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ORIGINAL PAPER
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Abstract Fusarium head blight (FHB) is one of the most
destructive diseases of wheat and other cereals worldwide.
During infection, the Fusarium fungi produce mycotoxins that
represent a high risk to human and animal health. Developing
small-molecule inhibitors to specifically reduce mycotoxin
levels would be highly beneficial since current treatments
unspecifically target the Fusarium pathogen. Culmorin pos-
sesses a well-known important synergistically virulence role
among mycotoxins, and longiborneol synthase appears to be a
key enzyme for its synthesis, thus making longiborneol syn-
thase a particularly interesting target. This study aims to dis-
cover potent and less toxic agrochemicals against FHB. These
compounds would hamper culmorin synthesis by inhibiting
longiborneol synthase. In order to select starting molecules
for further investigation, we have conducted a structure-
based virtual screening investigation. A longiborneol synthase
structural model is first built using homology modeling,
followed by molecular dynamics simulations that provided
the required input for a protein–ligand ensemble docking pro-
cedure. From this strategy, the three most interesting com-
pounds (hits) were selected among the 25 top-ranked docked

compounds from a library of 15,000 drug-like compounds.
These putative inhibitors of longiborneol synthase provide a
sound starting point for further studies involving molecular
modeling coupled to biochemical experiments. This process
could eventually lead to the development of novel approaches
to reduce mycotoxin contamination in harvested grain.

Keywords Fusariummycotoxins . Culmorin . Inhibitors .

Homologymodeling .Molecular dynamics . Ensemble
docking

Introduction

Fusarium head blight (FHB), caused by Fusarium
graminearum and 16 other Fusarium species, is one of the
most important wheat diseases in the world [1, 2]. Wheat
infection during flowering (anthesis) results in grain contam-
ination by mycotoxins. The latter is a well-known phenome-
non observed before or during silage storage, reducing quality
and yield while constituting an obvious risk factor for human
and animal health [3]. Current management of this problem
relies on multiple fungicide applications in combination with
semi-resistant cultivars. This increases production costs, fur-
ther fuels public concerns over abuse of chemicals such as
pesticides in agriculture, and raises the chances that pathogen
resistance will eventually occur and spread [4, 5]. The discov-
ery of new compounds that could blockmycotoxin production
with exclusivity and no environmental hazard would certainly
provide a welcome alternative to control the pathogen.

Among the mycotoxins produced by Fusarium [6],
culmorin has been found in relatively high level in contami-
nated wheat grains [7, 8]. Several studies on contaminated
grains established a clear link between culmorin (and
various hydroxy-colmorin) levels and the trichothecene
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deoxynivalenol (DON) mycotoxin [9, 10]. Moreover, a grow-
ing body of evidence indicates that culmorin actually en-
hances DON toxicity [10, 11]. Culmorin is produced by the
biotransformation of farnesyl diphosphate through a complex
pathway. A key element of this pathway is longiborneol syn-
thase, which produces longiborneol (Fig. 1a), which differs
from culmorin by the lack of a single hydroxyl group
(Fig. 1b), but was also recently identified as being required
to complete culmorin biosynthesis in possible association with
an oxygenase [12].

This work describes initial efforts to identify potential
longiborneol synthase inhibitors, aiming to develop a new
suite of agrochemicals for crop protection with reduced risks
for human and animal toxic contamination. For this purpose,
virtual screening represents a valuable in silico approach as it
allows screening large chemical libraries in order to detect a
limited number of compounds applicable for experimental
testing, at a sensible cost [13, 14].

Since no experimentally derived 3D structure exists for
longiborneol synthase, we first built a stable homology model
that was further subjected to molecular dynamics (MD) sim-
ulations. This resulted in the selection of a conformational
ensemble encompassing longiborneol synthase flexibility in
its most stable structural state. This data was then used to
perform ligand-to-protein docking calculations [15]. The pres-
ent study presents the docking simulation for 15,000 com-
pounds that allowed the selection of three putative
longiborneol synthase inhibitors to be submitted to experi-
mental validation.

Materials and methods

Homology modeling

The F. graminearum longiborneol synthase coded by the locus
FGSG_10397 (ACY69978.1) [12] is described in the Uniprot
database as being encoded by the CML1 gene (see http://www.
uniprot.org/uniprot/D1M8S2) and belongs to the fungal
sesquiterpene synthase superfamily of enzymes. To identify

possible templates for building a three dimensional (3D) model
of this protein, it was first necessary to search protein databases
in order to identify proteins that could be suitable templates for
obtaining a robust and convincing homology 3D model. Our
selection was based on close relatednesses in both structure and
function within all members of the family. We focused mostly
on the isoprenoid domain characterized by a well-conserved
structural organization that is mostly α-helical with a core bun-
dle of antiparallel α-helices. The superposition of 33 structures
of this family shows clearly the conservation of this structural
organization within the whole family (http://www.cathdb.
info/version/latest/superfamily/1.10.600.10). We checked
carefully that this structural signature had been conserved
during our homology modeling process.

Once the protein class was identified and the possible
orthologs detected, we searched for similar structures at the
Protein Data Bank (PDB), [16] to look for the most suitable
template for homology modeling. This step is crucial as the
quality of any homology model depends strongly on the per-
centage of similarity, identity and sequence coverage. When
low sequence identities are detected, as in this work (less than
20 %), the modeling task is not trivial and requires a suitable
strategy to improve the quality of the proposed models. The
use of multiple templates has been shown to generally in-
crease model quality over a single template [17]. Despite re-
cent improvements [18], this approach still needs to use rules
to combine information from all the templates. In our case, we
chose to use several well-known homology web servers and
compared their results. Hence, a comparative dendrogram
showing the relationship between the proposed templates
and our target protein was established using the phylogeny.fr
web server [19, 20], in which MUSCLE 3.8.31 was used for
multiple sequence alignment with default parameters (find
diagonals option disabled, a maximum number of iterations:
16, no duration limitation and no more than 200 sequences)
[21]. To draw the dendrogram, based on the protein alignment,
we used the phylogeny.fr web server set PhyML3.1/3.0 aLRT
with default parameters (Substitution model: WAG for pro-
teins, aLRT test: SH-like, number of substitution rate catego-
ries: 4, gamma parameter: estimated, proportion of invariable

O P O P O-

OO

O- O-

+ H2O

(2E,6E)-farnesyl diphosphate

HO

longiborneol

+ diphosphate

A

OH
OH

culmorin

HO

longiborneol

B

Fig. 1 a Longiborneol
biosynthesis pathway. b
Longiborneol and culmorin
chemical structures

163 Page 2 of 13 J Mol Model (2016) 22: 163

http://www.uniprot.org/uniprot/D1M8S2
http://www.uniprot.org/uniprot/D1M8S2
http://www.cathdb.info/version/latest/superfamily/1.10.600.10
http://www.cathdb.info/version/latest/superfamily/1.10.600.10


sites: estimated and the transition/transversion ratio: 4; the tree
branch support was evaluated by an approximate likelihood-
ratio test) [22].

The closest template was retained to perform the homology
modeling task using the MODELLER program with its de-
fault settings [23] (see the MODELLER manual and tutorial).
Additionally, the automatic loop refinement method available
in MODELLER was used. The crude longiborneol synthase
3D0 model was achieved via this route. The model was vali-
dated by the server SAVES [24].

Molecular dynamics

Starting from the homology built 3D0 model obtained from
the previous step, we refined the model and investigated its
behavior in a physiological medium. Themodeled protein was

embedded in a box of 100 Å × 100 Å × 100 Å with TIP3P
explicit water molecules [25]. Next, Na+ ions were added to
ensure electrostatic neutrality. The NAMD program version
2.6 was employed in conjunction with the CHARMM27 force
field [26, 27] in order to simulate the ensemble of the 94,678-
atom system. The initial state for dynamics was generated
from the model after 64,000 steps of conjugate gradient min-
imization. The conformational behavior of the protein, water
and counter ions system was obtained by running 100 ns of
MD. The simulations were carried out in the isobaric-
isothermal ensemble, maintaining pressure and temperature
at 1 atm and 300 K, respectively, using Langevin dynamics
(damping parameter of 1 ps−1) and piston approaches. The
shake algorithm was used during the simulation. The equa-
tions of motion were integrated with a 1 fs time step, using the
r-RESPA algorithm [28] electrostatic forces at a slower 2 fs

Table 1 Protein databank (PDB) templates proposed by homology servers for longiborneol synthase [50–56]

Server PDB ID Classification Name Organism

Phyre2 1K1Y Transferase 4-Alpha-glucanotransferase Thermococcus litoralis

4OKM Transferase Selinadiene synthase Streptomyces pristinaespiralis

3LG5 Lyase Epi-isozizaene synthase Streptomyces coelicolor

4ZQ8 Transferase Terpene synthase Streptomyces lydicus

3V1V Lyase 2-Methylisoborneol synthase Streptomyces coelicolor

1PS1 Synthase Pentalene synthase Streptomyces exfoliatus

SWISSModel 1JFA Lyase Trichodiene synthase Fusarium sporotrichioides

2Q9Y Lyase Trichodiene synthase F. sporotrichioides

ROBETTA 1N1Z Isomerase (+)-Bornyl diphosphate synthase Salvia officinalis

i-Tasser 3 KB9 Lyase Epi-isozizaene synthase S. coelicolor

1JFA Lyase Trichodiene synthase F. sporotrichioides

1YYQ Lyase Y305F trichodiene synthase F. sporotrichioides

1YJ4 Lyase Trichodiene synthase F. sporotrichioides

Falcon 1DI1 Lyase Aristolochene synthase Penicillium roqueforti

Only belonging to the same family 1PS1 Synthase Pentalene synthase S. exfoliatus

3IOP Transferase PDK-1 Homo sapiens

3 KB9 Lyase Epi-isozizaene synthase S. coelicolor

3RUX Ligase Biotin-protein ligase BirA Mycobacterium tuberculosis

HHPRED 4MC3 Lyase Hedycaryol synthase Kitasatospora setae

10 best scores 1YYQ Lyase Y305F trichodiene synthase F. sporotrichioides

3 KB9 Lyase Epi-isozizaene synthase S. coelicolor

4OKZ Transferase Selinadiene synthase Streptomyces pristinaespiralis

1PS1 Synthase Pentalene synthase S. exfoliatus

5DW7 Lyase Geosmin synthase S. coelicolor

4ZQ8 Transferase Terpene synthase S. lydicus

4KWD Lyase Aristolochene synthase Aspergillus terreus

3V1V Lyase 2-Methylisoborneol synthase S. coelicolor

1DI1 Lyase Aristolochene synthase Penicillium roqueforti

RaptorX 1JFA Lyase Trichodiene synthase F. sporotrichioides

Our proposal 1JFA Lyase Trichodiene synthase F. sporotrichioides
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frequency. Long-range interactions were treated using the par-
ticle mesh Ewald approach [29], with an 11 Å cut-off. The
calculation of forces and motion equations was repeated to
generate a trajectory corresponding to a simulation time of
100 ns in which a conformation was recorded every 1 ps,
generating a trajectory of 100,000 conformations. The conser-
vation of the secondary structure elements along the MD tra-
jectories was checked using the Timeline plugin in VMD [30]
(data not shown).

Virtual screening

We used the VMS-G software platform [31] to perform virtual
screening (VS). The docking program used within the plat-
form was GOLD [32], which has been recognized as among
the best docking software [33]. The ensemble docking option
was selected in GOLD, in order to perform the calculations
with all longiborneol synthase stable conformers detected via
MD simulation. The use of such conformational ensembles

was considered as an improved strategy in structure-based
docking procedures [15].

The choice of the chemical compounds to be screened is
also critical. To ensure the VS campaign, two strategies can be
applied: Bbrute force^, using millions of compounds, or Bdata-
driven^ using a chosen limited set. The first strategy requires
high computing power but, nevertheless, the bottleneck is the
analysis of the enormous number of outputs. The second ap-
proach performs a molecular mining with all the possible
chemical information available around the biological target
and its neighbors. This strategy results in an optimized re-
duced collection of compounds that will minimize false pos-
itives while maximizing candidate hit rate. We used this latter
approach by searching the literature and patents for all com-
pounds already proposed as inhibitors of the synthase super-
family. We clustered the compounds using ChemMine [34] in
order to extract the most representative compounds and to
analyze their chemical diversity. Meanwhile, we analyzed
the diversity of the chemical libraries [35] proposed by several

B

A

Fig. 2 aDendrogram showing the longiborneol synthase related proteins
in the PDB database. Numbers in red correspond to branch support values
according to likelihood-ratio test [22]. b Protein sequence alignment
between the longiborneol synthase (UniProt sequence D1M8S2, top
line), and the PDB 1JFA template. Asterisks Strictly conserved residues,

colons conservative substitutions, periods semi-conservative
substitutions (defined as PAM250 score > 1.5 and > 0.5 respectively).
Segments with significant similarity are highlighted in yellow. Red
letters 1JFA helices as assigned by the define secondary structure of
proteins (DSSP) algorithm
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chemical providers using the ChemicalAssistant software [36,
37]. Through diversity information, we obtained the most
suitable library for the VS experiment in order to find putative
longiborneol synthase inhibitors [38].

In the present work, the selected chemical library was the
one providing the largest diversity of compounds (from the
Otava supplier) [39]. Our database contained 15,000 mole-
cules, each one being dockedwithin the longiborneol synthase
binding site. We also included in our compound working
set all the molecules found in the PDB as known synthase
ligands, so, in total, 15,119 compounds were included in the
initial docking experiment. The 3D structures of all molecules
were obtained using CORINA software [40]. The compound
protonation states and atom names were corrected when need-
ed for pH 7 and compatibility with the GOLD program, re-
spectively, using a homemade script. The binding site was
previously characterized using the LIGSITE program [41] af-
ter performing a structural alignment of all the protein con-
formers resulted from MD sampling. For each docking, 50
starting ligand conformers were used in GOLD software.

In the docking campaign, all the conformers for
longiborneol synthase MD were superimposed to estimate
the pocket to be used by GOLD. Pockets were detected using
METAPOCKET [42]. Changes in pocket volume and surface
were monitored during MD simulations using MDPocket
[43]. The docking region was obtained by taking an average
of the individual centers in which a sphere of 15 Å was de-
fined for the binding. Docking results were ranked using
GoldScore, which has been optimized for the prediction of
ligand binding positions, and considered H-bonding energy,

van der Waals energy, metal interaction and ligand torsion
strain energy [32].

In order to avoid possible toxicity, the candidate com-
pounds were surveyed using predictors such as PAINS-
remover [44] and the ProTox web service [45]. The structural
similarity of the selected compounds was evaluated by the
Tanimoto index [31, 38, 46]. The scores were obtained by

Fig. 3 The longiborneol synthase 3D1 model in water box of
100 Å × 100 Å × 100 Å with TIP3P explicit water molecules
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Fig. 4a, b Longiborneol synthase 3D stability in a 100 ns molecular
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backbone atom RMSD during the MD trajectory, with the t = 0 starting
homology model taken as reference. This plot was prepared using 2000
data points for the whole MD trajectory, with 1 point each 50 ps. Data
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Open Babel using the FP2 fingerprint [47]. All calculations
were performed using the GRID5K cluster network [48] on
which all the batch runs were submitted using the massive
spreading facility available within VSM-G [49].

Results

Starting 3D model

Table 1 summarizes the PDB codes of structural templates
proposed by the homology modeling. The corresponding
cladogram is presented in Fig. 2a, showing the relationship
between the proteins. It appears that the closest templates are
trichodiene synthase 1YJ4, 1YYQ, 2Q9Yand 1JFA PDB, the
first two being a single Y305F point mutation of the native
protein, the third a protein–ligand complex, and the last the
structure of the free enzyme [57–59].

X-rays studies have shown that terpenoid synthases present
an important conformational change to cap the active site up-
on metal binding [59]. It has been shown [60] that the se-
quence of events catalyzed by this enzyme family starts with
binding of the substrate to the open form of the protein in the
absence of metal ions, followed by the coordination of the
ions and active site closure. To avoid such a bias in our search
for inhibitors, which should bind to the open form of the
enzyme, we consequently chose the free form of the
trichodiene synthase structure from Fusarium sporotrichoides
(1JFA PDB code) as the closest template to start the homology
modeling process. The sequence alignment used as input to
the MODELLER program is shown in Fig. 2b. This image

shows that the sequence identity between the two proteins is
quite weak, especially concerning the first domain containing
one of the Mg2+ ion binding sites.

According to the literature, three Mg2+ binding sites are
found in the trichodiene synthase family, two corresponding
to the DDXXD motif (Mg2+A and Mg2+C) and the second to
the NDXXSXXXE motif (Mg2+B) [61]. In the longiborneol
synthase protein, only the second metal-binding
N241DXXSXXXE motif positioned at helix H is conserved
from the proposed alignment, in good agreement with the
contribution of these residues in a consensus sequence identi-
fied in all terpene synthase sequences. The first aspartate-rich
D100DXXD motif found on helix D of the trichodiene syn-
thase corresponds to a E127XXXXXXEE sequence in our
alignment. Additionally, the position of the three Asp acidic

Fig. 5 RMSD map showing the
two conformational families
found during the MD simulation

Fig. 6 Superposition of longiborneol synthase representative conformers
at 100 ns MD simulation at 40 ns (in red) and 85 ns (in blue)
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side chains of the D100DXXD motif at the trichodiene syn-
thase structure could be related to the position of the three
Glu127,134,135 ones in our model. Nevertheless, this difference
in the Mg ions binding groups would be critical for the precise
mechanism of longiborneol production. A large loop called
H-1α has been shown to be important, participating in the lead
covering the active site after ligand and Mg2+ ions binding
[62]. In our model, this loop looks disordered, as in the
unligated enzyme. Moreover, the Arg304 residue shown to be
important for the loop closure in the synthase [57] is con-
served at longiborneol synthase as Arg318.

The 3D0 model protein obtained belongs to the all-α-
protein family type, with a core formed by a bundle of eight
helices arranged in two parallel layers and surrounding the
ligand binding site. Concerning these helices, our 3D0 model
is very similar to the models proposed by the I-Tasser,
RaptorX, Swiss Model, HHPred and Robetta servers. The

protein shape is also observed for the PDB templates consid-
ered by all the servers we used in Table 1. Most of the differ-
ences between all the proposed models concern the loops
connecting the helices as well as the – and C-terminals.
Such a structured consensus at a 3D arrangement of the sec-
ondary structure pieces corroborated the folding conservation
and allowed subsequent validation of the model in the MD
protocol.

3D model conformational behavior

The 3D1 model obtained after refinement of the homology
model is represented in Fig. 3. The conformational behavior
of the protein, as represented by the RMSD variations and the
stability of areas of secondary structures, is depicted in Fig. 4a
and b. It appears from the RMSD plot that the protein reached
a very stable backbone conformation after 40 ns simulation,

Fig. 7 a Pocket evolution during the 100 ns MD. Grey lines Volume/
surface for each conformation, red lines running average spanning 0.5 ns.
bBinding pocket shapes (red) between the two representative conformers

at 40 ns and 85 ns, respectively. The protein structures are presented as
helices cartoons (purple) and the active site residues are depicted as CPK
drawings
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presenting stable helices packing and organization. Analysis
of the RMSD 2D map (Fig. 5) reinforced the view that the
system is stable after 40 ns until the end of the simulation, and
that is is organized mostly into two major conformational
families. Examples by conformers at 40 ns and 85 ns, respec-
tively, are presented in Fig. 6.

Analysis of the active site pocket organization and proper-
ties (Fig. 7a) revealed that the binding pocket presented a large
opening during the first 40 ns of the simulation to reach the
first plateau, and then decreases a little. Such pocket size
changes, illustrated in Fig. 7b, revealed the pocket shapes
for the conformations at 40 ns and 85 ns. Despite the change
in pocket shape, all residues important for catalytic activity
were stable during MD, and in a structural position for proper
ligand capture and a catalytic role. So, the relative positions of
the acidic residues side chains Glu127,134,135 proposed for
binding Mg2+A and ions Mg2+C, as well as residues Asp242
and Glu249, expected to bind to Mg2+ prior to the catalysis,
were kept in positions similar to those observed in the
trichodiene synthase template. The relative positioning of res-
idues Tyr309,319 showed a stable structural behavior during

MD simulation, similar to that observed for Tyr295,305 in
trichodiene synthase.

The salt bridges contributing to binding pocket stability,
such as those between Asp242 and Arg201, Asp204 and
Lys183, Glu127 and Arg318, were kept either during the trajec-
tory or formed after a few ns simulation. Additionally, some
others, such as Glu134 with Arg320, Glu134 with Lys248, were
obtained later, when the 40 ns plateau was reached, or even
later such as Glu127 with Lys180 at 80 ns (Fig. 8).

Selection of the conformational ensemble for the VS
campaign

Within the two major families described above, low RMSD
fluctuations were observed. Therefore, we considered that on-
ly the two conformers at 40 ns and 85 ns, respectively, should
be considered as representative of these families for inclusion
in the conformational ensemble for the docking step.
Nevertheless, in order to explore the largest conformational
space of the protein, and to avoid some important transient
conformational states, less stable MD conformational states,
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such as those appearing at 5 ns, 6.8 ns, 8.3 ns, 10.5 ns, 12 ns,
14 ns and 17 ns, were also added to the ensemble docking run
(Fig. S1, Fig. S2). This ensured that good coverage of the
conformational space occurred before the stabilization plateau
was found after 40 ns. The two stable areas are highlighted in
Fig. 7b.

VS results

From the ensemble docking campaign using these two main
conformers, and the supplementary conformers as defined
above, we selected only the top 100 compounds from the
complete GOLD score list for further analysis. After inspec-
tion of the protein–ligand interactions involving each mole-
cule, compound similarities (using Tanimoto criteria), and
toxicity, only 25 compounds were listed as candidates in
Table 2. Among these, nine (from the supplier Otava) can be
strongly considered as putative hits for possible biological
testing due to their chemical diversity (Tanimoto scores pre-
sented in Table 3). Additionally, the chemical formulas of
these molecules are shown in Fig. 9. Among the 100 candi-
dates, some already known as synthase inhibitors were also
found in the top 25 list, such as geranylgeranyl diphosphate
(2Q800A00, 2J1PA00, 2E8VA00), 1-hydroxy-2-[3′-(naphtha-
lene-2-sulfonylamino)-biphenyl-3-yl]ethylidene-1,1-
bisphosphonic acid (2E95B00) and tripotassium (1R)-4-(4′-
butylbiphenyl-4-yl)- 1-phosphonatobutane-1-sulfonate
(2ZCRA00).

The docking of the three highest score compounds within
the protein binding sites are presented in Fig. 10. The molec-
ular volumes of these compounds fit within the pocket shape,
and in the volume was depicted in Fig. 7b. Looking at the
different protein–ligand interactions found, it appears that a
large variety of binding possibilities occur depending on the
protein conformation: for example, compound D7119982499
shares the same Lys183 interaction with compound
D7117231002, and the Arg318 interaction with compound
D1306769, while specific interactions are found for each of
these compounds (Asp204, Arg201, Lys248 for compound
D7119982499; Asn257 for compound D7117231002; Ser245,
His256 for compound D1306769). A detailed study of the pro-
tein–ligand interactions found with the nine proposed com-
pounds is summarized in Table 4, and showed that three res-
idues are especially conserved in interaction with all ligands:
Lys180, Asp204 and Arg318 as shown in Fig. S3.

Table 2 GOLD scores for selected compounds

Rank Name GOLD score Time (ns) Toxicity

1 2Q80A00 99.1 5 +

2 2J1PA00 98.0 5 +

3 D7119982499a 95.2 17

4 D7117231002a 94.4 5

5 D1306769a 94.2 85

6 2E95B00 94.2 12 +

7 D7211760169 93.8 14 +

8 D0107300006 93.8 40 +

9 D7217180008 93.6 17 +

10 D7011450002 92.9 5 +

11 2ZCRA00 92.3 5 +

12 D7119988305 92.1 5 +

13 D1676975a 91.7 17

90.5 85

14 D7117171303a 91.7 40

15 D7013940869 91.1 5 ++

16 D0105850677a 90.7 5

17 2E8VA00 90.6 5 +

18 D1668794a 90.6 5

19 D7018704985a 90.3 5

20 D2196100 90.3 5 +

21 D0109280061 90.2 40 +

22 D7119988123a 90.1 40

23 D1686156 90.0 6.8 +

24 D7213330029 90.0 5 +

a Final selected compounds

Table 3 Tanimoto scores (range 0 to 1) between the ten candidate compounds

Rank D7119982499 D7117231002 D1306769 D1676975 D7117171303 D0105850677 D1668794 D7018704985 D7119988123

D7119982499 – 0.22 0.23 0.21 0.01 0.40 0.24 0.22 0.51

D7117231002 – 019 0.51 0.22 0.21 0.31 0.25 0.21

D1306769 – 0.20 0.11 0.24 0.20 0.32 0.23

D1676975 – 0.21 0.21 0.44 0.27 0.21

D7117171303 – 0.11 0.16 0.14 0.08

D0105850677 – 0.23 0.21 0.38

D1668794 – 0.25 0.24

D7018704985 – 0.22

D7119988123 –
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Fig. 9 Position of the three highest GOLD score selected compounds D7119982499, D7117231002 and D1306769 within their binding pocket,
showing interactions found between the protein and the ligands
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Data mining with these nine compounds revealed that three
of them were already involved in biological high throughput
screening (HTS) experiments concerning a large diversity of
biological targets outside the fungal kingdom [33, 34]. The
chemicals D7119982499, D0105850677 and D1668794
ranked 3, 16 and 18, respectively, in Table 2 (the corresponding
PubChem CID numbers are 16013960, 1107619 and 1351488,
respectively). Moreover, compound D7117171303, (ranked
14, PubChem CID number 3151540), compound
D0105850677 (now assigned PubChem CID number
991039) and compound D1668794 have already been patented
[63, 64].

Conclusions

We have identified the first non-phosphonate-like inhibitors of
Fusarium graminearum longiborneol synthase thanks to a
strategy involving homology modeling, MD simulations,
structure-based VS using ensemble docking, and data mining.
Our approach also benefits from the use of existing com-
pounds coming from a chemical libraries provider as our strat-
egy avoids the time-consuming chemical synthesis steps usu-
ally required in classical drug design.

Previous similar approaches, aimed at other synthases,
were successfully validated [65, 66]. Thus, we can reasonably
expect that the chemicals proposed here would lead to a suc-
cess story like the one we recently published [38]. In fact, very
few inhibitors of sesquiterpene synthases are presently consid-
ered as lead compounds against Fusarium head blight, leading
to an opportunity for the proposal of new inhibitors as shown
by recent studies [67, 68].

Unfortunately, until now, no compound has been proposed
to inhibit longiborneol synthase although sequences coding
for this protein are found in the several Fusarium species.
Therefore, this protein target could potentially be suitable for

controlling all such complexes globally. Consequently, the
chemicals proposed here, after validation, may constitute in-
novative hits and will be the seeds for the development of new
leads to help reduce the worldwide crop disease threat to grain
producers/consumers and to global food security.
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