modern molecular genetics 

techniques provide experimenters with the tools to describe the function of 

specific genes within a given tissue, cell, developmental period, etc., provided 

that the material used is accurately staged. However, for many of studies of 

reproductive development, plant material is collected by age (Gómez and 



53 
 

Wilson, 2012) or according to external development scales, neither of which 

provide accurate enough prediction of internal development for experimental 

purposes.  

In order to characterise the molecular regulation of anther and pollen 

development it is necessary to identify and define important anther 

cytological and morphological stages in the studied species. Although the 

physiological processes involved in anther development appears to be broadly 

conserved amongst angiosperms (see section 1.2.), there are nonetheless 

differences which mean that staging developed for species other than that 

under investigation cannot be relied upon to translate directly. Therefore, 

when characterising the function of a gene based on orthologuey, identical 

interspecies expression profiles and function cannot be presumed. For 

example, the expression of Arabidopsis transcription factor DYSFUNTIONAL 

TAPETUM1 (DYT1)  is preferentially expressed in tapetum cells prior to PMC 

meiosis (Zhang et al., 2006) whereas its putative rice orthologue 

UNDEVELOPED TAPETUM1 (UDT1) is expressed for a period spanning pollen 

cell meiosis to mitosis (Jung et al., 2005). The development of systems relating 

the stage of anther development, which in cereal plants occurs enclosed 

within the culm, to external morphological markers is therefore necessary to 

ensure selected material is suitably representative of the development stage 

under investigation.   

In order to establish a means of identifying and collecting suitable wheat 

anther material for molecular and physiological studies, the internal and 

visible external growth and development of wheat was characterised. 

Specifically, the series of developmental processes that occur during wheat 

anther and pollen development were characterised and divided into defined 

stages. Concomitant changes to external morphology were also studied with 

the aim of relating external characteristics to internal development in the 

form of a non-destructive staging model. 
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3.1.1. External development 

Wheat is a member of the Poaceae family of grass species which, like other 

cereal crops within the family, has undergone substantial domestication and 

selective breeding pressure which has modified its phenology and morphology 

to suit prevailing cultivation practices (Salamini et al., 2002; Simons et al., 

2006). Modern wheat varieties vary in height, vernalisation requirement, 

grain hardness and many other features such as the presence of awns. 

However, sufficient similarity in growth and development between wheat 

varieties allows for description of important stages in broadly applicable 

terms. The UK national agricultural Levy Board (ADHB) provides a 

standardised guide to wheat growth which uses a numerical scale based on 

the work of Zadocks et al., (1974) and Trottman (1987) to assist growers in 

applying agronomic interventions to at appropriate growth stages (Fig. 3.1.) 

(ADHB, 2015). Above ground development is broadly categorised in to seven 

groups (seedling growth, tillering, stem elongation, booting, ear emergence, 

flowering and grain development (Fig. 3.1.)) which encompass the most 

clearly defined phases of vegetative and reproductive growth and 

development 

Seedling growth (GS10-19) begins with the emergence of the first leaf from 

the coleoptile (GS11), with each subsequent growth stage describing the 

incremental increase in number of leave (GS13 – three leaves; GS15 – five 

leaves: etc.).  
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Figure 3.1. Growth stages of wheat based on external morphological 

development. Distinct developmental phases of broad relevance to 

reproductive development shown in bold. Specific growth stages during which 

male reproductive development and processes relevant to this project are 

given with a brief description of distinguishing morphological features. GS – 

Growth stage. Adapted from ADHB (2015)).  

The number of tillers produced by a plant is an important determinant of yield 

and is carefully regulated according to environmental conditions (Power and 

Alessi, 1978; Sparkes et al., 2006). During tillering (GS20-29), the number of 

tillers, each capable of producing a grain- containing spike, increases rapidly 

until the initiation of the stem elongation phase (GS30-39) and reproductive 

development in the main tiller. At this point competition for resources 
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between the developing spikes instigates abortion of laggard tillers. The 

duration of tiller production and number of tertiary tillers aborted is 

determined by the plant sensing of nitrogen and light availability (Sparkes et 

al., 2006). Stem elongation is characterised by the appearance of nodes as the 

pseudostem extends, driven by internode elongation. At GS37 the tip of the 

rolled flag leaf emerges from the ligule of the last leaf (Fig. 3.2. a.), continuing 

to GS39 when the entire flag leaf blade has emerged (Fig. 3.2. b).  

 

Figure 3.2. Defining morphological features of wheat (var. Cadenza) according 

to Zadocks scale. Wheat plants at 6 distinct stages of development according 

to the Zadocks scale. Growth stage numerical code is stated below each tiller. 
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Stage defining features according to Figure 3.1 are annotated in white. (a) 

GS37, (b) GS41, (c) GS45, (d) GS47, (e), GS55, (f) GS61.  

Booting (GS41-47) describes the transitional period in which the external 

morphology of plants shifts from vegetative to reproductive characteristics. 

The extension of the true stem driven by internode elongation exposes the 

flag leaf sheath (FLS) which continues to elongate during GS41 (Fig. 3.2. b). 

Internal growth and development of the spike and further internode 

elongation forces the spike into the FLS causing it to become visibly swollen 

(GS43-45) (Fig. 3.2. c) At this point awns may become visible protruding from 

the flag leaf ligule in awned varieties. The spike itself starts becoming visible 

at GS47 as it enlarges to the point of forcing the flag leaf sheath open (Fig. 3.2. 

d). 

Ear emergence (GS51-59) is caused by the extension of the peduncle, the true 

stem connecting the spike to the previous node, propelling first the first 

spikelet above the ligule of the flag leaf (GS51), followed by half the spike 

(GS55) (Fig. 3.2. e) and finally the entire spike (GS59). 

Flowering begins at GS61 at anthesis when the first anthers become visible 

protruding from the floret (Fig. 3.2. f). The first floret positions to enter 

anthesis and directional progression of anthesis along the spike varies 

between genotypes. Similarly, the open or closed habit of florets during 

flowering varies between cultivars. Upon completion of flowering (GS69) the 

remaining growth stages (GS71-93) describe the appearance and 

characteristics of the maturing grain up to the point at which they are ready 

to be harvested.  

3.1.2. Development of the wheat anther and pollen   

Reproductive development begins in wheat after the transition of the apical 

meristem to reproductive growth and continues through a series of definable 

processes until anthesis, many of which occur whilst the immature spike is 

enclosed within the culm (Vahamidis et al., 2014). A number of staging scales 



58 
 

for wheat reproductive development have been suggested, many with the 

aim for assisting the timing of agronomic interventions such as fertiliser and 

growth regulator applications (Waddington et al., 1983; Vahamidis et al., 

2014). Much of this male reproductive development takes place before GS51, 

when the spike first becomes externally visible. Therefore, in order to 

investigate the effect of any treatment upon these processes or collect 

material at specific developmental stages, a means of accurately linking 

distinct external morphological features to anther development stages whilst 

it is enclosed within the culm is required.  

Male reproductive development begins in wheat with the specification of 

stamen primordia on the apical meristem and reaches completion upon 

dehiscence when the pollen is released from the anther, some remaining inside 

the floret and falling upon its own stigma (De Vries, 1971). The nuclear division 

of wheat pollen cells proceeds through meiosis of a sporophytic pollen mother 

cell, the release of unicellular microspores from tetrads and their subsequent 

mitosis to form mature pollen cells (Goss, 1968) as occurs in other species. El-

Ghazaly and Jansen (1986) and Mizelle et al., (1989) used transmission electron 

microscopy (TEM) to investigate the changes that occur within wheat anthers 

during pollen development in order to characterise the effect of a chemical 

hybridising agent. They divided wheat anther development into 7 distinct 

stages: 1) precallose, 2) central callose – prophase I meiosis, 3) dyad and tetrad, 

4) young, free microspores, 5) vacuolated microspore, 6) vacuolated pollen 

grain, 7) near-mature, tri-nuclear pollen grain. Saini et al., (1984) also described 

7 stages of wheat anther development (Fig. 3.2.) but described the mitosis of 

vegetative and generative nuclei as two distinct events prior to pollen 

maturation. 
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Table 3.1. Description of wheat anther and pollen development. Wheat anther 

and pollen development stages, beginning at the formation of sporogenic Pollen 

Mother Cells (PMCs), gametogenesis via meiosis and mitosis and concomitant 

development of anther and tapetum cell layers. Pollen development is complete 

with the formation of trinuclear cells with fully formed outer layer and 

accumulated starch reserves. Adapted from Saini et al., (1984).  

During the pre-meiosis stage, large sporogenous cells are present surrounded 

by four cell layers, the innermost being comprised of rectangular, single 

nuclear tapetum cells with heavily staining cytoplasm. Mizelle et al., (1989) 

define the beginning of the meiosis stage by the expansion of the 

microsporangium, creating a locule into which the secretion of callose causes 

a distinctive star shape to be formed. As meiosis progresses and dyads 

followed by tetrads are formed inside callose envelopes, tapetum cells 

become binuclear, their plastids become dense and the primary wall expands 

as pro-Ubisch bodies become evident within the cytosol and on the plasma 

membrane surface (El-Ghazaly and Jensen, 1986; Mizelle et al., 1989).  

Stage of microspore 

development
Feature of anther anatomy

Pre-meiosis
Anther wall consists of epidermis, endothecium, middle layer and a 

tapetum surrounding PMC

Meiosis Each PMC enclosed within a callose wall

Young microspores

Callose walls are broken down. Microspores aporate, thin-walled with 

large nuclei align along the periphery of the anther lumen. Degeneration 

of tapetum commences

Vacuolated microspores

Microspores irregularly shaped and in contact with the tapetum. Wall and 

pore formation continues. Pro-Ubisch bodies from on inner walls of 

degenerating tapetum cells. Anther diameter increases

Mitosis I
Microspore nucleus divides to form vegetative and generative nuclei. 

Pollen begins to accumulate starch

Mitosis II
Generative nucleus divides to form two ovoid sperm nuclei. Tapetal cells 

degenerated. Pollen becomes spherical

Mature Pollen
Only two outer layers of anther wall remain. Pollen consists of an outer 3-

layered exine, middle Z-later and inner 2-layered intine
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Upon release of young microspores, the tapetum primary wall completely 

degrades and a pore forms within the microspore orientated towards the 

tapetum, and Ubisch bodies assume their distinctive spiked shape as 

sporopollenin is deposited upon them. The nucleus of the young microspore 

migrates from the centre of the cell to the periphery and the cell becomes 

vacuolated (Mizelle et al., 1989). The rapid expansion of the microspores 

during vacuolation appears to compress the tapetum layer and Mizelle et al., 

(1989) define this as the beginning of tapetum degeneration. Mitosis I occurs 

after the vacuolated pollen grain stage (Table 3.1.), resulting in a vegetative 

and generative cell. Tapetum degeneration continues throughout this stage 

with tapetal cytosol precipitating into the locule and large lipid deposits 

becoming evident. Throughout this period sporopollenin deposition on the 

microspore continues leading to a visible increase in exine thickness (El-

Ghazaly and Jensen, 1986; Mizelle et al., 1989). 

Unlike Saini et al., (1984), Mizelle et al., (1989) group Mitosis II and mature 

pollen stages together. At the near-mature tri-nuclear pollen grain stage the 

generative cell divides to form two sperm cells whilst the vegetative cell 

migrates to the pore (Goss, 1968). The cytoplasm now proliferates into the 

central vacuole and becomes rich in starch-storing plastids which stain 

heavily. At this stage the tapetum layer is in an advanced stage of 

degeneration, however, although some debris such as plastids and 

endoplasmic reticulum fragments can still be recognised (Mizelle et al., 1989), 

it is not clear whether these components retain any function at this point in 

pollen development.  

Interestingly, this description of anther development in wheat indicates that 

the tapetum layer is degenerating but still present during pollen mitosis II. In 

rice the tapetum layer is generally described as disintegrating immediately 

prior to pollen mitosis (Li et al., 2006a; Huang et al., 2009) and in Arabidopsis 

degeneration starts much earlier, during meiosis, and is complete before the 

end of mitosis (Parish and Li, 2010).This suggests that despite common 

processes occurring during anther development, there are important 
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differences between species. The secretory function of the tapetum and 

correct timing of its PCD is vital for wheat fertility and is vulnerable to abiotic 

stress (see section 1.5.) and it is therefore necessary to ensure that any anther 

development scale incorporates accurate descriptions of the changes that 

occur in tapetum cells.  

3.1.3. Existing non-destructive reproductive development staging 

methods 

In order to investigate the effects of experimental treatment(s) upon male 

reproductive development in cereals, non-destructive means of estimating 

internal developmental stage based on measurement of external 

characteristics have been established. Like wheat, early stages of reproductive 

development in barley occur whilst the spike is enclosed within the 

pseudostem. In order to complete molecular studies on developing barley 

anthers, a non-destructive staging method was established to avoid first 

having to dissect and damage the spike (Gómez and Wilson, 2012). The 

authors determined that the Zadocks scale was inadequate for predicting the 

size of the developing spike between GS31 and GS49 and therefore 

introduced substages to better resolve more easily detectable morphological 

markers where Zadocks scale descriptors were overlapping or ambiguous. 

Between GS31-37 the Zadock’s scale could predict the length of the 

developing spike, which itself was correlated to anther development stage. 

Upon the emergence of the flag leaf at GS37 the proceeding Zadocks scale 

stages were replaced with four last flag elongation (LFE) stages which further 

refine the Zadocks scale definitions with the addition of the FLS elongation 

measurements (Table 3.2.). This combined scale was shown to be an accurate 

predictor of anther development stage between anther cell differentiation 

and pollen maturation. Cytological analysis of anthers and expression analysis 

of putative orthologues of anther genes with known temporal profiles 

confirmed the accuracy of the technique.  
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The negative impact of environmental stresses on reproductive development 

in rice has prompted the detailed investigation of anther and pollen 

development, necessitating an appropriate non-destructive staging method. 

Like barley and wheat, large periods of reproductive development take place 

whilst the spike is enclosed within the pseudostem. An auricle distance (AD) 

measurement, the distance between the auricles of the flag leaf and the 

previous leaf, for staging anther development has been used to determine the 

most vulnerable stages of pollen development to cold stress (Satake and 

Hayase, 1970) and for the application of drought stress treatments for 

molecular studies of anther hormonal signalling (Oliver et al., 2005; Ji et al., 

2011). AD could be considered to be analogous to LFE as they both essentially 

characterise FLS length, however the rice inflorescence (panicle) differs from 

wheat and barley in that it consists of a branched rachis off which numerous 

secondary or lateral, spikelet-bearing rachises emanate which bear spikelets 

(Itoh et al., 2005). The age of spikelets can vary by as much as 7 days and 

therefore care must be taken with the AD method to target only main stems 

and to restrict sampling to synchronously developing tillers and to restrict 

sampling to a defined region of the branch (Satake and Hayase, 1970). 
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Table 3.2. Non-destructive anther staging method in barley. Anther 

development stage in two double-rowed barley variety Optic grown at 15/12 

°C day/night 16/8h light/dark is related to spike size which can be predicted by 

external growth stage. From Gómez and Wilson (2012). 

The aim of the following experiments was to determine if the LFE/AD staging 

method could be extended to wheat in order to conduct heat stress 

experiments and characterisation of anther and pollen regulatory genes. 

Specifically, the spring wheat variety Cadenza is the standard variety used for 

wheat molecular biology research at Rothamsted Research, including TILLInG 

and transgenesis, due to its receptiveness to transformation and tissue 

culture and shortened life cycle due to its spring habit. As Cadenza was used 

for other anther molecular genetic investigations, described in the following 

31 One node. 1.17±0.54 Primary sporogenous cells. 

32 Two nodes 2.46±0.97
Secondary sporogenous cells to pollen 

mother cells. Four layers. 

33 Three nodes 3.14±0.72
Pollen mother cells undergo meiosis. Tapetum 

layer is prominent. 

34 Four nodes 3.9±1.15
Microspores released from the tetrad. 

Tapetum vacuolated.

35

Fifth node detectable / last flag emerged 

completely before the fifth node was 

detectable. 

4.77±0.89

Free microspores. Middle layer undergoes 

crushing. The prominent tapetum layer starts 

to degenerate. 

37
Last flag completely emerged, still 

rolled. 
6.11±1.12

Microspores become vacuolated. Tapetum 

degenerating. 

LFE1  

Flag leaf emerged completely and 

unrolling, ligule may be visible; last flag 

sheath extended 0.5–5 cm.

7.14±1.29
Mitosis I. Tapetum degenerating, but still 

present.

LFE2

Last flag sheath extended 5–10 cm. Boot 

swelling obvious. Awns may be visible. 

Spike still inside the sheath, rachis has 

not started elongating.

9.38±1.27

LFE3

Flag leaf opening and awns clearly 

visible. Last flag sheath extended over 

10 cm. Rachis starts elongation, moving 

the spike upwards towards the last flag 

sheath.

9.19±0.77 Binuclear pollen. Mitosis II occurs. 

LFE4 

Spike has completed its upward 

movement and was entirely localized 

within the last flag sheath. Heading is 

imminent.

- Trinuclear pollen. Septum breakage

Characterisitcs Spike length (cm) Anther and pollen development stage Stage
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chapters, a non-destructive staging method was required to ensure correct 

material collection and treatment targeting.  

3.2. Materials and Methods 

3.2.1. Growing conditions  

Spring wheat plants (var. Cadenza) were grown in controlled environment 

conditions (see section 2.) until the beginning of the booting period. Material 

was collected from secondary tillers between GS39 (flag leaf fully visible) and 

GS51 (ear emergence) (see section 3.1.1.).  

3.2.2. Material collection and measurement 

Based on previous work (see section 3.1.3.) material collection was carried out 

during the booting stages of wheat development to suit the further aims of 

this project to characterise aspects of anther development likely to take place 

during this period. The beginning of booting was defined as GS39 in the AHDB 

Wheat Growth Guide (AHDB, 2015) (Fig. 3.1.). At this point the flag leaf has 

fully emerged from the pseudostem and as the flag leaf sheath elongates 

during GS41 the distance between the ligule of the flag and previous leaf 

become measureable. To reduce the introduction of intra-ear variability into 

the data, collection and staging of anthers was restricted to the outer florets 

of mid-spike spikelets. 

3.2.3. Histological analysis of anther development   

Whole wheat florets or individual anthers were fixed in resin in order to 

characterise developmental stage by light microscopy. At earlier stages, when 

florets were too small for individual dissection the whole spike was fixed. 

Harvested material was immediately subject to chemical fixation as described 

in section 2.6. 

Prepared resin blocks were mounted in a microtome and cross sections were 

taken using a glass knife. Section thickness varied from 0.5 to 4 µm depending 
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upon hardness of the resin. Sections were floated and allowed to expand on 

fresh water and then recovered with a glass coverslip and placed on a drying 

plate. Once dried, sections were stained by covering in 0.05% Toluidine blue 

for 30 seconds and rinsed with water and returned to the drying plate 

overnight and chemically mounted as described in section 2.6. Samples were 

observed under a light microscope (Zeiss Axiophot, Carl Zeiss AG, Oberkochen, 

Germany).  

3.3. Results 

3.3.1. Identification of wheat anther development stages 

In order to determine if FLS length is a viable proxy measurement for staging 

anther development in spring wheat (var. Cadenza), it was necessary to first 

establish a standardised anther development scale against which to assign 

stages. To do this, light microscopy was used to observe the internal 

morphology of thin cross sections of anthers and determine if discrete 

developmental stages could be interpreted based on common features.   

Anther material was collected from Cadenza plants ranging from GS39 to 

GS47 and prepared for light microscopy as described above. This external 

stage range was chosen to attempt to encompass the anther development 

stages which are of specific interest to other experimental aims (see sections 

4 and 5). Progression of wheat anther development has been observed as 

previously described and assigned to discrete stages (see section 3.1.2) (Table 

3.1.). 

Anthers observed in the youngest material collected around GS39 were 

undergoing division of archesporial cells and differentiation of other anther 

cell layers. The four-lobed condition was also becoming evident at this stage 

(Fig. 3.3. a). It was possible to identify 3 distinct stages prior to meiosis as 

described in other species; the presence of archesporial cells surrounded by 

an epidermal and primary parietal cell layers (Stage 1, Fig. 3.3. a), then three 

differentiated cell layers of the endodermis, endothcium and secondary 
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parietal cells (Stage 2, Fig. 3.3. b). Lateral division of the secondary parietal 

layer gives rise to the differentiated middle and tapetum layer and 

archesporial cells divide to form sporogenous PMCs (Fig. 3.3. c).  The 

beginning of the PMC meiosis is marked by the heavy staining of the 

sporogenous cell nuclei followed by swelling and increased vacuolisation of 

the tapetum layer (Stage 4, Fig. 3.3. d). The distinctive callose star formation 

appears in the locule during this period.   

Although more detailed characterisation of the distinct stages of PMC meiosis 

in wheat has occurred elsewhere, this level of detail was not necessary for the 

purposes of this project as the focus of later physiological and genetic studies 

is on events in the tapetum after meiosis. Therefore, meiosis was considered 

as a single event spanning the initiation of nuclear division to the release of 

haploid microspores from tetrads. Furthermore, whilst the formation of the 

anther locule during this stage caused by the separation and contraction of 

microspore cluster-containing callose envelopes, differentiation between 

dyads and tetrads required the use of fluorescent dyes such as DAPI which 

was not used during this project.  

Upon completion of meiosis, haploid microspores are released from the 

microspore cluster. At this stage, microspores are encased in a callose 

envelope which is degraded by the action of enzymes secreted by the 

tapetum, allowing free microspores to align to the tapetum during which time 

their vacuoles enlarge (Stage 5, Fig. 3.3. e). The swelling of the tapetum cell 

layer at this stage becomes such that the middle layer becomes compressed 

and degrades (Stage 6, Fig. 3.3. f). The migration of microspore nuclei from 

central to peripheral locations as described in section 3.1.2 can be observed at 

this point. 

A significant change in developing anther and pollen cell morphology occurs 

as the microspores begin to take an irregular form and the tapetum layer 

becomes dense and compressed as it degrades (Stage 7, Fig. 3.3. g). From this 

point pollen cell Mitosis I (Stage 8, Fig. 3.3. h) and II (Stage 9, Fig. 3.3. i) give 
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rise to the generative and vegetative pollen cell nuclei. The migration of the 

generative nucleus to the locule-facing pole of the cell is evident at stage 9 

but the orientation of the vegetative nucleus towards the tapetum is not 

visible in Figure 3.3. i. As the tapetum cells continue to degrade, the pollen 

coat stains more heavily as increasing quantities of sporopollenin accumulate 

and the cells become increasingly spherical in shape. During this period, the 

vacuole is reduced as the cytoplasm proliferates. Plastids begin to accumulate 

starch which stain densely and become immediately recognisable as nearly 

mature pollen grains (Stage 10, Fig. 3.3. j). Upon completion of starch 

accumulation, the tapetum layer has completely degraded but cellular debris 

can still be seen lining the locule. Further degradation of the endothecium is 

accompanied by septum breakage, joining two anther locules before 

dehiscence, when breaking of the endodermis releases mature pollen from 

the anther (Stage 11, not shown). 



  
 

6
8

 

 

Figure 3.3. Staging of wheat anther development in wheat. 10 distinguishable stages were identified between the initiation of the four lobed 

condition (a) and completion of pollen development prior to dehiscence (j). Stages 1-2 (a and b) are defined by the presence of archesporial (Ar) 

and primary (PPL) and secondary parietal cells (SPL) surrounded by an endothecium (En) and epidermis (E). At stage 3 (c) the parietal cells have 

Td 
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differentiated creating a middle layer (ML) and Tapetum (T). Meiosis of PMCs 

begins at stage 4, some tetrads (Td) visible (d) and is characterised by the 

crushing of the middle layer and prominence of the tapetum. Young 

microspores (YM) are released from the callose envelope at stage 5 (e) and 

tapetum degeneration is evident at stage 6 (f). The vacuolation of pollen cells 

at stage 7 (h) marks the beginning of progress through mitosis I (Stage 8, (h)) 

creating bicellular pollen (BP), followed by mitosis II (stage 9) creating 

tricellular pollen (TP). At Stage 10 (j), mature pollen (MP) is filled with starch, 

the tapetum layer has completely degraded prior to dehiscence (Stage 11). 

 

Table 3.3. Description of wheat anther development stages as shown in Figure 

3.3. For each stage, defining morphological characteristics which can be easily 

recognised using light microscopy are listed. Adapted from barley anther 

development stages in Gómez and Wilson (2012). 

3.3.2 Flag leaf sheath length can be used to stage wheat anther 

development 

Having established a developmental scale for anther development in wheat 

(var. Cadenza) a study of internal and external development was carried out 

to determine if anther development stage can be accurately predicted by non-

Stage Anther and Pollen development 

1 Archesporial cells present 

2 Primary archesporial cells surrounded by three cell layers

3
Pollen Mother Cells surrounded by differentiated 

endodermis, endothecium, middle layer and tapetum

4
PMCs undergo meiosis, tapetum layer is prominent, Middle 

layer crushed

5 Young microspores released from tetrad

6
Young microspores align to tapetum. Tapetum 

degeneration evident 

7 Vacuolation of microspores. 

8 Mitosis I. Binuclear pollen beginning to develop coat layer

9 Mitosis II. Trinuclear pollen beginning to accumulate starch

10 Pollen cells completely filled with starch

11 Dehiscence
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destructive measurement of external morphology. In order to develop a 

method for easily identifying and collecting material at specific anther 

development stages, the suitability of the LFE method described in barley by 

Wilson and Gómez (2012) was investigated. 

Gómez and Wilson, (2012) found that the Zadocks scale for barley became 

non-sequential and inadequate for describing external development of tillers 

during the booting stages. Therefore, additional stages describing changes in 

morphology during this period were introduced. Upon emergence of the flag 

leaf and creation of an externally measurable distance between auricles 4 

additional LFE scale stages could be used to define development between flag 

leaf emergence and emergence of the ear. The authors found a correlation 

between a combination of Zadocks scale and LFE growth stages with anther 

and pollen development, sufficient for non-destructive staging of reproductive 

development. The growth and development of wheat (var. Cadenza) was 

observed to determine if similar adaptations of the growth scale were 

required. The flag leaf blade becomes completely visible and unrolled at GS39 

(Fig. 3.4. a) defining the beginning of booting stages. The next developmental 

stage (GS41) is simply defined as “Flag leaf sheath extending”, but 

encompasses around 10 cm of FLS growth (Fig. 3.4. b and c) and the extension 

of the developing spike and its peduncle to fill the FLS cavity (Fig. 3.4. d.). 
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Figure 3.4. Extension of the flag leaf sheath during booting stages. (a) Wheat 

tiller at GS39 with the entire flag leaf visible marking the end of the stem 

elongation phase and the beginning of booting phase during which anther 

development was staged. (b) FLS and flag leaf continued extension becomes 

obvious as the plant enters GS41 (c) FLS extension exceeds 10 cm and the spike 

begins to enter the FLS cavity. (d) The flag leaf sheath begins to swell as the 

developing spike fills the cavity at GS43.White arrows indicate the FLS.  

The internal development of the spike was also assessed (Fig. 3.5.).  At GS39 

the immature spike remains inside the pseudostem below the level of the leaf 
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previous to the flag leaf. The spike was around 1 cm in length at this stage 

(Fig. 3.5. a). Extension of the spike in the proceeding stages is driven by 

elongation and enlargement of the rachis and spikelets (Fig. 3.5 a). An 

important transition in spike development is the initiation of peduncle 

elongation which by GS43 has extended the spike to completely fill the flag 

leaf sheath cavity. At this stage individual green anthers measuring around 1 

mm and with a pronounced, visible four-lobed morphology can be readily 

harvested from spikes (not shown). 

 

Figure 3.5. Development of the immature wheat ear. 

(a) The immature wheat ear at GS39, 41 and 43 (left to right). White double-

headed arrow indicates mid-spike positions to which anther harvesting was 

restricted to maintain developmental consistency. (b) The relationship 

between flag leaf sheath length and spike length can be described by a 

polynomial regression with the parameters Y = (1.166*x2) + (-0.024*x) + -0.313 

with an r2 of 0.87. 

The length of 36 FLS and corresponding spikes were measured and compared 

to establish if a predictive relationship existed (Fig. 3.5.b).  A positive 

relationship between FLS length and spike length was identified by regression 
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analysis of FLS and spike lengths (r2 = 0.87). After 10 cm FLS length the rate of 

spike elongation appears to decrease. This is possibly explained by the 

initiation of elongation of the peduncle which causes the spike to fill the FLS 

cavity. The relationship between FLS and spike elongation demonstrates that 

external vegetative development can be predictive of internal reproductive 

development 

Having established a link between internal and external development, it was 

necessary to determine if the relationship extends specifically also to anther 

development. To test if the barley LFE anther staging method could be applied 

to wheat, the length of the FLS of 20 secondary tillers in a population of 

Cadenza plants was recorded prior to extraction of anthers from mid-spike 

(Fig. 3.5. a), outer floret positions and their chemical fixation and staging by 

light microscopy as described (see section 3.2.). The anther development 

stage of each sample was plotted against the corresponding FLS length (Fig. 

3.6.).  

A logistic correlation describes the relationship between anther development 

stage and length of the FLS (p ≤ 0.001, r2 0.89). The model shows that pre-

meiotic development progresses independently of FLS extension. Anther 

development between meiosis (stage 4) and mitosis I (stage 9) correlates 

positively with FLS extension between 15 and 17.5 cm. It may therefore be 

possible to target material collection and experimental treatments to these 

anther development stages based on flag leaf sheath FLS lengths. The anther 

development stages appear to be grouped; pre-meiosis (stage 1-3) at FLS 

length ≤ 7.5 cm, meiosis to vacuolated microspores (stage 4-7) at FLS length 8 

– 13.5 cm, mitosis I to pollen maturation (stage 7-10) at FLS length ≥ 14 cm.  
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Figure 3.6. Logistic model of relationship between wheat anther 

developmental stage and flag leaf sheath length in the spring variety Cadenza. 

The four parameter model (Y = A + C / (1+exp(-B*(x-M))) of 20 observations fits 

the data with an r2 of 0.89 and an estimated standard error of observation of 

0.83. 

 

To confirm this, anthers were taken from secondary cadenza tillers measuring 

5, 10 and 15 cm and GS43 when the flag leaf sheath FLS has reached its 

maximum length and the ear is swelling. Using the model parameters, the 

expected anther development stages of these samples would therefore be 2, 

3, 8 and stage 9 onwards respectively (Table 3.4.). 

 

 



 75 

Flag leaf sheath length 

(cm) 

Predicted anther 

stage Standard Error 

5 2.236 0.32 

10 3.314 0.437 

15 7.937 0.395 

20 (GS43) 9.324 0.906 

Table 3.4. Predicted anther development stages based on logistic staging 

model for user defined flag leaf sheath lengths. Predicted anther stage, S, was 

calculated using the equation S = A+C/(1+exp(B*(L-M))) where L is the flag leaf 

sheath length value.  

Samples were fixed, sectioned and visualised as described above. Three 

biological replicates were assessed for each flag leaf sheath FLS length and 

cross sections of all samples, except for FLS 10 cm, are shown in Figure 3.7. 

For example, stages 1-3 are represented in the 5 cm FLS group and can be 

considered collectively as a pre-meiosis stage (Fig. 3.7. a, b, c). The logistic 

regression model predicted anther development stage 2 at 5 cm FLS which 

was observed in Figure 3.7. b. The loss of two replicates at FLS 10 cm prevents 

a comparative analysis of the accuracy of the model at this FLS length. 

However, despite the longitudinal orientation of the cross section, the 

presence of PMCs within callose envelopes and vacuolation of tapetum cells 

indicate that meiosis has been initiated (Fig 3.7. d). Stages 5, 6 and 7 (Fig. 3.7. 

e, f and g respectively) were observed at FLS 15 cm which encompass the 

release of microspores from the meiotic complex to the initiation of 

microspore mitosis. However, the logistic model predicts anther development 

stage 8 at FLS 15 cm. At GS43 the predicted anther development stage is 9 

and indeed this is observed in Figure 3.7. j. These stages can be recognised by 

the shift from irregular to ovoid shape of microspores, the division of nuclei 

which align to the non-tapetum facing end, the degeneration of tapetum cells 

and the increasing thickness of the microspore cell wall as exine is laid down. 

A high degree of variability between replicates was observed. However, based 
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on the stages described in Table 3.2., it is clear that broadly similar processes 

are occurring within each of the four FLS categories.  

 

Figure 3.7. Microscopic analysis of wheat pollen development during FLS 

extension. The anther development stages of samples taken from 5 cm FLS 

were (a) – Stage 3, (b) – Stage 2 and (c) – Stage 1. At 10 cm (d) PMCs 

undergoing meiosis are visible – Stage 4. At 15 cm FLS anther development 

stages were (e) – Stage 5, (f) – Stage 6 and (g) – Stage 7. At GS43 anther 

developmental stages were (h) – Stage 8, (i) – Stage 8 and (j) – Stage 9.  
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Clearly, there is a disparity between anther development stages predicted by 

the logistic regression model (Table 3.3) and those observed in planta (Fig. 

3.7.). Therefore, by grouping anther stages which constitute more general 

developmental processes, the FLS length can be used to identify material 

which fall in to the pre-meiotic (stage 1-3), meiotic (stage 4), pre-mitotic 

(stage 5-7) and mitotic (stage 8-9) categories of pollen and anther 

developmental stage.  

3.4. Discussion 

The characterisation of regulatory gene networks controlling wheat anther 

and pollen development and the impact of HT upon these networks is crucial 

for attempts to maintaining wheat fertility as extreme temperature events 

become more frequent during the growing season. Such investigations have 

been restricted by the difficulty in collecting developmentally uniform 

material as wheat reproductive development mostly takes place whilst the 

inflorescence is contained within the pseudostem. Accurately staged material 

is a prerequisite of molecular studies, especially those investigating the 

temporal and/or tissue specific gene expression. Similarly, physiological 

studies investigating the impact of HT and other abiotic stresses on anther 

and pollen development require the experimenter to determine the 

developmental stage(s) exposed to stress in order to characterise the 

response. Anther developmental stage can be determined by light 

microscopy; however, this is time consuming and requires the destructive 

sampling of often limited experimental material. Therefore, an investigation 

was undertaken to determine if a non-destructive anther development 

staging method previously described in barley (Gómez and Wilson, 2012) 

could be modified for use in wheat.  

Light microscopy was used to identify distinguishable stages of wheat anther 

and pollen development (Fig. 3.3.). Previous classifications of wheat anther 

development defined 7 stages at which specific cytological processes or 

features can be recognised (Table 3.1.) (Saini et al., 1984; Mizelle et al., 1989). 
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Here, analysis of the youngest material incorporated anthers at two earlier 

stages of development, prior to differentiation of the primary (Stage 1, Fig. 

3.3. a) and secondary parietal layers (Fig. 3.3. b) into tapetum and middle cell 

layers surrounding archesporial cells. Theses stages were also described by 

Gómez and Wilson (2012) and included in their non-destructive anther 

development staging model. Therefore, the previous seven stages of wheat 

anther development were extended to include the two earlier stages of 

parietal cell differentiation observed in this investigation (Table 3.1.).  Also, 

other anther development scales divide the process of meiosis, in particular 

the formation of dyads and tetrads into discrete stages. Whilst the contraction 

of the callose envelopes surrounding the meiotic PMCs expanding the locule 

was evident at this stage (Fig. 3.3. c, d), distinguishing between bi- and tetra-

cellular microspore clusters was difficult and therefore a single stage defining 

meiosis as beginning at the prominence of the PMC and ending with the 

release of haploid microspores was used.    

In order to characterise genetic regulators of anther development and the 

impact of high temperature stress, the LFE/AD staging method was extended 

to the experimental material and conditions used in this project. The LFE 

method utilises the relationship between FLS length and anther 

developmental stage (Gómez and Wilson, 2012). Initial extraction of material 

for the characterisation of anther development in wheat revealed that at 

GS39 the developing spike is around 1 cm long (Fig. 3.5. a) and contained 

anthers at stages 1-2 (Fig. 3.3. a-b). As this project is primarily concerned with 

the role of GA-signalling and impact of HT-stress on the development of the 

tapetum, which is not yet formed at these stages, it was not necessary to 

characterise anther development in relation to spike length prior to booting. 

Instead, investigation focused on establishing a relationship between FLS 

length after GS39 and anther development stages incorporating specific 

developmental processes of interest, namely meiosis, tapetum PCD and pollen 

cell mitosis and maturation. A logistic regression model was found to best fit 

the data (Fig. 3.6.); however, individual observations at a given FLS length 



 79 

were often found to span up to three anther developmental stages. Indeed, a 

test of the predictive accuracy of the logistic regression model (Table 3.4. and 

Fig. 3.7) showed that the model underestimates anther development stage in 

the middle of the FLS length range. This is potentially problematic as 

characterisation of anther regulatory gene expression requires the collection 

of developmentally uniform material, especially where expression is highly 

developmentally regulated. Anther development rate in wheat has been 

shown to differ between floret positions within a spikelet (Miralles et al., 

1998) and between spikes (Lukac et al., 2012) and this is most likely the 

source of variation in observed anther development stage between tillers of 

the same FLS length (Fig.3.7). Therefore, without further refinement it is 

highly likely that use of this method to collect material for molecular analysis 

will result in the inclusion of multiple developmental stages and reduce the 

developmental stage-specificity of HT treatments. 

Increasing the number of observations in the staging model may further 

improve the predictive accuracy of the FLS method. Similarly, further 

restriction of the spikelets and floret positions staged may reduce the level of 

variation caused by intra-spike differences in developmental rate, however, 

this would also reduce the amount of material which could be collected via 

this method. Nonetheless, the non-destructive staging model presented here 

has been shown to be able to distinguish between material at pre-meiotic, 

meiosis, young and vacuolated microspores and mitosis (Fig. 3.7.). Whilst this 

approach may preclude the targeting of specific certain anther development 

stages, the ability to non-destructively stage meiosis, stages incorporating 

tapetum PCD, pollen mitosis and maturation will permit a comprehensive 

characterisation of wheat anther GA and HT signalling networks.  
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CHAPTER 4: INVESTIGATING THE ROLES OF TaGAMYB AND 

TabHLH141 IN GA-MEDIATED WHEAT ANTHER DEVELOPMENT 

4.1. INTRODUCTION 

GA-signalling is crucial for anther development, particularly regulation of 

tapetum function and timing of PCD (see section 1.4.). These anther 

development processes are disrupted by HT-stress leading to reduced male 

fertility and loss of yield suggesting that the GA-signalling response to HT may 

be a source of HT-associated anther defects (see section 1.5.1.). Therefore, 

having described the morphological development of wheat anthers and pollen 

(see section 3), the characterisation of two putative wheat orthologues of rice 

anther GA-signalling TF OsGAMYB and tapetum PCD regulator OsEAT1 (see 

section 1.3.2.) was carried out to establish the identity and function of wheat 

anther regulatory genes and determine their level of regulation by GA-

signalling.  

4.1.1. GAMYB 

GAMYB is a transcription factor expressed in rice and barley anthers which is 

crucial for tapetum and pollen development (see section 1.4.1.). Furthermore, 

it is the central TF in the anther GA-signalling pathway, downstream of DELLA, 

which controls tapetum PCD and pollen development (Aya et al., 2009).  Loss-

of-function Osgamyb mutants fail to correctly initiate tapetum PCD (Kaneko et 

al., 2004; Aya et al., 2009) leading to male infertility, whilst overexpression of 

HvGAMYB results in the formation of non-viable pollen. Transcriptional 

analysis shows that GAMYB directly regulates a number of genes involved in 

PCD and formation of the pollen exine which is critical for viability (see section 

1.4.3.) (Tsuji et al., 2006; Aya et al., 2009). Premature degradation and 

damage of the tapetum resulting in microspore abortion and non-viability are 

frequently observed HT-stress defects (see section 1.1.1.), suggesting that 

GAMYB could be involved in regulating anther HT-responses.  
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Furthermore, loss-of-function gamyb mutants exhibit a more severe sterility 

phenotype under elevated temperatures (Millar and Gubler, 2005; Kaneko et 

al., 2004). The observation that a number of GAMYB anther target transcripts 

are also downregulated under HT (Endo et al., 2009) suggests that GAMYB 

function may be sensitive to temperature. Some characterisation of TaGAMYB 

and its role in in wheat aleurone function has been carried out (see section 

1.4.1.), however, there is currently little information about its function in 

wheat anther development. Given its central role in GA-signalling during 

anther development and potential involvement in HT-stress responses, a 

reverse genetics approach was taken to characterising the TaGAMYB and its 

function in wheat anther development. 

4.1.2. bHLH141 

The rice gene ETERNAL TAPETUM 1 (EAT1) is a basic helix-loop-helix (bHLH) 

family TF which is expressed in tapetum cells during anther development and 

has a role in the instigation and execution of PCD (Niu et al., 2013) (see 

section 1.3.2.). Like Osgamyb, Oseat1 exhibits delayed tapetum PCD and exine 

malformation and aborted microspores but without tapetal cell hypertrophy. 

OsEAT1 is expressed in tapetum cells between late meiosis and the 

completion of tapetum degradation, acting to upregulate the expression of 

two PCD executing aspartic proteases.  

OsEAT1 is under the regulation of OsTDR1 and is slightly downregulated in 

Osgamyb and Osudt1, suggesting that GA-signalling may converge with 

another regulatory pathway to execute PCD via OsEAT1. Furthermore, an 

EAT1 Arabidopsis orthologue AtbHLH089 was identified as a putative 

interactor with RGA in a yeast 2-hybrid anther cDNA library screen (S. Thomas, 

pers. comm.). DELLA-bHLH interactions have previously been described in the 

hormonal regulation of other developmental signalling networks (see section 

1.4.). Given the evidence suggesting partial transcriptional regulation by 

GAMYB and direct regulation by DELLA, a characterisation of the OsEAT1 

wheat orthologue, TabHLH141, was carried out to determine its function in 
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tapetum function and PCD and determine its involvement in the wheat anther 

GA-signalling pathway 

4.1.3. Reverse genetic approaches to characterising wheat anther gene 

function  

The size, complexity and hexaploidy of the bread wheat genome has 

restricted the expansion of molecular genetic research which has been 

experienced in less genetically complex crop species such as rice, barley and 

maize (Berkman et al., 2012). As well as its polyploidy, the wheat genome is 

17-Gb and is 80% comprised of highly repetitive transposable elements which 

has made the assembly of a complete reference genome challenging 

(Berkman et al., 2012; Pingault et al., 2015). Nonetheless, recent advances in 

high-throughput sequencing and genetic computational technology have 

permitted the publication of a draft reference sequence for hexaploid bread 

wheat (International Wheat Genome Sequencing Consortium (IWGSC) et al., 

2014; Chapman et al., 2015). As the availability of wheat reference genomic 

sequence and accompanying positional and gene structural information 

continues to catch up with that of model species such as rice, it becomes 

increasingly feasible to translate understanding of well-studied genes and 

regulatory networks into wheat.  

As a member of the Poaceae family, wheat shares a common ancestor with 

related grass species such as rice and barley and the model species 

Brachypodium distachyon. Therefore, a degree of synteny between wheat and 

other grass species allows the identification of orthologues genes based on 

sequence conservation (Bolot et al., 2009; Kumar et al., 2009). This approach 

of using known gene sequences in related species to identify orthologueous 

genes in the wheat reference genome has been used here to assist with the 

molecular characterisation of their function in the wheat anther regulatory 

network. RNA interference (RNAi) is an established approach for investigation 

of gene function in plants (Fu et al., 2007) based on a double-stranded RNA 

mediated post-transcriptional pathogen defence and gene expression 
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regulatory mechanism (Baulcombe, 2004). RNAi induces post-transcriptional 

gene silencing through recognition by eukaryotic cells of cognate double 

stranded RNA usually expressed as a transgene or delivered by viral vector. 

This endogenous mechanism can therefore be manipulated to induce the 

down-regulation of a native gene via the expression of an inverted repeat of a 

short fragment with homology to the target gene.  The ability of RNAi to 

simultaneously target multiple homoeologous copies of a gene makes it 

ideally suited to investigations in polyploid species such wheat in which the A, 

B and D homoeologous genomes share 95% sequence similarity (Fu et al., 

2007).  

RNAi is also well known to result in varying levels of gene silencing resulting in 

a range of phenotype severity (Small, 2007). Therefore, confirmation of 

similar silencing phenotypes in independent transgenic events and evidence 

of reduced target gene mRNA abundance is required in order to validate 

results. For these reasons, Small, (2007) suggests that RNAi is ideal for an 

initial screen for interesting phenotypes which must then be validated by 

more robust means.  

An alternative approach is Targeted Induced Legions in Genomes (TILLInG) an 

extension of established plant breeding chemical mutagenesis techniques for 

fundamental functional genomic research (Mac Key, 1968; Slade et al., 2005; 

Chen et al., 2014). TILLInG is a PCR based approach for high-throughput 

screening of DNA libraries from thousands of individuals treated with ethyl 

methanesulfonate (EMS), an alkylating, radiomimetic chemical mutagen for 

single nucleotide polymorphisms (SNPs) (Slade et al., 2005). Whilst far less 

precise than transgenesis, TILLInG does not involve the introduction of foreign 

DNA and is therefore subject to far fewer regulatory restrictions and barriers 

to commercial registration of resulting varieties. Furthermore, TILLInG can 

generate complete knockout in a given target gene with more consistency 

than RNAi gene silencing and, unlike transgenic gene silencing and 

transposon-DNA insertion, can generate allelic series which are more useful 

for dissection of gene function (Dong et al., 2009; Chen et al., 2014).  
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A population of EMS treated population of spring wheat var. Cadenza for 

TILLInG was established at Rothamsted Research U.K., in 2004-5 and 

characterised in the field for agronomic traits in the M3-M6 generations 

(Rakszegi et al., 2010). A batch of around 2000 M4 seed of the Cadenza 

TILLInG population was established of which around 1200 underwent exon-

capture sequencing;  the coding sequence of 1,831 known cDNAs and 15 

hand-annotated GA-biosynthesis and signalling coding sequences formed an 

exon-capture array used to enrich gDNA extracted from each line which was 

then sequenced using Illumina GAII 110 bp paired end reads and mapped to 

the IWGSC CSS reference genome (King et al., 2015). The reads were mapped 

to the IWGSC CSS reference and where coverage was lacking for genes of 

interest reads were also mapped to the W7984 whole-genome shotgun 

assembly (Chapman et al., 2015). Data from SNP calling and annotation 

analysis was compiled into a searchable data base cross referenced to M4 

seed library serial numbers (A. Phillips, pers. comm.) permitting easy 

identification of EMS-induced mutations in target genes. 

This chapter presents evidence obtained using reverse and molecular genetic 

experimental approaches which shows that the wheat orthologues of 

OsGAMYB and OsEAT1 play a crucial role in ensuring male fertility. Both genes 

were identified in the wheat reference genome based on sequence homology 

with characterised orthologues in rice and barley. Loss-of-function mutants 

were obtained using transgenic gene silencing and mutagenesis which confirm 

that both genes are required for pollen development in wheat. Based on 

previously observed interaction between Arabidopsis DELLAs and OsEAT 

paralogues AtbHLH89/91 (S.Thomas pers. comm.) the full length cDNA 

sequences of TabHLH141 were co-expressed with a truncated Rht-D1 

sequence to test for interactions. The apparent interaction between RHT-D1 

and TabHLH141 provides evidence that TabHLH141 is involved in GA-

mediated tapetum PCD.  
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4.2. MATERIALS AND METHODS 

All molecular and cytological techniques used in this chapter are described in 

section 2.  

4.3. RESULTS 

4.3.1. Identification of TaGAMYB and TabHLH141 orthologues 

In order to carry out functional characterisation of TaGAMYB and TabHLH141 

confirmation of full length genomic sequences were required to facilitate 

amplification, cloning, RNAi target design and TILLInG. In the case of GAMYB, 

previous work had cloned and confirmed the sequence of the three TaGAMYB 

homoeologues (Haseneyer et al., 2008), however, since the more recent 

publication of the wheat reference genome it was decided to validate 

TaGAMYB sequences using the updated resources. 

The OsGAMYB (Os01g0812000) and OsEAT1/bHLH141 (Os04g0599300) 

annotated genomic sequences were extracted from The Rice Annotation 

Project Database (rapdb.dna.affrc.go.jp). Although AtbHLH089 has been 

shown to interact with DELLA, OsEAT1 was used as the query sequence as rice 

is more closely related to wheat and phylogenetic analysis has shown that 

most bHLH genes are conserved amongst angiosperms (Li et al., 2006b). The 

translated proteins of both genes were then used as the query input for a 

protein Basic Local Allignment Search Tool (BLASTP) search for orthologues 

and paralogues in Brachypodium, S. bicolor, and Z.mays in Phytozome 

(phytozome.jgo.doe.gov). Exported protein hits were assembled in a 

phylogenetic tree in Geneious (Biomatters, Aukland, New Zealand) to identify 

the most closely related Brachypodium sequences. For OsGAMYB this was 

Bradi2g53010 and for OsEAT1/bHLH141 Bradi5g20397. The coding DNA 

sequences (cds) of BdGAMYB and BdEAT1/bHLH141 were then used as the 

query input for a TERA-BLASTN search in the Decypher package (TimeLogic, 

Carlsbad, CA, U.S.A.) against the IWGSC chromosome sequence survey (CSS) 
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assembly curated by the Applied Bioinformatics group at Rothamsted 

Research, U.K.   

Decypher returned scaffold contigs which contained hits with identity to the 

Brachypodium cds sequences. The highest ranking hits were extracted and 

aligned individually with annotated rice and barley sequences to confirm 

intron-exon boundaries. To confirm correct annotation of coding sequence, 

predicted proteins from each putative homoeologue sequence were extracted 

and aligned with the known protein sequences of OsGAMYB and/or HvGAMYB 

(Fig. 4.1.).  

Cereal GAMYB proteins shared 91.8% pairwise identity (Fig. 4.1. a). Moreover, 

the three wheat homoeologues and HvGAMYB are identical in the functional 

tandem R2 and R3 MYB-domains which has previously been described 

(Haseneyer et al., 2008). Furthemore, the three wheat homoeologues 

contained three highly conserved functional domains (Box 1, 2 and 3; see 

Gocal et al., (2001)) which have been implicated in functional specificity in the 

aleurone which are only partially shared in rice GAMYB-like genes (Tsuji et al., 

2006). The presence of an R2R3 MYB domain and other conserved domains 

indicates that the identified sequences are GAMYB orthologues. 

Full length coding sequences could be assembled from CSS contigs for all 

three TabHLH141 homoeologues (Fig. 4.1. b). Pairwise alignment with 

OsEAT1/bHLH141 and BdEAT1/bHLH141 reveal significant conservation of 

sequence homology (86.5% pairwise identity) with the putative wheat 

homoeologues. All three TabHLH141 homoeologues share a high degree of 

similarity in the rice and Brachpodium HLH domain (amino acids 256 – 364) 

and the C-terminal Domain of Unknown function (DUF). Previous work 

determined that OsEAT1 shares around 40% homology in both domains with 

rice homoeologue OsbHLH142 (OsTIP2) and three Arabidopsis homoeologues 

AtbHLH89, AtbHLH91, AtbHLH10 (Niu et al., 2013). Therefore, the observation 

of 86.5% amino acid identity between OsEAT1, BdEAT1 and the three wheat 

homoeologues identified here indicates that they are orthologueous.  
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Figure 4.1. Protein alignments of putative a) TaGAMYB and b) TabHLH141 

sequences predicted from sequence isolated from IWGSC CSS. The most 

closely related Brachypodium orthologues to OsGAMYB and OsEAT1/bHLH141 

were used to identify wheat genome sequences containing shared sequence 

identity. Predicted cds translation proteins were aligned with rice and barley 

sequences to confirm orthologuey. Alignments were carried out in Geneious 

using the MUSCLE tool. Alignments contained 91.8% and 86.5% pairwise 

identity respectively, indicating the wheat sequences identified are target gene 

orthologues.  

Both TaGAMYB and TabHLH141 belong to large gene families which are 

conserved amongst angiosperms and have undergone extensive evolutionary 

divergence. It is therefore important to compare putative orthologues to 

known orthologues in other species to establish the phylogenetic relatedness 

of the candidate sequences to known orthologues and distinguish between 

potential paralogues. A previous search for TaGAMYB sequences in an EST 
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library found two sequences containing the reverse compliment of the 

miR159 binding site (see section 1.4.2.) and therefore identified a second 

GAMYB-like transcript (Wang et al., 2012). This nucleotide sequence was 

identified in the IWGSC reference genome named TaMYB15. The three 

homoeologues cds sequences of TaMYB15 were extracted and placed in a 

phylogenetic tree with the putative TaGAMYB orthologues identified above 

and other related GAMYB and GAMYB-like sequences to establish their 

evolutionary relationship and further confirm their identity. The wheat 

TaGAMYB sequences were most similar to barley, rice and Brachypodium 

orthologues as previously shown by sequence alignments (Fig. 4.2. a). 

TaMYB15 (GAMYB-like) and OsGAMYB-like sequences formed separate clades 

confirming their evolutionary separation from TaGAMYB. The presence of 

closely related paralogues resulting from gene duplication is evident in dicot 

species which obviously segregated from the monocot cereal species. 

TabHLH141 is most closely related to rice and Brachypodium orthologues (Fig. 

4.2. b). Interestingly, other members of the rice bHLH family which include TFs 

with characterised functions in anther development form a separate clade. 

OsTDR, OsEAT1 and OsTIP2 form a consecutive signalling cascade and it has 

previously been suggested that they might have arisen from gene duplications 

during evolution (Fu et al., 2014) (see section 1.3.2.). 
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Figure 4.2. Phylogenetic trees for TaGAMYB and TabHLH141. Putative 

orthologue sequences from Arabidopsis thaliana (At), Arabidopsis lyrata (Al), 

tomato (Sl), potato (Sl) rice (Os), wheat (Ta), Brachypodium distachyon (Bd) 

and barley (Hv) were compared to similar sequences in other species using the 

Geneious tree builder tool using the Neighbor-joining method. a) TaGAMYB 

homoeologues are most closely related to orthologueous cereal species and 

OsGAMYB-like and TaMYB15 (GAMYB-like) form separate clades. b) 

TabHLH141 is most closely related to rice and Brachypodium EAT1 

orthologues. Other rice bHLH family members show significant divergence 

from EAT1. In both cases the evolutionary separation of dicot and 

monocotyledonous species is evident.   

During the course of this project further improvements were made to the 

availability and quality of wheat gene sequences. Firstly, an improved IWGSC 

with some gene annotation became available in which both TabHLH141 and 

TaGAMYB coding sequences were uniquely labelled with a TRAES_ identifier.  

More recently the TGACv1 assembly has significantly expanded the coverage 

of the wheat reference genome. Both genes have been identified in the 

updated reference genomes (Table 4.1.). All genes in successive reference 

genomes were extracted and nucleotide fidelity was confirmed by cds 

alignment (not shown).  
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Homoeologu

e IWGSC identifier TGAC v1 identifier 

TaGAMYB_A TRAES_3AL_F09C7CA19 

TRIAE_CS42_3AL_TGACv1_195431_AA064950

0 

TaGAMYB_B 

TRAES_3BF027700010CFD_t

1 TRIAE_CS42_3B_TGACv1_223446_AA0782290 

TaGAMYB_D TRAES_3DL_D9A29948B TRIAE_CS42_3DL_TGACv1_253186_AA0893720 

TabHLH141_

A TRAES_2AL_6FC5FIFDO TRIAE_CS42_2AL_TGACv1_094707_AA0301850 

TabHLH141_

B TRAES_2BL_1DDA22EA3 TRIAE_CS42_2BL_TGACv1_129925_AA0399500 

TabHLH141_

D TRAES_2DL_9DD224B48 TRIAE_CS42_2DL_TGACv1_158620_AA0523420 

Table 4.1. Gene identification labels in reference genome assemblies. Both 

TaGAMYB and TabHLH141 are found in the wheat genome reference 

assemblies and gene structures have been annotated according to the 

respective gene models used.  

To further confirm the identity and confirm the expression during anther 

development of identified TaGAMYB and TabHLH141 orthologues, qRT-PCR 

was carried out on wheat (var. Cadenza) anthers cDNA collected from plants 

grown in standard controlled environment conditions at 5 cm, 10 cm, 15 cm 

and GS43 FLS (see section 3 for further information on developmental staging) 

(see section 2 for primers and qRT-PCR materials and methods). TaActin was 

selected based on the previous use of OsActin as an anther reference gene 

(Aya et al., 2009) and previous characterisation of its consistent, stable 
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expression in wheat anthers during development (J. Gónzalez, pers. comm.)

 

Figure 4.3. Quantification of (a) TaGAMYB and (b) TabHLH141 expression 

during wheat anther development. Anther samples were taken from plants at 

four FLS lengths. Normalised relative expression was quantified using the 

reference gene TaActin. Mean normalised expression of three biological 

replicates are shown. Error bars represent one standard error of the mean. 

The expression of TaGAMYB is highly up regulated between FLS 5 cm and 10 

cm after which it is consistently expressed to mature pollen (Fig. 4.3. a). This is 

consistent with previous observations of OsGAMYB and HvGAMYB (Murray et 

al., 2003; Aya et al., 2009), suggesting that the putative TaGAMYB orthologues 

identified above share a conserved expression profile in cereal species and 

provides further evidence that they are true orthologues of characterised 
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GAMYB sequences in other species. The expression profile observed for 

TabHLH141 is less comparable to that recorded for its rice orthologue. OsEAT1 

expression is highly expressed between pollen cell meiosis and mitosis (Niu et 

al., 2013) whereas TabHLH141 expression was also observed in pre-meiosis 

(FLS 5 cm) and pollen maturation (GS43) (Fig. 4.3. b). Whilst these data 

confirm that TabHLH141 is expressed in wheat anthers, further work is 

needed to clarify its specific expression profile. 

4.3.2. Tagamyb-RNAi and Tabhlh141-RNAi plants are male sterile 

RNAi constructs targeting TaGAMYB and TabHLH141 were generated and 

transformed into wheat to characterise their function through the knocked-

down phenotype. RNAi triggering expression cassettes were designed, cloned 

and transformed in to wheat via biolisitics (see section 2.4.2.). Stable 

transformant T0 plants from independent transgenic events were identified by 

genotype and grown to seed to form segregating lines (see section 2.4.2.). 

Positive T2 and T3 lines showed dramatic reductions in fertility compared to 

the null segregants. The loss of fertility was attributed to a failure to complete 

anther and pollen development, confirming the role of both genes in male 

reproductive development in wheat.  

4.3.2.1. RNAi target design 

With careful design, it is possible to silence all three homoeologous copies of a 

wheat gene with a single construct. At the same time, it is also important to 

ensure target specificity of all potential RNAi triggers generated by a 

construct.  

Firstly, to ensure the silencing of all homeoalleles, the protein coding 

nucleotide sequences obtained above were aligned in Geneious and inspected 

for regions of continuous homoeologous identity (Fig. 4.4.).  
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Figure 4.4. Schematic showing selection of RNAi trigger sequences for 

TaGAMYB and TabHLH141. Regions of 100% sequence homology between 

homoeologues are indicated by the green identity bar. Highly conserved 

functional domains have been annotated in red. a) a TaGAMYB RNAi trigger 

was identified in exon 2 and b) in exon 1 for TabHLH141 (black bar). 

100 – 250 bp sections of consensus sequence with 100% identity were 

compared to the IWGSC CSS reference genome using BLAST. Sections 

containing hits longer than 21 bp matching genes other than the target gene 

were rejected as they might trigger off-target silencing. No suitable 

continuously identical regions of sequence were suitable for target-specific 

silencing. The cellular RNAi machinery digests double stranded RNA triggers 

into 21-26mer guide siRNAs, meaning that a small number of single nucleotide 

polymorphisms between homoeologues can be tolerated in the trigger 

sequence provided it contains at least 1 21mer which is 100% identical to all 

three homoeologues. A 147 bp region in exon 2 of TaGAMYB (Fig. 4.4. a) and 

151 bp region in exon 1 of TabHLH141 (Fig. 4.4. b) were selected and 

confirmed as target-specific RNAi trigger sequences by BLAST search against 

the IWGSC CSS reference genome.  

RNAi plasmids pOsAct::GAMYB::RNAi and pOsAct::bHLH141::RNAi were then 

cloned and transformed into wheat (var. Cadenza) as described in section 2.  
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4.3.2.2. Selection of transgenic lines 

A total of 38 pOsAct::TaGAMYB::RNAi and 39 pOsAct::TabHLH141::RNAi T0 

plants were recovered from independent transgenic events from 2 separate 

bombardments with each construct.  

Four positive lines from each bombardment were randomly selected and 1 T1 

seed sown, established and genotyped by PCR using AdH intron and Nos 

terminator specific primers (see Table 2.1.) Once plants reached the grain 

filling stage it became obvious that certain individual transformant plants had 

significantly reduced fertility, although other plants in which the transgene 

was present showed normal grain filling. In all instances there was obvious 

variation in grain number, with some plants having many unfilled grain 

positions. 

Based on the phenotypic and genotypic characterisation of pGAMYB::RNAi 

and pbHLH141::RNAi lines, good candidates with reduced fertility and a high 

likelihood of being homozygous for the transgene were identified. The 

following plants were selected for continuation and renamed as follows: 

 pGAMYB::RNAi R3P20e 6 – gamyb-RNAi 1 

 pGAMYB::RNAi R8P4b 5 – gamyb-RNAi 2 

 pGAMYB::RNAi R7P1 Null – gamyb-RNAi Null 

 pbHLH141::RNAi R9P8 6 – bhlh141-RNAi 1  

 pbHLH141::RNAi R6P3 2 – bhlh141-RNAi 2 

 pbHLH141::RNAi R6P7b Null – bhlh141-RNAi Null                                                                                                                        

4.3.2.3. Characterisation of positive lines 

T2 seed from the selected null lines were potted and established in standard 

glasshouse conditions (see section 2.1.). TaqMan zygosity testing was carried 

out on gDNA extracted from all plants as described above in order to ensure 

phenotypic characterisation of homozygous individuals (Fig 4.5.).   
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Figure 4.5.  Zygosity of T2 gamyb-RNAi plants. dcT is a relative value indicating 

the difference in amplification of a known, single copy, reference gene and an 

RNAi construct-specific fragment i.e. plants with the most negative scores are 

likely to be homozygous. Four pGAMYB::RNAi lines contain individuals with -

dcT values double that of the highest scoring plant suggesting that they are 

homozygous for the transgene.  

Figure 4.8 shows that most of the zygosity and copy number of 

pOsAct::GAMYB::RNAi  based on relative amplification of the transgene to a 

known, single copy reference gene HvCon (see section 2.4.3.) Individuals with 

a negative dcT value can be inferred to have a higher dose of the transgene 

than the reference gene. Relative amplification of the transgene target in 

homozygous plants should be double that of a heterozygous plant whilst null 

plants should have dcT values approaching 0 but are more likely to have 

positive values as technical inefficiencies. Furthermore, multiple insertions 

would further distort amplification ratios. It would therefore be expected that 

in dcT values clustering into positive and 0 null values, and negative 

heterozygous and homozygous groups. Although this did not occur in these 

lines, organising dcT in ascending order assists in identifying individuals with 

negative dcT scores double that of the highest scoring heterozygous individual 

which are therefore most likely to be homozygous. In some cases, the inferred 

gamyb-RNAi 1 gamyb-RNAi 2 gamyb-RNAi Null 
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genotype from the Taqman assay conflicts with that obtained by PCR. These 

individuals were discarded. Zygosity could not be resolved in bHLH141-RNAi 

plants and therefore plants were selected on PCR geneotype (not shown), 

however, this could only be achieved in bHLH141-RNAi 2 plants.  

Three individual biological replicate plants were grown for each line for 

comparative analysis. Based on the observed reduction in fertility of the 

parents in the previous generation a more comprehensive analysis of 

reproductive development was carried out to better understand the roles of 

TaGAMYB and TabHLH141 in wheat anthers.  

Reduced fertility in gamyb-RNAi 1 and -2 compared to the null line was 

evident in the T2 generation (Fig. 4.6.). All floret positions formed anthers with 

normal appearance in both gamyb-RNAi lines. Just prior to GS61 (anthesis), 

anthers were harvested from all lines and prepared for pollen viability staining 

(see section 2.6.). In gamyb-RNAi 1 and -2 pollen grains were irregular in 

shape, lacking in sufficient cytoplasm to cause the vacuole to fill the cell and in 

some cases completely lacking in cytoplasm (Fig. 4.6. a.) whilst the null line 

pollen appeared normal (Fig. 4.6. b.).  

Some evidence of tapetal hypertrophy and locular disorganisation at stage 7-8 

was evident in gamyb-RNAi plants (Fig. 4.6. c.) whilst null plants appeared 

normal (Fig. 4.6. d.). Upon completion of flowering, developing grain become 

easily distinguishable as they accumulate assimilate and swell sufficiently to 

force florets open (Fig. 4.6. e). Figure 4.9. e. shows a clear difference in the 

number of floret positions filled with developing grain between transgenic 

and null segregant spikes. At this stage the total number of grain and floret 

positions on three secondary spikes was counted on all lines. Presence of the 

transgene had a significant effect on average grain number per spike (P < 

0.001); gamyb-RNAi 1 and -2 had significantly fewer grains per spike 

compared to the null line (L.S.D. 1% and 5% respectively). Average floret 

positions were counted and found not to differ between lines (not shown) 
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confirming that reduced grain number was due to a loss of fertility rather than 

smaller spikes per se.  

Kaneko et al., (2004) reported a shortening of the final internode length (the 

distance between the junction of the stem with the culm/spike and the 

previous stem node) of rice Osgamyb T-DNA insertion lines. Final internode 

length was also found to be significantly reduced in gamyb-RNAi 1 compared 

to the null line (p < 0.001; L.S.D. 5%) (Fig. 4.6. e) but not in gamyb-RNAi 2 (Fig. 

4.6. f). Based on the grain number and internode length measurements, this 

suggests that the phenotype of gamyb-RNAi 2 may be due to a reduced level 

of silencing of GAMYB than in gamyb-RNAi 1. 

 

Figure 4.6. Phenoytpic chartacterisation of gamyb-RNAi 1, -2 and Null lines. 

Pollen viability was assessed by Alexander stain in a representative RNAi line 

(a) and the Null line (b). Internal anther morphology was examined using light 

microscopy (c and d). Mean grain numbers (e) and mean final internode 

distance (f) on three main tillers were for three biological replicates were 

calculated for gamyb-RNAi lines (open bars) and the null line (black bar). Error 

bars are one standard deviation of the mean. * is statistically different to the 

Null mean by 1 least significant difference P ≤  0.05, ** P ≤ 0.001. 

Representative spikes were photographed (g), Scale bar = 1 cm.
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To further resolve the cause of observed male fertility defects in gamyb-RNAi 

1 and 2, thin sections of anther tissue at stage 7-8 was examined by light 

microscopy at an increased magnification (Fig. 4.7.). gamyb-RNAi tapetum 

cells have evident vacuolation of tapetum cells and the middle layer is still 

present. At the same stage null tapetum cells have become condensed, a sign 

of degradation and the middle layer has degenerated.  

 

Figure 4.7. Increase magnification of gamyb-RNAi 1 and Null tapetum. Anthers 

at vacuolated pollen stage are shown. White arrows indicate tapetum cells, M 

– Middle layer. 

Although two independent bHLH141-RNAi lines were selected, consistent 

genotypic and phenotypic characterisation of bHLH141-RNAi 1 could not be 

obtained and it was therefore excluded from the analysis. Unlike the gamyb-

RNAi line, pollen in the transgenic lines (Fig. 4.8. a) appears similar to the null 

wild type (Fig. 4.8. b) with a regular shape and packed cytosol.  

M 
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Figure 4.8. Phenotypic characterisation of bhlh141-RNAi 2 and Null lines. 

Pollen viability was assessed by Alexander stain in a representative RNAi line 

(a) and the Null line (b). Internal anther morphology or a representative 

bhlh141-RNAi 2 (c) and Null (d) plant was examined using light microscopy. 

Mean grain numbers (e) and mean final internode distance (f) on three main 

tillers were for three biological replicates were calculated for bhlh141-RNAi 

lines (open bars) and the null line (black bar). Error bars are one standard 

deviation of the mean. ** is statistically different to the Null mean by 1 least 

significant difference P ≤ 0.001. Representative spikes were photographed (g). 

Likewise, despite a pronounced loss of fertility, no obvious differences in 

internal anther morphology could be detected between selected bhlh141-

RNAi 2 (Fig. 4.8. c) and null (Fig. 4.8. d) anthers. Average grain number (Fig. 

4.11. e) was significantly reduced in bHLH141-RNAi 2 compared to the wild 

type (P ≤ 0.001; L.S.D. 1%) which again was not due to reduced spike size per 

se as there was no significant difference in average number of florets (not 

shown). Final internode length was also found to be significantly reduced in 

the transgenic line (P ≤ 0.001; L.S.D. 1%) (Fig. 4.8. f). Figure 4.8. g shows the 

same sporadic floret grain setting phenotype compared to the null in 

bHLH141-RNAi 2 plants as observed in the gamyb-RNAi lines. 
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To confirm silencing of TabHLH141 qRT-PCR was carried out on anther 

samples taken from bhlh141-RNA 2 and null line plant. Anthers were 

harvested at GS43, when both TaGAMYB and TabHLH141 are expected be 

expressed based on previous analysis (Fig. 4.3.). 

 

Figure 4.9. Quantification of target transcript relative abundance in RNAi and 

Null lines. (a) gamyb-RNA 1 and -2 (open bars) and Null line (black bar). (b) 

bhlh141-RNAi 2 (open bar) and Null line (black bar). Values are mean 

normalised expression values (NRQ) of the target gene compared to the 

TaActin reference gene. Averages were taken of NRQs 3 biological replicates 

(with the exception of gamyb-RNAi 2 which is 2 replicates.  Error bars 

represent one standard error of the mean. 
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Expression of TaGAMYB in the T2 plants appears to be more reduced in 

gamyb-RNAi 1 than -2, which are both lower than the null line (Fig. 4.9. a). 

This agrees with the severity of the male sterile phenotype observed in these 

plants (Fig. 4.6. e and g). This suggests that more complete RNAi gene 

silencing of TaGAMYB in gamyb-RNAi 1 is responsible for the more severe loss 

of fertility and reduction in internode length compared to gamyb-RNAi 2. 

However, in bHLH141-RNAi 2 expression of the target gene was higher than in 

the null line despite also showing a strong male sterility phenotype (Fig. 

4.8.b). No statistically significant differences when compared by general 

ANOVA were observed between any lines. Clearly, very little can be inferred 

from these data and further investigation will be required to confidently 

attribute the observed phenotypes to silencing of the targeted genes.  

4.3.3. Tagamyb lines generated by TILLInG are male sterile 

The use of RNAi to silence TabHLH141 and TaGAMYB expression in wheat has 

provided some evidence that both genes are required for anther and pollen 

development. However, in both instances silencing was not complete 

resulting in variable phenotypes which are difficult to interpret. TILLInG was 

therefore used in an attempt to generate complete loss-of-function mutants 

for validation of phenotypic abnormalities observed in gene silenced lines.  A 

search of the Cadenza M4 TILLInG SNP database identified lines carrying 

predicted premature stop codons in the coding sequence of the three 

TaGAMYB homoeologues (see annex I). Only one premature stop codon in 

TabHLH141_A coding sequence was identified whilst all other mutations in 

TabHLH141_B and _D resulted in either missense or synonymous changes. In 

the absence of evidence that missense mutations would result in loss-of-

function, TILLInG in TabHLH141 was not pursued any further. In order to 

produce complete knock-out Tagamyb lines the SNPs were validated and 

stacked by crossing.  
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4.3.3.1. Validation of TaGAMYB SNPs 

Identified SNPs were mapped to coding regions of TaGAMYB and confirmed to 

result in in-frame introduction of premature stop codons (Fig. 4.10.). 

 

Figure 4.10. Schematic representation of SNP positions in TaGAMYB 

homoeologues. Exons are black boxes. Arrows represent approximate position 

of nucleotide change. Hashed regions represent conserved R2R3 Myb domain. 

Letter indicates wildtype residue, numbers nucleotide position, * stop codon. 

To confirm the position and zygosity of the SNPs, BAM files containing the 

Illumina reads mapped to the reference sequence genome for M4 lines 

(obtained from Dr. Phillips) were visually inspected in Integrative Genomics 

Viewer v2.3 software (Broad Institute, Cambridge, M.A., U.S.A.). Figure 4.11. 

shows the alignment of sequencing reads of three M4 lines each containing 

SNPs in TaGAMYB_A, _B and _D respectively. In each case the region 

containing the SNP is well covered by individual mapped reads to support the 

call. The number of SNP called reads (shown in green) compared to wild type 

(grey) in the TaGAMYB_A and B lines confirms roughly to the mendelian 3:1 

ratio which supports the heterozygous call. Likewise, all the reads in the 

TaGAMYB_D line are SNP called confirming that the mutation is homozygous 

in this line. In all cases the sequencing confirms that the SNPs result in a TGG 
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codon encoding Trp in coding exons being changed to a TGA stop codon (not 

shown).  

 

Figure 4.11. Visualisation of exon-capture reads to TaGAMYB reference 

sequence. Grey horizontal bars represent sequencing reads mapped to the 

reference. Coloured segments indicate mismatched bases to the position, 

mismatched bases represented in sufficient quantity and consistency to be 

considered SNPs are coloured green.  

Six M4 seed of each line (obtained from Dr. Phillips) were established under 

standard glasshouse conditions. Genomic DNA was extracted from seedling 

leaf material of each plant (see section 2.1.1.). Using homoeologue specific 

primers (see section 2.5.) genomic fragments incorporating the target SNP 

were amplified by PCR and gel extracted and purified as described in section 

2.2. The amplified fragments of homoeologue specific DNA were then 

sequenced using the amplification primers (see Table 2.1.) and aligned to the 

reference sequence in Geneious (BioMatters Ltd, Auckland, New Zealand) (Fig. 

4.12).  
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Figure 4.12. Sequencing alignment of TILLInG mutants. 6 M4 individuals were 

sequenced with TaGAMYB homoeologue-specific primers and aligned to the 

respective reference sequence. TaGAMYB_A sequencing shown to 

demonstrate genotype calls. SNPs are highlighted in blue. The zygosity of SNP 

was determined manually and is annotated next to the line name. 

Figure 4.12. shows the alignment of sequencing reads to the reference of 6 M4 

individuals of TaGAMYB_A homoeologue TILLInG line. SNP zygosity of each 

line was called manually according to relative amplitude of the base signal. 

Solid single base peaks were called as either wild type or homozygous 

depending on the base, heterozygous positions were determined by 

overlapping peaks of wild type and SNP base signals at around half the 

amplitude of a homozygous position. Plants in which there were any 

ambiguity in base call at the SNP position were discarded. In total 3 

homozygous and 1 TaGAMYB_A, 2 heterozygous TaGAMYB_B and 5 

homozygous and 1 heterozygous TaGAMYB_D TILLInG mutant plants were 

identified.  

These plants and their progeny were crossed as described in section 2.5. 

Firstly _A and _B mutants were crossed into homozygous _D background. 
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Combinations of double mutant F1 individuals were then crossed and 

heterozygous triple mutants were selected in the F2 generation. F2 triple 

mutants were allowed to self-fertilise and to produce segregating triple and 

double homozygous and null lines. All selections were made according to 

genotype data obtained by sequencing as described above.  

4.3.3.2. Homozygous Tagamyb plants are male sterile 

In total 5 plants containing all three homoeologous mutations (Tagamyb) in a 

homozygous state were obtained. Like gamyb-RNAi 1 and -2, Tagamyb plants 

showed reduced fertility, however Tagamyb plants were almost completely 

sterile, producing only a few grain per ear. As plants were not bagged at 

anthesis it is possible that grains were produced as a result of low frequency 

outcrossing with neighbouring fertile plants.  

Comparative assessment of anther development in Tagamyb plants and a 

segregating wild type plant was carried out to determine if the observed loss 

of fertility was caused by male sterility (Fig. 4.13.). When wild type plants 

reached anthesis anthers could be seen extruding from florets. During the 

same period of development anthers did not extrude in Tagamyb plants. 

Comparable florets were dissected in situ and photographed (Fig. 4.13. a). 

Tagamyb anthers are noticeably shorter and darker yellow than the wild type. 

No filament extension appears to have occurred in Tagamyb nor the shedding 

of any pollen which can also be observed in the wild type. This appears to be 

the cause of the failure of Tagamyb to consistently set grain compared to the 

wild type (Fig. 4.13. b). To confirm that the observed male developmental 

defects are the cause of the sterility as opposed to female development, a 

Tagamyb spike was cross-pollinated with a pollen shedding wild type spike. 

Figure 4.13. c shows that many more grain are produced by Tagamyb spikes 

when fertilised with viable, wild type pollen confirming that Tagamyb is male, 

but not female sterile.  
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Figure 4.13. Abnormal anther development in Tagamyb plants. a) Anthers in 

Tagamyb plants taken at reproductive maturity. b) Whole spikes taken during 

grain filling.. c) A Tagamyb spike during grain filling after cross-pollination 

with wild type pollen. White arrows indicate positions with a developing grain, 

wild type 100% fertile. Scale bar = 1 cm. 

Given the characterised role of GAMYB in anther development, specifically 

tapetum PCD  (see section 1.4.3.) and observed tapetum defects in gamyb-

RNAi plants (see section 4.3.2.3.), anthers were harvested from Tagamyb 
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plants at early developmental stages (FLS 5 – 10 cm) and later developmental 

stages (GS43) and prepared for light microscopy as described in section 2.6. 

Severe defects in internal anther development were observed and lead to a 

failure to produce viable pollen (Fig. 4.14.).  

 

Figure 4.14. Thin section of Tagamyb anthers at different stages of 

development. 

Internal morphology of Tagamyb at early stages (see section 3.3.) indicates 

that pollen development has progressed beyond meiosis with what appears to 

be crescent shaped nuclei distinctive of the vacuolated pollen stage (stage 7 – 
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see section 3). However, wild type anthers locules at this stage are more 

uniformly organised with easily definable microspores aligned to the tapetum 

surrounded by a distinguishable elliptical cell wall (Fig. 3.3. g). Here, 

microspores are irregularly shaped and individuals cannot be easily defined. 

This suggests that TaGAMYB may have a role in determining post-meiotic 

anther organisation, however, the effect may also be caused by constriction 

due to the reduced size of Tagamyb anthers. At the later stage of 

development, when mitosis and pollen maturation is occurring in wild type 

anthers (see section 3.3.1.), Tagamyb anthers have an accumulation of 

staining material within the locule which has not previously been observed in 

wild type anthers. Furthermore, some Tagamyb pollen cells have not taken a 

regular, spherical shape nor appear to have accumulated as much 

carbohydrates as others. This is consistent with observed phenotypes in other 

GA-signalling and biosynthesis mutants (see section 1.4.). However, further 

work is required to establish if the observed defects are the cause of male 

sterility in these plants and to what extent Tagamyb affects anther and pollen 

developmental processes. 

4.3.4. TabHLH141 interacts with RHT-1 

The Arabidopsis homoeologue of TabHLH141, AtbHLH089 was previously 

shown to bind with the DELLA protein RGA, in a yeast 2-hybrid screen of 

anther-expressed cDNA (S. Thomas, pers. comm.). Having demonstrated that 

TabHLH141 is required for male fertility (see section 4.3.2), the role of GA-

signalling in regulation of TabHLH141 was investigated by yeast 2-hybrid 

assay. Yeast 2-hybrid assays are an established method for studying specific 

protein-protein interactions by co-expression of one gene as a GAL4 trans-

activation domain (AD) fusion (bait) and the other as the DNA-binding domain 

(DBD) (prey). Interaction between the two encoded proteins brings the GAL4 

AD and DBD into close proximity, driving the expression of the HIS3 reporter 

gene. Interaction can be quantitatively assessed by growing co-transformed 

stains on His- media containing HIS3 competitive inhibitor 3-AT; strains 
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expressing strongly interacting proteins are able to tolerate higher 

concentrations of 3-AT.  

TFs often have native trans-activational ability and as such DELLA::AD fusion 

proteins have previously been shown to self-activate in the absence of an 

interacting prey::DBD protein (S. Thomas, pers. comm.). Therefore, a 

truncated version of RHT-D1 containing only the C-terminal GRAS domain 

thought to supress plant growth by interacting with target promotor regions 

(Hirano et al., 2012) was used in this study in order to minimise background 

trans-activation of HISis3. All fusion protein vector cloning, transformation 

was carried out as described in as described in section 2. Positive control 

known interactors AtGAI - AtARF-19 were supplied by Dr. S. Thomas.  

The RHT-D1GRAS domain was found to interact with the full length 

TabHLH_141_B protein (Fig. 4.15). Growth of strain 4 (Rht-D1GRAS – 

bHLH141) is maintained at 50 mM whereas growth of strain 2 (Rht-D1GRAS – 

empty prey) is abolished at 40 – 5030 mM 3-AT indicating that interaction 

between RHT-D1GRAS and bHLH141 is driving stronger expression of HIS3 

above the background level of RHT-D1GRAS self-activation. Likewise, growth 

of strain 3 (empty bait – bHLH141) is inhibited at 30 mM 3-AT, showing that 

HIS3 expression requires the interaction between RHT-D1GRAS and bHLH141. 

Growth of the strain 4 (Rht-D1GRAS – bHLH141) is not as strong at 50 mM 3-

AT as strain 5 (AtGAI – AtARF-19), demonstrating suggesting that the assayed 

interaction is weaker than the positive control. Growth of strain 6 (bHLH141 – 

empty prey) ay 50 mM 3-AT shows that bHLH141 can transactivate HIS3, as is 

common in TFs used as bait.  
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Figure 4.15. Interaction between RHT-D1-GRAS and TabHLH141. Co-

transformed yeast strains were grown on SC-Leu-Trp/His- plates containing 0, 

5, 10, 20, 30, 40 and 50 mM 3-AT and a SC-Leu-Trp plate containing His 

(negative control). 1 – empty vector control, 2 – bait only self-activation 

control, 3 – prey only control, 4 – interaction assay, 5 – known interaction 

positive control, 6 – prey as bait self-activation control.  

The observed interaction between RHT-D1GRAS and bHLH141 observed here 

indicates a potential role for GA-signalling in the regulation of tapetum PCD 

via the post-transcriptional regulation of bHLH141. However, further work will 

be required to confirm if this interaction occurs in planta and if so, how 

binding by DELLAs affects function and transcriptional regulation by bHLH141. 

4.4. DISCUSSION  

Wheat orthologues of two genes of interest, TaGAMYB and TabHLH141, have 

been identified and their functions in male reproductive development 
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investigated through the generation and characterisation of reduced or loss-

of-function mutants. Clearly, both transcription factors have important roles 

in ensuring pollen development, however, from the phenotypes observed in 

the above experiments significant questions remain as to the mechanisms in 

which they are involved.  

Taking advantage of the high levels of synteny between related cereal species 

genomic DNA sequences for TaGAMYB and TabHLH141 were identified in the 

wheat reference genome (section 4.3.1.). GAMYB has been the focus of 

previous research for its role in cereal germination and seedling establishment 

(see section 1.4.1.) and therefore full length genomic sequence data in wheat 

was available at the beginning of the project whilst bHLH141 was only 

characterised in rice as OsEAT1 (Niu et al., 2013). Nonetheless, both genes 

were identified in the IWGSC CSS reference with a high degree of confidence 

based on encoded protein identity with inter-species orthologues (Fig 4.1.) 

and phylogenetic relationships therein (Fig. 4.2.). BLAST searches of the CSS 

reference suggested that both genes are present in single copies like in rice 

and barley and have not undergone any further duplication. This conclusion 

was further supported by the more complete TGAC v1 reference in which 

paralogues of either gene are not present.  

Expression analysis carried out by qRT-PCR demonstrated that both genes are 

expressed in developing wheat anthers (Fig.4.3. a). The expression profile of 

TaGAMYB was consistent with the stable expression of HvGAMYB and 

OsGAMYB in anthers after the formation of PMCs through to pollen maturity 

(Murray et al., 2003; Tsuji et al., 2006). Further work is required to quantify 

TaGAMYB expression at specific developmental stages and tissue localisation. 

The latter could be addressed using in situ hybridisation or laser-

microdissection of specific anther tissues as described by Suwabe et al., 

(2008). The expression of TabHLH141 could not be as clearly resolved (Fig 4.3. 

b). OsEAT1 expression overlaps with GAMYB but is most strongly expressed 

between late meiosis and young microspores, consistent with its role in 

executing tapetum PCD (Niu et al., 2013). Therefore, staging of anther 
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material to specific stages may be required to in order to reduce the amount 

of variation associated with observed mean TabHLH141 expression profile.  

4.4.1. The role of TaGAMYB in wheat male fertility 

Having obtained genomic sequences for all three homoeologues of TaGAMYB 

an investigation into their functions during male reproductive development 

was carried out using RNAi-mediated gene silencing and TILLInG. As shown by 

previous studies in rice (Kaneko et al., 2004; Aya et al., 2009; Liu et al., 2010), 

TaGAMYB plays an important role in tapetum and pollen development (Fig. 

4.6.). Some evidence of tapetal hypertrophy was observed in gamyb-RNAi 1 

plants (Fig. 4.7.) although not with the same severity as seen in the rice 

mutants. Indeed, the pollenless and hypertrophic tapetum phenotype of the 

rice mutants is not replicated in these plants, suggesting that sterility is due to 

disruption of tapetum processes support of pollen development rather than 

PCD. 

Tagamyb plants showed a more severe and consistent male sterility 

phenotype (see section 4. 3.3.). In plants with homozygous copies of all three 

homoeologous premature stop codon mutations anthers are severely stunted 

(Fig. 4.13. a) with highly disorganised internal morphology (Fig. 4.14.), 

although no tapetal hypertrophy was observed. Where pollen development 

progressed, pollen cells lacking in cytoplasm and locules full of material were 

observed (Fig. 4.14.) as they were in the RNAi mutants. Furthermore, the 

fertilisation of Tagamyb florets with wild type pollen shows that female 

fertility is not effected by the loss of TaGAMYB function (Fig 4.13. c.). No 

obvious loss of fertility was incurred by plants carrying single or double 

homozygous SNPs nor in the triple heterozygous lines (not shown). Although 

no statistical comparisons of grain numbers were carried out, the observation 

nonetheless indicates that even a basal level of TaGAMYB expression is 

sufficient to ensure fertility and a high level of homoeologous functional 

redundancy is likely.  
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Together, these mutants demonstrate that TaGAMYB is critical for the 

completion of anther and viable pollen development in wheat. GA-signalling 

co-ordinates anther and pollen development through GAMYB (Aya et al., 

2009). Generally, GA-signalling mutants display some degree of male sterility 

attributable to aberrant microspore meiosis, pollen wall formation and 

desynchronisation of tapetum development (see section 1.4.1.) although 

phenotypes are often incomplete and variable even at the ecotype level 

(Plackett et al., 2014). Therefore, whilst it’s clear that GA-signalling plays some 

role in ensuring synchronicity between tapetum and pollen, it’s not yet clear 

how downstream components such as GAMYB are involved in such 

coordination. For example, OsGAMYB expression is tapetum-specific, but 

Kaneko et al., (2004) observed disrupted pollen mother cell meiosis in 

Osgamyb mutants, suggesting a role in cell-cell communication. Here, mature 

pollen cells lacking cytoplasm and the accumulation of material in post-

meiotic anthers of gamyb-RNAi and Tagamyb plants (Fig. 4.7., Fig. 4.14) was 

also observed, further supporting the implication of GAMYB in microspore as 

well as tapetum development.  

The presence of material inside the locule which has not been taken up by 

pollen cells in gamyb-RNAi and Tagamyb plants may be indicative of a loss of 

ability to correctly package and transport metabolites by the tapetum. A 

similar phenotype was observed in rga.gai mutants (Plackett et al., 2014), 

indicating that the DELLA-GAMYB anther signalling module is involved in the 

regulation of metabolite transport and uptake. So far two of the most 

comprehensively characterised functions of GAMYB are in the GA-mediated 

upregulation of carbohydrate mobilisation in developing grain (see section 

1.4.3) and promoting the expression of two sporopollenin biosynthesis genes 

KAR and CYP703A3 in the tapetum (Aya et al., 2009). In the absence of the 

aberrant PCD phenotype, the male sterility of the wheat gamyb mutants 

appears to be caused by non-viable pollen. Therefore, further biochemical 

analysis of mutant locular fluid and pollen cell wall and cytoplasmic 

constituents using scanning electron microscopy (SEM) might give further 
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indication of the precise role of GAMYB in the preparation of pollen 

components. Furthermore, identification of KAR and CYP703A3 orthologues 

wheat and investigation of the effect of loss of TaGAMYB on their 

transcription would help to further confirm the role of TaGAMYB in wheat 

pollen development. 

Alternatively, it may be that an alternative pathway in wheat ensures that PCD 

occurs and the loss of GAMYB is only a minor perturbation of the initiation 

process. Liu et al., (2010) showed that OsGAMYB and OsUDT1 independently 

regulate the expression of OsTDR, an important component of tapetum PCD 

regulatory signalling (Li et al., 2006a) and PCD fails to initiate in mutants of all 

three genes (Jung et al., 2005; Li et al., 2006a; Liu et al., 2010). Quantification 

of TDR expression in gamyb-RNAi 1 and -2 would help to determine these 

pathways are also connected in wheat; their existence would seem likely 

given their conservation between dicot Arabidopsis and closely related cereal 

and monocot rice (Liu et al., 2010). The DNA staining assay TUNEL is regularly 

used to detect DNA fragmentation associated with apoptotic PCD (see section 

1.3.2.) and could be deployed in a developmental series of gamyb-RNAi 

anthers to determine if and when the developmental programme of the 

tapetum is disturbed by silencing of TaGAMYB. Similarly, further confirmation 

of gene silencing, such as quantification of TaGAMYB in anther tissue by 

western blot, is required to verify that the observed phenotype is associated 

with TaGAMYB silencing.  

Interestingly, Lui et al., (2014) recognised that the position of T-DNA and stop-

codon mutations in rice gamyb mutants has an effect on the resulting 

phenotype. For example, in the Osgamyb-2 mutant, which carries an insertion 

in the third exon, pollen development is arrested after meiosis whilst in 

Osgamyb-1 and -3, in which the insertion is in the second exon, abnormal 

meiosis is observed (Kaneko et al., 2004). Downstream targets of GAMYB have 

so far been identified based on the presence of GAMYB binding motifs in 

upstream promoter regions (Aya et al., 2009). It is therefore conceivable that 

GAMYB proteins truncated, or reinitiated prior to certain domains are able to 
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retain some functions, indeed GAMYB contains three interspecies conserved 

motifs additional to the MYB domain which are thought to function in 

transcriptional regulation (Gocal et al., 2001). Tagamyb contains premature 

stop codons in the A and D MYB domain regions and upstream of Box 2 in the 

B homoeologue (Fig. 4.10.). It is possible that some transcriptional function is 

retained by the B homoeologue if a truncated protein carrying a functional 

MYB domain and conserved Box 1 and 2. It is therefore important that 

alternative alleles are identified and tested to further confirm the role of 

GAMYB. A number of other premature stop codon and missense SNPs in 

TaGAMYB coding sequence were identified in the exon capture array (not 

shown), investigation of SNPs in other domains may reveal more information 

about how the structure of GAMYB affects its function. 

Likewise, the RNAi target region was located in the 3’ region of exon 2 and 

therefore incomplete cleavage of transcripts could lead to the translation of a 

truncated protein which may explain the variability and incompleteness of the 

phenotype. The observation of significantly different levels of sterility in two 

positive gamyb-RNAi lines (Fig. 4.6. f.) highlights the inherent limitations of 

RNAi as a reverse genetics technique. Whilst incomplete silencing of a target 

gene may be of benefit in terms of propagation of male sterile lines, it is 

difficult to determine if the observed phenotype is the complete loss-of-

function. This could be alleviated by robust molecular, quantitative assaying of 

target transcript and protein levels however, Figure 4.9. demonstrates that 

determining RNAi gene silencing by qRT-PCR in wheat is also problematic. 

Firstly, as discussed in Chapter 3, staging of anther development in wheat can 

be achieved by measurement of the FLS, however, final internode length was 

significantly reduced in gamyb-RNAi 1 plants (Fig. 4.6. g.) and therefore 

without specific characterisation of gamyb-RNAi 1 internal and external 

development it is likely that highly developmentally variable anther material 

was tested. This perhaps explains why the mean expression levels of both 

target genes are associated with large standard errors and do not differ 

significantly from the null. Secondly, qRT-PCR primers for wheat genes must 
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be designed in a similar manner to that of the RNAi target, ensuring target 

specificity and identity with all three homoeologues. Whilst extensive 

validation of the primers used here was carried out (not shown), attempts to 

quantify TaGAMYB and TabHLH141 in wild type anther tissue had also yielded 

similarly variable results (Fig. 4.3.) suggesting that further technical 

refinement could assist in linking observed phenotype to loss of gene 

function.  

The Tagamyb mutants presented in this work represent the segregating 

homozygotes from a population of the progeny of selfed heterozygotes. 

Therefore, there were insufficient numbers of segregating triple mutants and 

null types to complete a statistical comparison of fertility traits such a grain 

numbers. Furthermore, several rounds of marker-assisted backcrossing will be 

required to ensure that no other mutations are influencing the phenotype. 

Similarly, the limitations of RNAi restrict the amount which can be inferred 

from the mutant phenotypes. Other transgenic approaches, such as 

transcriptional repressor fusion domains or overexpression of the native 

TaGAMYB negative regulator mR159 (see section 1.4.2.), could be useful 

alternatives but still depend on transgenesis and therefore many of the same 

limitations apply.  

The shortening of the final internode of both gamyb-RNAi lines (Fig. 4.6. g) is a 

curious observation. Kaneko et al., (2004) also reported reduced final 

internode lengths in Osgamyb insertion mutants, raising the possibility that 

GAMYB is somehow involved in the regulation of peduncle growth. Reduced 

stem elongation is a common phenotype in GA-signalling mutants (see section 

1.4.), however at present there is no evidence for the involvement of GAMYB. 

Exposure of Arabidopsis shoot apex to GA4 or inductive conditions causes an 

increase in the expression of GAMYB-like  genes and the floral regulator LEAFY 

(Gocal et al., 2001) whilst loss of a rice floral repressor EARLY FLOWERING 1, a 

DELLA phosphorylating kinase which regulates GA responses during floral 

transition, results in male sterility by essentially overexpressing OsGAMYB 

(Kwon et al., 2015). Clearly, the spatio-temporal activation of GA-signalling 
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during early floral development also has ramifications for later anther 

development and the restriction the peduncle elongation may represent an 

early perturbation of a GA-signalling feedback system. However, the 

shortened final internode phenotype was also present in the bhlh141-RNA 2 

plants (Fig. 4.8. f.). The expression or potential functions of bHLH141 in stem 

elongation, if any, is unknown. Therefore, caution should be taken when 

interpreting the role of GAMYB in peduncle elongation when the same 

phenotype is seen in an independent TF mutant. Without further information 

about the location of the transgene insertions, the possibility that a functional 

locus has been disrupted cannot be discounted.  

4.4.2. The role of TabHLH141 in wheat male fertility 

A significant loss of fertility was observed in bhlh141-RNAi 2 plants (Fig. 4.8. 

e). However, internal anther morphology (Fig. 4.8. c) and pollen viability (Fig 

4.8. a) appeared normal in the anthers selected for analysis. Rice orthologue 

EAT1 directly regulates the expression of two aspartic proteases (Niu et al., 

2013) and two cysteine proteases (Ji et al., 2013)  in the rice tapetum which 

trigger PCD. eat1-1 mutants have delayed taptetum PCD, but not the 

hypertrophy associated with GAMYB and TDR mutants (Niu et al., 2013). 

Therefore, without specific analysis of the timing of PCD initiation through 

TUNEL in bhlh141-RNAi mutants, it is not possible to determine if PCD is 

delayed in these plants.  

The dramatic reduction in grain numbers in bhlh141-RNAi 2 provides strong 

evidence that TabHLH141 is required for fertility. However, the phenotype 

was incomplete with some positions setting grain. As plants were not bagged 

at anthesis it is not clear whether this is the result of a leaky RNAi phenotype 

or outcrossing with fertile siblings. However, as discussed in the context of 

gamyb-RNAi, RNAi is often leaky and the formation of grains in certain 

positions may be due to some anthers “escaping” the targeting of TabHLH141. 

In this case, the apparently random distribution of fertile and infertile floret 

positions (Fig. 4.8. f) makes it difficult to select the ideal material for 
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cytological and molecular analysis, perhaps accounting for the unexpectedly 

high expression levels of TabHLH141 in bhlh141-RNAi 2 plants (Fig. 4.9. b).  

4.4.3. Regulation of TabHLH141 by RHT-1 

The observation that TabHLH141 interacts with the GRAS domain of RHT-D1 in 

the yeast 2-hybrid system (Fig. 4.15.) provides further evidence for a role for 

GA-signalling in the regulation of the tapetum in wheat anthers. DELLAs have 

previously been demonstrated to interact directly with PIF bHLH TFs during 

light-responsive hypocotyl growth (de Lucas et al., 2008) (see section 1.4.). 

The consequence of this physical interaction is that, DELLAs restrict growth by 

binding with the PIF bHLH DNA-binding domain, preventing PIFs from 

associating with target gene promoters until relieved by GA-induced DELLA 

degradation. Therefore, it may be that GA promotion of RHT-1 degradation in 

the tapetum releases TabHLH141 from sequestration, allowing it to activate 

the expression of PCD-inducing genes. 

Whilst yeast 2-hybrid is an established method of investigating protein-

protein, further work is needed to confirm that the observed RHT-1 – 

TabHLH141 interaction occurs in planta. Whilst yeast 2-hybrids give an 

indication of the strength of an interaction between two proteins, they are 

both very highly expressed in yeast cells and in the absence of other 

competing and regulating factors which may occur in plant cells. Interaction 

between two proteins in planta can be determined by co-

immunoprecipitation (Co-IP) in which precipitation from a tissue lysate of 

both proteins by an antibody specific to only one of the proteins of interest. 

However, previous attempts to raise specific antibodies against RHT-1 have so 

far been unsuccessful (Pearce et al., 2011). An alternative approach is 

biomolecular fluorescence complementation (BiFC) in which both proteins are 

expressed in fusion with corresponding fragments of the yellow fluorescent 

protein (YFP). Interaction between the fusion proteins brings the two 

fragments into proximity, forming a functional YFP, creating an interaction 

signal which can be visualised by confocal microscopy. However, this 
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approach depends on the successful generation of stable transgenic wheat 

plants, the limitations of which are discussed above.  

The rice orthologue, OsEAT, is downstream of OsTDR with which it forms a 

heterodimer which enhances the expression of lipid transfer and PCD –

executing genes (Ji, Niu). OsGAMYB, OsSLR1 and OsTDR are expressed in the 

tapetum between meiosis and young microspores during the initiation of PCD 

(Li et al., 2006; Plackett et al., 2011). OsEAT1 is strongly upregulated at these 

stages but continues to be expressed during tapetum degeneration (Niu et al., 

2013). Therefore, it may be the case that OsGAMYB and OsTDR co-promote 

the expression of OsEAT1 during tapetum PCD-initiation but its transcriptional 

activity is tightly regulated by competitive binding by SLR1 and TDR. GA3OX, 

which catalyses the final step in the biosynthesis of bioactive GA, is 

upregulated in degenerating tapetum cells and bicellular pollen (Plackett et 

al., 2011), which based on the observed interaction between TabHLH141 and 

RHT-D1GRAS (Fig. 4.15.), would be expected to release DELLA repression of 

TabHLH141 and enhancing tapetum cellular degeneration. Therefore, based 

on the observed interaction between RHT-D1GRAS and TabHLH141 and 

previously described mutant phenotypes in both wheat and rice, a putative 

GA-signalling pathway in wheat anthers during tapetum PCD is proposed (Fig. 

4.16.) 

 

RHT-1 

GAMYB TDR 

bHLH141 GA 

Tapetum PCD 
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Figure. 4.16. Putative tapetum PCD GA-signalling pathway. Bioactive GA 

production during tapetum degeneration releases the repression of 

TabHLH141 by RHT-1. GA may further promote the expression of TabHLH141 

by promoting the expression of TDR via GAMYB (based on rice mutants).  

However, further work will be required to confirm this signalling pathway in 

wheat anthers. The development of Tabhlh141 and Tagamyb mutant (see 

section 4.3.1.) presents an opportunity to identify downstream targets of both 

TFs. Furthermore, to our knowledge this is the first example to show a direct 

interaction between RHT-1 and another protein other than GID1. Therefore, 

further dissection of this interaction could provide further explanation of the 

role of functional domains within RHT-1. The GRAS domain first leucine-

heptad repeat is thought to be required for interaction with bHLH TFs (de 

Lucas et al., 2008) which could explain why different Rht-1 alleles have varying 

effects on male reproductive development.  

MYB proteins have also been demonstrated to interact with bHLH and other 

TFs to form transcriptionally active complexes (see section 1.3.2.). GAMYB is 

thought to be upstream of bHLH141, possibly regulating its expression via 

upregulaltion of TDR (Li et al., TDR, Niu et al., 2013). A similar yeast 2-hybrid 

study to determine whether GAMYB can also interact with TabHLH141 should 

also be carried out to determine if GAMYB enhances tapetum PCD through 

interaction with bHLH141. MYB and bHLH proteins have also been 

demonstrated to form tripartite regulatory complexes with WD-repeat 

proteins (Qi et al., 2011; Tian et al., 2016) which therefore should also be 

investigated. Likewise, characterisation of the wheat orthologue of OsTDR and 

generation of knock-out mutants will be vital in establishing the relative 

contributions of Rht-1, GAMYB and the non-GA regulated UDT-TDR pathway 

to wheat tapetum PCD execution by TabHLH141.  
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CHAPTER 5: THE TRANSCRIPTIONAL AND HORMONAL 

RESPONSE TO HT IN WHEAT ANTHERS 

5.1. Introduction 

HT stress during wheat reproductive development is predicted to become one 

of the most yield-limiting consequences of climate change in Northern Europe 

(Semenov and Shewry, 2011). Exposure to prolonged periods of HT causes 

irreversible damage to the developing anthers and microspores contained 

within, resulting in sterility (see section 1.1.1.). Whilst the full detail of the 

underlying causes of HT-induced sterility remain unclear, much progress has 

been made in establishing the associated changes in anther metabolism, gene 

expression and hormonal signalling that occur in response to HT stress.  

Microarray and qPCR studies have been particularly useful in identifying HT-

responsive genes in the anthers. Such genes in barley anthers identified by 

microarray could be categorised into stress-related, hormone signalling-

related groups as well as specific genes involved in lipid metabolism, DNA 

replication and PCD (Abiko et al., 2005; Oshino et al., 2007; Sakata and 

Higashitani, 2008), conforming with the cytological defects observed in HT-

stressed anthers (see section 1.5.). Indeed, the observed premature 

progression of anther development led to the hypothesis that HT-injury is 

associated with an acceleration of the expression of anther development 

genes (Oshino et al., 2007).   

Furthermore, numerous gene expression studies on HT-treated anthers have 

implicated changes in hormone signalling and biosynthesis gene expression in 

HT-stressed anthers (Oliver et al., 2005; Sakata et al., 2010; Ji et al., 2011; 

Oshino et al., 2011). ABA, GA and auxin are all required for development of 

the tapetum and pollen cells (Parish et al., 2013) and the effect of  HT-stress 

on their biosynthesis and signalling contributes to the disruption of anther 

and pollen development (Müller and Rieu, 2016). Auxin biosynthesis is 

reduced in barley anthers exposed to HT and has been linked to defective cell 
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proliferation and DNA replication (Oshino et al., 2011) which can be restored 

by exogenous application of auxin (Sakata et al., 2010). ABA is a stress 

hormone which can cause male sterility similar to that caused by HT (Saini et 

al., 1984). Rice lines with reduced ABA biosynthesis in stressed anthers are 

better able to maintain carbohydrate supply to pollen cells via the tapetum (Ji 

et al., 2011). ABA is an antagonist of GA which has a critical role in anther and 

tapetum development (see section 1.4.). A number of GA-signalling, tapetum-

specific genes are down regulated in rice lines exposed to HT (Endo et al., 

2009) and wheat GA-signalling mutants have defects in tapetum PCD and 

microspore development (see section 4) similar to those seen under HT. 

Indeed, HT-tolerant rice lines are better able to maintain anther GA and IAA 

biosynthesis and repress ABA biosynthesis under HT (Tang et al., 2007).  

Clearly, anther hormonal and transcriptional responses to HT are 

interdependent but how they interact to elicit anther HT-responses is not very 

well understood. Here, analysis of whole transcriptome and global hormone 

changes in wheat anthers under control (20 °C) and HT (34 °C) was 

undertaken to better understand the relationship between developmental 

and stress-induced differential gene expression in the context of the anther 

hormonal status. Therefore, as well as identifying candidate genes for 

improving wheat HT-tolerance, improved understanding of hormonal 

regulation of anther HT responses may assist in the formulation and targeting 

of chemical interventions to maintain normal anther development under 

stress conditions.    

RNA-Seq is a high throughput approach to transcriptome profiling that uses 

deep sequencing of total or fractionated RNA-derived cDNA fragments (Wang 

et al., 2009). Mapping of these short reads to a reference genome, 

transcriptome or de novo assembly enables the simultaneous discovery of 

transcripts and quantification of their abundance (Wang et al., 2009; Trapnell 

et al., 2010). A major advantage of this approach over chip based 

hybridisation microarrays and qPCR is the potential of RNA-seq to quantify the 
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abundance of all transcripts and their isoforms within a sample (Garber et al., 

2011).  

With the regular improvement of the wheat reference genome (IWGSC et al., 

2014; Chapman et al., 2015) an increasing number of genes and their 

transcript variants are being identified and functionally annotated. It is now 

feasible in terms of sequencing cost, computational requirements and 

available genomic reference data to utilise RNA-Seq in wheat for whole 

transcriptome analysis.  

This approach was used to investigate the transcriptional response in anthers 

to HT throughout a time course. The objectives of this experiment were to 1) 

identify genes which are differentially expressed in response to HT as 

candidates for futher investigation, 2) determine the effect of HT on the 

temporal regulation of the anther transcriptional programme and 3) use gene 

ontology (GO) enrichment to investigate the impact of HT on biological 

processes occuring within the anther. In addition, the analyses will also 

provide a comprehensive list of the wheat genes which are expressed in the 

anthers. 

Using RNA-Seq to carry out comparative global transcriptome profiling, a 

number of promising candidate genes which are differentially expressed 

under HT conditions were identified. In particular, the significant upregulation 

of transcripts potentially associated with tapetum metabolism, PCD and 

Ubisch body formation suggests that HT causes a detrimental acceleration of 

development resulting in loss of male fertility. Furthermore, combining 

hormone quantification with expression analysis of known GA-biosynthesis 

and signalling genes has revealed the fascinating possibility that HT causes 

alterations to the biochemical pathway through which GA is synthesised in the 

anther. 
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5.2. Materials and methods 

5.2.1 RNA-Seq plant material 

A total of 48 individual wheat plants (var. Cadenza) were established in a large 

growth room under standard conditions as described in section 2. When 

plants entered the stem elongation phase (GS30) they were divided equally 

into two groups of 24 and transferred to two Sanyo growth cabinets to 

acclimate for a period of 4-6 weeks. Standard controlled environment 

conditions (see section 2.1.) were used as the experimental control conditions 

in this experiment.  When plants entered the booting stage, they were 

randomly divided into groups of 4, representing 1 experimental unit, which 

were randomly allocated control or HT treatment. There were three replicate 

experimental units for each treatment.  

Using the non-destructive staging method described in section 3, it was 

established that at 5 cm FLS length anthers would be in the pre-meiotic stages 

of development. This stage was selected to ensure HT treatment coincided 

with meiosis and a period of high tapetum metabolic activity. When plants 

entered the booting stage, 10 tillers within each experimental unit measuring 

4 cm ± 0.5 cm were tagged and randomly allocated to a time point for 

sampling. After 24 hours the experimental procedure began and anthers from 

tillers allocated to T0 were harvested. Experimental units allocated to HT 

treatment were transferred to a Sanyo cabinet with the following conditions 

34/20 °C day/night, 16/8 h light day/night, 65/75% relative humidity and 

irrigation maintained. Anthers were harvested from the tagged tillers after 6 h 

(T1), 12 h (T2), 24 h (T3) and 48 h (T4), with T0 occurring at the beginning of the 

16 h photoperiod (Fig. 5.1.). Harvested anthers were immediately frozen in 

liquid nitrogen and stored at -80 °C.  
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Figure 5.1. Experimental time course structure of RNA-Seq experiment. Three 

biological replicates were collected at each time point.  

Total RNA was extracted, quantified and checked for integrity as described in 

section 2.3.  

To investigate the effect of the HT-stress conditions on anther development, 

anthers harvested at T3 (+24h) and +72h were fixed in resin and prepared for 

examination by light microscopy as described in section 2.6. 

5.2.2. Sequencing of total mRNA 

27 samples (3 x Control T0, 3 x Control T1-4, 3 x HT T1-4) of total RNA was 

delivered to The Oxford Genomics Centre, Wellcome Trust Centre for Human 

Genetics, Oxford, U.K. for sequencing. Short read sequencing was completed 

using an Illumina HiSeq 4000 (Illumina, San Diego, CA, U.S.A.). cDNA libraries 

were prepared using PolyA selection to deplete ribosomal RNA 

contamination. Forward strand-specific sequencing of cDNA was carried out 

using 150 bp paired-end reads. Four technical replicates of each paired-end 

sequencing reaction were carried out on independent sequencing lanes.  

5.2.3. Quality control and pre-processing of short reads 

A total of 216 (27 samples x 4 technical replicates x 2 direction of read) fastq 

files were returned containing 150 bp read nucleotide sequence and 

accompanying quality metadata. All bioinformatics analysis was carried out 

within Rothamsted’s Galaxy user interface instance (Sloggett et al., 2013) 

unless otherwise stated. In order to visualise the sequencing quality 

information, each fastq file was entered into the FastQC tool (Babraham 

Bioinformatics, U.K.) which summarises various categories of sequence 
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quality. In general, all reads were of high quality. In all cases, base content and 

Kmer analysis returned warnings of overrepresented sequence. This was 

expected as contamination from short sequencing adapter oligonucleotides is 

common. 

To remove the sequencing adapters, filter out short reads and trim low quality 

sequencing from the ends of reads, fastq files were processed using the 

Trimmomatic tool (Bolger et al., 2014). First, each of the 4 pairs of fastq files 

for each sample were assembled into paired dataset collections which allows 

Trimmomatic to process them simultaneously. Each data list was then 

processed by Trimmomatic using default conditions other than the 

specification of TruSeq III adapter sequence removal, removal of reads shorter 

that 100 bp (MINLEN) and removal of read-end bases with quality scores 

lower than 15 (TRAILING).  

After pre-processing approximately 50% of the sequenced reads had been 

discarded. This resulted in an effective sequencing depth of approximately 21x 

of the 361.58 Mbp TGACv1 transcriptome reference.  

5.2.4. Mapping to a whole genome reference and counting  

Initially, sequenced reads were aligned to a whole genome reference 

sequence to allow transcript identification and counts. The IWGSC whole 

genome reference is curated within the Rothamsted galaxy instance, the 

version used was the publically available IWGSC reference scaffold, 

T.Aestivum_Dec. 2015 (IWGSC1.0+popseq/ENSEMBLEv29 (genome) available 

from Ensembl and was selected as the reference genome in the TopHat 

alignment tool (Kim et al., 2013). TopHat aligned sequencing reads to the 

reference genome using default parameters with the exception of the 

following: library type: FR First Strand, supply own junction data: use gene 

annotation model. The gene annotation model used was 

Triticum_aestivum.IWGSC1.0_popseq.29.gtf . 
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TopHat is a multifunctional spliced aligner which allows mapping of 

sequenced reads which span introns, permitting the use of a whole genome 

reference sequence (Kim et al., 2013). TopHat produces a BAM file (a binary 

Sequence Alignment/Map file) which contains a list of read alignments. The 4 

BAM files produced by each technical replicate were combined using the 

MergeSamFiles tool to produce 1 BAM file for each of the 27 samples and 

sorted by mapped chromosomal coordinates.  

The Cufflinks tool (Trapnell et al., 2010, 2012) uses an algorithm which 

assembles aligned reads into likely transcripts and calculates their abundance. 

A significant advantage of this tool is its ability to detect transcripts which are 

not contained within the reference gtf file. Across all samples, total of 170,351 

genes with 366,729 transcripts were detected. Using the Cuffmerge tool 

(Trapnell et al., 2010), the newly identified transcripts were merged with the 

IWGSC1.0_popseq.29 reference annotation to create an anther custom 

reference annotation against which read count for each gene could be 

counted. 

To determine relative expression levels of transcripts in an RNA-Seq 

experiment it is necessary to count the number of short sequencing reads 

which have been mapped to a given transcript. However, when using a whole 

genome reference sequence which includes intronic and non-coding regions 

any read counting tool needs to be able to distinguish between mismapped 

reads and those which span exon junctions or splice variations. The htseq-

count tool creates a digital expression matrix using read counts and has three 

built in modes for assigning reads which overlap with more than one gene 

feature (Anders et al., 2015). Htseq-count was used to determine the number 

of reads mapping to transcripts mapping to genes annotated within the 

custom reference described above. Default parameters were used with the 

exception of specification of the union mode for handling reads overlapping 

features and the specification that the data is forward strand specific. The 

union mode classes any read spanning or overlapping an annotated 

intron/exon junction as a count for the given gene, any reads which map to 
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two different genes are listed as ambiguous. A tabular count file was 

generated. 

5.2.5. Mapping to a transcriptome reference and counting 

During the course of analyses using the IWGSC whole genome reference, a 

significantly improved reference genome (TGACv1) became available. Having 

already invested significant time and resources in mapping and aligning to the 

IWGSC whole genome, and given limitations on the time remaining to 

complete the project, it was decided not to repeat whole genome mapping 

with the updated reference. Instead, the predicted cDNA transcriptome 

model containing 273,739 predicted transcripts was used as the reference 

sequence. This approach significantly reduced the time and computational 

resources required to complete alignment of sequencing reads to the 

reference. However, unlike when mapping to a whole genome reference, the 

use of a transcriptome reference restricts analysis to transcripts included in 

the annotation, so that the discovery of new transcripts is not possible.  

Rapid alignment of sequencing reads to the transcriptome reference was 

carried out using the Bowtie 2 tool (Langmead et al., 2009; Langmead and 

Salzberg, 2012). As a transcriptome reference was used in this case there was 

no need for a splice aligner such as TopHat and therefore the simpler mapping 

tool Bowtie 2 could be used. Default parameters were used with the 

exception of the -a setting for reporting options which permits Bowtie 2 to 

search for an unlimited number of alignments for each read.  

The resulting BAM files were sorted by read name and merged for each 

biological replicate. Transcript abundance was quantified for every transcript 

in the reference transcriptome using the eXpress software package (Roberts 

and Pachter, 2012) for each sample and merged into a tabular matrix file.  

5.2.6. Identifying differentially expressed transcripts 

Differential gene expression analysis was completed by A. Gonzalez (Applied 

Bioinformatic, Rothamsted Research, U.K.) using the edgeR software package 
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(Robinson et al., 2010) in the RStudio software environment (v. 0.99.484) (R 

Core Team, 2016). Analysis of the similarity between samples was carried out. 

Initially, General Linear Modelling (GLM) within edgeR was used to attempt to 

identify clusters of genes that have changes in expression which are explained 

by the interaction between time and temperature treatments (Fig. 5.2.). This 

approach was intended to allow differentiation between gene expression 

which changes only in response to temperature (Fig. 5.2. a) from 

developmental gene expression profiles which do not respond to HT (Fig. 5.2. 

b) and genes which respond to the interaction between time and temperature 

(Fig. 5.2. c).  Given previously observed acceleration of anther development in 

response to HT, it was hypothesised that many genes would also show a 

premature peak in expression under HT relative to the control developmental 

expression profile. 

 

Figure 5.2.  Treatment and interaction effects on an example transcript. (a) 

Transcript is differentially expressed in response to HT. (b) Transcript is 

differentially expressed in response to time (developmentally). (c) Transcript 

expression responds to temperature and time.  
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5.2.7. Assigning gene annotations and GO terms 

Gene ontology enrichment was carried out on lists of differentially expressed 

transcripts in order to investigate the effect of treatment on anther biological 

processes. Lists of differentially expressed transcripts were imported into 

Blast2Go (v.3.3.) (BioBab, Valencia, Spain) and using the built in BLASTx tool 

(minimum 10 matched, threshold E-value 1x10-5) searched against a custom 

wheat annotation reference for homologues; GO-terms are then extracted by 

mapping accepted hits to online databases of gene annotation data (Conesa 

et al., 2005). Statistical analysis of over- or under-represented GO-terms for a 

given transcript list was carried out using the built-in Fisher’s exact test 

function which ranks GO-terms based on their P value after correction for 

false discovery rate (0.01 threshold FDR = 5%).  

5.2.8. Global hormone quantification plant material 

An initial study was undertaken to determine the minimum volume of tissue 

required for accurate hormone quantification. Material was collected from 

wheat plants (var. Cadenza) grown under standard glasshouse conditions (see 

section 2). Global hormone analysis (carried out at Olomouc, Czech Republic) 

and GA-specific quantification (carried out at Rothamsted Research, U.K.) 

confirmed that all major hormones could be detected in as little as 20 mg dry 

weight of anthers collected from tillers ranging from 13 cm to 18.5 cm FLS 

length (covering predicted stages 6 – 9, young microspores – mitosis II). Based 

on these findings a completely randomised experiment to investigate 

hormone levels in anther tissue at two stages of development at 20 °C and 34 

°C was planned.  

24 wheat plants were established in controlled environment conditions as 

previously described (see section 5.2.1). Plants were grown in a completely 

randomised design. When plants entered the booting stage (GS40) they were 

designated to either control or HT at either 10 cm or 15cm FLS length 

treatment (estimated anther development stages, meiotic and pre-mitotic 

development respectively). Having initially been unable to identify any GAs by 
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LC-MS, it was decided that GA-specific quantification by GC-MS would be 

carried out at Rothamsted Research. Therefore, half of the plants were 

designated for global analysis and the other half GA analysis. There were 

therefore three biological replicates for each treatment.  It had been intended 

to use a similar experimental design to that used in section 5.2.1 in which 

staggering of plant transfer to HT-treatment conditions allows for the 

optimum material to be selected. However, due to malfunctioning of the 

secondary cabinet intended for use as the HT treatment, the following 

amendments were made:  

As only one experimental growth cabinet was available, staggering of 

treatments to match individual plant development was not possible. 

Therefore, anthers from mid-spike positions from two tillers measuring 10±0.5 

cm or 15±0.5 cm per control group plant were harvested and two other tillers 

with the same measurements were tagged. The controlled environment 

settings were then changed from 20 °C control conditions to the HT 34 °C 

conditions (see section 5.2.1.). After 24 h the tagged anthers were also 

harvested.  

Due to these restricted experimental conditions some plants had to be 

sampled under both treatments to ensure sufficient material for analysis. 

Repeat sampling of experimental units results in overpowering of statistical 

comparisons, increasing the likelihood of finding statistically significant results 

(S. Powers, pers. comm.). Therefore, caution must be taken when interpreting 

these data. General Analysis of Variance (ANOVA) was carried out in GenStat 

(v17, VSNI, Hemel Hempstead, U.K.).  

All samples were immediately frozen in liquid nitrogen and stored at -80 °C. 

Prior to extraction samples were freeze dried and weighed in the collection 

tube. The dry weight of the sample was determined as the difference to the 

empty collection tube weight.  
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5.2.9. Extraction and quantification of GAs 

GA analysis was carried out as described in Griffiths et al., (2006). Anthers 

were extracted in 80% methanol primed with known quantities 3H- and 2H2-

labeled GA internal standards at 4 °C overnight. The GA containing acidic 

fraction was then separated by chromatography using QAE-Sephadex (Sigma-

Aldrich, St. Louis, Missouri, U.S.A.) anion-exchange and Sep-Pak C18 (Waters 

Ltd, Milford, Massachusetts, U.S.A.) columns. Samples were then methylated 

in ethereal diazomethane and the GA-containing organic phase isolated by 

partitioning in water and ethyl acetate. Further purification by removal of 

remaining unmethylated acid components was achieved by passing the 

organic phase through NH2 anion-exchange columns (Agilent, Santa Clara, 

California, U.S.A.) and retaining the eluate. No High Performance Liquid 

Chromatography (HPLC) separation of fractions was carried out as previous 

studies had shown this to be unnecessary in this case (P. Hedden pers. 

comm.). Quantification of GA family members was carried out by Prof. Peter 

Hedden using Gas Chromatography – Mass Spectrometry (GC-MS) with 

selected ion monitoring based on established calibration curves for the 

labelled internal standards.  

5.2.10. Extraction and quantification of all other hormones 

Global hormone analysis was carried out by Jan Simura using Liquid 

Chromatography – Mass Spectrometry (LC-MS) at the Laboratory of Growth 

Regulators & Department of Chemical Biology and Genetics, Palacky 

University and Institute for Experimental Botany, Olomouc, Czech Republic.  

5.3. Results 

5.3.1 The impact of HT on wheat anther development  

A number of different HT-stress phenotypes, ranging in severity, have been 

reported in cereal anthers (see section 1.5.). Therefore, before undertaking 

transcriptional analysis of anthers it was necessary to establish the effects of 
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the experimental HT-stress condition on anther development in wheat. This 

would then allow any observed changes in transcription to be understood in 

the context of the resulting developmental defects. Anthers from plants 

exposed to the experimental control and HT conditions were investigated by 

light microscopy to determine the effect of HT-stress on internal morphology 

and development Cytological analysis of anthers exposed to HT for 24 and 72 

h confirmed that 34 °C caused developmental defects consistent with 

disruption of the post-meiotic function of the tapetum and pollen cell 

maturation (Fig. 5.3.).  

 

Figure 5.3. The effect of HT on anther development and morphology. Anthers 

were harvested from control and HT-treated plants and examined by light 

microscopy. Anthers exposed to HT show granulation of the tapetum cells 

(white arrow) and accelerated progression of pollen development which have 

become irregular in shape (black arrow). Scale bar 200 µm. 

Consistent with previous observations, premature acceleration of the anther 

development programme is induced by exposure to HT. Tapetum decay 

appears to have begun by T1 at 20 °C and 34 °C with loss of the tapetum 
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primary wall and internal degradation becoming evident (Fig. 5.3. white 

arrow). However, 24 hours after the completion of the experimental time 

course (+72h) the tapetum layer is completely degraded at 34 °C but still 

present as microspores undergo vacuolation and mitosis at 20 °C. This 

acceleration of development results in the formation of misshapen pollen cells 

which have not completely filled with carbohydrates (Fig. 5.3. black arrow). 

Whilst pollen viability or grain set of these plants was not tested, the anther 

phenotypes observed above confirm that 34 °C is an adequate experimental 

treatment for the induction of HT stress.  

5.3.2 Hierarchical clustering of total expressed transcripts 

Hierarchical clustering analysis of differentially expressed genes was carried 

out in edgeR using the hclust function with the intention of grouping genes 

according to the three expression responses described above (Fig. 5.2.) 

However, it became clear that such a complex analysis would not be possible 

within the timeframe of the project; a high degree of variability and large 

number of differentially expressed transcript resulted in undefinable clusters 

(Fig. 5.4.).  
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Figure 5.4. Cluster dendrogram for all differentially expressed genes. 

Clustering analysis carried out in edgeR reveals poor definition between 

differentially expressed gene groups. Red boxes indicate software-suggested 

clusters.  

The failure of the clustering analysis to distinguish between differential 

expression profiles indicates that there is insufficient difference between 

comparative samples. In order to establish the biological variability captured 

by the experimental sampling regime, a multidimensional scaling (MDS) plot 

visualising the relative similarity of each sample based on counts per million 

kilobases was created in edgeR using the plotMDS function (Fig. 5.5.). The 

scattering of points around the plot demonstrates the variability captured 

within the samples and offered some explanation as to why clustering failed.  

 

Figure 5.5. MDS plot of RNA-seq samples mapped to IWGSC whole genome 

reference.  Biological replicates are the same colour. Samples are named by 

their treatment group (C – control, HT), time point and biological replicate 

number.  
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Ideally, biological replicate samples should group together whilst a clear 

separation between treatment samples should be evident. In this case, 

biological replicates are spread across both axes whilst time point and 

temperature time points can be seen to overlap each other. This indicates 

that samples which should be biologically distinct in fact account for large 

portions of the same variation. Therefore, a comparative analysis of all time-

points and treatments would be unlikely to provide useful results. 

5.3.3. Transcriptional regulation of anther development 

In light of the obvious difficulty in assessing such variable results when 

considering the HT experiment as a whole, it was decided to investigate if any 

pairwise comparisons could be made between comparable samples with less 

variable replicates. By systematically comparing time point samples variation 

on MDS plots it was established that biological replicates 1 and 3 could be 

used for a comparison of gene expression between samples collected at T3 

(+24 h) for a comparison of control and HT treatments (Fig. 5.6.). Despite a 

large degree of variation in the second component between the two control 

samples, a good separation of HT and control samples in the first dimension 

permits valid comparisons between the two experimental treatments.  
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Figure 5.6. MDS plot of whole genome aligned expressed genes in two 

biological replicates of T3 control and HT samples.  

Read counts for the two selected replicates of both samples were extracted 

and differential gene analysis comparing the HT samples to C was carried out 

using edgeR. A total of 9943 differentially expressed transcripts were 

detected. The top 20 most significantly differentially expressed genes and 

their gene function annotations are presented in Table 5.1.  



 

138 
 

 

Table 5.1. Top 20 DEGs in anther tissue after 24 h exposure to HT. DEGs were 

ranked by most significant FDR value of significance of fold change in counts 

between HT and control samples.  

Half of the top 20 DEGs have no associated gene function annotation. The 

annotated functions of the remaining transcripts provide evidence that HT has 

a dramatic effect on the function of the tapetum. Two meiotic serine 

proteinase transcripts are significantly upregulated under HT at 24 h (Table 

5.1.). Serine proteinases are hypothesised to have a role in the release of 

microspores from meiotic callase envelopes and the execution of PCD (Taylor 

et al., 1997). Similarly, the tapetum plays a major role in the biosynthesis and 

transport of exine and the upregulation of two fatty acid reductase, one 

cytochrome P450 and one ABC transporter transcript suggest these functions 

may also be affected. Also, tapetum development TF TaDYT_A (see section 

1.3.2.) and Traes_7DS_CB7D748CC, which is annotated as tapetum 

differentiation TF TIP2-like, appear in the DEG list (-5.9 fold and -4.6 fold 

change at HT +24 h, respectively). Additional searches revealed no significant 

differential expression of known GA-biosynthesis, signalling or other known 

Transcript ID Annotation Fold change FDR

XLOC_026217 #N/A 10.84 4.66E-84

Traes_2BL_255108047 #N/A 10.96 2.90E-82

Traes_2BL_87AA8B551 meiotic serine proteinase-like protein 10.22 4.60E-71

XLOC_030553 #N/A 10.51 1.25E-68

Traes_4BS_9A1950277 #N/A 9.76 2.23E-65

Traes_2AS_15562C23D protein pfc0760c-like 10.92 6.38E-65

Traes_2AL_A634C94CA meiotic serine partial 8.95 1.61E-63

Traes_4AS_BE9625780 fatty acyl- reductase 2-like 9.66 3.74E-62

Traes_4AL_BD68A9279 #N/A 10.17 3.57E-61

Traes_4DL_021634BC0 fatty acyl- reductase 2-like 9.54 7.44E-60

Traes_2AL_187E80B24 cytochrome p450 87a3-like 10.44 2.52E-58

Traes_1BS_6A84E22E2
hxk7_orysj ame: full=hexokinase-7 ame: 

full=hexokinase-6
9.09 3.76E-57

Traes_6DS_2EDFCBCA4 #N/A 6.94 5.12E-56

Traes_2BS_81588BD1F protein pfc0760c-like 10.44 8.64E-55

Traes_7DL_439CC6EA0 abc transporter g family member 26 9.89 8.96E-55

Traes_7AS_91F6E710D #N/A 7.60 1.69E-53

Traes_7AL_3B2536995 hypothetical protein TRIUR3_24487 7.08 8.02E-53

Traes_2BS_E4D5800DD #N/A 8.10 6.89E-52

Traes_4DS_D1C345CDE #N/A 9.98 3.84E-51

XLOC_139738 #N/A 7.83 9.55E-51
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anther development transcripts. All differential gene expression data will be 

made available in an online repository. 

In order to further investigate the effect of HT on transcriptional regulation of 

anther development processes, GO-terms were assigned to the 9943 DEGs 

using Blast2Go (see section 5.2.7.). The top 50 most frequently assigned GO-

terms are presented in Figure 5.7. The most frequently assigned GO-terms are 

representative of biological processes common to anther development (Fig 

5.7.).  Terms relating to meiosis, mitosis and pollen development specifically 

are highly represented. Similarly, metabolic processes such as carbohydrate 

metabolism, protein turn over and transmembrane transport appear in top 50 

most represented terms.   
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Figure 5.7. Top 50 most abundant GO-terms amongst DEGs at 24 h HT 

treatment. Transcripts were assigned GO-terms using the annotation function 

in Blast2Go. 

It is notable that many of the most abundant GO-terms are associated with 

processes previously shown to be negatively affected by HT-stress. The 

presence of a number of terms relating to meiosis, mitosis, DNA replication 

and cell proliferation indicate that microsporogeneis has been affected by HT. 

Interestingly, pollen development terms also appear in the top 50 most 

abundant. Given that transcript analyses were exclusively for developing 

anthers; it is perhaps surprising that the term pollen development did not 



 

141 
 

account for more of the expressed transcripts. However, this is most likely 

caused by the limitation of the gene annotations used.  

Fisher’s Exact test was carried out comparing this list of annotated DEGs to 

the whole genome annotation in order to investigate the impact of HT on 

transcriptional regulation of biological processes in the anther. A total of 467 

GO-terms were found to be significantly under- or over-represented in the 

DEGs list. Keyword searches were used to extract terms related to hormone 

signalling and biosynthesis and the genetic regulation of anther and pollen 

development (Table 5.2.). 

 

Table 5.2. Selected GO-terms extracted from Fisher’s Exact Test output. 

Keyword searches were used to identify terms associated with hormonal and 

genetic regulation of anther and pollen development in list of significantly 

under- or over-represented terms in 24 h HT DEGs list.  

GO-terms associated with gibberellin, auxin and ABA biosynthesis and 

signalling were all significantly under-represented in DEGs indicating that HT 

has caused a modulation of hormonal responses. However, the observation 

that transcription relating to ABA response is suppressed after 24 hours but is 

over-represented in the overall analysis indicates that ABA signalling may be 

prominent at earlier time points. Likewise, no further meiosis, mitosis or 

pollen development specific terms were identified at 24 h except for stamen 

development which was under-represented. Again this suggests that HT 

causes dramatic changes to the anther transcriptome within the first 24 h. No 

terms relating to jasmonate, brassinosteriod or ethylene biosynthesis or 

signalling were identified. 

GO-ID Term FDR P-Value Over/Under

Hormone biosynthesis and signalling

GO:0009739 response to gibberellin 6.96E-04 1.15E-04 UNDER

GO:0009734 auxin-activated signaling pathway 4.44E-07 4.54E-08 UNDER

GO:0060918 auxin transport 6.48E-04 1.05E-04 UNDER

GO:0009737 response to abscisic acid 5.84E-05 7.82E-06 UNDER

GO:0016102 diterpenoid biosynthetic process 1.83E-05 2.24E-06 UNDER

Anther and pollen development 

GO:0048443 stamen development 1.28E-04 1.81E-05 UNDER
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5.3.4. Transcriptome profiling using a cDNA reference  

During the analysis of sequencing data using the IWGSC whole genome 

reference, a significantly improved reference genome, TGACv1 which covers 

more than 13.5 Gbp of the highly repetitive 17 Gbp wheat genome (compared 

to 6.5 Gbp covered by the IWGSC whole genome reference) also became 

available. Given the limited time remaining to complete analysis, a re-

mapping of processed sequencing reads (see section 5.2.3.) to the TGACv1 

predicted cDNA transcriptome as opposed to the entire genome assembly was 

undertaken as this required much less computational processing and could be 

completed rapidly.  

The cDNA reference FASTA file and GFF annotation file for the TGACv1 

assembly were imported into Galaxy and Trimmomatic processed FASTQ were 

mapped to the reference using Bowtie 2 and counted by eXpress (see section 

5.2.5.). Read counts for a total of 273,739 transcripts were calculated. An 

effective counts matrix was generated and a comparison of differential gene 

expression of two T3 (+24 h) time-point replicates under control or HT 

conditions, was carried out in edgeR as described above. A total of 6083 DEGs 

were identified, of which 2726 were downregulated and 3357 were 

upregulated. The functional annotations of these genes were assigned using 

Blast2Go as described (see section 5.2.7.). The top 20 most significant DEGs, 

their annotation, log fold change value and FDR are presented in Table 5.3.  

The finding that the two most significantly upregulated transcripts in response 

to HT contain BURP-domain containing proteins is potentially of great 

importance. TaRAFTIN is an anther specific BURP-domain protein which has a 

crucial role in the delivery and assembly of tapetum-manufactured 

sporopollenin on the pollen exine (Wang et al., 2003) (see section 1.3.2.). The 

Log(2)FC 10-fold upregulation of transcripts with annotated similarity to a 

gene critical to Ubisch body function in response to HT suggests this might be 

one mechanism through which HT induces male sterility. However, further 
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investigation of these transcripts is required to determine their function in 

wheat anther development. 

 

Table 5.3. Top 20 most significant DEGs at 24 h HT. DEGs were ranked by most 

significant FDR value of significance of fold change in counts between HT and 

control samples. 

As was seen in the DEG list using the IWGSC whole genome reference (Tab. 

5.3.), two meiotic serinease transcripts are significantly upregulated (9.41, and 

10.04 log fold increase respectively) along with two pectinesterase transcripts 

(10.59 and 10.26 log fold increase respectively). Serinase has previously been 

Transcript ID Annotation Log Fold Change FDR

TRIAE_CS42_2DL_TGACv1_15893

4_AA0529130.1
BURP domain-containing 4-like 10.93 5.83E-58

TRIAE_CS42_2BL_TGACv1_13066

8_AA0415660.1

BURP4_ORYSJ ame: Full=BURP domain-

containing 4 Short= 04 Flags: Precursor
10.72 4.63E-57

TRIAE_CS42_2DL_TGACv1_16121

0_AA0557440.1
meiotic serine ase 9.41 1.37E-52

TRIAE_CS42_2AS_TGACv1_11259

9_AA0341990.1
pectinesterase 66 10.59 2.19E-51

TRIAE_CS42_2DS_TGACv1_17928

1_AA0605850.2
pectinesterase 66 10.26 1.27E-50

TRIAE_CS42_2AL_TGACv1_09296

3_AA0268200.1
cytochrome P450 87A3-like 9.96 1.27E-50

TRIAE_CS42_4BS_TGACv1_32796

8_AA1080080.1
classical arabinogalactan 9-like 9.37 8.58E-49

TRIAE_CS42_4BL_TGACv1_32098

8_AA1053040.2
fatty acyl- reductase 2-like 9.75 2.85E-47

TRIAE_CS42_4AS_TGACv1_30839

9_AA1027760.1
Cytochrome P450 704C1 10.26 1.62E-46

TRIAE_CS42_4AS_TGACv1_30702

2_AA1016260.1
fatty acyl- reductase 2-like 10.17 1.62E-46

TRIAE_CS42_4DS_TGACv1_36120

0_AA1163460.1
classical arabinogalactan 9-like 10.08 1.85E-45

TRIAE_CS42_1BS_TGACv1_05001

3_AA0165940.1

HXK7_ORYSJ ame: Full=Hexokinase-7 ame: 

Full=Hexokinase-6
8.59 5.43E-45

TRIAE_CS42_1DS_TGACv1_08222

4_AA0264200.1

HXK7_ORYSJ ame: Full=Hexokinase-7 ame: 

Full=Hexokinase-6
8.73 6.02E-45

TRIAE_CS42_2BL_TGACv1_12934

1_AA0379410.1
meiotic serine ase 10.04 1.04E-44

TRIAE_CS42_4DL_TGACv1_34281

8_AA1122940.1
fatty acyl- reductase 2-like 10.37 1.25E-44

TRIAE_CS42_7DL_TGACv1_60481

7_AA2002000.1
ABC transporter 9.58 1.54E-43

TRIAE_CS42_7BS_TGACv1_59181

2_AA1922120.6
Sucrose synthase 1 7.99 9.95E-40

TRIAE_CS42_1AS_TGACv1_02029

2_AA0076360.1
hypothetical protein TRIUR3_07253 -7.95 1.37E-39

TRIAE_CS42_1AS_TGACv1_02039

9_AA0077180.1
hexokinase partial 8.03 1.99E-39

TRIAE_CS42_3B_TGACv1_221086

_AA0729940.1
aquaporin NIP4-1-like 10.76 2.62E-38
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reported to be secreted during microsporogenesis and is thought to be 

involved in the degeneration of the callose envelope surrounding tetrads and 

the tapetum PCD (Taylor et al., 1997). Similarly, pectinesterases are highly 

expressed in developing anthers and have been implicated in regulation of 

plant cell wall degradation and have been shown to be highly upregulated by 

HT (Wu et al., 2015). Together, the upregulation of theses transcripts suggests 

that that tapetum cell degradation, which requires the decomposition of the 

tapetum primary cell wall, may have been accelerated by HT. During the post-

meiotic, pre-mature pollen development stage, a major function of the 

decaying tapetum is to support the synthesis and construction of the pollen 

coat which has been shown to require the expression of a number of lipid and 

carbohydrate metabolism and transport genes (see section 1.2.2.). Therefore, 

an acceleration of the tapetum life cycle is further supported by the 

upregulation of genes potentially involved in lipid biosynthesis (fatty acid 

reductases and cytochrome P450s), carbohydrate metabolism (sucrose 

synthase and hexokinases) and transmembrane transport (ABC transporter 

and aquaporin NIP4-1-like).  

In order to further investigate the biological processes affected by HT using 

the TGAC v1 transcriptome, GO-enrichment on the DEGs list was carried out 

using the annotation function in Blast2Go (see section 5.2.7.). The top 50 most 

commonly assigned terms (based on number of matching sequences) is 

shown in figure 5.8. As previously observed, a number of general terms which 

describe well characterised biological processes occurring in developing 

anthers and pollen. Indeed, the metabolism and transport of carbohydrates, 

lipids and other metabolites indicates that the anther is highly active at this 

stage. The presence of stress associated terms such as oxidation-reduction 

process, DNA repair, defence responses to fungus and cellular oxidant 

detoxification also suggest that cells are transcriptionally responding to HT 

treatment. 



 

145 
 

 

Figure 5.8. Top 50 most frequently represented GO-terms in 24 h DEGs list 

using TGACv1 transcriptome reference. 

5.3.5. The impact of HT on expression of GA-signalling and biosynthesis 

genes. 

Global transcriptome analysis of anthers established that exposure to HT-

stress causes dramatic changes to gene expression associated with 

developmental processes taking place in the tapetum and microspores. GA-

signalling is involved in the regulation of these processes, particularly tapetum 

PCD and the biosynthesis and laying down of the sporopollenin component of 

the pollen coat, suggesting that a negative effect of HT-stress on GA-signalling 
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may contribute to some of the HT-defects previously described. Therefore, in 

order to investigate if HT-stress has any effect on the GA-signalling pathway in 

wheat anthers, the expression profiles under control and HT conditions of a 

number of known GA-signalling and biosynthesis components were compiled 

based on read counts mapped to TGACv1 reference transcripts.  

A list of gene identifiers for known GA-signalling and biosynthesis transcripts 

(Annex II) was obtained and used to extract the effective count data from the 

eXpress output of the transcriptome reference analysis pipeline. The 

transcriptome reference was used in this study as a greater number of 

transcripts of interest are included than in the IWGSC whole genome 

reference. Transcripts with counts not exceeding effective counts of 50 at any 

time point were excluded. Mean counts for each homoeologue were 

calculated; the overall expression was calculated as the homoeologue 

average. Mean effective counts (reads per transcript corrected for fragment 

length bias) were plotted for 7 GA biosynthesis, 2 confirmed and 1 putative 

GA-signalling component under control and HT conditions (Fig. 5.9.). It is 

important to repeat that given the high variability that exists between 

replicate samples caution should be taken when interpreting comparative 

results. 
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Figure 5.9. Mean effective counts of GA-signalling and biosynthesis genes. 

Mean effective counts of three biological replicates of homoeologue 

transcripts were calculated (dashed lines, Black – A, Blue – B, Green - D). Red 
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lines indicate the mean effective counts of the given homoeologues of the 

respective gene. Effective counts were calculated for 5 time points beginning 

at T0 for control conditions (top graph) and HT conditions (bottom graph). Two 

early GA-biosynthesis genes were identified, TaCPS (a) and TaKAO (b), two 

TaGA13OX paralogues, 1 (c) and 2 (d), two TaGA20ox paralogues, 1 (e) and 2 

(f) and TaGA2OX_3 (g). The receptor TaGID1 was also identified (h) as well as 

the signalling component TaGAMYB (i). Only the _B homoeologue of 

TabHLH141 was identified and therefore the mean effective counts at control 

(solid line) and HT (dashed line) are presented on one graph.  

The transcription of early GA-biosynthesis genes TaCPS (Fig.5.9. a) and TaKAO 

(Fig. 5.9. b) remains relatively stable during control time points and a slight 

elevation in transcript level can be seen before and after T1 +6h respectively. 

Interestingly, expression of TaGA13OX_1 is noticeably increased after 12 

hours of HT (Fig. 5.9. c). This suggests that one of the effects of HT may be to 

drive GA-biosynthesis down the 13-hydroxylation pathway (Fig. 5.11.). The 

expression of TaGA20OX_1 (Fig. 5.9. d) and TaGA20OX_2 (Fig. 5.9. e) also 

appears to respond to HT. A peak of effective counts of TaGA20Ox_1 at T1 is 

amplified at HT whilst a peak of expression at T3 of TaGA20OX_2 under 

control conditions is supressed by HT. Also of note is the rapid increase in the 

expression of the GA-inactivating TaGA20X_3 under HT which is otherwise 

expressed at only a basal level (Fig. 5.9. f). Similarly, the GA-receptor TaGID1 

has a stable expression profile under control conditions but its expression 

begins increasing after T2 under HT treatment (Fig. 5.9. g.).  

The expression of TaGAMYB has been shown to be vital for wheat male 

fertility (see section 4). Here, the expression profiles suggest that TaGAMYB 

expression remains relatively stable during anther development and is not 

dramatically effected by HT treatment, although a relative increase in mean 

effective counts at HT_T4 can be observed (Fig. 5.9. h.). TabHLH141 is also 

required for male reproductive development in wheat and is a putative GA-

responsive PCD elicitor (see section 4). Only the B homoeologue could be 

identified in the expression data, although expression of all three 
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homoeologues in whole wheat spikes at GS39 has previously been reported 

(Choulet et al., 2014), which suggests that exclusive expression of 

TabHLH141_B is unlikely. Expression of the B homoeologue transcript appears 

to be activated at T1, peak at T2 and then decline and stabilise under control 

conditions (Fig. 5.9. i). HT appears to accelerate the expression of 

TabHLH141_B until T2 when it also begins to decline as seen under control 

conditions.  

5.3.6. Quantification of anther endogenous hormone levels in 

response to HT 

The role of hormones in anther development and responses to HT have been 

well studied (see section 1.5.). Transcriptional data collected above suggest 

that HT causes changes to the genetic regulation of GA-biosynthesis and 

signalling in the anther which may be of significance to the developmental 

response. However, hormone biosynthesis pathways are complex, multistep 

processes (see section 1.4.) and the expression of a given catabolism 

paralogue does not necessarily relate to changes in cellular hormone content. 

Analysis of hormone concentrations in mature rice anthers has shown that 

accumulation of GA4 and auxin in tricellular pollen may be achieved through 

the earlier expression of biosynthetic genes in microspore and tapetum cells 

and the storage of precursor forms (Hirano et al., 2008). Transcriptional 

analysis of wheat anthers has demonstrated altered expression of GA-

biosynthesis genes when exposed to HT, which could potentially affect the 

production of bioactive GA at later stages. Furthermore, whilst low, stable 

levels of ABA, JA and BR were detected in mature rice anthers, transcriptional 

analysis nonetheless demonstrates that their biosynthesis and signalling 

pathways are highly regulated during pollen development (Hirano et al., 

2008). Given that other studies have demonstrated the importance of 

maintaining GA and auxin whilst supressing ABA levels in response to HT for 

rice male fertility (Tang et al., 2007), there is clearly a need to better 

understand the impact of HT-stress on hormone biosynthesis in wheat 

anthers.  
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Therefore, an analysis of anther global hormone content under control and HT 

conditions was carried out. The objective was to determine if changes in 

anther hormone concentrations could be detected which would provide 

further explanation for observed transcriptional responses to HT. Specific 

analysis of active and precursor forms of GA was carried out in order to 

establish how HT-responsive biosynthesis gene expression affects hormone 

concentrations. Quantification of many major plant hormones and their 

precursor forms in developing wheat anthers and in response to HT would 

represent a novel and potentially very useful resource for further investigation 

of developmental and stress response regulation, especially when combined 

with transcriptomic data described in section 5.3.5.  

Prior to undertaking global hormone analysis, a pilot study to determine the 

minimum tissue requirements for detection of GAs by GC-MS was undertaken 

(see section 5.2.9.). In 0.8 mg dry weight of anthers extracted around the 

mature pollen stage a total of 450 ng/g of GA4 and 4910 ng/g of GA9 were 

detected. This is consistent with previous observations which describe an 

accumulation of large amounts of non-13-hydroxylated GA4 in mature rice 

anthers (Hirano et al., 2008).  

Global hormone analysis carried out using LC-MS shows dynamic regulation of 

hormone concentrations within the anther during development and in 

response to HT stress (Fig. 5.10.). Major active and inactive members of the 

abscisic and salicylic acid, auxin, brassinosteroid, cytokinin, gibberellin and 

jasmonate families were measured. Quantification of all family member 

compounds can be found in annex III. Only the bioactive forms of each family 

are presented (Fig 5.10.), except for the gibberellins where all detected family 

members are reported (Fig. 5.12).  
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Figure 5.10. Hormone concentrations (pmol/g) in anthers at two development 

stages (10 cm or 15 cm FLS length) under control an HT conditions. (a) IAA – 

Indole-3-acetic acid, (b) ABA - Abscisic acid, (c) SA – Salicylic Acid, (d) JA -  

Jasmonic acid. Values shown are means of three biological replicates, error 

bars are one standard deviation of the mean. Individual pairwise comparisons 

were made using 5% L.S.Ds (not shown). 

Endogenous IAA has been demonstrated to have a role in tapetum PCD and 

anther sugar-signalling responses under HT (Oshino et al., 2011; Min et al., 

2013) and exogenous application of IAA can protect male reproductive 

development from HT (Sakata et al., 2010) (see section 1.5.2.). Here, anther 

auxin concentration was found to respond significantly to developmental 

stage (p < 0.05), temperature (p < 0.01) and the interaction term (p < 0.01) 

(Fig. 5.10. a). Clearly, HT causes a dramatic increase in IAA biosynthesis, from 

118.97 pmol/g to 3207.02 pmol/g, at the later stage of development. 

ABA is a well characterised stress hormone and an increase in biosynthesis 

would be expected in response to HT treatment. Indeed, at both 

developmental stages, endogenous ABA concentration is elevated in response 
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to HT (Fig. 5.10. b.), however due to large amounts of variation within 

replicated samples no statistically significant differences were detected. 

Salicylic acid (SA) concentrations decline significantly as anthers age (P < 0.01) 

(Fig. 5.10. c.). Furthermore, SA concentrations are significantly reduced by HT 

at the later developmental stage (p < 0.05) but does not respond at the early 

stage. Information relating to the role of SA in anther and pollen development 

is scarce. However, it has been shown that exogenous application of SA can 

protect rice pollen development from HT possibly through the upregulation of 

ROS-scavenging enzyme levels (Mohammed and Tarpley, 2009).  

Jasmonic acid (JA) is an important regulator of anther developmental 

pathways, particularly filament elongation, anther dehiscence and the final 

stages of pollen maturation  (Qi et al., 2015). JA concentrations are 

significantly reduced (P < 0.01) by HT at both anther developmental stages. No 

differences in concentration was detected between control samples of the 

two developmental stages suggesting that JA levels remain relatively stable 

during this period in the materials collected.  

A number of GA-family members were detected by LC-MS (Fig. 5.11.), 

however GA15, GA24, GA51, GA29, GA6, GA5 and the bioactive form GA4 were 

not detected in any experimental samples. Earlier precursors prior to GA12 

were not examined.  
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Figure 5.11. The 13-hydroxylated and non-13-hydroxylayed GA-biosynthesis 

pathway. The 13 and non-13-hydroxylation pathways and their intermediary 

forms are shown. GAs in green squares are have biological activity, underlining 

indicates detection in this assay. Double arrows indicates intermediaries not 

show. GGPP – trans-geranylgeranyl diphosphate, CPP – ent-copalyl 

diphosphate.  

The majority of detected GA family members belong to the early-13-

hydroxylation pathway (Fig. 5.12), which is surprising given previous reports 

showing GA4 is the dominant form of bioactive GA in closely related rice 

anther (Hirano et al., 2008) and the observation of large quantities of GA4 and 

GA9 in wheat anthers analysed by GC-MS.  
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Figure 5.12. Quantification of gibberellins in anthers at two development 

stages (10 cm or 15 cm FLS length) under control an HT conditions. 

Biologically inactive precursor forms were detected: GA53 (b), GA44 (c), and 

GA19 (d); and the inactive catabolites GA34 (a) and GA8 (f). Two biologically 

active forms were also detected; GA1 (e) and GA3 (g). Values shown are 

means of three biological replicates, error bars are one standard deviation of 

the mean. Individual pairwise comparisons were made using 5% L.S.Ds (not 

shown). 

GA34, the 2β-hydroxylated deactivated form of the non-13-hydroxylated 

bioactive GA4, was found at extremely low concentrations, elevating slightly in 

response to HT at both stages but not interacting significantly with either 

treatment (Fig. 5.12. a). GA53 is the first product of the early-13-hydroxy- 

pathway after the bifurcation at GA12. Concentration of GA53 responds 

significantly to the interaction between stage and HT (p < 0.01) and is 

significantly elevated in response to HT at the later developmental stage (p < 

0.05) (Fig. 5.12. b). The next, two precursor forms produced by GA20ox-family 

enzymes, GA44 (Fig. 5.12. c) and GA19 (Fig. 5.12. d) do not differ significantly 

between treatments, although GA44 could not be detected under HT at the 

later development stage. However, the final intermediate produced by the 

GA20ox family in this pathway, GA20 (Fig. 5.11.), was not detected.  

The bioactive GA product of the 13-hydroxylation pathway, GA1, was not 

detected in either of the early stage samples but was significantly elevated at 

the later developmental stage (p < 0.01) (Fig. 5.12. e). Cellular concentration 

of its 2β-hydroxylated inactive form GA8 was significantly increased by HT in 

the later stage of development (p < 0.05) (Fig. 5.12. f), suggesting HT affects 

the rate of turnover of bioactive GA. Likewise, another biologically active 

form, GA3, was detected under control conditions at both developmental 

stages but is absent under HT (Fig. 5.12. g). However, given the low 

concentrations of GA3 detected (max. 6 pmol/g), this observation may be of 

little biological relevance.  
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GA1 and GA34 were also detected in samples analysed using GA-specific GC-

MS, supporting the findings of the global LC-MS analysis. However, due to 

interfering peaks, it was not possible to quantify them by GC-MS without 

further separation of samples by High Performance Liquid Chromatography 

(HPLC).  

5.4. Discussion 

In this chapter a combined transcriptomic and global hormone analysis 

approach has revealed previously unknown information about the genetic and 

hormonal regulation of wheat anther responses to HT stress. Gene expression 

and ontology analysis using two separate bioinformatics pipelines 

independently show that HT stress causes significant upregulation of genes 

associated with hormone-mediated processes in tapetum and developing 

pollen cells. Furthermore, global hormone quantification demonstrated HT 

stress alters the hormonal profile of anthers, potentially explaining some of 

the observed changes in gene expression.  

The ambitious aim of these experiments was to create comparable gene 

expression and hormone quantification datasets which would allow the 

dissection of hormonal regulation of gene expression during normal 

development and under HT-stress conditions. Both analyses were carried out 

using a HT-stress treatment of 34 °C for 24 h, comparable to previous 

experiments which have demonstrated a negative effect of HT on anther 

development, specifically perturbing hormonal biosynthesis and signalling 

pathways (Saini et al., 1984; Sakata and Higashitani, 2008; Oshino et al., 2007, 

2011). RNAseq analysis was targeted to the PMC anther development stage, 

whereas hormonal analysis was carried out on two later anther development 

stages (meiotic and pre-mitotic development). Similar experimental 

approaches in rice have suggested that synthesis of GA-precursors and 

metabolic enzymes may occur in the tapetum, followed by the completion of 

bioactive GA formation using these components in mature pollen cells (Hirano 

et al., 2008; Plackett et al., 2012). Therefore, whilst the transcriptional and 
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hormone concentration datasets do not overlap temporally, understanding 

the effects of HT on the expression of biosynthesis and signalling components 

during early development may help to explain later irregularities in anther 

hormone profiles.  

Both studies have been negatively affected by the developmental variation of 

the experimental samples. Principle component analysis of sample variance 

(Fig. 5.5.) shows the impact of sample biological variability on the output from 

RNA-Seq differential gene expression analysis. The result of this was an 

inability to distinguish manageable clusters of genes with shared 

developmental and HT transcriptional responses (Fig. 5.4.). It was therefore 

decided to perform a differential gene expression analysis on a single time 

point with samples more suitably divided by treatment and grouped by cluster 

(Fig. 5.7.). However, only two biological replicates for either treatment 

samples were considered in the analysis which is not statistically ideal and 

dramatically reduces the confidence with which observations can be 

considered. Likewise, large amounts of variation in hormone levels detected 

were present amongst biological replicates of individual samples.  

The source of this variation is most likely to be differences in developmental 

stage of anthers within replicates. The FLS length method described in chapter 

3 was used in both experiments. Asynchronous anther development between 

floret positions is likely to have been a source of some of this variability. 

Furthermore, at 10 cm FLS the spikes are very small and dissecting out 

specific-anthers in sufficient quantity is technically challenging. It is therefore 

possible that some damage may have occurred to the experimental material. 

Clearly, the limitations of this approach have been reached by these 

experiments which require relatively large quantities of very accurately staged 

material. Further refinement of the staging method is obviously a pre-

requisite to any future attempts to repeat these experiments. 

A further limitation of any RNA-Seq experiment is the quality of the reference 

genome and annotation used for mapping (see section 5.2.5). During the 
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course of this analysis the quality, coverage and annotation of the wheat 

reference genome improved significantly. The TGACv1 reference includes 

273,739 gene transcripts as opposed to 112,496 gene transcripts in the IWGSC 

gene version. Using a whole genome reference allows the use of Cufflinks 

which is able to identify additional genes which do not appear in the reference 

sequence. In comparison, using a transcriptome reference restricts analyses to 

genes already identified and listed in the TGACv1 gene annotation. 

Nonetheless, the significantly increased number of annotated genes within 

the TGACv1 cDNA reference (273,739 compared to 112,469 in the IWGSC 

reference) and its suitability for use in a less complex and computationally 

demanding bioinformatics pipeline allowed for a useful analysis to be carried 

out in a very short period of time. Furthermore, the overall similarity in DEGs 

and GO-terms identified in both analyses suggest using a well annotated 

transcriptome reference is preferable to more demanding pipelines using a 

lower quality genomic reference.  

5.4.1. Acceleration of the tapetum development programme 

The role of the tapetum is to provide crucial nutrients, cellular components 

and developmental signals to developing pollen cells and undergo PCD, all of 

which is disrupted by HT stress (Parish et al., 2013). After 24 h exposure to HT 

around meiosis, the most significantly differentially expressed genes in wheat 

anthers are associated with the processes known to be occurring in tapetum 

cells at that stage. These analyses provide a comprehensive list of candidate 

HT-responsive wheat anther genes for further investigation as well as 

providing important information about the expression profiles of anther 

development genes, such as TaGAMYB and TabHLH141, which have 

previously been difficult to obtain by qRT-PCR.  

Using the TGACv1 cDNA reference, the two previously unannotated most 

significantly upregulated transcripts encode BURP domain containing proteins 

(Table 5.3.). Whilst BURP domain proteins have been found to be expressed in 

diverse developmental contexts in a number of plant species, to date 
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TaRAFTIN is the only reported wheat BURP domain gene in the literature. 

Expression of OsRaftin has been reported in tapetum and to a lesser extent in 

microspores (Wang et al., 2003; Suwabe et al., 2008). RAFTIN is found in the 

peritapetal wall, Ubisch bodies and exine, which suggest that it plays a role in 

the accumulation of sporopollenin on Ubisch bodies and its correct assembly 

on the pollen exine (Wang et al., 2003) (see section 1. ). However, BLAST 

search of the TGACv1 assembly using a rice transcript annotated as OsRaftin 

(LOC_Os08g0496800) found that a different transcript 

(TRIAE_CS42_7BS_TGACv1_591818_AA1922490) was a more likely candidate 

for TaRaftin (E = 1.73x10-54, 91.3% identity), whereas the first and second 

DEGs shared 52.3% and 52.6% pairwise identity respectively with OsRaftin 

when aligned using the Geneious (BioMatters, Auckland, New Zealand) aligner 

with default parameters. Therefore, further work is required to establish the 

function of the BURP-domain annotated DEGs.  

Similarly, significant upregulation of genes annotated as meiotic serinases, 

which may be involved in callase production and PCD (Taylor et al., 1997), 

along with arabinogalactans and pectinesterases which regulate the formation 

and degradation of cell walls (Table. 5.3.) (Wu et al., 2015) could be 

responsible for aberrant tapetum function and/or pollen wall formation. 

Indeed, Wu et al., (2015) found 5 pectinase genes to also be highly 

upregulated in rice floral organs under HT. It’s possible that the upregulation 

of these genes is indicative of an acceleration of the tapetum PCD 

programme. However, further information about the location of their 

expression and their functions is required to confirm this.  

Production and transport lipid biosynthesis precursors is performed by the 

tapetum and is a crucial component of the sporopollenin synthesis pathway 

(Huang et al., 2009). Therefore, the significant upregulation of fatty acid 

reductase and cytochrome P450 annotated transcripts in response to HT 

agrees with the emerging trend of modulation of tapetal metabolism under 

HT. Likewise, the upregulation of hexokinase transcripts indicates a similar 

change in anther carbohydrate metabolism occurs under HT. Hexokinase 

http://plants.ensembl.org/Triticum_aestivum/Gene/Summary?db=otherfeatures;g=TRIAE_CS42_7BS_TGACv1_591818_AA1922490;tl=6kG3Z2owpvsKonEr-10254967-182209489
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catalyses the ATP-dependent conversion of hexose to hexose 6-phosphates; 

one  hexokinase gene OsHxK10 is specifically expressed in the anther and is 

required for rice pollen germination (Cho et al., 2006; Xu et al., 2008) Some 

authors have pointed to sugar-starvation as the HT-induced cause of sterility 

(Parish et al., 2013); however, it is equally possible that altered carbohydrate 

metabolism is part of a metabolic adjustment to HT rather than a symptom of 

HT-injury (Müller and Rieu, 2016) 

GO-term enrichment of DEGs further supports the observation that tapetal 

metabolic processes are affected by HT. Specific terms associated with lipid 

and carbohydrate metabolism were all highly represented in DEG sequences 

along with meiosis, pollen development and cell death terms (Fig 5.7.). Oshino 

et al., (2007) proposed that HT stress causes the premature progression of the 

anther developmental programme which is the underlying cause of HT-injury. 

Analysis of whole transcriptome changes undertaken here seem to support 

this hypothesis. Indeed, cytological analysis of wheat anthers under control 

and HT treatment display a marked divergence in developmental rate (Fig. 

5.3). However, Endo et al, (2009) found no difference in the expression of 

OsRaftin, OsC6 or OsTDR in response to heat stress and instead conclude that 

specific tapetal mechanisms must be disrupted as opposed to tapetum 

development per se. Indeed, pollen from HT-injured anthers appeared 

normal, taking up Alexander stain, but failed to adhere to and germinate on 

receptive stigma (Endo et al., 2009). Further biochemical analysis of pollen 

and anther ultra-structures is required to determine the biological outcomes 

of HT-responsive transcription.  

Many of the DEGs and HT-enriched GO-terms relate to anther and pollen 

developmental processes which are known to involve hormone signalling. 

Tapetum PCD and Ubisch body formation is regulated by GA via GAMYB (see 

section 1.4.2.). No significant changes in the expression of TaGAMYB or other 

GA-biosynthesis or signalling genes were detected, consistent with other 

studies. Endo et al., (2009) noted that a cluster of significantly HT-down-

regulated genes contained a large number of transcripts also down-regulated 
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in the gamyb mutant (Kaneko et al., 2004). Microarray studies of gamyb and 

other GA-signalling mutants indicates that almost all GA-regulation of 

transcription in the anther requires GAMYB (Aya et al., 2009). The discovery 

that RHT-D1 directly binds to the PCD elicitor TabHLH141 (see section 4) 

demonstrates a potential GAMYB-independent regulation of tapetum 

function. It may be the case that HT causes changes to hormone signalling in 

anthers which alters the stability or binding ability of negative regulators of 

PCD and tapetum function, resulting in the apparent acceleration of 

development. Likewise, GAMYB converges with UDT1 on the bHLH signalling 

cascade which regulates PCD (see section 1.3.2.). The observed increase in 

TabHLH141_B expression (Fig. 5.9. j) and significant downregulation of TIP2-

like and AMS-like annotated transcripts after 24 h HT suggest a regulatory 

factor other than GAMYB is involved in the HT response.  

Fisher’s exact test was used to determine which biological function GO-terms 

were significantly under- or over-represented in DEGs under HT compared to 

control conditions (Table 5.2.). Specific under-representation of GA and IAA 

biosynthesis and signalling at 24 h HT agrees with previous observations 

(Oshino et al., 2011). Both hormones have been shown to have a role in pollen 

cell meiosis and mitosis (Liu et al., 2010; Cecchetti et al., 2015; Müller and 

Rieu, 2016) and indeed terms related to cellular division, DNA replication etc. 

were highly represented GO-term enrichments. The under-representation of 

ABA-signalling terms was unexpected (Table 5.2.). ABA is a stress hormone 

which has been shown to accumulate in anthers during abiotic stress, 

negatively affecting carbohydrate transport to developing microspores (Oliver 

et al., 2005; Ji et al., 2011). Significant upregulation of carbohydrate 

metabolism genes could represent attempts to mobilise additional resources 

required to support a HT-stress induced, heightened metabolic state (Müller 

and Rieu, 2016). ABA and GA have been shown to differentially regulate the 

expression of INVERTASE genes which regulate the conversion and transport 

of sucrose assimilate for tapetum and pollen cell metabolism and storage (De 

Storme and Geelen, 2014).  
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5.4.2. Modulation of the anther hormone profiles in response to HT 

Analysis of anther whole transcriptome responses to HT revealed a number of 

hormone-mediated processes are affected. In order to better understand 

these observations in the context of absolute hormone concentrations, 

comparative global hormone analysis was carried out (Fig. 5.10. and 12.).  

Significant changes in hormone concentrations attributable to developmental 

stage and HT stress were observed. Previous reports have suggested that 

transcriptional changes in HT-injured barley anthers is accompanied by a 

decrease in auxin biosynthesis (Oshino et al., 2007; Sakata et al., 2010; 

Higashitani, 2013). However, in cotton HT-tolerant varieties show an increase 

in anther auxin concentration in response to HT-stress (Min et al., 2014) . 

Here, however, auxin levels are dramatically elevated by HT at the later 

developmental stage (Fig 5.10. a). it should be noted that the barley studies 

focused on earlier stages of anther development, beginning prior to the 

establishment of the tapetum layer (Oshino et al., 2011), whereas here 

anthers were examined between PMC meiosis and mitosis stages. Also, in 

these studies, auxins were quantified by immune-detection (Sakata et al., 

2010) which is of limited sensitivity and has since been superseded by LC/GC-

MS (Forcat et al., 2008). Ability to maintain auxin biosynthesis under HT is 

thought to be a determinant of thermotolerance (Tang et al., 2007) possibly 

due to its role in cell division (Sakata et al., 2010). However, a more complex 

picture of auxin signalling in HT responses is emerging. HT in late stage cotton 

anthers results in sugar-signalling mediated upregulation of PIFs which 

themselves upregulate auxin biosynthesis which appears to be a trait more 

associated with HT-sensitive genotypes (Min et al., 2014). The precise role of 

auxin signalling in HT responses, and particularly its involvement in crosstalk 

with sugar-signalling remains unclear but evidently could be an important 

point of convergence between metabolic and hormonal stress response 

signals.  
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ABA content was not found to differ significantly between developmental or 

temperature treatments although increases in response to HT were observed 

(Fig. 5.10. b). There was pronounced variation in ABA content between 

biological replicates which indicates that specific developmental stage might 

be particularly important in determining HT-induced biosynthesis levels. In the 

barley aleurone ABA inhibits PCD by supressing GA-induced ROS production 

(Ishibashi et al., 2012). This suggests that, additional to its role in 

carbohydrate metabolism, increased ABA concentrations in response to HT 

may be a response mechanism to ROS accumulation due to cellular injury. 

Furthermore, ABA stabilises DELLAs thus negatively regulating GA-signalling 

pathways (Sun, 2010). As GA- and ROS-signalling are known to induce 

tapetum PCD (see section 1.4.3.) it is possible that accumulation of ABA in the 

24 hours proceeding initiation of HT is targeted at restricting the premature 

acceleration of tapetum PCD.  

SA is a stress responsive hormone which has been shown, along with ABA and 

ethylene to alleviate oxidative damage to cells caused by HT (Larkindale and 

Knight, 2002). SA levels were found only to differ significantly between 

developmental stages and not in response to HT (Fig. 5.10. c). The significance 

of SA in anther and pollen development is unclear.  JA is also a stress 

responsive hormone which positively regulates the later stages of pollen 

maturation (Qi et al., 2015). Transcription of JA-biosynthesis and signalling 

genes has been demonstrated to be active at all stages of rice tapetum 

development and JA is preferentially synthesised at the tricellular pollen stage 

(Hirano et al., 2008) Here, JA concentration is significantly reduced by HT (Fig. 

5.10. d). Further information about the role of JA in HT responses is scant: 

however, a bHLH TF appearing to act oppositely to positively regulate ABA-

signalling whilst repressing JA-signalling has been identified (Nakata et al., 

2013). Furthermore, JA also is involved in antagonistic crosstalk with GA and 

ethylene (Song et al., 2014) suggesting that JA may be important for 

attenuating the responses to other signalling pathways. Further work will be 

needed to identify wheat orthologues of JA-biosynthesis and signalling genes 



 

164 
 

and to quantify their response to HT using the whole transcriptome analysis 

(see section 5.3.4.). However, the dramatic reductions in JA levels under HT at 

both developmental stages suggests that regulation of JA biosynthesis in 

anthers is negatively affected by HT-stress.  

The detection of GAs primarily from the 13-hydroxylation pathway is a curious 

observation. It had previously been reported that GA4, produced via the non-

13-hydroxylation pathway is favoured in reproductive development 

(Kobayashi et al., 1989). Indeed, pilot analysis of anthers nearing maturity 

using GC-MS detected high levels of GA4 and its precursor GA9 (see section 

5.3.6).  Here, only very low levels of GA34, the product of GA4 catabolism were 

detected (Fig. 5.12. a), suggesting that the non-13-hydroxylation pathway is 

functional in the anther tissue analyses but turned over very rapidly. Three 

precursor forms of the 13-hydroxylation pathway, GA53, GA44, and GA19 were 

present at both stages of anther development (Fig. 5.12 b, c, d). Expression of 

GA13OX genes required to divert GA12 from the non-13- to the 13-

hydroxylation pathway is extremely low during earlier anther development 

(Fig. 5.10. c, d). This suggests that a preference for either pathway may 

depend on developmental stage and could be reflective of the changing tissue 

composition of the anther during development. The detection of products of 

both pathways in maize pollen anther tissue has prompted the suggestion 

that  sporophytic and pollen tissue have differing GA-biosynthesis profiles 

(Yamaguchi et al., 1990). Indeed, Hirano et al., (2008) demonstrated that 

expression of GA-precursor genes was detectable in the tapetum, but 

production of bioactive GA4 takes place in maturing pollen where the GA20 

and GA30OX genes which catalyse the final activation steps are highly 

expressed. Much further work is needed to determine if this is indeed the 

case and what the biological significance of favouring GA1 or GA4 is for 

reproductive development.  

The overall effect of HT on GA-biosynthesis is unclear; production of the 

bioactive GA3, a by-product of the 13-hydroxylation pathway, is abolished by 

HT (Fig. 5.12. g) and the production of de-activated GA1 in the form of GA8 is 
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dramatically elevated by HT at the later stage of development (Fig. 5.12. f). 

Transcriptional data also suggests that HT causes an increase in the expression 

of TaGA13OX and TaGA20OX (Fig 5.10. c, d, e, f) which might explain the 

observed elevation in GA1 and GA8. Previous studies have shown a decrease in 

anther GA levels in response to HT (Tang et al., 2007). The HT-induced 

upregulation of TaGID1 may also be an indication of declining levels of 

bioactive GA as it has been shown to be negatively regulated by exogenous 

GA3 (Li et al., 2013). GA3 is bioactive and decreases significantly to HT (Fig. 

5.12. g) However, it is present in very small concentrations under control 

conditions, most likely as a by-product of GA1 biosynthesis (P. Hedden, pers. 

comm.), and therefore its biological significance is unclear. Some minor 

changes in the expression of TaGA20OX paralogues was observed under HT 

suggesting some transcription upregulation of GA-biosynthesis is taking place 

(Fig. 5.10. d, e) and this perhaps corresponds to changes in GA53, GA44 and 

GA19 concentrations (Fig. 5.12. b, c, d). Hirano et al., (2008) hypothesise that 

the GA20OX and 3OX genes expressed in rice microspores have a higher 

affinity for non-13-hydroxylated precursors. Therefore, it is possible that HT-

induced alteration to the expression of specific TaGA20 and 3OX paralogues 

(Fig. 5.9. e, f, g) are a response to depletion of non-13-hydroxylated 

precursors. However, further information about the contribution of specific 

paralogues to GA-biosynthesis in wheat is required in order to make any 

further inferences about these observations.  

The transcriptomic and global hormone analyses presented in this chapter 

highlight the complexity of the HT response in developing wheat anthers. The 

most dramatic changes in gene expression primarily relate to tapetum 

processes involved in formation of the pollen exine and carbohydrate 

metabolism and PCD. This is consistent with previous observations, suggesting 

that either through acceleration of the developmental programme per se or 

disruption of specific pathways, HT stress prevents critical processes carried 

out by the tapetum. However, a number of questions about the events 

leading to sterility remain; does upregulation of tapetum metabolism genes 
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contribute to premature PCD by ‘overloading’ cellular metabolic capacity? 

Does a sudden surge in Ubisch body and sporopollenin promoting genes 

somehow disturb pollen exine patterning? Answering these questions will 

require more in depth knowledge of wheat tapetum function. For example, 

the exact role of Ubisch bodies and their formation is not well understood 

(Gómez et al., 2015), highlighting an knowledge gap important to 

understanding HT-responses. Furthermore, secondary metabolites such as 

ROS and carbohydrates themselves act as signalling molecules which elicit 

PCD and crosstalk with hormone signalling (Parish and Li, 2010; Ishibashi et 

al., 2012; Parish et al., 2013). It therefore needs to be resolved as to whether 

these molecules are signals or executors of HT-injury. Some progress has been 

made on addressing a similar question on the role of ROS in aleurone PCD 

signalling using biochemical ROS quantification in hormone signalling mutants 

(Ishibashi et al., 2012; Aoki et al., 2014) and similar approaches could be 

applied to the wheat anther. 

The signalling mechanisms which control anther HT-responses are still poorly 

understood. HT-stress touches on processes in which several hormonal 

signalling pathways are involved, particularly GA, ABA and IAA. Changes in 

hormonal concentrations and transcription of biosynthesis and signalling 

genes have been observed. GA-signalling is required for tapetum PCD and 

although down-regulation of GA-responsive genes under HT has been 

observed, no link has yet been established between HT-induced tapetum 

defects and GA-signalling. A complex picture of GA-biosynthesis appearing to 

switch between biosynthetic pathways at different stages of development 

emerged in this study. Further work is required to determine if this is the case, 

at what point the transition occurs and the functional relevance. One 

possibility is that either pathway is favoured by pollen and sporophytic cells 

separately; as anther development progresses, pollen accounts for an 

increasing amount of the anther mass and therefore the pollen-preferred 

pathway comes to dominate. With the increasing availability of wheat reverse 

genetics tools (see section 4), it would now be possible to generate wheat GA-
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biosynthesis mutants for the purpose of dissecting the sites and temporal 

specificity of GA biosynthesis in wheat anthers as has been done in 

Arabidopsis (Rieu et al., 2007; Plackett et al., 2012).  

  



 

168 
 

CHAPTER 6: GENERAL DISCUSSION  

6.1. Project Summary 

HT-stress during male reproductive development is predicted to become a 

significant cause of wheat yield loss in Northern Europe by the middle of this 

century (see section 1.1). The underlying physiological cause of this loss of 

yield is damage caused by HT to the tapetum, a layer of cells lining the inside 

of the anther which provide vital nutrients and outer coat components to 

developing pollen cells (see section 1.5). Studies in wheat and closely related 

cereals rice and barley, have shown that HT-stress causes fertility-reducing 

defects such as premature tapetum PCD, aborted microspores and failure to 

properly form the pollen exine and pollen starch reserves (see section 1.5). 

The development of the tapetum and the critical timing of its PCD has been 

shown in model species to be under the control of GA-signalling via the TF 

GAMYB and a second signalling network which converges with the GA-GAMYB 

pathway on a bHLH TF cascade that targets OsEAT1 (see section 1.3).  

Given that many of the anther development processes have been shown to be 

controlled by GA-signalling are negatively affected by HT-stress, development 

of HT-stress mitigation strategies requires a better understanding of anther 

GA-signalling and HT-responses. Therefore, in this project translational 

genomics was applied to identify and characterise two putative wheat anther 

GA-signalling components; TaGAMYB and TabHLH141. The whole-anther 

hormonal and transcriptional responses to HT-stress were investigated by 

identifying HT-DEGs and HT-induced changes in anther hormone profile using 

a combined approach of LC-MS hormone quantification and RNA-Seq.  

6.2. Limitations of studying anther development in wheat 

A major limitation throughout this project was the difficulty associated with 

accurately staging male reproductive development. Having first characterised 

anther development stages in Cadenza, the variety used in this project, a non-

destructive anther staging method based on the association between FLS 
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length and anther development was established (see section 3). However, it 

was clearly demonstrated that the logistic regression on which the staging 

model was based was not able to overcome the inherent developmental 

variability between plants, spikes and floret positions. Whilst material could 

be grouped into broad developmental categories, the selection of 

developmentally variably material for molecular analyses such as qRT-PCR, 

RNA-Seq and biochemical analysis of hormones has quite clearly reduced the 

accuracy of these measurements. Overcoming this is crucial to understanding 

the highly dynamic developmental and stress-responsive changes to hormone 

signalling pathways in wheat anthers. 

The requirement for selection of developmentally uniform anthers when 

undertaking molecular analysis necessitates that researchers have some 

means of establishing development stage prior to harvest or treatment and 

without damaging the tissue. One approach to achieving this may be the 

utilisation of advance plant imaging techniques. Real-time 3D visualisation of 

internal development in germinating wheat seeds has demonstrated that X-

ray computer tomography (micro-CT) can be used to assess developmental 

changes in internal morphology (Suresh and Neethirajan, 2015). If such a 

system can be scaled up from individual grains to whole tillers, allowing the 

visualisation of internal spike characteristics such as spike or individual anther 

length, the accuracy and predictive power of reproductive staging models 

could be greatly increased. Indeed, anther length in rice, resolved in mm, has 

been shown to be a good descriptor of anther development stage between 

formation of archesporial cells through to Mitosis II (Itoh et al., 2005). 

6.3. GA-signalling and the wheat tapetum 

GAMYB is the central transcription factor in GA-signalling in the rice tapetum 

(Aya et al., 2009). A major finding of this project is that wheat Tagamyb RNAi 

and TILLInG mutants are also male sterile, suggesting that GAMYB anther 

function is conserved in cereals. However, the tapetal hypertrophy phenotype 

seen in many rice mutants was not as strong in wheat mutants. Whilst some 
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excessive tapetum vacuolation was observed, the presence of excessive debris 

within the anther locule suggests that disruption of tapetum function as 

opposed to complete failure to initiate PCD is the cause of reduced fertility in 

wheat mutants. Similarly, RNAi-mediated silencing of TabHLH141 induced 

sterility but no causal defective anther phenotype was observed. 

Ideally, more extensive characterisation of theses mutants would be carried 

out on T3 homozygous RNAi and backcrossed TILLInG mutants to reduce the 

impact of background effects. However, given the time required to generate 

wheat mutant plants by transgenesis and TILLInG, only a preliminary 

characterisation of early mutant generations was possible in this project. 

Furthermore, additional refinement of PCR based approaches to genotyping 

and transcript quantification are required in order to confirm the correct 

selection of homozygous lines and silencing of target genes.  

Once homozygous RNAi-knockdown mutants and backcrossed TILLInG 

mutants have been obtained, further characterisation assays should be 

carried out to clarify the roles of TaGAMYB and TabHLH141 in the wheat 

tapetum and developing microspores. Firstly, a more detailed comparative 

analysis of anther morphological development in mutants and segregating 

nulls, incorporating a greater range of developmental stages, is required to 

establish precisely which processes are perturbed by the loss of either gene 

function. In both mutants, no obvious delay of tapetum PCD or hypertrophy 

similar to that of corresponding rice mutants was observed. The TUNEL assay 

could be used to definitively resolve if delayed tapetum PCD also occurs in the 

wheat mutants. Furthermore, having observed the production of pollen cells 

in all of the mutants generated in this project, it is important to determine the 

source of their non-viability.  

A yeast 2-hybrid interaction study demonstrated that the RHT-1GRAS domain 

interacts with TabHLH141 (see section 4.3.4.). This suggest that GA-signalling 

may positively regulate tapetum PCD by releasing TabHLH141 from DELLA 

sequestration. Whilst this interaction must be confirmed in planta, it 
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demonstrates that the role of GA-signalling in tapetum PCD may not solely 

operate through GAMYB as described in rice (Aya et al., 2009). The rice 

orthologue OsEAT1 is transcriptionally regulated by OsTDR which itself is co-

regulated by OsUDT1 and OsGAMYB (see section 1.3.2.). Therefore, it may be 

the case that TaGAMYB is partially responsible for the upregulation of 

TabHLH141 but the commitment to PCD is not carried out until the GA signal 

releases the repression of TabHLH141 by RHT-1. Determining the expression 

profiles of Rht-1, TaGAMYB and TabHLH141 in both wild type and the 

signalling mutants generated here will be crucial to determining the signalling 

relationship between these GA-signalling components in wheat anther 

development.  

DELLA and JA-signalling negative regulator JA-ZIM DOMAIN (JAZ) have been 

shown to competitively bind to WD-repeat/MYB/bHLH complexes during the 

mediation of anthocyanin biosynthesis and trichome initiation (Qi et al., 2011; 

Tian et al., 2016). It is therefore proposed that RHT-1 and GAMYB are able to 

form similar complexes with bHLH proteins in the anther which regulate their 

transcriptional activity in a GA-responsive manner (Fig 6.1.). The binding of 

GAMYB and bHLH TFs into DELLA-interacting complexes could result in 

alterations to their transcriptional activity dependent upon the protein 

domains involved in the interaction. This may therefore explain the apparent 

dual functions of GAMYB and bHLH141 in initiation of tapetum PCD and 

formation of the pollen exine.  
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Figure 6.1. Proposed model of anther developmental regulation by GA. 

Binding of WD-repeat/bHLH/MYB complexes by DELLA regulates anther 

development. Perception of a GA signal releases the TFs from complexes, 

changing their transcriptional functions.  

In the proposed model, the absence of bioactive GA during early anther 

development promotes the formation of DELLA-interacting WD-

repeat/TDR/GAMYB complexes which enhances the expression of bHLH141. 

Tapetum PCD is initiated around the vacuolated microspores stage by 

bHLH141 and GAMYB. At this point there is little reported expression of GA-

biosynthesis genes in the anther (Hirano et al., 2008) and therefore it would 

be expected under the proposed model that GAMYB and bHLH141 would be 

retained within the DELLA-interacting complex. Anther GA concentration 

increases rapidly from mitosis to mature pollen cells, resulting in DELLA 

degradation (Hirano et al., 2008). At this stage, GAMYB and bHLH141 are 

released from the regulatory complex, exposing previously bound functional 

domains which promote the formation of the pollen exine coat. 

Understanding the environmental regulation of these interactions will be 

crucial to determining why HT-stress leads to failed pollen and tapetum 

development. Whilst further work needs to be done to determine the 

involvement of GAMYB in DELLA-interacting complexes, the RHT-1 – bHLH141 
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interaction provides a model through which the effect of environmental stress 

on GA-regulation of wheat anther development can be dissected further.  

The rapid development of homozygous, triple knock-out Tagamyb mutants by 

exon-capture TILLInG represents a step-change in wheat genetic research. 

Using accelerated-life cycle techniques and high throughput genotyping (see 

section 4) it was possible to stack three homoeologous SNPs in TaGAMYB to 

obtain homozygous triple mutants in less than 12 months. In comparison, the 

cloning, transformation and regeneration in tissue culture of T0 RNAi mutants 

took nearly twice as long. Whilst RNAi phenotypically demonstrated the 

importance of TaGAMYB and TabHLH141 to male fertility, robust genotyping 

and confirmation of silencing in mutants was difficult to achieve and therefore 

the validity of these results cannot be confirmed. Furthermore, the 

development of low-cost, high-throughput kom-petitive allele specific PCR 

(KASP) assays for simultaneous selection and zygosity assignment of TILLInG 

SNPs will further accelerate the process of mutant stacking (Rasheed et al., 

2016). With the publication of increasingly high-quality wheat reference 

sequences, such as TGACv1 and reducing cost of deep sequencing and 

genotyping assays, TILLInG by exon sequence may soon supersede transgenic 

approaches to wheat gene characterisation. 

6.4. HT-stress elicits hormonal and transcriptional responses  

RNAseq was used to investigate the effect of HT-stress on the whole 

transcriptome of the anther (see section 5). HT-DEG transcripts were 

identified based on analysis using whole genome and predicted transcriptome 

references which indicate that tapetum processes controlling pollen coat 

formation, carbohydrate transport and PCD are affected HT-stress. Most of 

the DEGs were highly upregulated in response to HT which suggests that over-

stimulation of metabolic activity of the tapetum may become detrimental to 

its function. GO-enrichment analysis supported this hypothesis, 

demonstrating that terms associated with tapetum construction of pollen coat 
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and carbohydrate transport were considerably over-represented in HT-

responsive DEGs.  

Initially, RNA-seq analysis was carried out using the IWGSC whole genome 

reference with the intention of distinguishing between gene expression which 

varied over the course of anther development and those which vary in 

response to HT. However, due to the developmental variation within the 

sequenced material, it was not possible to achieve such in-depth resolution of 

anther developmental and stress transcriptional responses. Instead, a 

comparison of samples taken at 24 h after meiosis at HT and control 

conditions was made using two replicates with similarly distributed variation. 

Analysis of DEGs was carried out having mapped sequence reads to both the 

IWGSC whole genome reference sequence and the updated TGACv1 

transcriptome reference. Both analyses showed that HT causes a significant 

upregulation of transcripts associated with pollen exine formation, 

carbohydrate transport and PCD.  

The finding that many HT-responsive DEG transcripts are associated with 

processes in which GA-signalling has been implicated supports previous 

observations of negative effects on tapetum function, PCD, pollen exine and 

transport of carbohydrates to developing pollen (see section 1.4). 

Furthermore, significant changes in auxin, GA and JA profiles in response to 

HT (see section 5.3.6.) confirm that hormonal regulation of wheat anther 

development is affected by HT-stress. Further identification of auxin, GA and 

JA-responsive transcripts in the DEG data sets will be required to better 

understand how the observed changes in anther hormone concentrations 

contribute to HT-induced damage of anther structures. The rapid generation 

of hormone signalling mutants by TILLInG as described in section 4 may also 

be a complementary approach to the characterisation of IAA and JA-mediated 

responses to HT. 

GA-biosynthesis and signalling was specifically investigated in greater detail 

due its role in the regulation of the HT-sensitive tapetum. Preliminary GS-MS 
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analysis demonstrated that non-13-hydroxylated pathway product GA4, 

accumulates in high concentrations in mature anthers, consistent with 

previous reports (see section 5.3.6). However, this conflicted with LC-MS 

analysis of younger anthers which detected 13-hydroxylated pathway 

products (Fig. 5.12.) Some HT-responsive upregulation of TaGA13OX 

transcripts was reported (Fig. 5.9. c, d), suggesting that HT-stress may have 

some role in modulation of the anther GA-biosynthetic pathway. Further 

investigation of GA-biosynthesis in wheat anthers is required to clarify the 

biosynthetic profile under optimal and abiotic stress conditions.  

An analysis of the biological processes affected by HT-stress was carried out 

using gene ontology enrichment of DEGs (see section 5.3.). Terms associated 

with GA-signalling responses were found to be under-represented in HT-

responsive DEGs. However, no significant changes to any known GA-signalling 

component, including the proposed central tapetum regulator TaGAMYB, or 

other known anther development regulators were observed. Therefore, it is 

not possible from the results of this project to link HT-responsive changes in 

tapetum metabolism with alterations to GA-signalling and further 

investigation of the effect of HT-stress on GA-responsive expression in the 

anther is necessary. The generation of a male sterile Tagamyb mutant 

provides the opportunity to identify GA-GAMYB-regulated genes which are 

also differentially expressed under HT. Furthermore, some evidence was 

shown that changes in anther hormone concentrations which would be 

expected to lead to downstream signalling changes to transcription. However, 

as this experiment was severely limited by equipment malfunction, the results 

of global hormone analysis can only be taken as preliminary and will need 

repeating to further resolve the hormonal response to HT.  

Clearly, some further refinement to experimental approaches is required to 

better understand the wheat anther hormonal response to HT. Both RNAseq 

and the global hormone analysis were limited by the difficulty in obtaining 

adequately staged material in sufficient quantity. Laser microdissection is one 

approach which has been successfully used to separate rice anther tissues in 
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order to perform tapetum and pollen-specific transcriptomics  (Hirano et al., 

2008; Suwabe et al., 2008). By specifically selecting the tapetum and pollen 

tissue it would be possible not only to distinguish between sporophyte and 

gametophyte responses but also to ensure analysis of a developmentally 

uniform sample. In conjunction with refined non-destructive staging methods, 

this kind of approach could be used to extend the work of this project by 

further investigating the tapetum-specific expression profiles of GA-signalling 

and biosynthesis components.  
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ANNEX I  
Other TaGAMYB M4 TILLInG mutants available 

 

  

TARGET POS REF ALT CLASS AA_CHANGE TARGET POS REF ALT CLASS AA_CHANGE

TaGAMyb-A 330 G A upstream N/A TaGAMyb-A 2305 C T synonymous N/A

TaGAMyb-A 415 G A synonymous N/A TaGAMyb-A 2370 C T missense S395F

TaGAMyb-A 496 C T synonymous N/A TaGAMyb-A 2402 C T missense P406S

TaGAMyb-A 506 G A missense A49T TaGAMyb-A 2420 G A missense V412I

TaGAMyb-A 571 G A synonymous N/A TaGAMyb-A 2429 G A missense E415K

TaGAMyb-A 579 C T missense T73I TaGAMyb-A 2508 C T missense S441F

TaGAMyb-A 589 C T synonymous N/A TaGAMyb-A 2531 C T missense P449S

TaGAMyb-A 601 G A synonymous N/A TaGAMyb-A 2534 C T missense P450S

TaGAMyb-A 611 C T missense L84F TaGAMyb-A 2624 C T intron N/A

TaGAMyb-A 636 C T missense P92L TaGAMyb-A 2684 G A missense A471T

TaGAMyb-A 641 C T missense L94F TaGAMyb-A 2697 C T missense A475V

TaGAMyb-A 649 G A synonymous N/A TaGAMyb-A 2727 C T missense S485F

TaGAMyb-A 651 G A missense G97E TaGAMyb-A 2810 C T missense L513F

TaGAMyb-A 667 G A synonymous N/A TaGAMyb-A 2836 C T synonymous N/A

TaGAMyb-A 689 C T missense L110F TaGAMyb-A 2851 C T synonymous N/A

TaGAMyb-A 717 C T missense A119V TaGAMyb-A 2886 G A missense S538N

TaGAMyb-A 717 C T missense A119V TaGAMyb-A 2917 G A synonymous N/A

TaGAMyb-A 719 C T missense R120W TaGAMyb-A 2917 G A synonymous N/A

TaGAMyb-A 746 C T intron N/A TaGAMyb-A 2940 G A downstream N/A

TaGAMyb-A 751 C T intron N/A TaGAMyb-A 2961 G A downstream N/A

TaGAMyb-A 759 C T intron N/A TaGAMyb-A 3000 G A downstream N/A

TaGAMyb-A 847 C T intron N/A TaGAMyb-A 3070 G A downstream N/A

TaGAMyb-A 922 G A intron N/A TaGAMyb-A 3081 G A downstream N/A

TaGAMyb-A 984 C T intron N/A TaGAMyb-B 659 C T missense P39S

TaGAMyb-A 1510 C T intron N/A TaGAMyb-B 690 C T missense A49V

TaGAMyb-A 1514 C T intron N/A TaGAMyb-B 727 C T synonymous N/A

TaGAMyb-A 1514 C T intron N/A TaGAMyb-B 730 C T synonymous N/A

TaGAMyb-A 1597 G A stop_gained W137* TaGAMyb-B 733 G A synonymous N/A

TaGAMyb-A 1612 G A synonymous N/A TaGAMyb-B 734 G A missense G64R

TaGAMyb-A 1692 G A missense S169N TaGAMyb-B 734 G A missense G64R

TaGAMyb-A 1692 G A missense S169N TaGAMyb-B 734 G A missense G64R

TaGAMyb-A 1821 C T missense A212V TaGAMyb-B 751 G A synonymous N/A

TaGAMyb-A 1856 G A missense A224T TaGAMyb-B 895 G A synonymous N/A

TaGAMyb-A 1891 C T synonymous N/A TaGAMyb-B 1035 G A intron N/A

TaGAMyb-A 1899 G A missense G238E TaGAMyb-B 1101 C T intron N/A

TaGAMyb-A 2002 G A synonymous N/A TaGAMyb-B 1163 G A intron N/A

TaGAMyb-A 2009 C A missense L275M TaGAMyb-B 1531 A A intron N/A

TaGAMyb-A 2009 C A missense L275M TaGAMyb-B 1811 C T stop_gained R146*

TaGAMyb-A 2012 G A missense G276S TaGAMyb-B 1991 G A missense A206T

TaGAMyb-A 2067 G A missense G294E TaGAMyb-B 1994 C T missense P207S

TaGAMyb-A 2121 G A missense R312K TaGAMyb-B 2081 G A missense A236T

TaGAMyb-A 2181 C T missense P332L TaGAMyb-B 2084 G A missense G237R

TaGAMyb-A 2218 G A missense M344I TaGAMyb-B 2084 G A missense G237R

TARGET POS REF ALT CLASS AA_CHANGE TARGET POS REF ALT CLASS AA_CHANGE

TaGAMyb-B 2142 C A missense A256E TaGAMyb-D 694 G A missense G115D

TaGAMyb-B 2198 G A missense G275S TaGAMyb-D 704 G A stop_gained W118*

TaGAMyb-B 2419 G A synonymous N/A TaGAMyb-D 717 G A missense A123T

TaGAMyb-B 2428 C T synonymous N/A TaGAMyb-D 823 C T intron N/A

TaGAMyb-B 2441 C T missense P356S TaGAMyb-D 823 C T intron N/A

TaGAMyb-B 2472 G A missense C366Y TaGAMyb-D 1733 C T synonymous N/A

TaGAMyb-B 2541 G A missense R389K TaGAMyb-D 1803 C T missense A212V

TaGAMyb-B 2552 C T missense L393F TaGAMyb-D 1815 G A missense S216N

TaGAMyb-B 2557 C T synonymous N/A TaGAMyb-D 1815 G A missense S216N

TaGAMyb-B 2611 C T synonymous N/A TaGAMyb-D 1885 G A missense M239I

TaGAMyb-B 2641 G A stop_gained W422* TaGAMyb-D 1920 G A missense S251N

TaGAMyb-B 2641 G A stop_gained W422* TaGAMyb-D 1935 G A missense G256D

TaGAMyb-B 2676 G A missense S434N TaGAMyb-D 1935 G A missense G256D

TaGAMyb-B 2723 C T missense P450S TaGAMyb-D 1938 C T missense A257V

TaGAMyb-B 2747 C T missense L458F TaGAMyb-D 2064 G A missense G299D

TaGAMyb-B 2803 G A intron N/A TaGAMyb-D 2132 C T missense L322F

TaGAMyb-B 2846 C T missense P463L TaGAMyb-D 2141 C T missense L325F

TaGAMyb-B 2851 C T synonymous N/A TaGAMyb-D 2184 C T missense T339I

TaGAMyb-B 2890 C T missense P478S TaGAMyb-D 2276 C T missense P370S

TaGAMyb-B 2950 G A missense G498R TaGAMyb-D 2348 C T missense L394F

TaGAMyb-B 3024 C T synonymous N/A TaGAMyb-D 2352 C T missense S395F

TaGAMyb-B 3064 C T missense P536S TaGAMyb-D 2373 C T missense S402F

TaGAMyb-B 3064 C T missense P536S TaGAMyb-D 2508 C T missense A447V

TaGAMyb-B 3150 C T downstream N/A TaGAMyb-D 2735 C T missense L495F

TaGAMyb-B 3160 C T downstream N/A TaGAMyb-D 2745 G A missense G498E

TaGAMyb-B 3196 G A downstream N/A TaGAMyb-D 2832 G A missense G527D

TaGAMyb-B 3221 G A downstream N/A TaGAMyb-D 2838 G A missense G529D

TaGAMyb-B 3233 C T downstream N/A TaGAMyb-D 3033 G A downstream N/A

TaGAMyb-B 3270 G A downstream N/A TaGAMyb-D 3062 G A downstream N/A

TaGAMyb-B 3289 C T downstream N/A

TaGAMyb-D 294 C T upstream N/A

TaGAMyb-D 373 G A missense S8N

TaGAMyb-D 401 C T synonymous N/A

TaGAMyb-D 421 G A missense G24D

TaGAMyb-D 476 G A synonymous N/A

TaGAMyb-D 482 G A synonymous N/A

TaGAMyb-D 527 G A synonymous N/A

TaGAMyb-D 553 C T missense A68V

TaGAMyb-D 580 G A missense R77H

TaGAMyb-D 580 G A missense R77H

TaGAMyb-D 585 G A missense G79S

TaGAMyb-D 671 C T synonymous N/A

TaGAMyb-D 681 C T missense H111Y
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ANNEX II 

 

 

Query Hit Name

TaGA2ox-A4 TRIAE_CS42_1AL_TGACv1_000229_AA0006730.1

TaGA2ox-A8_1 TRIAE_CS42_1AL_TGACv1_000738_AA0018190.1

TaGID1-A TRIAE_CS42_1AL_TGACv1_002026_AA0037970.1

TaGA2ox-A8_2 TRIAE_CS42_1AL_TGACv1_002643_AA0044170.1

TaGA20ox-A4 TRIAE_CS42_1AL_TGACv1_002876_AA0045790.1

TaGA2ox-A1 TRIAE_CS42_1AS_TGACv1_019368_AA0065660.1

TaGA2ox-A10 TRIAE_CS42_1AS_TGACv1_019522_AA0067640.1

TaGA2ox-D8_1 TRIAE_CS42_1BL_TGACv1_030297_AA0085860.1

TaGID1-B TRIAE_CS42_1BL_TGACv1_032368_AA0129000.1

TaGA2ox-B8_2 TRIAE_CS42_1BL_TGACv1_033092_AA0136980.1

TaGA2ox-B4 TRIAE_CS42_1BL_TGACv1_033362_AA0138950.1

TaGA2ox-B10 TRIAE_CS42_1BS_TGACv1_049430_AA0153290.1

TaGA20ox-D4 TRIAE_CS42_1DL_TGACv1_061442_AA0195410.1

TaGA2ox-D4 TRIAE_CS42_1DL_TGACv1_061847_AA0204240.1

TaGID1-D TRIAE_CS42_1DL_TGACv1_061931_AA0205760.1

TaGA2ox-B8_1 TRIAE_CS42_1DL_TGACv1_062649_AA0217700.1

TaGA2ox-B1 TRIAE_CS42_1DS_TGACv1_080296_AA0245530.1

TaGA2ox-D1 TRIAE_CS42_1DS_TGACv1_080296_AA0245530.1

TaGA2ox-D10 TRIAE_CS42_1DS_TGACv1_080501_AA0249160.2

TaGA2ox-A6_1 TRIAE_CS42_2AL_TGACv1_093213_AA0275220.1

TaKS-A1 TRIAE_CS42_2AL_TGACv1_095602_AA0312750.1

TaGA3ox-A3 TRIAE_CS42_2AL_TGACv1_096240_AA0318130.1

TaGA13ox-A2 TRIAE_CS42_2AS_TGACv1_112489_AA0339020.2

TaGA2ox-B6_1 TRIAE_CS42_2BL_TGACv1_129413_AA0382670.1

TaKS-B1 TRIAE_CS42_2BL_TGACv1_130687_AA0416140.2

TaGA3ox-B3 TRIAE_CS42_2BL_TGACv1_133400_AA0442410.1

TaGA1ox-B1 TRIAE_CS42_2BL_TGACv1_133400_AA0442430.1

TaGA13ox-B2 TRIAE_CS42_2BS_TGACv1_146629_AA0469690.1

TaKS-D1 TRIAE_CS42_2DL_TGACv1_158432_AA0518570.4

TaGA2ox-D6_1 TRIAE_CS42_2DL_TGACv1_159593_AA0540370.1

TaGA13ox-D2 TRIAE_CS42_2DS_TGACv1_177860_AA0586180.1

TaGA20ox-A2 TRIAE_CS42_3AL_TGACv1_194412_AA0632590.1

TaGA20ox-A3 TRIAE_CS42_3AL_TGACv1_194765_AA0639020.1

TaGA20ox-D3_2 TRIAE_CS42_3AL_TGACv1_194765_AA0639020.1

TaGA2ox-A3 TRIAE_CS42_3AL_TGACv1_195097_AA0644720.1

TaGA3ox-A2 TRIAE_CS42_3AS_TGACv1_211643_AA0692510.1

TaGA2ox-A7 TRIAE_CS42_3AS_TGACv1_212549_AA0701660.1

TaGA3ox-B2 TRIAE_CS42_3B_TGACv1_220696_AA0715770.1

TaGID2-B2 TRIAE_CS42_3B_TGACv1_220966_AA0725290.2
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Best hits for known GA-biosynthesis and signalling genes in TGACv1 reference 

genome (Developed by Dr. Andy Phillips).  

TaGA20ox-B3 TRIAE_CS42_3B_TGACv1_221467_AA0741640.1

TaGA2ox-B3 TRIAE_CS42_3B_TGACv1_222891_AA0772640.1

TaGA2ox-B7 TRIAE_CS42_3B_TGACv1_223452_AA0782440.1

TaGA20ox-B2 TRIAE_CS42_3B_TGACv1_223804_AA0787660.2

TaGA20ox-D3_1 TRIAE_CS42_3DL_TGACv1_249277_AA0843900.1

TaGA20ox-D2 TRIAE_CS42_3DL_TGACv1_249609_AA0852340.1

TaGA2ox-D3 TRIAE_CS42_3DL_TGACv1_250562_AA0870310.1

TaGA3ox-D2 TRIAE_CS42_3DS_TGACv1_271552_AA0902420.1

TaGA2ox-D7 TRIAE_CS42_3DS_TGACv1_273136_AA0928740.1

TaGA20ox-A1 TRIAE_CS42_4AL_TGACv1_288147_AA0938430.1

TaKAO-A1 TRIAE_CS42_4AL_TGACv1_291658_AA0995820.2

TaGA2ox-A6_2 TRIAE_CS42_4AS_TGACv1_306483_AA1008910.1

TaGA2ox-B6_4 TRIAE_CS42_4BL_TGACv1_320406_AA1038050.1

TaGA2ox-B6_3 TRIAE_CS42_4BL_TGACv1_320553_AA1042970.1

TaGA13ox1-B1 TRIAE_CS42_4BL_TGACv1_320864_AA1050510.1

TaGA13ox1-D1 TRIAE_CS42_4DL_TGACv1_342770_AA1121580.2

TaGA13ox-A1 TRIAE_CS42_4DL_TGACv1_342770_AA1121580.2

TaGA2ox-D6_2 TRIAE_CS42_4DL_TGACv1_343668_AA1137990.1

TaGA20ox-B1 TRIAE_CS42_5BL_TGACv1_404907_AA1314550.1

TaGA20ox-D1 TRIAE_CS42_5DL_TGACv1_433498_AA1414740.1

TaGA2ox-B9 TRIAE_CS42_6BL_TGACv1_500766_AA1609420.1

TaGA2ox-A9 TRIAE_CS42_6DL_TGACv1_526414_AA1682800.2

TaGA2ox-D9 TRIAE_CS42_6DL_TGACv1_526414_AA1682800.2

TaCPS_A1 TRIAE_CS42_7AL_TGACv1_556210_AA1758330.2

TaKO-A1 TRIAE_CS42_7AL_TGACv1_556473_AA1763880.1

TaGA2ox-A2 TRIAE_CS42_7AL_TGACv1_558723_AA1795690.1

TaKAO-A2 TRIAE_CS42_7AS_TGACv1_572167_AA1851630.1

TaGA2ox-B2 TRIAE_CS42_7BL_TGACv1_576990_AA1862150.1

TaKO-B1 TRIAE_CS42_7BL_TGACv1_577358_AA1873370.2

TaCPS_B1 TRIAE_CS42_7BL_TGACv1_577914_AA1885950.2

TaCPS_D1 TRIAE_CS42_7DL_TGACv1_602609_AA1962550.1

TaGA2ox-D2 TRIAE_CS42_7DL_TGACv1_603034_AA1974200.1

TaKAO-D1 TRIAE_CS42_7DS_TGACv1_623691_AA2055390.1

TaGA20ox-B4 TRIAE_CS42_U_TGACv1_641295_AA2091040.1

TaGA2ox-B6_2 TRIAE_CS42_U_TGACv1_641833_AA2105240.1

TaKO-D1 TRIAE_CS42_U_TGACv1_642210_AA2113450.1
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ANNEX III 
 

Complete Global hormone analysis  

 

CYTOKININS 
Compound 

 
tZ 

  
tZR 

  
tZ7G 

  
tZ9G 

  
tZOG 

  
tZROG 

 
sample pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) 
10C1 
10C2 
10C3 

40.12 

33.60 
44.14 

39.29 ± 4.34 
11.06  

1.46 

0.65 
1.56 

1.22 ± 0.41 
33.36  <LOD  

315.29 
242.02 
280.74 

279.35 ± 29.93 
10.71  <LOD  

<LOD 
0.88 

<LOD 
0.88 

 

10HT1 
10HT2 
10HT3 

38.60 

12.15 
27.78 

26.18 ± 10.85 
41.47  

0.63 

0.70 
0.70 

0.68 ± 0.04 
5.22  <LOD  

397.90 
68.01 

169.90 
211.94 ± 137.92 

65.08  <LOD  
<LOD 

1.82 
0.93 

1.37 ± 0.44 
32.30 

15C1 
15C2 
15C3 

23.22 

13.41 
28.98 

21.87 ± 6.43 
29.38  

0.97 

0.98 
1.10 

1.02 ± 0.06 
5.93  <LOD  162.49 

71.11 
173.43 

135.67 ± 45.87 
33.81  <LOD  2.19 

5.38 
7.79 

5.12 ± 2.29 
44.78 

15HT1 
15HT2 
15HT3 

10.58 
7.41 
9.27 

9.09 ± 1.30 
14.29  

0.52 

0.56 
0.53 

0.54 ± 0.02 
2.82  <LOD  55.62 

37.96 
52.16 

48.58 ± 7.64 
15.72  <LOD  1.55 

1.40 
1.52 

1.49 ± 0.06 
4.34 

Compound 
 

cZ 
  

cZR 
  

cZ9G 
  

cZOG 
  

cZROG 
 

sample pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) 
10C1 
10C2 
10C3 

68.95 
250.59 
142.71 

154.08 ± 74.59 
48.41  

189.33 
241.18 
207.62 

212.71 ± 21.47 
10.09 

9.38806 
8.13 

17.21 
11.58 ± 4.02 

34.73 
1093.84 
3402.52 
1125.35 

1873.90 ± 1080.97 
57.69 

296.93 
213.56 
202.04 

237.51 ± 42.28 
17.80 

10HT1 
10HT2 
10HT3 

179.25 
466.96 
255.44 

300.55 ± 121.71 
40.50  

279.28 
392.31 
239.95 

303.85 ± 64.58 
21.25 

5.99 

3.47 
9.51 

6.32 ± 2.47 
39.14 

1771.88 
1192.99 
1494.97 

1486.61 ± 236.40 
15.90 

342.45 
212.46 
126.26 

227.06 ± 88.86 
39.14 

15C1 
15C2 
15C3 

215.01 
334.99 
313.05 

287.68 ± 52.16 
18.13  

219.09 
415.58 
304.41 

313.03 ± 80.45 
25.70 

5.65 

3.45 
5.68 

4.93 ± 1.04 
21.14 

2006.70 
871.28 

1864.98 
1580.99 ± 505.16 

31.95 
203.17 
256.32 
199.98 

219.82 ± 25.84 
11.76 

15HT1 
15HT2 
15HT3 

990.71 
1161.69 
1096.30 

1082.90 ± 70.44 
6.50  

306.00 
367.64 
376.73 

350.12 ± 31.42 
8.97 

2.63 

2.27 
2.63 

2.51 ± 0.17 
6.68 

755.31 
827.22 

1034.87 
872.46 ± 118.53 

13.59 
273.99 
185.63 
211.24 

223.62 ± 37.12 
16.60 

Compound 
 

DHZ 
  

DHZR 
  

DHZ7G 
  

DHZ9G 
  

DHZOG 
  

DHZROG 
 

sample pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) 
10C1 
10C2 
10C3 

 <LOD   <LOD   <LOD   <LOD   <LOD   <LOD  

10HT1 
10HT2 
10HT3 

 <LOD   <LOD   <LOD   <LOD   <LOD   <LOD  

15C1 
15C2 
15C3 

 <LOD   <LOD   <LOD   <LOD   <LOD   <LOD  

15HT1 
15HT2 
15HT3 

 <LOD   <LOD   <LOD   <LOD   <LOD   <LOD  
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Compound 
 

iP 
  

iPR 
  

iP7G 
  

iP9G 
 

sample pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) 
10C1 
10C2 
10C3 

8.80 
20.41 
15.16 

14.79 ± 4.75 
32.09  

17.21 

30.39 
18.83 

22.14 ± 5.87 
26.49 

44.77 

99.31 
67.92 

70.67 ± 22.35 
31.63  <LOD  

10HT1 
10HT2 
10HT3 

14.30 

28.93 
16.55 

19.93 ± 6.43 
32.29  

17.10 
134.04 

38.03 
63.06 ± 50.92 

80.74 
70.69 

62.05 
71.36 

68.03 ± 4.24 
6.23  <LOD  

15C1 
15C2 
15C3 

26.65 

24.49 
27.64 

26.26 ± 1.32 
5.01  

47.71 
106.63 

64.75 
73.03 ± 24.75 

33.90 
78.17 

70.20 
92.69 

80.35 ± 9.31 
11.59  <LOD  

15HT1 
15HT2 
15HT3 

49.66 

42.49 
45.52 

45.89 ± 2.94 
6.40  

345.14 
385.04 
401.51 

377.23 ± 23.67 
6.27 

53.22 

42.84 
45.89 

47.32 ± 4.36 
9.21  <LOD  

Compound 
 

2MeScZR 
  

2MeScZ 
  

2MeSiPR 
  

2MeSiP 
 

sample pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) 
10C1 
10C2 
10C3 

1.52 
<LOD 

1.13 
1.32 ± 0.19 

14.71 
0.276775072 

<LOD 
0.54 

0.41 ± 0.13 
31.94 

0.21 

0.42 
0.14 

0.26 ± 0.12 
47.21 

0.09 

0.05 
0.06 

0.07 ± 0.02 
24.15 

10HT1 
10HT2 
10HT3 

0.63 
<LOD 

3.29 
1.96 ± 1.33 

67.88 
0.30 

<LOD 
1.38 

0.84 ± 0.54 
64.58 

0.14 

1.82 
0.55 

0.83 ± 0.72 
85.94 

<LOD 
0.55 
0.11 

0.33 ± 0.22 
66.78 

15C1 
15C2 
15C3 

4.21 
<LOD 

6.97 
5.59 ± 1.38 

24.68 
3.21 

5.03 
4.42 

4.22 ± 0.76 
17.97 

0.46 

1.52 
1.03 

1.00 ± 0.43 
42.98 

0.10 

0.25 
0.19 

0.18 ± 0.06 
35.56 

15HT1 39.89 36.95 ± 2.45 6.84 8.40 ± 1.21 3.11 3.94 ± 0.65 0.62 0.77 ± 0.10 
15HT2 37.07 

 
6.62 8.57 

 
14.38 4.69 

 
16.48 0.83 

 
13.55 

15HT3 
 
 
 
  

33.90 
  

9.79 
  

4.02 
  

0.86 
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AUXINS 
Compound 

 
TRA 

  
TRP 

  
ANT 

  
IAM 

 
sample pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) 
10C1 
10C2 
10C3 

 <LOD  
932597.93 
671978.23 
800175.41 

801583.85 ± 

± 
± 

106402.21 
13.27  <LOD  

0.63 
1.43 

<LOD 
1.03 ± 

± 
± 

0.40 
38.53 

10HT1 
10HT2 
10HT3 

 <LOD  1194979.76 
1659441.96 

933943.91 
1262788.54 

± ± 
± 

300039.30 
23.76  <LOD  <LOD 

57.97 
3.91 

30.94 ± 

± 
± 

27.03 
87.36 

15C1 
15C2 
15C3 

 <LOD  
336031.47 
896419.50 

1093082.97 
775177.98 ± 

± 
± 

320734.96 
41.38  <LOD  

3.37 

1.09 
2.53 

2.33 ± 

± 
± 

0.94 
40.35 

15HT1 
15HT2 
15HT3 

 <LOD  
1002461.46 
1203911.95 
1342109.77 

1182827.73 

± ± 
± 

139460.03 
11.79  <LOD  

79.42 

56.26 
57.71 

64.46 ± 

± 
± 

10.59 
16.43 

Compound 
 

IAA 
  

IAN 
   

OxIAA 
  

IEt 
  

IBA 
 

sample pmol/g average SD/SD(%) pmol/g average 
 

SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) 

10C1 
10C2 
10C3 

518.81 
399.81 
278.45 

399.03 ± 

± 
± 

98.13 
24.59  <LOD   300.41 

548.96 
310.27 

386.55 ± 

± 
± 

114.91 
29.73  <LOD   <LOD  

10HT1 
10HT2 
10HT3 

464.05 
938.90 
159.06 

520.67 ± 

± 
± 

320.87 
61.63  <LOD   665.45 

926.95 
794.95 

795.78 ± 

± 
± 

106.76 
13.42  <LOD   <LOD  

15C1 
15C2 
15C3 

254.00 
143.99 
168.93 

188.97 ± 

± 
± 

47.09 
24.92  <LOD   

563.54 
334.75 
454.37 

450.88 ± 

± 
± 

93.44 
20.72 

158.13 
397.31 
334.51 

296.65 ± 

± 
± 

101.25 
34.13  <LOD  

15HT1 
15HT2 
15HT3 

2420.72 
4756.28 
2444.07 

3207.02 ± 

± 
± 

1095.53 
34.16  <LOD   4641.39 

48452.20 
11425.58 

21506.39 ± 

± 
± 

19253.81 
89.53 

754.39 
1122.69 
1458.94 

1112.01 ± 

± 
± 

287.73 
25.87  <LOD  

Compound 
 

IAAla 
   

IALeu 
   

IAVal 
   

IAPhe 
 

sample pmol/g average 
 

SD/SD(%) pmol/g average 
 

SD/SD(%) pmol/g average 
 

SD/SD(%) pmol/g average SD/SD(%) 

10C1 
10C2 
10C3 

 <LOD    <LOD    <LOD    <LOD  

10HT1 
10HT2 
10HT3 

 <LOD    <LOD    <LOD  
 <LOD 

1.43 
0.31 

0.87 ± 

± 
± 

0.56 
64.81 

15C1 
15C2 
15C3 

 <LOD    <LOD    <LOD    <LOD  

15HT1 
15HT2 
15HT3 

 <LOD    <LOD    <LOD   6.79 
26.58 
13.98 

15.78 ± 

± 
± 

8.18 
51.83 

Compound 
 

IAAsp 
  

IAGlu 
  

IAGly 
  

sample pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average 
 

SD/SD(%) 

10C1 
10C2 
10C3 

 <LOD    <LOD   <LOD   

10HT1 
10HT2 
10HT3 

 <LOD    <LOD   <LOD   

  
m full epp. [mg] m empty epp. [mg] m sample [mg] 

1 
 

1108.77 1107.99 0.78 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

10 cm CONTROL 

10 cm HT 

15 cm CONTROL 

15 cm HT 

1102.73 
1104.78 
1104.65 
1106.4 

1104.35 
1110.5 

1102.47 
1099.47 
1110.26 
1101.62 
1106.34 

1100.73 
1103.94 
1104.25 
1103.57 
1102.98 
1108.11 
1098.12 
1097.01 
1104.01 

1096.6 
1101.91 

2 
0.84 

0.4 
2.83 

1.37 

2.39 

4.35 

2.46 

6.25 

5.02 
4.43 
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15C1 
15C2 
15C3 

266.78 
289.85 
245.43 

267.35 ± 

± 
± 

18.14 
6.79   <LOD   <LOD   

15HT1 
15HT2 
15HT3 

753.64 
691.61 
615.76 

687.00 ± 

± 
± 

56.38 
8.21  

0.28 

2.21 
0.83 

1.11 ± 

± 
± 

0.81 
73.36  <LOD   

Abscisates+ salicylic acid 
Compound 

 
ABA 

  
NeoPA 

  
PA 

  
DPA 

  
7-OH-ABA 

  
SA 

 
sample pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) 
10C1 
10C2 

199.45 
1540.02 

679.56 ± 609.80 
89.73  

158.39 125.91 ± 
57.33 

48.51 
38.53 

120.71 
574.94 

272.71 ± 213.71 
78.36 

<LOD 
187.35 

187.35 ± 0.00 
0.00 

103.75 
90.70 

113.52 ± 23.66 
20.84 

14174.93 
16579.78 

15775.64 ± 1131.88 
7.17 

10C3 299.20 162.00 122.48 <LOD 146.12 16572.21 
10HT1 4845.47 1797.07 ± 2156.86 222.32 107.34 ± 81.98 1682.34 742.25 ± 679.38 236.92 474.82 ± 237.90 206.50 119.81 ± 62.77 17415.81 14576.83 ± 4198.47 
10HT2 365.06 

 
120.02 37.01 

 
76.37 444.01 

 
91.53 712.72 

 
50.10 93.00 

 
52.39 8641.17 

 
28.80 

10HT3 180.68 
  

62.69 
  

100.39 
  

<LOD 
  

59.93 
  

17673.52 
  

15C1 841.78 425.36 ± 305.87 46.12 44.83 ± 12.81 473.42 213.97 ± 183.85 211.75 129.55 ± 58.90 86.26 134.02 ± 37.86 10188.20 9843.61 ± 1643.21 
15C2 115.75 

 
71.91 28.54 

 
28.58 69.50 

 
85.92 76.84 

 
45.46 178.87 

 
28.25 7681.04 

 
16.69 

15C3 318.55 
  

59.85 
  

98.99 
  

100.05 
  

136.91 
  

11661.58 
  

15HT1 289.24 807.50 ± 538.34 16.65 22.37 ± 4.59 108.84 462.56 ± 250.93 151.40 349.14 ± 170.46 109.40 96.00 ± 18.29 3432.82 3776.29 ± 300.27 
15HT2 583.66 

 
66.67 22.58 

 
20.51 664.02 

 
54.25 328.61 

 
48.82 70.14 

 
19.05 3731.78 

 
7.95 

15HT3 1549.61 
  

27.87 
  

614.83 
  

567.41 
  

108.46 
  

4164.28 
  

Jasmonates 
Compound 

 
JA 

  
9.10-dh-JA 

  
11/12-OH-
JA   

cisOPDA 
  

dnOPDA 
 

sample pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) 
10C1 
10C2 
10C3 

479.72 
399.44 
527.45 

468.87 ± 52.82 
11.27 

1005.59 
890.46 

2651.53 
1515.86 ± 804.41 

53.07  <LOD  
60606.38 
35313.69 
26916.32 

40945.47 ± 14318.82 
34.97  <LOD  

10HT1 
10HT2 
10HT3 

212.10 
101.80 
174.49 

162.80 ± 45.78 
28.12 

1034.62 
495.48 
959.79 

829.97 ± 238.48 
28.73  <LOD  13249.87 

68614.32 
31405.12 

37756.44 ± 23044.30 
61.03  <LOD  

15C1 
15C2 
15C3 

690.97 
274.46 
419.41 

461.62 ± 172.64 
37.40 

632.05 
552.05 
835.60 

673.23 ± 119.37 
17.73  <LOD  67352.21 

102252.08 
104031.58 

91211.96 ± 16887.02 
18.51  <LOD  

15HT1 
15HT2 
15HT3 

111.72 
189.16 
105.40 

135.42 ± 38.08 
28.12 

112.54 
107.93 
211.36 

143.94 ± 47.71 
33.14  <LOD  113445.13 

131329.78 
121982.01 

122252.31 ± 7303.88 
5.97  <LOD  

Compound 
 

JA-Ile 
  

JA-Val 
  

JA-Trp 
  

JA-Phe 
  

OPC-4 
 

sample pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) 
10C1 
10C2 
10C3 

82.53 
614.88 
203.79 

300.40 ± 227.81 
75.84  <LOD   <LOD   <LOD   <LOD  

10HT1 
10HT2 
10HT3 

233.15 
14.14 

113.19 
120.16 ± 89.55 

74.52  <LOD   <LOD   <LOD   <LOD  

15C1 
15C2 
15C3 

373.56 
49.94 

159.60 
194.37 ± 134.38 

69.14  <LOD   <LOD   <LOD   <LOD  
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15HT1 
15HT2 
15HT3 

416.16 
2304.37 
1034.29 

1251.61 ± 786.02 
62.80  <LOD   <LOD   <LOD   <LOD  

Compound 
 

OPC-6 
 

sample pmol/g average SD/SD(%) 
10C1 
10C2 
10C3 

 <LOD  

10HT1 
10HT2 
10HT3 

 <LOD  

15C1 
15C2 
15C3 

 <LOD  

15HT1 
15HT2 
15HT3 

 <LOD  

 

 

 

 

 

 

 

 

 

 

 

 

Gibberellins 
Compound 

 
GA 15 

  
GA 24 

  
GA 4 

  
GA 51 

  
GA 34 

 
sample pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) 
10C1 
10C2 
10C3 

<LOD 
  

<LOD 
  

<LOD 
  

<LOD 
  0.14 

0.38 
<LOD 

0.26 ± 0.12 
45.22 

10HT1 
10HT2 
10HT3 

<LOD 
  

<LOD 
  

<LOD 
  

<LOD 
  

<LOD 
1.50 
0.26 

0.88 ± 0.62 
70.22 

15C1 
15C2 
15C3 

<LOD 
  

<LOD 
  

<LOD 
  

<LOD 
  0.50 

0.78 
0.01 

0.43 ± 0.32 
73.55 

15HT1 
15HT2 

<LOD 
  

<LOD 
  

<LOD 
  

<LOD 
  

3.00 
0.18 

1.43 ± 1.18 
82.23 

 

Compound 
 

GA 53 
  

GA 44 
  

GA 19 
  

GA 1 
  

GA 8 
 

sample pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) 
10C1 
10C2 
10C3 

<LOD 
60.68 

689.06 
374.87 ± 314.19 

83.81  
32.15 136.72 ± 
110.81 
267.19 

97.69 
71.45 

105.14 
770.09 
472.95 

449.40 ± 271.97 
60.52 

<LOD 
  27.33 

44.74 
51.79 

41.29 ± 10.28 
24.90 

10HT1 
10HT2 
10HT3 

392.13 
184.38 

18.06 
198.19 ± 153.03 

77.21  
104.75 90.29 ± 

58.74 
107.38 

22.33 
24.73 

555.71 
253.27 
922.72 

577.23 ± 273.72 
47.42 

<LOD 
  

35.61 
136.42 

27.60 
66.54 ± 49.52 

74.41 

15 HT 3 1.11 
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15C1 
15C2 
15C3 

16.25 

98.24 
30.11 

48.20 ± 35.83 
74.34  

80.98 69.15 ± 
49.74 
76.74 

13.83 
20.00 

535.08 
131.20 
314.61 

326.96 ± 165.11 
50.50 

<LOD 
139.43 

58.29 
98.86 ± 40.57 

41.04 
51.51 

142.33 
56.05 

83.29 ± 41.79 
50.17 

15HT1 
15HT2 
15HT3 

652.57 
1280.97 

876.26 
936.60 ± 260.07 

27.77 
<LOD 

  
208.93 

70.98 
82.10 

120.67 ± 62.57 
51.86 

139.02 
143.65 
119.01 

133.89 ± 10.69 
7.98 

1412.22 
1840.87 
1600.87 

1617.99 ± 175.42 
10.84 

Brassinosteroids 
Compound 

 
GA 29 

  
GA 6 

  
GA 5 

  
GA 3 

 
sample pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) 
10C1 
10C2 
10C3 

<LOD 
  

<LOD 
  

<LOD 
  2.83 

<LOD 
6.00 

4.41 ± 1.59 
35.94 

10HT1 
10HT2 
10HT3 

<LOD 
  

<LOD 
  

<LOD 
  

<LOD 
  

15C1 
15C2 
15C3 

<LOD 
  

<LOD 
  

<LOD 
  

2.67 

5.29 
2.73 

3.56 ± 1.22 
34.29 

15HT1 
15HT2 
15HT3 

<LOD 
  

<LOD 
  

<LOD 
  

<LOD 
  

Compound 
 

BL 
  

24-epiBL 
  

CS 
  

24-epiCS 
 

sample pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) pmol/g average SD/SD(%) 
10C1 
10C2 
10C3 

<LOD 
  

<LOD 
  

<LOD 
  

<LOD 
  

10HT1 
10HT2 
10HT3 

<LOD 
  

<LOD 
  

<LOD 
  

<LOD 
  

15C1 
15C2 
15C3 

<LOD 
  

<LOD 
  

<LOD 
  

<LOD 
  

15HT1 
15HT2 
15HT3 

<LOD 
  

<LOD 
  

<LOD 
  

<LOD 
  

 


