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Abstract 12 

Water flow along or across the interfaces of contrasting materials is ubiquitous in hydrology 13 

and how to solve them in macroscopic models derived from volumetric average of the pore-14 

scale processes remains elusive. While the change in the average velocity and pressure at 15 

water-sediment interface has been well established for channel flow over porous beds, 16 

whether a volumetric average could alert the pressure continuity when water flows across the 17 

interface of two porous materials is poorly understood despite its imperative implications in 18 

hydrological modelling. The primary purpose of this paper is to provide evidences via pore-19 

scale simulations that volumetrically averaging the pore-scale processes indeed yields a 20 

discontinuous pressure when water flows across a material interface. We simulated two 21 

columns numerically reconstructed by filling them with stratified media: One is an idealised 22 

two-layer system and the other one is a 3D column filled by fine glass beads over coarse 23 

glass beads with their pore geometry acquired using x-ray computed tomography. The pore-24 

scale simulation is to mimic the column experiment by driving fluid to flow through the void 25 

space under an externally imposed pressure gradient. Once fluid flow reaches steady state, its 26 

velocity and pressure in all voxels are sampled and they are then spatially averaged over each 27 

section perpendicular to the average flow direction. The results show that the average 28 

pressure drops abruptly at the material interface no matter which direction the fluid flows. 29 

Compared with the effective permeability estimated from the homogenization methods well 30 

established in the literature, the emerged discontinuous pressure at the interface reduces the 31 

combined ability of the two strata to conduct water. It is also found that under certain 32 

circumstances fluid flow is direction-dependant, moving faster when flowing in the fine-33 

coarse direction than in the coarse-to-fine direction under the same pressure gradient. 34 

Although significant efforts are needed to incorporate these findings into practical models, 35 

we do elicit the emergence of discontinuous pressure at material interface due to volumetric 36 

average as well as its consequent implications in modelling of flow in heterogeneous and 37 

stratified media.                  38 

Key words: Homogenization; stratified media; pore-scale modelling; pressure discontinuity; 39 

upscaling.    40 
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1. Introduction  41 

Water flow over or cross the interfaces of different materials is ubiquitous in both surface 42 

and subsurface hydrology, and how to solve them is an issue that still attracts interest in 43 

modelling of flow in heterogeneous and stratified media (Strack, 2017).  Physically, the 44 

microscopic water pressure and velocity are continuous and there is no interface between the 45 

pore spaces in different materials. In practical models for large scales, however, the delicate 46 

pore-scale processes cannot be explicitly resolved and they are instead volumetrically 47 

averaged with the impact of the porous structure described by effective parameters, such as 48 

permeability for fluid flow and dispersion coefficient for solute transport (Simunek et al., 49 

2003). Material interfaces emerge as a result and need to be treated explicitly when solving 50 

for the volumetric average flow rate and pressure. While mass conservation requires the 51 

average flow rate across the interfaces to be continuous, there are no physical criteria for the 52 

average pressure to meet. Therefore, it has long been speculated that a volumetric average 53 

could render what are continuous at pore space discontinuous at macroscopic scales 54 

(Berkowitz et al., 2009). For example, it has been found in channel flow over porous bed that 55 

the velocity jumps at the water-sediment interface as evidenced from experimental data that, 56 

compared to water flow over an impermeable bed, a porous bed could greatly enhance the 57 

flow rate (Beavers and Joseph, 1967). Beavers and Joseph (1967) derived a formula to 58 

describe this velocity jump, which, known as Beavers-Joseph model in the literate since 59 

(Nield, 2016), has been used to simulate flows involving fluid-sediment interfaces such as 60 

water flow in karst aquifers (Hu et al., 2012). Early applications of the Beavers-Joseph model 61 

assumed a continuous pressure around the interface (Sahraoui and Kaviany, 1992), but recent 62 

work has revealed that this might not be true. For example, numerical simulations showed 63 

that the pressure at the water-sediment interface is continuous only when the sediment is 64 

isotropic and becomes discontinuous if the sediment is anisotropic (Carraro et al., 2013). For 65 
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water infiltration into a sand bed from channel, it was also found that the average pressure 66 

could become discontinuous(Carraro et al., 2015). 67 

The aforementioned efforts were for channel flow over sediment beds with water flow in 68 

the sediments described by the Darcy law. For heterogeneous and stratified soils and aquifers, 69 

water can move either along or across the interfaces of different materials. How the pressure 70 

changes across such interfaces remains elusive and is poorly documented (Nick and Matthai, 71 

2011). A common conjecture in most macroscopic models is that, given the fluid pressure in 72 

void space is continuous, a volumetric average of the pore-scale processes should not alter 73 

this continuity (Gohardoust et al., 2017). This is the key assumption used in most 74 

homogenization methods, such as the wavelet transformation method (King, 1989; Moslehi et 75 

al., 2016), to estimate the effective permeability of heterogeneous and stratified porous 76 

formations. For example, it has been well established and routinely used that the effective 77 

permeability of a saturated layered system equals to the harmonic mean and arithmetic mean 78 

of the individual permeability of each layer for flow parallel and perpendicular to the layers 79 

respectively (Mualem, 1984); these were proven even applicable to estimate effective 80 

permeability of unsaturated stratified soils if the individual layers are not too thick (Yeh et 81 

al., 1985). It is worth pointing out that the above conclusion is valid only if the pressure at the 82 

strata interfaces is continuous, which has yet been proven. To the contrary, theoretical 83 

analysis of immiscible flow suggested a discontinuous pressure at material interface 84 

(Hassanizadeh and Gray, 1989), but evidences proving or disapproving such a discontinuity 85 

are lack even for single-phase flow due to the difficulty associated with measuring fluid 86 

pressure on each side of a material interface. In the meantime, experimental and theoretical 87 

studies on chemical transport in stratified media have both found a mass accumulation when 88 

solute moves across material interfaces, suggesting existence of a discontinuous 89 

concentration which renders chemical transport in stratified media direction-dependant 90 
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(Berkowitz et al., 2009; Zhang et al., 2010). Efforts have been made on how to incorporate 91 

such discontinuities into macroscopic model for solute transport by assuming the 92 

concentration discontinuity is solely caused by permeability difference in the strata (Zoia et 93 

al., 2010). This is at odds with some pore-scale simulations which showed that knowing the 94 

permeability difference alone is insufficient to quantity the concentration discontinuity and 95 

that it is the pore geometry of the adjacent strata that controls how the concentration changes 96 

in the proximity of their interface (Zhang et al., 2010).       97 

Given the importance of pressure continuity in modelling fluid flow in heterogeneous 98 

and stratified media and the difficulty of experimentally measuring it, we investigated the 99 

pressure change across material interface via pore-scale modelling in this paper. We 100 

considered single phase flow, and the pore-scale simulations were to mimic column 101 

experiment by driving the fluid to flow under an externally imposed pressure gradient. We 102 

simulated two columns with each packed by a fine medium and a coarse medium. The first 103 

one was an idealised stratified column with a high porosity, and the second one was a 3D 104 

column acquired using x-ray computed tomography. In each simulation, when fluid flow was 105 

deemed to have reached steady state, we sampled the fluid pressure and the velocity in each 106 

voxel and then spatially averaged them cross the sections perpendicular to the average flow 107 

direction. Considering that solute transport in two-layer system had been found to be 108 

directionally dependant, for each column we also simulated fluid flow in the fine-coarse 109 

direction and the coarse-fine direction, respectively, in attempts to examine if fluid flow in 110 

the two-layer columns was also direction-dependant. 111 

2. Pore-scale simulations      112 

The pore-scale modelling is to test the conjecture that the pressure is continuous at 113 

material interfaces after a volumetric average. Figure 1a to Figure 3a show the two stratified 114 

systems we studied. The first one is an idealised 2D column with high porosity, and the 115 
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second one is a column filled with fine glass beads and coarse glass beads; the fine glass 116 

beads layer was acquired using x-ray tomography and the coarse one was reconstructed 117 

numerically by enlarging the size of all fine glass beads and the pores between them two 118 

times equally in all directions (Chen et al., 2009; Chen et al., 2008).  119 

The pore-scale simulation is to mimic column experiment by driving fluid to flow under 120 

a pressure gradient imposed externally at the two ends of the columns. Fluid flow in the pore 121 

geometry is assumed to be laminar and described by the Navier-Stokes equation; it is 122 

simulated using the multiple-relaxation time lattice Boltzmann model as follows (d'Humieres 123 

et al., 2002):  124 

       1, , , , ,x e x x x
eq

i i i i if t t t f t M SM f t f t           (1) 125 

where  ,xif t is the particle distribution function at location x and time t moving at lattice 126 

velocity ei, δx is the size of the voxels in the image, δt is time step,  ,x
eq

if t  is equilibrium 127 

distribution function, M is a transform matrix and S is the collision matrix. The product Mf in 128 

Eq. (1) transforms the particle distribution functions to a moment space in which the collision 129 

operation    , ,x x
eq

i im SM f t f t     is performed. The post-collision result in the moment 130 

space is then transformed back to particle distribution functions by 1M m . We use the D3Q19 131 

lattice model in this paper where the particle distribution functions move in 19 directions with 132 

19 velocities:  0, 0, 0  ,  / , / , 0  x t x t     ,  0, / , /  x t x t      ,  / , 0, /  x t x t     and 133 

 / , / , /  x t x t x t         (Qian et al., 1992). The collision matrix is diagonal and the terms 134 

in it are given as follows: 135 
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, , , , , , , , , , , , , , , , , , ,

0,

1/ ,

8(2 ) /(8 ),

T
S s s s s s s s s s s s s s s s s s s s

s s s s

s s s

s s s s



 





   

   

       

 (2) 136 



6 
 

The fluid simulated by the above model has a kinematic viscosity 2 ( 0.5) /6x t      and 137 

pressure 2 2/3p x t  . The equilibrium distribution functions are defined as follows: 138 
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 (3) 139 

where /c x t    and 0 is a reference fluid density to ensure that the fluid is incompressible 140 

when the flow is in steady state(Zou et al., 1995). The bulk fluid density ρ and velocity u are 141 

updated after each time step by  142 
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  (4) 143 

Implementation of the above model consists of two steps to advance one time step. The 144 

first one is to calculate the collision in the moment space and then transform the results back 145 

to particle distribution functions, i.e., to calculate      * 1, , ,x x x
eq

i i i if f t M SM f t f t      ; 146 

and the second step is to move the post-collision particular distribution function *

if  to position 147 

at x eit  in the time period of δt. During the streaming step, whenever *

if hits a solid voxel, it 148 

is bounced back to where it was before the streaming to give a non-slip boundary where the 149 

bulk fluid velocity is zero. In each simulation, once flow is deemed to have reached steady 150 

state, we sample fluid pressure and velocity at each voxel and then average them across each 151 

y-z section as shown in Figure 3a as follows: 152 
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where yzN is the number of fluid voxels in the y-z section located at x, ( , , )i ip x y z and 154 

( , , )x i iu x y z is the pressure and velocity component at voxel located at (x, yi, zi), respectively. 155 

We also calculate the effective permeability of the column based on the simulated velocity 156 

field from  157 

1
( , , ),

N

x i i ii
k u x y z

Ng 


   (6) 158 

where k is the effective permeability; N is the number of voxels, including all solid and void 159 

voxels; ( , , )x i i iu x y z is the velocity component in the voxel centred at (xi, yi, zi) and g is the 160 

externally imposed pressure gradient along the column. In addition to the effective 161 

permeability of the stratified media, we also calculate the permeability of the fine and the 162 

coarse medium separately within each column shown in Figures 1a to 2a.    163 

3.  Result Analysis 164 

After the above volumetric average, the pore-scale flow process in each of  columns is 165 

simplified as a one-dimensional macroscopic flow as illustrated in Figure 4. The two-layer 166 

system can be further homogenized using an effective permeability to describe their 167 

combined ability to conduct water (King et al., 1993; Mukhopadhyay and Sahimi, 2000). If 168 

the hydraulic conductivity of Soil 1 and Soil 2 is k1 and k2 and their thickness is L1 and L2 169 

respectively, the effective hydraulic conductivity k of the two soils can be estimated as 170 

follows if the pressure at their interface is continuous (Mualem, 1984): 171 

1 2 1 2

1 2

.
L L L L

k k k


   (7) 172 

For the two examples studied in this work 1 2L L , and the effective hydraulic conductivity is 173 

hence 1 2 1 22 ( )k k k k k  . We will call the permeability calculated from Eq. (7) theoretical 174 

permeability and compare it with those calculated directly from the pore-scale simulations.  175 
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For ease of analysing the simulated results in what follows, the space will be normalized 176 

to ' /x x x  , time to 2' /t t x   , density to ' / w    and pressure to 2 2' / wP P t x    , 177 

where ρw is the density of liquid water.  178 

3.1.  The idealised 2D column  179 

Figure 2b shows the average pressure distributions along the column for fluid flow in the 180 

fine-coarse direction and the coarse-fine direction, respectively. It is evident that the pressure 181 

is not continuous but endures an abrupt drop at the interface no matter which direction the 182 

fluid flowed. Except at the interface, the pressure is continuous and approximately linearly 183 

distributed within each of the two strata in the column. Figure 2c plots the average flow rate 184 

along the column calculated from the pore-scale simulations when the fluid flowed in the two 185 

opposite directions. The figure shows that under the same pressure gradient, the flow rate is 186 

higher when the fluid flowed in the fine-coarse direction than in the coarse-fine direction. 187 

Due to the energy loss and pressure drop across the interface, the real effective 188 

permeability of the two soils calculated from pore-scale simulations is smaller than estimated 189 

from Eq. (7); Table 1 compares the results. Emergence of the discontinuous pressure at the 190 

interface reduced the effective permeability to 8.49 when the fluid flowed in the coarse-fine 191 

direction and to 8.63 when it flowed in the fine-coarse direction, compared to the theoretical 192 

9.08 when the pressure is assumed to be continuous.     193 

The above example is for stratified media with a sharp-cut interface.  Stratified 194 

geological formations formed naturally usually have transition interfaces where the coarse 195 

medium in the proximity of the interface might contains some small-size particles. To 196 

elucidate how pressure changes in stratified media with such interfaces, we simulated fluid 197 

flow in an idealized image shown in Figure 2a. The average pressure distribution calculated 198 

along the column is shown in Figure 2b. Strictly speaking, the pressure is more continuous 199 
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compared to the example shown in Figure 1a, but it still ensured a sharp change and such 200 

change cannot be described by Eq. (7) that assumes the pressure is continuous.        201 

3.2. The 3D column  202 

The porosity of both the fine and the coarse strata in the 3D column is approximately 203 

37%, much less than the porosity of the 2D idealised column. Figure 3b shows the average 204 

pressure distribution along the column when the fluid flowed in the fine-coarse and the 205 

coarse-fine directions. Compared to the 2D columns, the pressure drop across the interface in 206 

the 3D column is more significant no matter which direction the fluid flowed, probably 207 

because the 3D image is more porous and the energy loss (thus the pressure drop) associated 208 

with the flow through it is more significant than that in the 2D idealised example. The key 209 

result in this example is that the pressure drop is approximately the same, regardless of flow 210 

direction. The example shown in Figure 4b is for flow under pressure gradient of 0.0013, and 211 

the pressure drop over the interface is 0.056. Again, because the energy loss over the 212 

interface is almost the same when fluid flow in different directions, their associated 213 

permeability is also comparable as shown in Table 1. Strictly speaking, however, the 214 

permeability calculated from the pore-scale simulation for flow in the fine-coarse direction is 215 

still higher than that in the coarse-fine direction, consistent with the results obtained from the 216 

2D column.  217 

Physically, the average macroscopic pressure at the strata interface should be continuous 218 

when fluid is stagnant, and the pressure drop at the interface is hence solely caused by fluid 219 

flow. It is therefore natural to examine how the pressure drop responds to flow rate. Figure 5 220 

shows the change in the pressure drop as the average flow rate increases. The pressure drop 221 

Δp increases parabolically with the average flow rate q. Because of the pressure drop and 222 

energy loss over the interface, the permeability calculated from the pore-scale simulations 223 

decreases as the average flow rate increases as shown in Figure 5.         224 
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4. Discussion and conclusions  225 

Pore-scale simulations of water flow in idealised 2D columns and a 3D column obtained 226 

using x-ray tomography both revealed that volumetrically averaging the pore-scale process 227 

resulted in a macroscopic pressure that is discontinuous at the material interface in the 228 

columns. The emerged discontinuous pressure means extra energy loss and, as a result, 229 

reduces the combined ability of the two strata to conduct water compared to the prediction 230 

from the classical homogenization methods that assume a continuous pressure at the material 231 

interface. The magnitude of the pressure drop across the interface varies with physical 232 

properties of the materials as well as water flow rate across the column. For the columns we 233 

simulated, the pressure drop increases parabolically with water flow rate. Furthermore, 234 

depending on physical properties of the strata, water flow could even become direction-235 

dependant in that water moved faster when flowing the fine-coarse direction than in the 236 

coarse-fine direction. We also found that a sharp pressure drop existed even for transitional 237 

interface in which the coarse medium near the interface contains some small particles.   238 

Early study on channel flow over sediment bed has shown that the change in 239 

macroscopic pressure across the water-sediment interface depended on the sediment, being 240 

continuous if the sediment is isotropic and discontinuous if the sediment was anisotropic 241 

(Carraro et al., 2013; Marciniak-Czochra and Mikelic, 2012). Our simulations suggested that 242 

this conclusion appear to be valid only for channel flow in parallel with sand bed and break 243 

down when water flows across the interface of two porous materials. For water flow across 244 

material interface, the mass conservation requires that the average flow rate calculated from 245 

Eq. (5) must be a constant along the column. Physically, the pressure drop at the interface is 246 

the consequence of energy loss caused by viscous friction, which increases with velocity. The 247 

viscous friction depends on the water-wall interfacial areas, which differ in the fine and 248 

coarse media because the specific surface area in the former is bigger than that in the latter. 249 
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For the 3D column, the porosity of the coarse and the fine medium shown in Figure 3a is 250 

approximately the same, and the average-pore velocity in them is hence also the same. As 251 

such, under the same externally imposed pressure gradient, the pressure drop in the 3D 252 

column is independent of flow direction as shown in Figure 3b. In contrast, the porosity of 253 

the two media in Figure 1a and Figure 2a differs slightly and, consequently, the average pore-254 

water velocity in them is different. Therefore, apart from energy loss caused by viscous 255 

friction, inertial dissipation due to the abrupt increase or decrease in pore-water velocity 256 

might also play a role in inducing the pressure drop. Theoretically, the relative significance of 257 

the energy loss caused by viscous friction and inertial dissipation depends on flow rate. 258 

However, since water flow in porous materials is viscous, in all columns we simulated, the 259 

energy loss is dominated by viscous friction and the pressure drop is hence independent or 260 

only slightly dependant of flow direction as evidenced from the simulated results.                     261 

Fluid flow in the proximity of material interfaces is ubiquitous in hydrology but 262 

complicated to be described. The results presented in this paper might improve our 263 

understanding of water flow in heterogeneous and stratified media, but incorporating them 264 

into macroscopic models needs substantial efforts even though numerical models capable of 265 

dealing with discontinuous pressure at material interfaces exist (Nick and Matthai, 2011). The 266 

challenge lies in that the pressure drop across the interface depends not only on material 267 

properties and flow rate but also on the flow direction. Quantifying these processes and then 268 

incorporating them into macroscopic models is not trivial, especially when flow is transient 269 

(Kitanidis, 1990). Given these challenges, assuming a continuous pressure at the material 270 

interface is postulated to be the dominant approach in the foreseeable future for modelling 271 

flow in heterogeneous and stratified media because of its simplicity ease in implementation, 272 

especially for unsaturated flow which is far more complicated than saturated flow even under 273 

steady flow condition (Pruess, 2004). Notwithstanding these, this work still has an important 274 
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implication as it provides evidence that spatial average (or upscaling) does result in a 275 

discontinuous pressure at material interfaces and that the commonly used homogenization 276 

methods for estimating effective permeability and for calculating flow across material 277 

interfaces in heterogeneous and stratified porous formations could give rise to errors. The 278 

significance of the errors depend on media property and flow rate and direction.  279 
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 360 

 361 

Table 1.  Comparison of the effective permeability calculated directly from pore-scale 362 

simulations with the theoretical estimates by assuming the pressure at the interface is 363 

continuous for the columns shown in Figures 1a and 3a.  364 

 2D Column  3D Column 

Permeability of the fine medium k1 5.89 1.050 

Permeability of the coarse medium k2 19.85 2.452 

Theoretical effective permeability  9.08 1.470 

Calculated effective permeability in fine-coarse direction  8.63 1.289 

Calculated effective permeability in coarse-fine direction 8.49 1.285 

 365 

 366 

  367 
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 (a) 368 

 369 

(b) 370 

 371 

 (c) 372 

 373 

Figure 1. The idealised stratified column for pore-scale simulation (a); the average pressure 374 

along the column when fluid flows from the left to the right and from the right to the left 375 

respectively (b); average flow rate through the column calculated directly from pore-scale 376 

simulations when fluid flows from the left to the right and the right to the left respectively (c). 377 

 378 

 379 
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(a) 380 

 381 
(b) 382 

 383 
Figure 2. Stratified column with a transitional interface (a); the average pressure along the 384 

column when fluid flows in the fine-to-coarse direction and the coarse-to-fine direction (b). 385 

 386 
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 388 

(a) 389 

 390 

(b) 391 

 392 

 393 

Figure 3. The 3D stratified column acquired using x-ray tomography (a). The average 394 

pressure distribution calculated directly from pore-scale simulation when fluid flows in the 395 

fine-coarse and the coarse-fine directions respectively (b).  396 
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 399 

Figure 4. Schematic illustration of the one-dimensional macroscopic flow resulted from 400 

volumetric average of the two columns in Figures 1a to 3a.    401 
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 402 

 403 

 404 

Figure 5. Change in the effective permeability and the pressure drop over the media interface 405 

in the 3D column shown in Figure 4a as the flow rate through it increases.  406 

 407 


