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A R T I C L E I N F O

Keywords:
Artificial Intelligence
Ecosystem service monitoring
FAIR
Interoperability
Knowledge reuse
Semantics

A B S T R A C T

Despite continued, rapid growth in the literature, the fragmentation of information is a major barrier to more
timely and credible ecosystem services (ES) assessments. A major reason for this fragmentation is the currently
limited state of interoperability of ES data, models, and software. The FAIR Principles, a recent reformulation of
long-standing open science goals, highlight the importance of making scientific knowledge Findable, Accessible,
Interoperable, and Reusable. Critically, FAIR aims to make science more transparent and transferable by both
people and computers. However, it is easier to make data and models findable and accessible through data and
code repositories than to achieve interoperability and reusability. Achieving interoperability will require more
consistent adherence to current technical best practices and, more critically, to build consensus about and
consistently use semantics that can represent ES-relevant phenomena. Building on recent examples from major
international initiatives for ES (IPBES, SEEA, GEO BON), we illustrate strategies to address interoperability,
discuss their importance, and describe potential gains for individual researchers and practitioners and the field of
ES. Although interoperability comes with many challenges, including greater scientific coordination than today’s
status quo, it is technically achievable and offers potentially transformative advantages to ES assessments needed
to mainstream their use by decision makers. Individuals and organizations active in ES research and practice can
play critical roles in creating widespread interoperability and reusability of ES science. A representative com-
munity of practice targeting interoperability for ES would help advance these goals.
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1. Introduction

1.1. The interoperability problem in ecosystem services

The amount of information, or knowledge (i.e., data, models, sce-
narios)1 produced by scientists, practitioners, and citizens continues to
increase rapidly, yet too often remains compartmentalized and sees
limited reuse, failing to produce collective knowledge (Nelson, 2009,
Nesic et al., 2011, Munafo et al., 2017, Balbi et al., 2022). This is
particularly true for studies of ecosystem services (ES), which depend on
the integration of knowledge from a range of disciplines to understand
complex, linked human-natural systems (Rieb et al., 2017, Carmen et al.,
2018, Schmidt and Seppelt, 2018). Data used and produced in ES
research are acquired and generated using diverse approaches. This
plurality reflects the interdisciplinary nature and richness of the field. At
the same time, knowledge can only grow and evolve through effective
sharing and reuse. As scientific literature grows far faster than individual
scientists can assimilate (Borycz and Carroll 2020) and researchers seek
to provide timely, accurate, decision-relevant ES monitoring (Vaz et al.,
2021; Balvanera et al.., 2022; Gonzalez et al., 2023a), solutions to
effectively integrate and reuse knowledge are needed.

The FAIR Principles (Wilkinson et al., 2016, 2018; Lamprecht et al.,
2020, Barker et al., 2022; see Box 1 for acronym definitions and Box 2
for definitions) mandate that modern scientific data, models, and soft-
ware be Findable, Accessible, Interoperable, and Reusable to both
human users and machines. These principles have gained increasing
recognition and application as a useful reformulation of long-standing
open science goals supporting trust and reproducibility (Powers and
Hampton, 2019). Specifically, the FAIR Principles call for data, models,
and software that are findable and accessible on the internet, integrated
with other independently produced knowledge seamlessly and without
compatibility issues (interoperable, see Section 2), and effectively
recombined or replicated in new applications (reusable). Critically, sci-
entific knowledge is not dualistically classified as FAIR versus not FAIR.
Rather, knowledge can be more or less FAIR, and any improvements in
FAIR science are beneficial.2

It is important to precisely define interoperability, since multiple
definitions exist (IEEE, 1990, Heiler, 1995, Wang et al., 2009, Lamp-
recht et al., 2020). In this paper, we use definitions from Heiler (1995),
who distinguishes between syntactic interoperability – the use of
compatible data formats and digital communication protocols – and
higher-level semantic interoperability – data transfers where a receiving
system correctly identifies the meaning of exchanged data, reusing it
appropriately (see also Guizzardi, 2020).

Modern data and code repositories typically support findability and
accessibility, but interoperability and reusability – particularly for ma-
chines – cannot be reached solely through the adoption of repositories
(Borycz and Carroll, 2020, Papoutsoglou et al., 2023). For example, a
recent IPBES global model intercomparison quantifying past and future
changes in biodiversity and ES (Kim et al. 2018, Rosa et al. 2020, Pereira
et al. 2024) illustrates current best open-science practices. This exten-
sive effort used public code and data repositories (GEO GEO BON,
2024a) and community-developed metadata (GEO GEO BON, 2024b),
greatly improving its compliance with the FAIR Principles. However, the
integration of this work with other independently produced ES data and

models remains a highly technical, time-consuming endeavor, illus-
trating incomplete achievement of high-level interoperability (see sec-
tion 2).

The high disciplinary and methodological diversity of ES poses
particular challenges for achieving interoperability. This makes the
FAIR Principles’ calls for community standards challenging. Disciplinary
diversity means that data types and the concept of “data” itself varies
between fields. The contribution of social sciences, particularly through
participatory methods (Krasny et al., 2014, Ramirez-Gomez et al., 2015,
Ausseil et al., 2022), has advanced the ES field considerably, but often
produces qualitative data for which metadata standards remain elusive.
Additionally, including diverse indigenous perspectives, which is both
scientifically essential (Stoeckl et al., 2021, Kobluk et al., 2024) and
required by international conservation agreements (CBD, 2022a), re-
quires reevaluation of what constitutes data (Walter and Suina, 2019).
Such cases pose particularly difficult challenges in achieving community
standards aligned with the FAIR Principles.

Further, there are cases where conceptually flexible definitions of ES
concepts can be considered beneficial, rather than a challenge to be
overcome. Steger et al. (2018) elaborate on the benefits and drawbacks
of making ES more standardized versus intentionally vague and flexible.
We believe that the application of precise and rigorous semantics, which
formalize meanings using logic, for quantitative ES assessment (see sec-
tion 1.2) can coexist alongside pluralistic definitions for contested aspects
of “ES value” (Wallace and Jago, 2017, Jax et al., 2018, Wallace et al.,
2020), particularly by recognizing non-western worldviews (e.g.,
indigenous and other local perceptions of ES), which can improve rep-
resentation, equity, and comprehensiveness in ES assessments (de Valck
et al. 2023).

Wider understanding, consensus, and application of interoperability
to ES offers numerous benefits (see sections 3.5 and 5.3). Interopera-
bility is essential for addressing complex multiscale challenges, where
multiscale scientific knowledge is needed to inform coherent decisions
by nested governance levels. Today’s sustainability challenges require
timely, versatile, and easy-to-produce knowledge to support global
targets and policy goals (Balbi et al., 2022, COP28, 2023). Interopera-
bility is thus an important prerequisite to mainstreaming the production
of ES information to inform policy at all levels of decision making. So-
lutions to the interoperability problem need to be developed, endorsed,
and applied by the broad research community; doing so enables the field
to advance in ways that isolated individuals and research groups cannot.
Widespread achievement of interoperability in ES will likely require the
efforts of a dedicated and representative community of practice, making
greater awareness of the topic timely.

1.2. The semantics challenge

Interoperability for ES requires (1) the consistent use of approaches
enabling software to seamlessly exchange data, e.g., using open and
cloud-optimized file formats and well-documented and community-
endorsed application programming interfaces (APIs) (see section 2)
and (2) consistent semantics to describe scientific data and models so
that they can be understood by both people and machines (see section
2.1). The semantics challenge is greater for a disciplinarily and
conceptually diverse field like ES.

1 We use the term “knowledge” in reference to scientific data and models,
recognizing that data and models embody statements of scientific knowledge
(Villa et al., 2009).

2 For a short, humorous perspective on the consequences of ignoring the
FAIR Principles, see Hanson et al. (2012).

K.J. Bagstad et al. Ecosystem Services 72 (2025) 101705 

2 



Box 1
Definitions of acronyms.

AI – Artificial Intelligence

API – Application Programming Interface

ARIES – Artificial Intelligence for Environment and Sustainability

BFO – Basic Formal Ontology

CARE – Collective benefit, Authority to control, Responsibility, Ethics

DOI – Digital Object Identifier

DOLCE – Descriptive Ontology for Linguistic and Cognitive Engineering

EBV – Essential Biodiversity Variable

EESV – Essential Ecosystem Service Variable

ENVO – Environment Ontology

ES – Ecosystem Services

ESTIMAP – Ecosystem Services Mapping Tool

FAIR – Findable, Accessible, Interoperable, Reusable

GBiOS – Global Biodiversity Observation System

GEO BON – Group on Earth Observations Biodiversity Observation Network

I-ADOPT – InteroperAble Descriptions of Observable Property Terminology

INCA – Integrated System for Natural Capital Accounting

INSPIRE – Infrastructure for Spatial Information in the European Community

InVEST – Integrated Valuation of Ecosystem Services and Tradeoffs

IPBES – Intergovernmental Science-Policy Panel on Biodiversity and Ecosystem Services

k.LAB – Knowledge Laboratory

ORCID – Open Researcher and Contributor Identifiers

PURL – Persistent Uniform Resource Locator

SEEA – System of Environmental-Economic Accounting

SEEA EA – System of Environmental-Economic Accounting Ecosystem Accounting

TRUST – Transparency, Responsibility, User focus, Sustainability, Technology

URL – Uniform Resource Locator

K.J. Bagstad et al. Ecosystem Services 72 (2025) 101705 

3 



Box 2
Definitions of key terms.

Application programming interface (API): a set of software protocols that enables two applications to exchange information.

Artificial Intelligence (AI): the science and engineering underlying the development of intelligent machines, especially computer programs or
robots. AI encompasses approaches including machine reasoning, semantic annotation, machine learning, and others (see Russell and Norvig,
2020).

CARE Principles: Principles for Indigenous Data Governance (Carroll et al., 2020), encompassing:

Collective benefit: benefits “for Indigenous Peoples to achieve inclusive development and innovation, improve governance and citizen
engagement, and realize equitable outcomes.”

Authority to control: Indigenous determination of “data governance protocols (and)… stewardship decisions for Indigenous data that are held
by other entities.”

Responsibility: by non-Indigenous researchers to “nurture respectful relationships with Indigenous Peoples from whom the data originate…
(including) investing in capacity development, increasing community data capabilities, and embedding data within Indigenous languages and
cultures.”

Ethics: accounting for Indigenous rights and wellbeing “to minimize harm, maximize benefits, promote justice, and allow for future use.”

Classification/typology: The organization of elements by grouping them together in mutually exclusive classes based on shared properties or
other parameters.

Concept: Abstractions, i.e., describing a class/type, that represent instances of an entity. This is a very general definition of “concept,” for
further detail, see Margolis and Laurence (2023).

Containerization: the integration of computer code with all necessary software dependencies and operating system, which enables it to be
executed in an isolated manner on any computer system.

Controlled vocabulary: a set of predefined terms to describe information, allowing for its retrieval.

Crosswalk: Practices to facilitate translation between different semantic resources (e.g., classifications).

Decision rule: In the context of this paper, the specification of appropriate conditions under which scientific knowledge about ES can effectively
be reused, expressed in a human- and machine-readable manner. Decision rules can act as guardrails against the improper reuse of knowledge.

Definition: The meaning of a certain entity (a simplified definition; for further detail, see Gupta and Mackereth, 2023).

Ecosystem service accounting: for the purpose of this paper, approaches that use accounting rules to structure information on ES (e.g., U.N.,
2021).

Ecosystem service assessment: for the purpose of this paper, studies that quantify ES in relative, physical, and/or monetary terms using
qualitative, semiquantitative, or quantitative methods.

Ecosystem service monitoring: for the purpose of this paper, approaches that use repeated measurement or modeling of ES to track changes in
ES over time.

FAIR Principles: guidance for the curation, management, and reuse of scientific data, models, software, and workflows understandable for
humans and machines, encompassing:

Findability: the ability to locate or discover, scientific knowledge by humans or machines.

Accessibility: the ability to access scientific knowledge, “possibly including authentication and authorization” (GO FAIR, 2024).

Interoperability: “the ability of data or tools from independent resources to integrate or work together with minimal effort (Wilkinson et al.
2016). Interoperability can be achieved with compatible data formats and communication protocols (syntactic interoperability) or data transfers
where a receiving system can properly identify the meaning of exchanged data, reusing it appropriately (semantic interoperability, (Heiler
1995)).” (Balbi et al., 2022)

Reusability: the ability to enable scientific knowledge to be “replicated and/or combined in different settings” (GO FAIR, 2024).

Inference: the use of evidence to draw a conclusion.

Knowledge base: any machine-readable collection of annotated and organized information, which can include semantics as applied to data,
models, and associated scientific knowledge (Villa et al., 2009).

Knowledge engineering: an AI field dedicated to the representation, management, and adoption of knowledge.

Machine actionability: “information that is structured in a consistent way so that machines, or computers, can be programmed against the
structure” (DDI DDI Alliance, 2024). Often interpreted as the use of FAIR knowledge by machines and used synonymously with “machine
readability.”

Machine learning: the use of various algorithms to uncover patterns (e.g., regression, classification, or clustering) in large datasets. Machine
learning is currently the most widely used form of AI (see Mitchell, 1997).

Machine reasoning: (i.e., machine-operated logical inference using formalized semantics): “applied to a semantically annotated
knowledge base, machine reasoning can support automated validation and linking of data and models using logic to assemble them into useful
structures for computation. Reasoning systems can tackle new problems and build higher-level knowledge using deductive and inductive
reasoning.” (Balbi et al., 2022)

Ontology: systematic descriptions of concepts, entities, and relationships between them, which are logically consistent and fully descriptive.
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Prominent historical cases where scientific terms and meanings were
standardized include the introduction of the periodic table, which
identified chemical elements and their relationships by families, and
Linnaean taxonomy, which identified species and their interrelation-
ships through higher-level taxa. These systems replaced inconsistent
worldviews in chemistry and biology, giving scientists standardized
language and predictive models to further test and refine. New discov-
eries conformed to an agreed terminological and logical structure –
standardized concepts for chemical elements and species and the re-
lationships between them.

More recently, substantial efforts toward interoperability have been
critical for supporting intercomparison of climate (Edwards, 2011) and
agricultural models (AgMIP, 2024), and are also needed to support
geospatial mapping and modeling (Fischer et al., 2023, Strobl et al.,
2024). Other fields of science, most notably genetics (Gene Ontology
Consortium, 2019) and biomedicine (Jackson et al., 2021), but more
recently the geosciences (Gil et al., 2019, Zhang et al., 2019, Tucker
et al., 2022), have made substantial advances toward more widespread
interoperability and reuse. For example, the use of common file formats,
scientific repositories, metadata standards, including common ontol-
ogies and controlled vocabularies, and informatics tools and pipelines,
have enabled vast, synthetic advances in the field of genomics (ICGC/
TCGA Pan-Cancer Analysis of Whole Genomes Consortium, 2020). Bada
et al. (2004) note that seven characteristics contributed to the successful
application of semantics in the genomics community: “community
involvement; clear goals; limited scope; simple, intuitive structure;
continuous evolution; active curation; and early use.”

The above subjects entail fewer disciplines and system parameters
than the ES field. Despite these differences, improved standardization
for quantitative ES assessments could produce more interconnected,
efficient, and effective science. ES researchers have recognized the need
for metadata standards (Crossman et al., 2013), spatial data repositories
(Drakou et al., 2015), and open science-focused publishing outlets
(Burkhard et al., 2016). Beyond these early efforts, the field has gener-
ally lagged in the implementation of standards that could support
interoperability, though some recent overview papers have recognized
the problem (Schmidt and Seppelt, 2018, Drakou et al., 2019, Finisdore
et al., 2020).

This paper addresses the semantics challenge, including “why, how,
who, and for whom” questions of interoperability for ES – why does
interoperability matter, how can it be achieved, whose involvement is
needed, and who benefits from its widespread implementation? We
focus on quantitative ES assessments3 using primary data or computa-
tional modeling to produce biophysical and/or monetary estimates,
although interoperability may also be relevant for semi-quantitative
data and models. We discuss progress and potential for interopera-
bility through the lenses of three major international ES-relevant ini-
tiatives – IPBES (IPBES, 2022a), SEEA (U.N. et al., 2014; U.N., 2021),
and GEO BON (Vaz et al., 2021; Balvanera et al.., 2022) and for more
localized ES assessments. We also recognize the importance of
addressing interoperability in adjacent fields such as Earth observation
and sustainability science (Balbi et al., 2022, Mazzetti et al., 2022,
COP28, 2023).

2. Interoperability basics for ecosystem services

Since ancient times, humans have adopted strategies to organize and
structure knowledge. These include systems of categories and classifi-
cations (i.e., lists of general entities, kinds, or classes representing as-
pects of the world (Thomasson, 2022)), which can serve as conceptual
tools for defining terms and concepts with precise meanings.,45

Domain ontology: ontologies representing relevant elements of a specific scientific field (e.g., hydrology, economics, biology).

Core ontology: “mid-level ontologies” that serve as a conceptual bridge between upper-level ontologies and multiple domain-specific ontol-
ogies (Obrst, 2010).

Upper-level ontology: a domain-independent ontology that defines the most general entities (e.g., events, processes, time, space) and re-
lationships between them. Typically, upper ontologies assume a specific philosophical view on reality and the elements composing it. Examples
of upper-level ontologies are BFO (Otte et al., 2022) and DOLCE (Borgo et al., 2022).

Persistent identifier: an enduring reference to a person, publication, webpage, or other entity, as opposed to references that may change
frequently, such as some internet Uniform Resource Locators (URLs). Examples include Digital Object Identifiers (DOI), Persistent Uniform
Resource Locators (PURLs), and Open Researcher and Contributor Identifiers (ORCID).

Provenance: in the context of semantic technologies, provenance refers to the origin of information describing how it is created, stored, and
modified (see W3C, 2010).

Semantics: the attribution of meanings to words or expressions. Semantics often refer to the formalization of meanings in terms of logical
declarations and axioms, sometimes translated into formal ontologies (which define concepts and the relations between them), breaking
meanings into modular components. “Semantic annotation can label scientific data and models with well-defined categories linked by clearly
bounded logical relationships and can play a key role in knowledge integration” (Balbi, 2022).

Thesaurus: a set of terms organized to describe narrower and broader concepts, as well as synonyms and translations between different vo-
cabularies (see Obrst, 2010).

Taxonomy: a set of concepts hierarchically organized to express parent–child relationships (Obrst, 2010).

Version control: “the practice of tracking and managing changes to software code,” (Atlassian, 2024) which can be applied to both scientific
software and model code.

Web Services: a set of software protocols that enable two machines to exchange information over a network. Open Geospatial Consortium Web
Services support automated spatial data access and processing.

3 We use the term “ES assessment” for studies quantifying ES in relative,
physical, and/or monetary terms; “ES monitoring” for approaches using
repeated measurement or modeling to track changes in ES over time; and “ES
accounting” for approaches using accounting rules to structure information on
ES (e.g., U.N. 2021). ES modeling is frequently used in all three types of studies.

4 In this article, we will not touch upon the meanings of meaning and their
relation with words and concepts, which have already been the subject of
multiple articles, for example, collected in the Stanford Encyclopedia of Phi-
losophy (Zalta and Nodelman, 2024).

5 In addition to the field of philosophy, research in cognitive science, se-
mantics and psychology offer significant contributions to the study of concept
representation and categorization. Some borrow ideas from the Aristotelian
tradition, while others are inspired by psychology, for example prototype the-
ory, which stresses how natural categories and the characteristics which define
them play a role in concept categorization (Margolis and Laurence, 2023).
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Aristotle’s categories and metaphysics (Thomasson, 2022) have inspired
many more recent knowledge architectures (Smith, 2023). As scientific
disciplines evolved and intertwined, several frameworks and in-
terpretations have emerged to support analysis and understanding, a
trend that continues in the field of ES. A multitude of perspectives brings
some benefits to scientific interpretations, yet plurality also creates
challenges, for example the tracking of differences and similarities
among terminologies and definitions, conceptualizations, and frame-
works (Adamo and Willis, 2022). Interdisciplinary fields in particular
are exposed to the use of ambiguous semantics, such as using different
words to describe the same concept or the same word to describe
different concepts (Dini et al., 2011, Laniak et al., 2013, Bull et al.,
2016). Such semantic ambiguity complicates the achievement of inter-
operability and reusability.

Some of these issues can be addressed through use of community-
endorsed, standardized vocabularies to define metadata (see FAIR
Principles I2, I3, R1.3, Wilkinson et al. 2016). This enables multiple
researchers contributing compatible data or models to ensure they are
describing the same entities, supporting their correct reuse by people or
machines (e.g., NLM, 2019 for health data).

Along with the more significant “semantics challenge,” for which
widespread consensus does not yet exist, various technical prerequisites
are needed to support interoperability for ES. Prerequisites include the
use of standardized, well-documented protocols for information ex-
change (i.e., APIs), open, machine-actionable file formats (e.g., STAC,
2024), and appropriate licensing for data and software/model code.
Although the importance of these prerequisites is well-recognized by
open-science advocates (Wilkinson et al., 2016, Lamprecht et al., 2020,
Barker et al., 2022), further work is needed to improve their adoption in
the ES community since their application is not yet universal. In this
section, we describe basic principles needed to support interoperability
in an interdisciplinary field like ES, starting with semantics (see further
detail elsewhere (Gruber, 1993, Smith et al., 2007, Guarino et al., 2009,
Antoniou et al., 2012, Janowicz et al., 2015, Guizzardi, 2020)).

2.1. Semantics: from consistent concept definitions to machine-readable
knowledge

As previously noted, semantics representing scientific knowledge
begin with clear, unambiguous definitions of concepts. Certain concepts
can be organized into classifications or typologies – specialized lists that
must be exhaustive and mutually exclusive (e.g., La Notte and Rhodes,
2020). Concepts can also be aggregated into glossaries or more structured
controlled vocabularies, which collate standardized terms, and are often
developed by individual scientific disciplines (e.g., Potschin-Young et al.
2018). Controlled vocabularies can enable efficient searching, infor-
mation retrieval, and interconnection of data and models (Davies,
2010). They support, for example biodiversity science and monitoring
(Wieczorek et al., 2012; Guralnick et al., 2018) and model integration
within large collaborative Earth science projects (Zhang et al., 2019;
Tucker et al., 2022). Thesauri can supply synonyms and translations
between different vocabularies, and crosswalks can enable translations
across different classification systems (e.g., U.N., 2021).

Beyond controlled vocabularies, ontologies (Gruber, 1993; Guarino
et al., 2009) add formal logical structure to systematically and
completely describe relevant relationships, rules, and restrictions be-
tween concepts, facilitating deeper information interpretation. Common
examples describe hierarchical relationships like parent–child classes
and logical restrictions that associate properties with concepts. For
example, the thesaurus definition of a “natural hazard” concept
(UNESCO, 2022) could include a range of related concepts (e.g.,
“disaster,” “flood,” and “damage”). By contrast, a formal ontology can
express that “fluvial flooding” and “drought” are disjoint child classes of
“natural hazard” and that “fluvial flooding” is caused by “precipitation”
“exceeding” “soil infiltration capacity.”.

Ontologies are ideally shared by the research community, as the

product of consensus (Studer et al., 1998, Neuhaus and Hastings, 2022).
This is usually easier to achieve in small, single-discipline research
communities (e.g., Gene Ontology Consortium, 2019, Taylor et al.,
2019). In an interdisciplinary field like ES, a more realistic goal may be
to find practical and consistent definitions that are still recognizable by
the community. Doing so requires collaboration between a diverse range
of stakeholders, including disciplinary scientists, policy makers, com-
munity members, knowledge engineers who are experts in semantics and
knowledge representation,6 and facilitators.

To improve efficiency and trust, ontologies ideally reuse knowledge
from preexisting, community-endorsed ontologies. However, ontologies
encode assumptions about their view of the world using formal logic,
and logical inconsistencies can pose serious problems for their use by
machines. It is also valuable to keep ontologies parsimonious, by only
including necessary elements, since larger, more complex ontologies are
harder to maintain and reuse. In practice, in order to maintain logical
consistency and parsimony while ensuring availability of needed

Fig. 1. Simplified overview of how different semantic resources can enable
interoperability in interdisciplinary fields like ecosystem services, describing
scientific entities and relationships in a machine-actionable way. The roots
(representing simpler syntactic interoperability) and branches (representing
semantic interoperability) illustrate the need for multiple, often discipline-
specific, taxonomies or controlled vocabularies (for syntactic interoperability)
or domain ontologies (for semantic interoperability) to define needed scientific
entities. Taxonomies and controlled vocabularies can be linked using thesauri
or crosswalks. When applied to an interdisciplinary field like ecosystem ser-
vices, domain ontologies strongly benefit from connections to shared core and
upper-level ontologies. This image is a re-adaptation of similar images pro-
duced by the scientific community, e.g., by Obrst (2010).

6 Knowledge engineers are interdisciplinary professionals who design and
develop systems that capture, formalize, and structure knowledge, creating and
maintaining ontologies (Neuhaus et al., 2011).
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concepts, existing ontologies are often reworked rather than directly
reused (best practices exist for doing so; Fernández-López et al., 2019,
Haller and Polleres, 2020). These challenges suggest the need for coor-
dination across the ES community to come to consensus on and use of
shared semantics, rather than having multiple “competing standards”
emerge, which would undermine interoperability goals.

Effective metadata describe both the entity under consideration and
its measurement characteristics (e.g., continuous or categorical, ranking
or measurement, measurement units; Crossman et al 2013). These de-
tails typically require alignment of domain ontologies (for specific disci-
plines, e.g., economics or hydrology) with upper-level or core ontologies
that describe domain-independent aspects of scientific entities
(Fritzsche et al., 2017; Fig. 1), such as BFO (Otte et al., 2022) or DOLCE
(Borgo et al., 2022). As an interdisciplinary science, ES researchers must
use semantic resources capable of navigating across disciplines (Fig. 1,
see section 3.1). While detailed, standardized metadata describing the
content of ES data and models are essential, so is consensus on what the
“entity under consideration” is, which terms describe the entity, and
critical evaluation of whether commonly used representations (in-
dicators) describe what is meant by the concept (i.e., “indicator-indi-
candum fit,” without which error can readily arise, Heink and Kowarik,
2010, Wallace and Jago, 2017).

The logical formalization of scientific concepts enables inference – i.
e., using evidence to draw conclusions. People use logical inference
constantly, for example by reading today’s weather forecast before
deciding what to wear outdoors. Through machine reasoning (like on-
tologies and machine learning, a subfield of artificial intelligence),
computers can logically infer relationships and flexibly connect infor-
mation (Janowicz et al., 2015). This enables, for instance automated
coupling of two models or substitution of one dataset, model, or model
parameterization for another. A computer system capable of machine
reasoning can respond to scientific questions requiring the use of
different data, models, and model parameterizations (Villa et al., 2009),
rather than solely by retrieving facts. This approach has transformative
potential for using data and models to produce ES assessments.

3. Current and emerging solutions for interoperability in
ecosystem services

3.1. Relevant semantic resources

The need for shared language and meanings to describe scientific
data and models is readily evident in any project involving large-scale
data collection, interdisciplinary modeling, or knowledge synthesis (e.
g., IPBES’ activities, section 4.1). For instance, controlled vocabularies
are used to support syntactic interoperability for long-term ecological
research (Mirtl et al., 2018), cataloging of ES models (USEPA, 2019),
and Earth sciences model integration (Tucker et al., 2022). However,
such approaches cannot support semantic interoperability, which re-
quires use of ontologies that enable machine reasoning (Guizzardi,
2020).

A range of biological and ecological ontologies support interopera-
bility (e.g., Ison et al., 2013, Lannom et al., 2020, Maganga et al., 2021).
The BFO-grounded ENVO ontology (Buttigieg et al., 2013) is often used
to represent ecological entities. Semantic resources for areas related to
ES address social-ecological systems (van der Werf et al., 2009; Adamo
and Willis, 2022), agroecosystem services (Martin-Clouaire, 2018), land
use (Fischer et al., 2023), and life-cycle assessment (Ghose et al., 2022).
To our knowledge, these resources have seen limited use in supporting
ES data and model interoperability. Lastly, the ESOnto (Ayuningsih,
2019, Drakou et al., 2019) and ESMO ontologies (Affinito et al., 2024)
are specific to ES (see section 4.3).

The I-ADOPT framework for biodiversity data (Maganga et al.,
2021), Scientific Variables Ontology (Stoica and Peckham, 2019), the
Artificial Intelligence for Environment & Sustainability (ARIES) pro-
ject’s Ontology of Descriptions and Observations for Integrated

Modelling (Villa and Adamo, 2024), and best practices proposed to
support the European Union INSPIRE Directive (Leadbetter and Vodden,
2016, INSPIRE, 2024) share substantial conceptual overlap. Specifically,
they share four common characteristics: (1) reliance on both discipline-
specific domain ontologies and a core/upper level ontology describing
scientific observations and measurements; (2) use of atomic concepts to
build more complex ones; (3) the requirement that both an entity and a
property being measured must be combined to produce a complete
scientific observation (e.g., not just “land surface” but “land surface
temperature in ◦C”); and (4) the ability to describe roles, measurement
methods, and matrices or realms in which measurements took place.
These characteristics suggest a path toward supporting interdisciplinary
semantic interoperability through full expressivity, logical consistency,
parsimony, and reuse of existing semantic resources.

3.2. Interoperability for ecosystem services models and software

Scientific models and computational workflows should support
interoperability (Goble et al., 2020) and, like most fields, the boundary
between modern ES models and software is blurry. ES models range
from qualitative to quantitative and from one-off, bespoke methods to
repeatedly applied approaches (Palomo et al., 2017). The path to
interoperability and the benefits of achieving it differ for such ap-
proaches. Repeatedly used quantitative models (e.g., ESTIMAP, Zulian
et al., 2018, InVEST, Natural Capital Project, 2024) may be suitable for
improved reusability and interoperability, if modelers make underlying
data, models, and model parameterizations machine actionable,
semantically annotated, and/or specify appropriate conditions for reuse
(see section 3.4).

Reuse of knowledge from semi-quantitative approaches using public,
stakeholder, or expert judgment (e.g., Semmens et al., 2019, Campagne
et al., 2020) may be possible with great care. Such reuse requires careful
attention to the ecological and socioeconomic context of past studies and
their data, methods, and surveyed populations. Knowledge reuse from
such studies may provide a useful starting point for stakeholder de-
liberations in new contexts, rather than a final answer to questions in
new settings. By contrast, qualitative ES data are likely to be more
difficult to reuse. Place-based and qualitative assessments can be highly
useful for supporting participatory processes and providing inputs to
decision making (Potschin and Haines-Young, 2013). However, highly
tailored assessments built using public, indigenous, and/or expert
knowledge may simply not be transferrable to other contexts, particu-
larly when reflecting unique individual or community values.

Software interoperability is complex, as it must interact with other
software, data, and computational environments. FAIR Principles for
research software thus reflect needs to ingest, operate on, exchange, and
output FAIR data (Lamprecht et al., 2020, Barker et al., 2022). Use of
standardized protocols for information exchange (i.e., APIs, data for-
mats, libraries, and software registries) can contribute to software
interoperability (Lamprecht et al., 2020, their Fig. 1). While data can be
made more FAIR at the end of its production process, there are advan-
tages to working toward FAIR software from the beginning – for
example, it can be more efficiently reused by others even while in
development (Barker et al. 2022).

Buchhorn et al. (2022) show how to assess adherence of ES software
to the FAIR Principles, based on the INCA ecosystem accounting tool.
Creation of this tool entailed harmonization and recoding of the Euro-
pean Union Joint Research Centre’s ES models (Zulian et al., 2018),
their pairing with analysis-ready data, automation of geospatial opera-
tions, and metadata enrichment. At the time, the INCA tool fully met
eight of 15 FAIR Principles for software and six of 15 FAIR Principles for
data, with interoperability being the least well-attained principle.
Recently, substantial progress has been made in making the INCA tool
interoperable with ARIES, which operates on and produces FAIR input
and output data, an important consideration for FAIR software (see Box
3).
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3.3. Navigating data/model reuse through “guardrails”

A shared knowledge base for ES can grow through the contribution of
new FAIR datasets and models, but also through machine-readable de-
cision rules about where and how to reuse them (Moon et al., 2017, Spake
et al., 2019; FAIR Principle R1). Such decision rules can describe fitness
for purpose of data and models, building guardrails against their
improper reuse, particularly in automated workflows. Fitness for pur-
pose descriptions are typically found in literature reviews and the dis-
cussion sections of papers describing data or models.

For example, a researcher could use well-defined, shared semantics
to specify that a particular model, dataset, or parameterization is
appropriate to reapply in a particular context – i.e., for a given ecoregion
or climatic zone,7 in urban ES assessments for cities of a given size or
socioeconomic status, or for assessments taking place at a particular
spatiotemporal scale (Benavidez et al., 2018; Leyk et al., 2019; Martínez-
López et al., 2019). Such decision rules can be perused by algorithms to
choose the most appropriate knowledge to address a problem in a spe-
cific context. Full descriptions to support proper reuse may also include
information about instrumentation, observation conditions, data
collection protocols, data processing, provenance, and original research
purpose (Gregory et al., 2019; FAIR Principles R1/R1.2). Further
research is needed into how to more systematically describe data and
models’ fitness for purpose using semantics.

3.4. Reducing heterogeneity in ES definitions – From taxonomies to logic-
driven semantics

Substantial semantic debate has focused on the question of “what
should we call ES?,” through distinct classifications (e.g., Millennium
Ecosystem Assessment, 2005, La Notte and Rhodes, 2020), which has
more recently evolved into the question of “how can we conceptualize
diverse human-nature relationships?” (Chan et al., 2016, Pascual et al.,
2017, van Riper et al., 2017, Saxena et al., 2018).8 Earlier calls for
increased interoperability in ES largely addressed these classification
questions (Drakou et al., 2015, Palomo et al., 2018, Ayuningsih, 2019),
with less focus on the application of semantics to support data and model
interoperability. However, ontologies can go beyond crosswalking ap-
proaches (e.g., U.N., 2021) to address longstanding ES classification
challenges, more precisely defining ES to minimize category mistakes
(Wallace and Jago, 2017).

For example, certain models define “pollination services” differently,
precluding direct comparison (Rosa et al., 2020). These authors noted
that “while GLOBIO-ES… defines pollination services as ‘the fraction of
cropland potentially pollinated, relative to all available cropland’,
InVEST defines it as ‘the proportion of agricultural lands whose polli-
nation needs are met’… although similar in definition, mathematically
these were calculated very differently… making their direct comparison

unfeasible.” Rosa et al. (2020) manually harmonized these metrics and
compared their proportional changes across studies, but could such a
process be automated? By encoding these definitions in a machine- and
human-readable manner, we can lay the foundation for improved
intercomparison of model results by machines. For example, using the
atomic concepts found in ARIES’ ontologies, the GLOBIO-ES (1) and
InVEST (2) pollination services can be defined in a human- and machine-
readable manner as follows:

(1) im:Proportion of im:Potential agriculture:Pollinated landcover:
Cropland.

(2) im:Proportion of im:Realized agriculture:Pollinated landcover:
AgriculturalVegetation

In this case, im refers to ARIES’ core ontology (containing general-
ized scientific measurement concepts like “Proportion” and “Potential”
vs. “Realized”) and agriculture and landcover to two of ARIES’ domain
ontologies, which among other content contain agricultural concepts
(aligned, to the extent possible, with FAO’s AGROVOC vocabulary) and
a basic ontology for land cover types, respectively.

These definitions establish both the similarities and differences be-
tween the two definitions of the pollination ES, namely the distinction
between “Potential” (GLOBIO-ES) and “Realized” (InVEST) and the
broader definition of lands receiving pollination in InVEST (“Cropland”
is a child concept of “AgriculturalVegetation”). Further work is needed
to develop such semantics across a wider range of ecosystem services
and achieve consensus on their use.

3.5. Applying semantics to quantitative ecosystem service assessments

Greater interoperability of ES models increases the flexibility of an
interoperable system to choose the best model for the question being
asked, rather than applying a single model to all problems. Given the
well-known axiom that “all models are wrong, but some are useful”
(Box, 1976), the ability to select the most appropriate model, rather than
to rely solely on the most familiar model, as modelers often do (Melsen,
2022, Puy and Saltelli, 2023), is highly valuable. The ability to readily
substitute alternative models for the same question aligns well with a
tiered ES modeling approach, where more complex models can readily
replace simpler ones when data exist and it is appropriate to do so
(Kareiva et al., 2011, Martínez-López et al., 2019). A tiered ES modeling
approach can be supported by recent work to build a living, crowd-
sourced inventory of globally applicable ES models (Bulckaen et al.,
2024). With appropriate AI assistance, the one-off or place-specific
character of data and models can be turned from a limitation into an
advantage, as AI can transparently substitute between ad-hoc and more
generalized solutions when appropriate.

Drawing on a community-contributed body of knowledge offers far
more flexibility than an individual ES modeler could ever achieve.
Consider, for example, the case of soil erosion control modeling, for
which ES modelers often apply variants of the Revised Universal Soil
Loss Equation (RUSLE) model, despite its well-known limitations. A
modeler tasked with assessing the impacts of land management pro-
grams on soil erosion might have relevant local datasets representing
elevation, land cover, or soils, as well as information on agricultural
practices. When local data are lacking, a modeler typically draws on
more generalized (e.g., continental or global-scale) data. However, past
research has described cases where alternative parameterizations and
models are most appropriate (Benavidez et al., 2018; Table 1). If alter-
native approaches are available in an interoperable ES modeling system,
a modeler could automatically reuse these, when appropriate to their
region of interest. Additionally, a modeler might have knowledge of
erosion processes of interest in their region that are poorly represented
by RUSLE (e.g., erosion caused by wind, landslides, or streamflow,
which causes streambank erosion). If a modeler knowledgeable of wind
erosion modeling makes their model interoperable with other ES data

7 While full consensus on such definitions may be desirable, harmonized
typologies (e.g., to IUCN’s Global Ecosystem Typology, Keith et al., 2022) and
crosswalks can be challenging to develop, and a single universal classification
may not meet all user needs. However, explicitly noting the typology used and
appropriate reuse constraints would allow clearer explanation of model reuse
criteria (e.g., use of “model X is appropriate in Dinerstein et al., 2017 Deserts
and xeric shrubland biomes” or “dataset Y is appropriately applied in Sayre
et al., 2020 Tropical moist world climate regions”).

8 These papers use a definition of ontology – the study of our understanding
of reality – that is distinct but related to the definition used in this paper. In the
former sense, pluralistic ontologies enable the coexistence of, for example,
Western materialist and indigenous worldviews. This enables more diverse
conceptualizations of complex, reciprocal human-nature relationships
including instrumental, intrinsic, and relational values. In the latter sense,
pluralistic ontologies undermine interoperability by applying, for instance,
incompatible metadata keywords that compromise the ability of people or
machines to reliably reuse data or models.
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and models, the wind erosion model could similarly be automatically
reused when appropriate. Machine reasoning can then automatically
assemble and execute the workflow most appropriate to the modeler’s
question. Benefiting from global datasets, multiple compatible modeling
approaches, and local expertise, the modeler produces a state-of-the-art
ES assessment (Fig. 2). This coupled workflow can then be re-run when
updated or improved data or models become available, keeping the
assessment current and relevant. By making their own work interoper-
able, modelers also improve others’ work by providing knowledge that
others can seamlessly reuse.

4. International ecosystem service initiatives and
interoperability

Three major international initiatives – IPBES, SEEA, and GEO BON –

share common aspirations for ES monitoring and accounting, but face
challenges in integrating large bodies of knowledge at local to global
scales. Below, we review the state of these initiatives with regard to
interoperability.

4.1. IPBES

IPBES has five primary objectives – assessing knowledge, supporting
policy, building capacity, strengthening knowledge foundations, and
communication and engagement. IPBES’ assessments, built around
knowledge synthesis, are one of its most critical functions. Such assess-
ments aspire toward achievement of both the FAIR Principles (Kim et al.,
2023), and CARE Principles for Indigenous Data Governance (Collective
benefit, Authority to control, Responsibility, Ethics; Carroll et al., 2020).
Progress toward these objectives has been made, for example, in making

Table 1
Illustrative approach to achieving interoperability of multiple sediment regulation models using semantics. EU: European Union; NDVI: Normalized Difference
Vegetation Index; RUSLE: Revised Universal Soil Loss Equation; RWEQ: Revised Wind Erosion Equation.

Erosion process/
Model

Usage considerations (human-readable) Usage considerations (human & machine readable)* References

Rill & sheet erosion/
RUSLE

Global equations & lookup tables for component RUSLE factors Default approach when other below conditions are not met Benavidez et al.,
2018**

Rill & sheet erosion/
RUSLE

For RUSLE C factor, NDVI-based (CrA) method most appropriate
in tropical regions (evidence from Brazilian Cerrado)

Apply when modeling in an earth:Tropical earth:Region Almagro et al., 2019

Rill & sheet erosion/
RUSLE

For RUSLE C factor, EU agricultural statistics used to estimate C
factor in arable lands; % vegetation cover used in calculation for
non-arable lands

Apply when modeling in the geography:European earth:
Region or elsewhere that agricultural statistical data are
available

Panagos et al., 2015

Streambank erosion/
Multiple approaches

Apply in regions where streambank erosion is known to be an
important contributor of sediment

Apply when modeling in a user-specified hydrology:
Waterway in geomorphic disequilibrium

Wilkinson et al.,
2014

Landslide erosion/
Multiple approaches

Apply in mountain regions where landslides are known to be
important contributors of sediment

Apply when modeling in an earth:Mountain earth:Region
when geography:Slope> 18 %***

Alewell et al., 2008,
Dow et al., 2024

Wind erosion/RWEQ Apply in regions where wind erosion is known to be significant
(e.g., Gholami et al., 2024)

Apply when modeling in an earth:Arid earth:
KoppenGeigerClimateZone

Borrelli et al., 2017

*Examples here illustrate how stylized semantics referencing certain geographical settings can enable model customization, by applying those customizations when a
model workflow is executed under those conditions.
**Benavidez et al. (2018) also list other regional and scale-specific adaptations of the five RUSLE factors, which could be coded for machine reuse similarly to the
example from Almagro et al., 2019.
***The original USLE model specified that at slopes greater than this threshold, uncertainty would increase, implying the value of using alternative methods to quantify
erosion from landslides.

Fig. 2. An individual modeler, or even a small modeling team, will never have access to the comprehensive body of scientific knowledge relevant to their modeling
problem. With access to interoperable scientific knowledge and the means to integrate it, a modeler can complete scientific tasks more rapidly, comprehensively, and
reproducibly. Local scientific resources can also be contributed to a global knowledge commons (top two blue arrows and Fig. 3). EO: Earth observation; RUSLE:
Revised Universal Soil Loss Equation.
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reporting of knowledge gaps, trends, and the status of nature from diverse
knowledge systems more findable and accessible and in wider use of open
and cloud-optimized file formats. An IPBES Ontology has been developed
and used to support consistent reporting in literature reviews that un-
derlie IPBES assessments (Dadvar and Niamir, 2024).

Interoperability would be an integral part of the ongoing IPBES
monitoring assessment (IPBES, 2022b), which aims, among other goals,
to support national and international efforts to monitor progress to-
wards the goals and targets of the Kunming-Montreal Global Biodiver-
sity Framework (CBD, 2022a). IPBES’ second global assessment is
scheduled to begin in 2026 and complete by 2030. IPBES aspires to
deliver results of this assessment in a fully FAIR manner (Dadvar et al.,
2024a, b, c), from key messages in the summary for policymakers to
supporting subchapters and their underlying resources and references.
Much work remains to achieve this, ranging from pairing containerized
models with machine-actionable data to more widespread and consis-
tent use of rigorous semantics to describe IPBES data, knowledge, and
scenarios. Given its mandate to assess knowledge, there is also potential
to use the FAIR Principles to improve the speed, transparency, and
quality of IPBES’ knowledge delivery to stakeholders during capacity
building and regional outreach activities.

U.N. deliberative processes, which require consensus from all
parties, have thus far yielded a slow uptake of the FAIR and CARE
Principles. One reason for this is the unequal level of resources that
countries can dedicate to IPBES and other Multilateral Environmental
Agreements; those lacking resources also lack capacity to support
implementation of new technical requirements like FAIR. This suggests
the need for further attention to regional capacity building on interop-
erability, demonstration of the value it adds, and development of tools to
facilitate its achievement.

4.2. SEEA EA

As an international standard for environmental-economic statistics,
the SEEA by design involves formalization of definitions and methods

that underlie consistent measurement and reporting on natural re-
sources (SEEA Central Framework), ecosystems and ES (SEEA EA), and
their connection to economic statistics. Creation and periodic updates to
such standards follow an agreed development process that ultimately
results in their adoption as standards by the U.N. Statistical Commission,
which is comprised of national statistical offices from around the world
(Edens et al., 2022). The U.N. Statistical Commission has guided the
evolution of the System of National Accounts since the late 1940 s and
the SEEA since the early 1990 s. Both systems require development of
agreed concepts, definitions, measurement principles, and classifica-
tions, though their underlying definitions typically adhere to controlled
vocabularies rather than ontologies. Given the inherent need for stan-
dardization that underlies national statistics, SEEA EA’s definitions
could be used to further formalize ES-related concepts into ontologies.
The Statistical Data and Metadata eXchange (SDMX, 2024) is a set of
standards, guidelines, and tools begun in 2001 to facilitate semantic
interoperability of statistical data; its interoperability with SEEA EA data
will support integration of ES with national economic accounts.

Starting early in its development, SEEA EA faced the challenge of
quantifying ecosystems and their services. This required pairing the
expertise of the statistical and ES modeling communities, and efforts to
standardize ES definitions (e.g., U.N., 2021) and measurement ap-
proaches. National statistical offices play a critical role in producing
SEEA accounts, but lack familiarity with geospatial data and interdis-
ciplinary ES modeling. A typical solution to this problem is for national
statistical offices to partner with national mapping, environmental, and
natural resource agencies and academia to produce SEEA EA accounts,
but such collaborations require time and effort to mature. The challenge
of jumpstarting the process of SEEA EA accounts production led to a
partnership between the U.N. Statistics Division and the ARIES Project
to develop ARIES for SEEA, a semantic interoperability-focused
approach to compiling ecosystem accounts (see Box 3).

Box 3
ARIES for SEEA and ARIES-4-PEOPLE: An interoperability-first approach to ecosystem services.

The ARIES Project (Villa et al., 2014) and its underlying open-source k.LAB software platform have been designed from its inception in 2007 to
support semantic interoperability (Integrated Modelling Partnership, 2021). k.LAB combines: (1) machine-actionable data and models, (2)
semantics to describe interdisciplinary scientific data and models supporting machine reasoning through ontologies (Villa and Adamo, 2024),
which can (3) describe appropriate conditions under which to reuse data and models, enabling (4) a machine reasoning algorithm to select,
assemble, and report results and provenance for scientific workflows.

Among other strategies, ARIES uses Open Geospatial Consortium Web Services to support machine actionability for data (see also Lacayo et al.,
2021), as well as modern cloud-optimized technologies, like cloud-optimized GeoTIFFs indexed in Spatiotemporal Asset Catalogs (STAC, 2024).
These strategies enable machines to request a specific dataset for a user-specified region and resolution; k.LAB automatically conducts needed
geospatial operations (e.g., reprojection and resampling), unit conversion, and integration with other data and models.

Data and models in ARIES are semantically annotated in version-controlled projects. This approach balances privacy with transparency through
a lifecycle designed to validate projects’ content, enabling data and models to remain private or shared for public use as appropriate (Integrated
Modelling Partnership, 2021). By design, k.LAB supports integration of a range of data and model types, from deterministic to probabilistic and
machine learning models.

Given SEEA EA’s need to assemble diverse data and models, a partnership between the ARIES Project and the U.N. Statistics Division created a
web-based application, ARIES for SEEA (U.N., 2022), to facilitate SEEA EA’s global implementation, and published a strategy document to
promote interoperability of SEEA data and models (U.N. et al., 2023). The partnership maintains and extends the application and provides
training and support to facilitate customization of SEEA accounts through contribution of interoperable data and models by the research and
statistical communities (U.N., 2024). Web applications like ARIES for SEEA enable relatively rapid and user-friendly access to interoperable data
and models by a range of stakeholders.

More recently, the European Space Agency-funded PEOPLE-EA Project has supported creation of computational infrastructure linking ARIES
and its k.LAB client API (k.LAB, 2024) with the INCA tool (Buchhorn et al., 2022; see section 3.2) and openEO computational platform (ESA,
2024). This project improves the interoperability of the ARIES and INCA modeling components and their linkage to Earth observation data and
SEEA EA data and models. Along with pilot testing the approach in five European countries, this project adds newly interoperable data and
models for forest ecosystem condition (Maes et al. 2023) and soil erosion control (La Notte et al. 2021), enabling their automated assembly and
reuse by ARIES in appropriate contexts when compiling SEEA EA accounts. This new system-of-systems environment enables the integration of
available Python models with time-series Earth observation products through OpenEO.
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4.3. GEO BON

GEO BON works to develop biodiversity monitoring standards, syn-
thesize global biodiversity knowledge, and guide decision making and
policy (Scholes et al., 2012). Interoperability is required to support
consistent measurement of biodiversity and ES and thus has been a core
focus from GEO BON’s inception. Essential Biodiversity Variables
(EBVs) were developed to standardize data collection and track biodi-
versity change across scales and locations with substantial community
engagement put into their semantics and interoperability (Kissling et al.,
2015, Hardisty et al., 2019).9

More recently, “Essential Ecosystem Service Variables” (EESVs,
Balvanera et al.., 2022) seek to extend the EBV concept to ES, but their
development remains in its early stages (Schwantes et al., 2024) and
little effort has been placed on their semantic underpinnings. Further
work is needed to conceptualize and operationalize EESVs and their
relationship to EBVs, as well as Essential Ocean and Climate Variables,
supporting their interoperability (Mazzetti et al., 2022). The ESOnto
ontology (Ayuningsih, 2019, Drakou et al., 2019) was designed to
formalize relationships between ES concepts, to create a standardized
path for information flow across ES classification systems, and under-
pinning ecosystem attributes, by linking to ENVO. The ESMO ontology,
by contrast, focuses on monitoring ES, emphasizing the diverse bio-
physical and socioeconomic aspects of ES and data needed to do so
(Affinito et al., 2024).

GEO BON also proposes the development of a cloud-based Global
Biodiversity Observation System (GBiOS) patterned on the existing

climate monitoring system, to integrate billions of observations into
coherent predictive models (Gonzalez et al., 2023b, WMO, 2024). The
GBiOS would be built upon EBVs and EESVs, enabling detection and
attribution of biodiversity and ES change (Gonzalez et al., 2023a, b).
Adherence to the FAIR and CARE Principles, and particularly interop-
erability, is critical for GBiOS. To support data analysis for GBiOS, GEO
BON has developed “BON in a Box” (GEO GEO BON, 2024c), a user-
directed (i.e., non-automated) tool to streamline EBV production using
adaptable scripts and pipelines (Griffith et al., 2024). BON in a Box is
programming language-agnostic and includes file format conversion
scripts to support interoperability in its analysis pipeline. To date, it has
not integrated formal ontologies or vocabularies. However, that would
be a necessary and natural next step once the needed semantic resources
are available. BON in a Box could also be adapted to produce EESVs. In
parallel to GBiOS, GEO BON collaborators are developing an ES
Observation Network for consistently monitoring ES. To become reality,
such a system must develop operational EESVs with strong semantic
underpinnings, and would benefit from integration with BON in a Box
and ARIES.

4.4. International ecosystem services initiatives: Summary

While IPBES, SEEA EA, and GEO BON have important differences in
their objectives, stakeholders, and capacity, they share two critical
similarities – their (1) goal of monitoring and accounting for changes in
ES over time and (2) need to integrate a complex and highly dispersed
body of scientific knowledge at subnational through global scales.
Achieving these goals – particularly the ability to produce scientifically
robust, low-latency data – will be require a greater focus on interoper-
ability by the initiatives themselves and the ES research community
(Vári et al., 2024). The semantics, data, models, and scenarios sup-
porting interoperability would also need to include closely related topics
such as ecosystem extent and condition and integration with economic
data (needed for SEEA EA), biodiversity (needed for GEO BON), and
other nature-related themes (COP28, 2023).

Fig. 3. A global knowledge commons to support implementation of the System of Environmental-Economic Accounting – Ecosystem Accounting (SEEA EA). Pro-
cesses for an individual country are on the left. Countries will likely vary in their use of and contributions to a global knowledge commons (reflected by yellow arrows
of varying width, right side of the figure). For further details, see U.N. et al. (2023). Concrete examples of contributions to an interoperable global knowledge base for
SEEA include EU data and models for forest condition and soil erosion control accounts (see Box 3).

9 Specifically, the “Bari Manifesto” calls for the use of (1) data management
plans, (2) common data structures, (3) metadata using community-accepted
standards, (4) data quality control, (5) standardized APIs, (6) standard, repro-
ducible workflows, (7) human and machine-readable provenance, (8) devel-
opment and use of standard ontologies, (9) preservation in repositories using
persistent identifiers, and (10) adherence to the FAIR principles (Hardisty et al.,
2019).
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Widespread use of interoperable data and models could transform
these global initiatives, as national data producers, academics, and
others could both provide data to, and draw data from, a global
knowledge commons (Balbi et al., 2022). In the case of SEEA EA, na-
tional statistical offices and their partners tasked with developing
ecosystem accounts could readily draw from federated, interoperable
repositories, blend those data and models with their own national data
and models, and, where appropriate, contribute their data and models to
further enrich the global commons (Fig. 3). Academics and other re-
searchers could also draw from, and contribute to, the same commons,
maximizing the impact of their science. GEO BON envisions a similar
process through BON in a Box and GBiOS, which would ideally be
interoperable with the approach being advanced for SEEA EA (U.N.,
2024).

SEEA and GEO BON also play key roles in supporting the imple-
mentation of monitoring for the Global Biodiversity Framework, e.g.,
Goals A and B and Targets 6, 11, and 21 (CBD, 2022b). Some compo-
nents of the Kunming-Montreal Global Biodiversity Framework draw
directly from SEEA EA, while others go beyond it, for instance by
incorporating worldviews from different disciplines to identify trends in
social-ecological systems and ES. Improved alignment with SEEA-based
headline indicators (CBD, 2022b) and semantics from ARIES would thus
be beneficial.

5. Next steps toward interoperability for ecosystem services

5.1. An interoperability community of practice for ecosystem services

Widely applied, community-endorsed semantic standards are needed
to advance interoperability for ES, yet the semantic resources described
in section 3.1 have important gaps and have not yet been widely
adopted. Given this need, we believe a next critical step lies in the cre-
ation of a community of practice supporting interoperability across the
ES community. Past efforts to engage the ES community, for instance,
regarding data standards (Crossman et al., 2013, Drakou et al., 2015),
have met limited participation, likely due to their perception as “too
technical.” Yet, improved interoperability is critical to address the
knowledge fragmentation challenge that limits widespread ES and na-
ture monitoring and reporting (i.e., TNFD, 2024). Despite the size of the
challenge, it is notable that approaches needed to achieve interopera-
bility can provide critical benefits to the ES community when applied
consistently across different modeling approaches and platforms.

Returning to the notably successful example in genomics, such an
effort could draw inspiration from that community’s success criteria for
semantics – “community involvement; clear goals; limited scope; simple,
intuitive structure; continuous evolution; active curation; and early use”
(Bada et al., 2004). Such an effort would ideally engage a diverse cross-
section of the ES community, focus on the semantic interoperability
challenge for quantitative ES assessments, make transparent and well-
justified architectural choices, and strive for early use and continual
evolution (Table 2). These criteria share overlap with the knowledge co-
production literature, which suggests the importance of context-based,
pluralistic, goal-oriented and interactive co-production processes
(Norström et al. 2020). Finally, the experience of the Open Biological
and Biomedical Ontologies (OBO) Foundry (Jackson et al., 2021) also
offers valuable lessons.

Following from consensus on goals and key architectural choices, the
key challenge will be establishment and consistent use of clear, mean-
ingful concepts, as imprecisely defined or improperly applied semantics
would lead to substandard results in an interoperable system (the well-
known “garbage in-garbage-out” principle). Transparent provenance
and an active user community are some of the best defenses against this.
A community of practice would also contribute to ongoing awareness-
raising on the importance of interoperability. Additionally, it could
promote the “technical solutions” to interoperability that currently exist
(i.e., using appropriate licensing, file formats, and APIs, section 2), yet
are inconsistently used, and strive to make them easier to apply, for
example, in organizations where technical expertise and resources are
limited.

Power dynamics inevitably arise during standardization efforts
(Steger et al. 2018), so representative participation of diverse groups,
skillful facilitation, transparent processes, and careful scoping of effort
are needed to ensure that standardization, e.g., for quantitative ES as-
sessments, does not drown out other important forms of knowledge.
Inherent challenges exist to readily addressing these power dynamics.
First, knowledge engineering is a highly specialized field typically
conducted in English, making expertise highly concentrated, with high
real or perceived barriers to entry. Second, semantics carry a great deal
of inertia: they are slow to develop, requiring substantial time invest-
ment by partners; simultaneously, the few individuals and groups
already involved in semantics for ES have substantial incentive to carry
their own work forward, posing challenges for achieving consensus. A
useful starting point would be to clarify the purposes of existing se-
mantic resources and transparently discuss and debate advantages and
disadvantages of major architectural choices (e.g., which core/upper-
level ontologies to use). This inertia problem is balanced against the
urgency of scaling up national and global ES monitoring efforts (section
4), making efficient reuse of existing semantic and software resources
valuable, as starting from scratch would be costly.

Finally, we note that the FAIR Principles are not a panacea for all

Table 2
Problems and potential solutions an ecosystem services interoperability com-
munity of practice could address. ESP: Ecosystem Services Partnership, GEO
BON: Group on Earth Observations-Biodiversity Observation Network, IPBES:
Intergovernmental Science-Policy Panel on Biodiversity and Ecosystem Services,
PECS: Programme on Ecosystem Change and Society, SEEA: System of
Environmental-Economic Accounting, TNFD: Taskforce on Nature-related
Financial Disclosures.

Challenge Potential solutions

1. Community involvement • Target key initiatives & organizations for
involvement (e.g., Capitals Coalition, ESP, GEO
BON, IPBES, PECS, SEEA, TNFD, key journal
editorial boards)

• Keep membership open to other interested parties
• Ensure disciplinary diversity, strive to maximize

participation from Global South
2. Clear goals • Consider semantic interoperability as a key

motivator
• Provide descriptors for data & models underlying

quantitative ES assessments & defining ES
indicators or metrics relevant to ES monitoring

• Consider how to address legitimate divergent
worldviews in ES

• If multiple types of semantic resources are deemed
desirable, clarify their purposes

3. Limited scope • Above scope excludes, for instance, qualitative
research and indigenous knowledge for which
imposition of a singular worldview is undesirable

4. Simple, intuitive structure • Transparently discuss & debate pros & cons of
major architectural choices

• As starting point, strongly consider consensus
described in section 3.1 (Leadbetter and Vodden,
2016, Stoica and Peckham, 2019, Maganga et al.,
2021, Villa and Adamo, 2024)

• Keep semantics parsimonious
5. Continuous evolution • Acknowledge that semantics for ES are never

“complete” but evolve to meet growth& change in
the science

6. Active curation • Long-term curation & dedicated process for
updates

• Commitment to & staffing of the effort as a public
good for the ES community

7. Early use among
demonstration projects

• Maximize ontology reuse by codeveloping
semantics with users

• Ensure usability through intentionally selected,
collaborative pilot projects
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scientific data management challenges. Notably, the CARE Principles for
indigenous data governance are increasingly important as indigenous
and western scientific knowledge become more widely used in a com-
plementary manner. The TRUST Principles (Transparency, Re-
sponsibility, User focus, Sustainability, Technology; Lin et al., 2020)
provide guidance on the management of scientific repositories to sup-
port the FAIR Principles. Collective implementation of FAIR, CARE, and
TRUST (O’Brien et al., 2024) provides a foundation for equitable open
science. Similarly, effective data security measures and computational
efficiency are important criteria for research software design that ES
software developers must consider alongside the FAIR Principles
(Lamprecht et al., 2020).

5.2. Transformative cultural changes supporting interoperability

Given the centrality of people to the challenge of interoperability
(Ramage and Slotin, 2021), cultural changes can support its imple-
mentation in the ES field, beyond an interoperability community of
practice. Cultural changes extend from individuals and research groups
to structural changes in organizations.

For individuals, shifting mindsets around data sharing and interop-
erability are important. In past decades, scientists produced and
managed their own data, giving limited thought to their reusability. This
is changing through generational turnover and continued diffusion of
open science principles (Campbell et al., 2019, Borycz et al., 2023). The
potential for misuse is a frequently noted barrier to scientists’ sharing of
data (Perrier et al., 2020), and further work is needed to build effective
guardrails around ES knowledge reuse. Interoperability will also benefit
from individuals’ efforts at community building that bridge various di-
vides – by geography, disciplines, and research groups. These barriers
exist for various reasons, including diverse training and backgrounds,

multiple valid perspectives from which to understand ES, and academic
incentives rewarding individualistic activities (Tiokhin et al., 2023).
While there is no ready solution for breaking down these barriers,
recognizing and uplifting our shared goals – and urgency to achieve
robust ES monitoring as a global moonshot for our community – may be
a useful starting point in overcoming it.

Additionally, structural support for interoperability within in-
stitutions is vital. Through their convening power, organizations can
facilitate development and promotion of best practices, incentives, and
other enabling conditions under which interoperability can progress.

International initiatives recognize the importance of interopera-
bility, but devote varying levels of effort toward it (section 4, e.g., IPBES,
2022a, U.N. et al., 2023, GEO GEO BON, 2024d). Additionally,
Ecosystem Services Partnership Thematic Working Groups 4 and 5
envision development of guidelines and standards for improved ES
assessment (ESP, 2024). The World Bank faces similar challenges in its
efforts to more comprehensively treat ES and natural capital in its
Changing Wealth of Nations report (Bagstad et al., 2018). These groups
and others can work individually and together to create and implement
a shared vision for interoperability in ES.

Institutions, including funders, can create incentives rewarding
collaboration over competition and develop collaborative networks of
scientists. Science synthesis centers could play this role, as they have
previously supported model integration (e.g., Iwanaga et al., 2021) and
semantics (Leinfelder et al., 2011). Organizations will also likely play a
role in the governance needed to support community-driven interoper-
ability for ES (Chen et al., 2020, U.N. et al., 2023).

Funders and research institutions can advance interoperability by
providing adequate funding for data management. They can also sup-
port career advancement through reward structures that move beyond a
“publish or perish” mindset demanding ever-greater volume and speed

Fig. 4. Roles in the transition to interoperable science. FAIR: Findable, Accessible, Interoperable, Reusable; NGO: non-governmental organization. Adapted from
Balbi et al., 2022, reproduced under CC BY 4.0.
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of scientific publications, toward structures that reward the time and
effort spent to make widely used, FAIR scientific products. Data and
code repositories also play a central role in implementation of the FAIR
Principles (e.g., DataONE, 2024, Tykhonov, 2024), and scientific jour-
nals can do so as well (Kitchener, 2022, INCF, 2023).

Finally, organizations can help ensure that methods supporting
interoperability for ES are available and applied in the Global South,
supporting capacity building, equitable access to, and application of
knowledge about ES to decision making. Doing so is critical to ensure
that scientific knowledge contained in an interoperable knowledge base
is globally representative (Schirpke et al., 2023).

5.3. The interoperable ecosystem service assessment of the future

ES assessments built upon FAIR data, models, and software are
needed to support ES and ES-adjacent monitoring and accounting
frameworks (section 4; Vaz et al., 2021; Balvanera et al.., 2022; Gon-
zalez et al., 2023a). In this future, as new input data are generated, ES
models will be able to be re-run to provide continuously updated data-
sets and time series; as such data become increasingly timely, ES
monitoring will move closer and closer to real-time. When novel data,
models, and model parameterizations become available, new results can
be benchmarked against previous data for regions of interest to maintain
consistent time series. Ongoing work will continue to develop localized
knowledge and more accurately represent heterogeneous local-scale
processes that underpin ES. This local-scale knowledge can then be in-
tegrated into improved regional, national, and global assessments, as
appropriate (Chaplin-Kramer et al., 2024).

Interoperable ES knowledge carries obvious benefits for widening
access to information – “democratizing” the science and its application
(Carmen et al., 2018), particularly in capacity-limited environments
including the Global South. Most ES modelers are familiar with the
process of spending weeks to months searching for, downloading,
reformatting, and cleaning data. This puts two critical constituencies at
a disadvantage – (1) younger, less experienced and well-connected re-
searchers with less knowledge of data resources spread across many
repositories and having smaller social networks to facilitate data re-
quests (Gregory et al., 2019) and (2) decision makers who need more
rapid answers than time-consuming modeling processes can provide. By
substituting individual modelers’ internal knowledge bases, which vary
widely based on experience, with a growing, community-driven, ma-
chine-actionable knowledge base, knowledge in the ES field can become
additive and users’ capabilities greatly enhanced. An interoperable
system can also enable the use of a tiered ES modeling approach
(Kareiva et al., 2011; Martínez-López et al., 2019; U.N., 2022).

This level of interoperability will require changes in how scientists,
modelers, and data providers think about and manage their knowledge
(Balbi et al., 2022, Fig. 4). Achieving interoperability requires work
(Santoro et al., 2020), and platform developers must carefully consider
how to lower barriers to entry for both end users and contributors of
scientific knowledge, including early- to late-career scientists, data
stewards, and managers of scientific repositories. Data and model de-
velopers will likely view further steps to make their products interop-
erable as burdensome unless substantial efforts are made to make these
additional steps as efficient and rewarding as possible.

5.4. Conclusions

The recognition that standards are needed for ES data management
and reporting is not new (Crossman et al., 2013, Drakou et al., 2015,
Edens et al., 2022). We believe that today’s ES modeling community
faces the choice between a status quo of increasingly fragmented, non-
FAIR data, models, and software, versus coalescing around shared
community solutions to the interoperability and reusability problem.
The adoption of such solutions could take many years, or be accelerated
by the involvement of key organizations and individuals. As such, the

interoperable ES assessment of the future (sections 3.5 and 5.3) need not
necessarily be that of the far future. While any improvements in FAIR ES
data, models, and software are valuable steps forward, incremental
advances are not commensurate with the urgency of providing ES in-
formation to address pressing global challenges (Balbi et al., 2022).

FAIR knowledge could enable ES assessments to increasingly shift
from human-driven to faster, more automated integration of interoper-
able data and models (Laniak et al., 2013, Belete et al., 2017). Platforms
supporting interoperability can ideally blend both adaptability and
power – for instance, providing substantial flexibility for very technical
modelers and programmers, while hiding complexity that is unneeded
by novice users, yet still providing provenance (Gries et al., 2018,
Spiekermann et al., 2019) to maintain transparency in the modeling
process (e.g., U.N., 2022). Done well, interoperable ES data, models, and
software can support global monitoring for a range of high-visibility
efforts requiring integration of diverse data. These include IPBES,
SEEA, and GEO BON, but also the Sustainable Development Goals
(Gonzalez Morales and Orrell, 2018, Revez et al., 2022) and Taskforce
on Nature-related Financial Disclosures that is exploring creation of a
“global nature-related public data facility” (TNFD, 2024), which would
benefit from a focus on interoperability with other ES initiatives.
Through appropriate reuse of tailored knowledge, credible and high-
quality reporting on ES will also play a critical role in the sustainable
digital transformation (CODES, 2024). At the same time, we recognize
that real limits likely exist on the interoperability of certain types of ES
data, e.g., those collected using participatory methods and drawing from
indigenous knowledge.

Despite the size of this challenge, we see reason for optimism. Ten to
fifteen years ago, graduate students were not routinely taught to code
using collaborative tools, nor did scientists regularly use public data and
code repositories. Interoperability and reusability for ES and science
more broadly are natural next steps toward greater transparency and
reproducibility. In an age of ever-expanding scientific knowledge, we
agree with Hampton et al. (2013) that scientists who effectively share
and reuse data will ultimately do the most valuable research, conducting
more novel, timely, and broad syntheses that bring new perspectives to
past datasets. Given the urgency of confronting global environmental
challenges with actionable evidence (Balbi et al., 2022, COP28, 2023)
and at a time when scientific knowledge is growing too quickly for in-
dividual scientists to keep up with (Borycz and Carroll, 2020), we
believe the time is ripe to expand the level of engagement on interop-
erability for ES across our community.
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editing, Writing – original draft. María-José Sanz: Writing – review &
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Norström, A.V., Cvitanovic, C., Löf, M.F., West, S., Wyborn, C., Balvanera, P., et al.,
2020. Principles for knowledge co-production in sustainability research. Nat.
Sustain. 3, 182–190. https://doi.org/10.1038/s41893-019-0448-2.

O’Brien, M., Duerr, R., Taitingfong, R., Martinez, A., Vera, L., Jennings, L.L., et al., 2024
Earth Science Data Repositories: Implementing the CARE Principles. Data Science
Journal, 23(37), 1–29. https:// doi.org/10.5334/dsj-2024-037.

Obrst, L., 2010. Ontological architectures, in: Poli, R., Healy, M., Kameas, A. (Eds.),
Theory and Applications of Ontology: Computer Applications, Dordrecht: Springer
Netherlands, pp. 27-66.

Otte, J.N., Beverley, J., Ruttenberg, A., 2022. BFO: Basic formal ontology. Appl. Ontol.
17 (1), 17–43. https://doi.org/10.3233/AO-220262.

Palomo, I., Adamescu, M., Bagstad, K.J., Cazacu, C., Klug, H., Nedkov, S., 2017. Tools for
mapping ecosystem services, in: Burkhard, B., Maes, J. (Eds.), Mapping ecosystem
services, Pensoft, pp. 70-74.

Palomo, I., Willemen, L., Drakou, E., Burkhard, B., Crossman, N., Bellamy, C., et al.,
2018. Practical solutions for bottlenecks in ecosystem services mapping. One
Ecosyst. 3, e20713. https://doi.org/10.3897/oneeco.3.e20713.

Panagos, P., Borrelli, P., Meusburger, K., Alewell, C., Lugato, E., Montanarella, L., 2015.
Estimating the soil erosion cover-management factor at the European scale. Land Use
Policy 48, 38–50. https://doi.org/10.1016/j.landusepol.2015.05.021.

Papoutsoglou, E.A., Athanasiadis, I.N., Visser, R.G.F., Finkers, R., 2023. The benefits and
struggles of FAIR data: the case of reusing plant phenotyping data. Sci. Data 10 (1),
457. https://doi.org/10.1038/s41597-023-02364-z.

Pascual, U., Balvanera, P., Diaz, S., Pataki, G., Roth, E., Stenseke, M., et al., 2017.
Valuing nature’s contributions to people: the IPBES approach. Curr. Opin. Env. Sust.
26–27, 7–16. https://doi.org/10.1016/j.cosust.2016.12.006.

Pereira, H.M., Martins, I.S., Rosa, I.M.D., Kim, H., Leadley, P., Popp, A., et al., 2024.
Global trends and scenarios for terrestrial biodiversity and ecosystem services from
1900 to 2050. Science 384, 458–465. https://doi.org/10.1126/science.adn3441.

Perrier, L., Blondal, E., MacDonald, H., 2020. The views, perspectives, and experiences of
academic researchers with data sharing and reuse: A meta-synthesis. PLoS One 15
(2), e0229182. https://doi.org/10.1371/journal.pone.0229182.

Potschin, M., Haines-Young, R., 2013. Landscapes, sustainability and the place-based
analysis of ecosystem services. Landsc. Ecol. 28, 1053–1065. https://doi.org/
10.1007/s10980-012-9756-x.

Potschin-Young, M., Burkhard, B., Czúcz, B., Santos-Martín, F., 2018. Glossary of
ecosystem services mapping and assessment terminology. One Ecosyst. 3, e27110.
https://doi.org/10.3897/oneeco.3.e27110.

Powers, S.M., Hampton, S.E., 2019. Open science, reproducibility, and transparency in
ecology. Ecol. Appl. 29 (1), e01822. https://doi.org/10.1002/eap.1822.

Puy, A., Saltelli, A., 2023. Mind the hubris: Complexity can misfire. In: Saltelli, A., Di
Fiore, M. (Eds.), The Politics of Modelling. Oxford University Press, Oxford,
pp. 51–68.

Ramage, S., Slotin, J., 2021. Why people are essential in data interoperability. https://
www.data4sdgs.org/news/why-people-are-essential-data-interoperability (accessed
29 March 2024).

Ramirez-Gomez, S.O., Torres-Vitolas, C.A., Schreckenberg, K., Honzák, M., Cruz-
Garcia, G.S., Willcock, S., et al., 2015. Analysis of ecosystem services provision in the

K.J. Bagstad et al. Ecosystem Services 72 (2025) 101705 

17 

http://refhub.elsevier.com/S2212-0416(25)00009-9/h0505
http://refhub.elsevier.com/S2212-0416(25)00009-9/h0505
https://doi.org/10.1038/s41586-022-05318-4
https://doi.org/10.1016/j.gloenvcha.2023.102681
https://doi.org/10.1016/j.gloenvcha.2023.102681
http://refhub.elsevier.com/S2212-0416(25)00009-9/h0520
http://refhub.elsevier.com/S2212-0416(25)00009-9/h0520
http://refhub.elsevier.com/S2212-0416(25)00009-9/h0520
http://refhub.elsevier.com/S2212-0416(25)00009-9/h0520
https://doi.org/10.1080/14888386.2015.1068709
https://doi.org/10.1080/14888386.2015.1068709
https://blog.scholasticahq.com/post/ways-journals-can-promote-fair-data/
https://blog.scholasticahq.com/post/ways-journals-can-promote-fair-data/
http://refhub.elsevier.com/S2212-0416(25)00009-9/h0535
http://refhub.elsevier.com/S2212-0416(25)00009-9/h0535
http://refhub.elsevier.com/S2212-0416(25)00009-9/h0535
https://doi.org/10.1016/j.ecoser.2013.11.002
https://doi.org/10.1016/j.eiar.2019.106317
https://doi.org/10.1016/j.eiar.2019.106317
http://refhub.elsevier.com/S2212-0416(25)00009-9/h0550
http://refhub.elsevier.com/S2212-0416(25)00009-9/h0550
http://refhub.elsevier.com/S2212-0416(25)00009-9/h0550
http://refhub.elsevier.com/S2212-0416(25)00009-9/h0550
http://refhub.elsevier.com/S2212-0416(25)00009-9/h0550
https://doi.org/10.1016/j.cageo.2021.104821
https://doi.org/10.3233/DS-190026
https://doi.org/10.3233/DS-190026
https://doi.org/10.1016/j.envsoft.2012.09.006
https://doi.org/10.1162/dint_a_00034
https://doi.org/10.1162/dint_a_00034
https://doi.org/10.1080/17538947.2015.1033483
https://doi.org/10.1080/17538947.2015.1033483
https://doi.org/10.5194/essd-11-1385-2019
https://doi.org/10.5194/essd-11-1385-2019
https://doi.org/10.1038/s41597-020-0486-7
https://doi.org/10.1038/s41597-020-0486-7
https://doi.org/10.1038/s41467-023-39434-0
http://refhub.elsevier.com/S2212-0416(25)00009-9/h0600
http://refhub.elsevier.com/S2212-0416(25)00009-9/h0600
http://refhub.elsevier.com/S2212-0416(25)00009-9/h0600
https://doi.org/10.4236/as.2018.95036
https://doi.org/10.4236/as.2018.95036
https://doi.org/10.1016/j.scitotenv.2018.09.371
https://doi.org/10.1016/j.envsci.2021.12.023
https://doi.org/10.1016/j.envsci.2021.12.023
https://doi.org/10.1029/2021WR030600
https://doi.org/10.1029/2021WR030600
http://refhub.elsevier.com/S2212-0416(25)00009-9/h0630
http://refhub.elsevier.com/S2212-0416(25)00009-9/h0630
http://refhub.elsevier.com/S2212-0416(25)00009-9/h0630
https://doi.org/10.1016/j.scitotenv.2017.12.001
http://refhub.elsevier.com/S2212-0416(25)00009-9/h0640
https://doi.org/10.1002/ecs2.1974
https://doi.org/10.1002/ecs2.1974
https://doi.org/10.1038/s41562-016-0021
https://doi.org/10.1038/461160a
https://doi.org/10.1038/461160a
https://doi.org/10.5555/1971674.1971677
https://doi.org/10.5555/1971674.1971677
https://doi.org/10.3233/AO-220273
https://doi.org/10.3233/AO-220273
https://doi.org/10.1038/s41893-019-0448-2
https://doi.org/10.3233/AO-220262
https://doi.org/10.3897/oneeco.3.e20713
https://doi.org/10.1016/j.landusepol.2015.05.021
https://doi.org/10.1038/s41597-023-02364-z
https://doi.org/10.1016/j.cosust.2016.12.006
https://doi.org/10.1126/science.adn3441
https://doi.org/10.1371/journal.pone.0229182
https://doi.org/10.1007/s10980-012-9756-x
https://doi.org/10.1007/s10980-012-9756-x
https://doi.org/10.3897/oneeco.3.e27110
https://doi.org/10.1002/eap.1822
http://refhub.elsevier.com/S2212-0416(25)00009-9/h0760
http://refhub.elsevier.com/S2212-0416(25)00009-9/h0760
http://refhub.elsevier.com/S2212-0416(25)00009-9/h0760


Colombian Amazon using participatory research and mapping techniques. Ecosyst.
Serv. 13, 93–107. https://doi.org/10.1016/j.ecoser.2014.12.009.

Revez, J., da Silva, C.G., Corujo, L., 2022. Knowledge organization and the UN 2030
Agenda through the lens of interoperability, in: Lykke, M., et al. (Eds.), Knowledge
organization across disciplines, domains, services and technologies: Proceedings of
the Seventeenth International ISKO Conference 6-8 July 2022, Aalborg, Denmark,
pp. 233-248. Doi: 10.5771/9783956509568.

Rieb, J.T., Chaplin-Kramer, R., Daily, G.C., Armsworth, P.R., Bohning-Gaese, K.,
Bonn, A., et al., 2017. When, where, and how nature matters to ecosystem services:
Challenges for the next generation of ecosystem service models. Bioscience 67 (9),
820–833. https://doi.org/10.1093/biosci/bix075.

Rosa, I.M.D., Purvis, A., Alkemade, R., Chaplin-Kramer, R., Ferrier, S., Guerra, C.A.,
et al., 2020. Challenges in producing policy-relevant global scenarios of biodiversity
and ecosystem services. Global Ecol. Conserv. 22, e00886. https://doi.org/10.1016/
j.gecco.2019.e00886.

Russell, S., Norvig, P., 2020. Artificial Intelligence: A Modern Approach, 4th ed. Prentice
Hall, Upper Saddle River, NJ.

Santoro, M., Mazzetti, P., Nativi, S., 2020. The VLab Framework: An orchestrator
component to support data to knowledge transition. Remote Sens. (Basel) 12 (11),
1795. https://doi.org/10.3390/rs12111795.

Saxena, A.K., Chatti, D., Overstreet, K., Dove, M.R., 2018. From moral ecology to diverse
ontologies: relational values in human ecological research, past and present. Curr.
Opin. Env. Sust. 35, 54–60. https://doi.org/10.1016/j.cosust.2018.10.021.

Sayre, R., Karagulle, D., Frye, C., Boucher, T., Wolff, N.H., Breyer, S., et al., 2020. An
assessment of the representation of ecosystems in global protected areas using new
maps of World Climate Regions and World Ecosystems. Global Ecol. Conserv. 21,
e00860. https://doi.org/10.1016/j.gecco.2019.e00860.

Schirpke, U., Ghermandi, A., Sinclair, M., van Berkel, D., Fox, N., Vargas, L., et al., 2023.
Emerging technologies for assessing ecosystem services: a synthesis of opportunities
and challenges. Ecosyst. Serv. 63, 101588. https://doi.org/10.1016/j.
ecoser.2023.101558.

Schmidt, S., Seppelt, R., 2018. Information content of global ecosystem service databases
and their suitability for decision advice. Ecosyst. Serv. 32A, 22–40. https://doi.org/
10.1016/j.ecoser.2018.05.007.

Scholes, R.J., Walters, M., Turak, E., Saarenmaa, H., Heip, C.H., Tuama, et al., 2012.
Building a global observing system for biodiversity. Curr. Opin. Environ. Sust. 4 (1),
139–146. https://doi.org/10.1016/j.cosust.2011.12.005.

Schwantes, A.M., Firkowski, C.R., Affinito, F., Rodriguez, P.S., Fortin, M.J., Gonzalez, A.,
2024. Monitoring ecosystem services with Essential Ecosystem Service Variables.
Front. Ecol. Environ. e2792. https://doi.org/10.1002/fee.2792.

SDMX, 2024. Statistical Data and Metadata eXchange. https://sdmx.org/ (accessed 29
March 2024).

Semmens, D.J., Sherrouse, B.C., Ancona, Z.H., 2019. Using social-context matchning to
improve spatial function-transfer performance for cultural ecosystem service models.
Ecosyst. Serv. 38, 100945. https://doi.org/10.1016/j.ecoser.2019.100945.

Smith, B., Ashburner, M., Rosse, C., Bard, J., Bug, W., Ceusters, W., et al., 2007. The OBO
Foundry: coordinated evolution of ontologies to support biomedical data integration.
Nat. Biotechnol. 25 (11), 1251–1255. https://doi.org/10.1038/nbt1346.

Smith, B., 2023. Biomedical Ontologies, in Elkin, P.E. (Ed.), Terminology, Ontology and
their Implementations, Springer International Publishing, Cham, pp. 125-169.

Spake, R., Bellamy, C., Graham, L.J., Watts, K., Wilson, T., Norton, L.R., et al., 2019. An
analytical framework for spatially targeted management of natural capital. Nat.
Sustain. 2, 90–97. https://doi.org/10.1038/s41893-019-0223-4.

Spiekermann, R., Jolly, B., Herzig, A., Burleigh, T., Medyckyj-Scott, D., 2019.
Implementations of fine-grained automated data provenance to support transparent
environmental modelling. Environ. Modell. Softw. 118, 134–145. https://doi.org/
10.1016/j.envsoft.2019.04.009.

STAC 2024. SpatioTemporal Asset Catalogs. . (accessed 28 March 2024).
Steger, C., Hirsch, S., Evers, C., Branoff, B., Petrova, M., Nielsen-Pincus, M., et al., 2018.

Ecosystem services as boundary objects for transdisciplinary collaboration. Ecol.
Econ. 143, 153–160. https://doi.org/10.1016/j.ecolecon.2017.07.016.

Stoeckl, N., Jarvis, D., Larson, S., Larson, A., Grainger, D., 2021. Australian Indigenous
insights into ecosystem services: Beyond services towards connectedness–People,
place and time. Ecosyst. Serv. 50, 101341. https://doi.org/10.1016/j.
ecoser.2021.101341.

Stoica, M., Peckham, S.D., 2019. The Scientific Variables Ontology: A Blueprint for
Custom Manual and Automated Creation and Alignment of Machine-Interpretable
Qualitative and Quantitative Variable Concepts. Modeling the world’s systems,
2019. http://mint-project.info/assets/publications/stoica-peckham-cwm19.pdf
(accessed 29 March 2024).

Strobl, P.A., Woolliams, E.R., Molch, K., 2024. Lost in translation: The need for common
vocabularies and an interoperable thesaurus in Earth Observation Sciences. Surv.
Geophys. https://doi.org/10.1007/s10712-024-09854-8.

Studer, R., Benjamins, V.R., Fensel, D., 1998. Knowledge engineering: Principles and
methods. Data Knowl. Eng. 25 (1–2), 161–197. https://doi.org/10.1016/S0169-
023X(97)00056-6.

Taylor, K., Haller, A., Lefrançois, M., Cox, S. J., Janowicz, K., Garcia-Castro, R., et al.,
2019. The Semantic Sensor Network Ontology, Revamped. In JT@ ISWC. https://
ceur-ws.org/Vol-2576/paper11.pdf (accessed 23 October 2024).

Thomasson, A., 2022. “Categories”, The Stanford Encyclopedia of Philosophy (Winter
2022 Edition), Zalta, E.N., Nodelman, U., (Eds.). https://plato.stanford.edu/
archives/win2022/entries/categories/ (accessed 23 October 2024).

Tiokhin, L., Panchanathan, K., Smaldino, P.E., Lakens, D., 2023. Shifting the level of
selection in science. Perspect. Psychol. Sci. https://doi.org/10.1177/
17456916231182568.

TNFD, 2024b. A roadmap for upgrading market access to decision-useful nature-related
data, October 2024. https://tnfd.global/wp-content/uploads/2024/10/Discussion-
paper_Roadmap-for-enhancing-market-access-to-nature-data.pdf?v=1729942807
(accessed 28 October 2024).

Tucker, G.E., Hutton, E.W.H., Piper, M.D., Campforts, B., Gan, T., Barnhart, K.R., et al.,
2022. CSDMS: a community platform for numerical modeling of Earth surface
processes. Geosci. Model Dev. 15, 1413–1439. https://doi.org/10.5194/gmd-15-
1413-2022.

Tykhonov, V., 2024. Dataverse introduction: the past, present and future. https://
zenodo.org/records/10949034 (accessed 1 May 2024).

U.N., 2021. System of Environmental-Economic Accounting—Ecosystem Accounting
(SEEA EA), Online supplement: Ecosystem Services Reference List Crosswalk to
Selected Ecosystem Services Classifications and Typologies. https://seea.un.org/
sites/seea.un.org/files/documents/EA/seea_ea_online_supplement_ecosystem_
services_reference_list_crosswalk.xlsx (accessed 23 October 2024).

U.N., 2022. ARIES for SEEA. https://seea.un.org/content/aries-for-seea (accessed 1 April
2024).

U.N., 2024. UN ARIES for SEEA Sector Hub, https://unstats.un.org/bigdata/hubs/spain/
(Accessed 29 March 2024).

U.N., European Commission, Food and Agriculture Organization of the United Nations,
International Monetary Fund, Organisation for Economic Co-operation and
Development, World Bank, 2014. System of Environmental-Economic Accounting
2021 – Central Framework. United Nations, New York.

U.N., European Union, Food and Agriculture Organization of the United Nations,
International Monetary Fund, Organisation for Economic Co-operation and
Development The International Bank for Reconstruction and Development/The
World Bank, 2021. SEEA EA. System of Environmental-Economic Accounting –
Ecosystem Accounting (SEEA EA). White cover publication, pre-edited text subject to
official editing. https://seea.un.org/ecosystem-accounting (accessed 1 April 2024).

U.N., UNEP, Basque Centre for Climate Change, and USGS. 2023. An interoperability
strategy for the next generation of SEEA accounting. (accessed 1 April 2024).

UNESCO, 2022. UNESCO Thesaurus. https://vocabularies.unesco.org/browser/
thesaurus/en/page/?uri=http%3A%2F%2Fvocabularies.unesco.org%2Fthesaurus%
2Fconcept4772 (accessed 3 April 2024).

U.S. Environmental Protection Agency (USEPA), 2019. EcoService Models Library
(ESML). https://esml.epa.gov/ (accessed 29 March 2024).

van der Werf, B., Adamescu, M., Ayromlou, M., Bertrand, N., Boussard, H., Cazacu, C.,
et al., 2009. A Long-Term Biodiversity, Ecosystem and Awareness Research Network
SERONTO ontology. https://edepot.wur.nl/134909 (accessed 29 March 2024).

Van Riper, C.J., Landon, A.C., Kidd, S., Bitterman, P., Fitzgerald, L.A., Granek, E.F., et al.,
2017. Incorporating sociocultural phenomena into ecosystem-service valuation: the
importance of critical pluralism. Bioscience 67 (3), 233–244. https://doi.org/
10.1093/biosci/biw170.
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