(19)

(11) **EP 2 281 051 B1**

(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent:11.03.2015 Bulletin 2015/11
- (21) Application number: 09738189.1
- (22) Date of filing: 29.04.2009

(51) Int Cl.: C12N 15/82^(2006.01) C12N 15/53^(2006.01) A01H 5/00^(2006.01)

C12N 9/02^(2006.01) C12P 7/64^(2006.01)

- (86) International application number: PCT/EP2009/055210
- (87) International publication number: WO 2009/133145 (05.11.2009 Gazette 2009/45)

(54) Desaturase and method for the production of polyunsaturated fatty acids in transgenic organisms

Desaturase und Verfahren zur Herstellung mehrfach ungesättigter Fettsäuren in transgenen Organismen

Désaturase et procédé pour la production d'acides gras polyinsaturés dans des organismes transgéniques

(84)	Designated Contracting States: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR	 WO-A-2007/093776 BELL MICHAEL V ET AL: "Lipid composition during growth of motile and coccolith forms of Emiliaria burdley:" BUVTOCLEMISTRY
(30)	Priority: 30.04.2008 EP 08155461	(OXFORD), vol. 41, no. 2, 1996, pages 465-471, XP002535800 ISSN: 0031-9422
(43)	Date of publication of application: 09.02.2011 Bulletin 2011/06	 POND D W ET AL: "The lipid composition of the coccolithophore Emiliania huxleyi and its possible ecophysiological significance"
(73)	Proprietor: Rothamsted Research Limited Hertfordshire AL5 2JQ (GB)	JOURNAL OF THE MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM, vol. 76. no. 3. 1996. pages 579-594. XP008108121
(72)	Inventors: BAUER, Joerg 67117 Limburgerhof (DE) NAPIER, Johnathan A. Preston Hertfordshire SG4 7TR (GB) SAYANOVA, Olga St. Albans Hertfordshire AL3 7HF (GB)	 ISSN: 0025-3154 GUSCHINA I A ET AL: "Lipids and lipid metabolism in eukaryotic algae" PROGRESS IN LIPID RESEARCH, PERGAMON PRESS, PARIS, FR, vol. 45, no. 2, 1 March 2006 (2006-03-01), pages 160-186, XP025038614 ISSN: 0163-7827 [retrieved on 2006-03-01] SINGH S P ET AL: "Metabolic engineering of new fatty acids in plants" CURRENT OPINION IN PI ANT BIOLOGY, QUADRANT SUBSCRIPTION
(74)	Representative: Dick, Alexander Herzog Fiesser & Partner Patentanwälte PartG mbB Dudenstraße 46 68167 Mannheim (DE)	SERVICES, GB, vol. 8, no. 2, 1 April 2005 (2005-04-01), pages 197-203, XP004777425 ISSN: 1369-5266
(56)	References cited: WO-A-02/081668 WO-A-2005/103253	

Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

- NAPIER J A ET AL: "Progress towards the production of very long-chain polyunsaturated fatty acid in transgenic plants: Plant metabolic engineering comes of age" PHYSIOLOGIA PLANTARUM MARCH 2006 BLACKWELL PUBLISHING LTD GB, vol. 126, no. 3, March 2006 (2006-03), pages 398-406, XP002535802
- ZHOU ET AL: "Isolation and characterization of genes from the marine microalga Pavlova salina encoding three front-end desaturases involved in docosahexaenoic acid biosynthesis" PHYTOCHEMISTRY, PERGAMON PRESS, GB, vol. 68, no. 6, 3 March 2007 (2007-03-03), pages 785-796, XP005912642 ISSN: 0031-9422

Description

[0001] The present invention relates to a polynucleotide from *Emiliana huxleyi* which codes for a desaturase and which can be employed for the recombinant production of polyunsaturated fatty acids. The invention furthermore relates to

- ⁵ vectors, host cells and transgenic nonhuman organisms which comprise the polynucleotides according to the invention, and to the polypeptides encoded by the polynucleotides. The invention furthermore relates to antibodies against the polypeptides according to the invention. Finally, the invention also relates to production methods for the polyunsaturated fatty acids and for oil, lipid and fatty acid compositions and to their use as drugs, cosmetics, foodstuffs, feedstuffs, preferably fish food, or food supplements.
- 10 [0002] Fatty acids and triacylglycerides have a multiplicity of applications in the food industry, in animal nutrition, in cosmetics and in the pharmacological sector. Depending on whether they are free saturated or unsaturated fatty acids or else triacylglycerides with an elevated content of saturated or unsaturated fatty acids, they are suitable for very different applications. Polyunsaturated fatty acids such as linoleic acid and linolenic acid are essential for mammals, since they cannot be produced by the latter themselves. Polyunsaturated ω3-fatty acids and ω6-fatty acids are therefore an important constituent in animal and human nutrition.
- ¹⁵ constituent in animal and human nutrition.
 [0003] Polyunsaturated long-chain ω3-fatty acids such as eicosapentaenoic acid (= EPA, C20:5^{Δ5,8,11,14,17}) or do-cosahexaenoic acid (= DHA, C22:6^{Δ4,7,10,13,16,19}) are important components in human nutrition owing to their various roles in health aspects, including the development of the child brain, the functionality of the eyes, the synthesis of hormones and other signal substances, and the prevention of cardiovascular disorders, cancer and diabetes (Poulos,
- A Lipids 30:1-14, 1995; Horrocks, LA and Yeo YK Pharmacol Res 40:211-225, 1999). This is why there is a demand for the production of polyunsaturated long-chain fatty acids.
 [0004] Owing to the present-day composition of human food, an addition of polyunsaturated ω3-fatty acids, which are preferentially found in fish oils, to the food is particularly important. Thus, for example, polyunsaturated fatty acids such as docosahexaenoic acid (= DHA, C22:6^{Δ4,7,10,13,16,19}) or eicosapentaenoic acid (= EPA, C20:5^{Δ5,8,11,14,17}) are added
- to infant formula to improve the nutritional value. The unsaturated fatty acid DHA is said to have a positive effect on the development and maintenance of brain functions.
 [0005] Hereinbelow, polyunsaturated fatty acids are referred to as PUFA, PUFAs, LCPUFA or LCPUFAs (polyunsaturated fatty acids)

urated <u>f</u>atty <u>a</u>cids, <u>PUFA</u>, <u>l</u>ong-<u>c</u>hain <u>polyu</u>nsaturated <u>f</u>atty <u>a</u>cids, <u>LCPUFA</u>).

- [0006] The various fatty acids and triglycerides are mainly obtained from microorganisms such as Mortierella and 30 Schizochytrium or from oil-producing plants such as soybean, oilseed rape, algae such as Crypthecodinium or Phaeodactylum and others, where they are obtained, as a rule, in the form of their triacylglycerides (= triglycerides = triglycerols). However, they can also be obtained from animals, such as, for example, fish. The free fatty acids are advantageously prepared by hydrolysis. Very long-chain polyunsaturated fatty acids such as DHA, EPA, arachidonic acid (= ARA, C20:4^{Δ5,8,11,14}), dihomo-γ-linolenic acid (C20:3^{Δ8,11,14}) or docosapentaenoic acid (DPA, C22:5^{Δ7,10,13,16,19}) are not syn-
- thesized in oil crops such as oilseed rape, soybean, sunflower or safflower. Conventional natural sources of these fatty acids are fish such as herring, salmon, sardine, redfish, eel, carp, trout, halibut, mackerel, zander or tuna, or algae.
 [0007] Depending on the intended use, oils with saturated or unsaturated fatty acids are preferred. In human nutrition, for example, lipids with unsaturated fatty acids, specifically polyunsaturated fatty acids, are preferred. The polyunsaturated *w*3-fatty acids are said to have a positive effect on the cholesterol level in the blood and thus on the possibility of
- 40 preventing heart disease. The risk of heart disease, a stroke or hypertension can be reduced markedly by adding these ω3-fatty acids to food. Also, ω3-fatty acids have a positive effect on inflammatory, specifically on chronically inflammatory, methods in association with immunological diseases such as rheumatoid arthritis. They are therefore added to foodstuffs, specifically to dietetic foodstuffs, or are employed in medicaments. ω6-Fatty acids such as arachidonic acid tend to have a negative effect on these disorders in connection with these rheumatic diseases on account of our usual dietary intake.
- ⁴⁵ **[0008]** ω 3- and ω 6-fatty acids are precursors of tissue hormones, known as eicosanoids, such as the prostaglandins, which are derived from dihomo- γ -linolenic acid, arachidonic acid and eicosapentaenoic acid, and of the thromboxanes and leukotrienes, which are derived from arachidonic acid and eicosapentaenoic acid. Eicosanoids (known as the PG₂ series) which are formed from ω 6-fatty acids generally promote inflammatory reactions, while eicosanoids (known as the PG₃ series) from ω 3-fatty acids have little or no proinflammatory effect.
- 50 [0009] Owing to the positive characteristics of the polyunsaturated fatty acids, there has been no lack of attempts in the past to make available genes which are involved in the synthesis of fatty acids or triglycerides for the production of oils in various organisms with a modified content of unsaturated fatty acids. Thus, WO 91/13972 and its US equivalent describe a Δ9-desaturase. WO 93/11245 claims a Δ15-desaturase and WO 94/11516 a Δ12-desaturase. Further desaturases are described, for example, in EP-A-0 550 162, WO 94/18337, WO 97/30582, WO 97/21340, WO 95/18222, EP-
- A-0 794 250, Stukey et al., J. Biol. Chem., 265, 1990: 20144-20149, Wada et al., Nature 347, 1990: 200-203 or Huang et al., Lipids 34, 1999: 649-659. However, the biochemical characterization of the various desaturases has been insufficient to date since the enzymes, being membrane-bound proteins, present great difficulty in their isolation and characterization (McKeon et al., Methods in Enzymol. 71, 1981: 12141-12147, Wang et al., Plant Physiol. Biochem., 26,

1988: 777-792). As a rule, membrane-bound desaturases are characterized by being introduced into a suitable organism which is subsequently analyzed for enzyme activity by analyzing the starting materials and the products. △6-Desaturases are described in WO 93/06712, US 5,614,393, WO 96/21022, WO 00/21557 and WO 99/27111. Their application for production in transgenic organisms is described, for example, in WO 98/46763, WO 98/46764 and WO 98/46765. In

- ⁵ this context, the expression of various desaturases and the formation of polyunsaturated fatty acids is also described and claimed; see, for example, WO 99/64616 or WO 98/46776. As regards the expression efficacy of desaturases and its effect on the formation of polyunsaturated fatty acids, it must be noted that the expression of a single desaturase as described to date has only resulted in low contents of unsaturated fatty acids/lipids such as, for example, γ -linolenic acid and stearidonic acid. Moreover, a mixture of ω 3- and ω 6-fatty acids was obtained, as a rule.
- 10 [0010] Especially suitable microorganisms for the production of PUFAs are microalgae such as Phaeodactylum tricornutum, Porphiridium species, Thraustochytrium species, Schizochytrium species or Crypthecodinium species, ciliates such as Stylonychia or Colpidium, fungae such as Mortierella, Entomophthora or Mucor and/or mosses such as Physcomitrella, Ceratodon and Marchantia (R. Vazhappilly & F. Chen (1998) Botanica Marina 41: 553-558; K. Totani & K. Oba (1987) Lipids 22: 1060-1062; M. Akimoto et al. (1998) Appl. Biochemistry and Biotechnology 73: 269-278). Strain
- ¹⁵ selection has resulted in the development of a number of mutant strains of the microorganisms in question which produce a series of desirable compounds including PUFAs. However, the mutation and selection of strains with an improved production of a particular molecule such as the polyunsaturated fatty acids is a time-consuming and difficult method. This is why recombinant methods as described above are preferred whenever possible. However, only limited amounts of the desired polyunsaturated fatty acids such as DPA, EPA or ARA can be produced with the aid of the abovementioned
- ²⁰ microorganisms. Moreover, depending on the microorganism used, these are generally generated as fatty acid mixtures of, for example, EPA, DPA and ARA.
 [0011] A variety of synthetic pathways is being discussed for the synthesis of arachidonic acid, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Thus, EPA or DHA are produced in marine bacteria such as Vibrio sp. or Shewanella sp. via the polyketide pathway (Yu, R. et al. Lipids 35:1061-1064, 2000; Takeyama, H. et al. Microbiology
- ²⁵ 143:2725-2731, 1997).

[0012] An alternative strategy is the alternating activity of desaturases and elongases (Zank, T.K. et al. Plant Journal 31:255-268, 2002; Sakuradani, E. et al. Gene 238:445-453, 1999). A modification of this pathway via Δ 6-desaturase, Δ 6-elongase, Δ 5-desaturase, Δ 5-elongase and Δ 4-desaturase is the Sprecher pathway (Sprecher 2000, Biochim. Biophys. Acta 1486:219-231) in mammals. Instead of the Δ 4-desaturation, a further elongation step is effected here to give

³⁰ C_{24} , followed by a further $\Delta 6$ -desaturation and finally β -oxidation to give the C_{22} chain length. What is known as the Sprecher pathway is, however, not suitable for the production in plants and microorganisms since the regulatory mechanisms are not yet known.

[0013] Depending on their desaturation pattern, the polyunsaturated fatty acids can be divided into two large classes, viz. ω 6- or ω 3-fatty acids, which differ with regard to their metabolic and functional activities. The starting material for

the ω6-metabolic pathway is the fatty acid linoleic acid (18:2^{Δ9,12}) while the Δ3-pathway proceeds via linolenic acid (18:3^{Δ9,12,15}). Linolenic acid is formed by the activity of a Δ15-desaturases (Tocher et al. 1998, Prog. Lipid Res. 37, 73-117; Domergue et al. 2002, Eur. J. Biochem. 269, 4105-4113).

[0014] Mammals, and thus also humans, have no corresponding desaturase activity ($\Delta 12$ - and $\Delta 15$ -desaturase) and must take up these fatty acids (essential fatty acids) via food. Starting with these precursors, the physiologically important polyunsaturated fatty acids arachidonic acid (= ARA, 20:4 $\Delta 5.8.11.14$), an $\omega 6$ -fatty acid and the two $\omega 3$ -fatty acids eicosapentaenoic acid (= EPA, 20:5 $\Delta 5.8.11.14.17$) and docosahexaenoic acid (DHA, 22:6 $\Delta 4.7.10.13.17.19$) are synthesized via the sequence of desaturase and elongase reactions. The application of $\omega 3$ -fatty acids shows the therapeutic activity described above in the treatment of cardiovascular diseases (Shimikawa 2001, World Rev. Nutr. Diet. 88, 100-108), inflammations (Calder 2002, Proc. Nutr. Soc. 61, 345-358) and arthritis (Cleland and James 2000, J. Rheumatol. 27, 2305-2307).

- ⁴⁵ [0015] Higher plants comprise polyunsaturated fatty acids such as linoleic acid (C18:2) and linolenic acid (C18:3). ARA, EPA and DHA are not found at all in the seed oil of higher plants, or only in miniscule amounts (E. Ucciani: Nouveau Dictionnaire des Huiles Végétales [New Dictionary of Vegetable Oils]. Technique & Documentation Lavoisier, 1995. ISBN: 2-7430-0009-0). However, the production of LCPUFAs in higher plants (preferably in oil crops such as oilseed rape, linseed, sunflower and soybeans) would be advantageous since large amounts of high-quality LCPUFAs for the
- 50 food industry, animal nutrition and pharmaceutical purposes might be obtained economically. A potential route is via recombinant methods, where genes which code for enzymes of the biosynthesis of LCPUFAs are introduced and expressed. These genes code for, for example, Δ6-desaturases, Δ6-elongases, Δ5-desaturases or Δ4-desaturases. These genes can advantageously be isolated from microorganisms and lower plants which produce LCPUFAs and incorporate them in the membranes or triacylglycerides. Thus, it has already been possible to isolate Δ6-desaturase genes from the
- ⁵⁵ moss Physcomitrella patens and ∆6-elongase genes from P. patens and from the nematode C. elegans. (Zank, T.K. et al. Plant Journal 31:255-268, 2002, Beaudoin et al. Biochem Soc Trans 28 :661-663, 2000).
 [0016] The first transgenic plants which comprise and express genes coding for LCPUFA biosynthesis enzymes and which produce LCPUFAs were described for the first time, for example, in DE-A-102 19 203 (method for the production)

of polyunsaturated fatty acids in plants). However, these plants produce LCPUFAs in amounts which require further optimization for methoding the oils which are present in the plants.

[0017] To make possible the fortification of food and of feed with these polyunsaturated fatty acids, there is therefore a great need for a simple, inexpensive method for the production of these polyunsaturated fatty acids, specifically in eukaryotic systems.

[0018] The object on which the present invention is based is the provision of such means and measures. This object is achieved by the embodiments which are described in the patent claims and hereinbelow.

[0019] The present invention thus relates to a polynucleotide comprising a nucleic acid sequence selected from the group consisting of:

10

5

(a) nucleic acid sequence as shown in any of SEQ ID No. 1;

(b) nucleic acid sequence which codes for a polypeptide having an amino acid sequence as shown in any of SEQ ID No. 2;

15

(c) nucleic acid sequence which hybridizes to a nucleic acid of (a) or (b) under stringent hybridization conditions, wherein stringent hybridization conditions are hybridizations in 6 x sodium chloride/sodium citrate (SSC) at approximately 45 °C, followed by one or more wash steps in 0.2 x SSC, 0.1 % SDS at 50 to 65 °C and wherein the nucleic acid sequence codes for a polypeptide with $\Delta 5$ desaturase activity and acyl CoA specificity.

20

[0020] According to the invention, the term "polynucleotide" refers to polynucleotides which comprise nucleic acid sequences which code for polypeptides with desaturase activity. The desaturase activities are preferably required for the biosynthesis of lipids or fatty acids. Especially preferably, they take the form of the following desaturase activity: $\Delta 5$ -desaturase activity. The desaturase is preferably involved in the synthesis of polynusaturated fatty acids (PUFAs) and

- ²⁵ especially preferably in the synthesis of long-chain PUFAs (LCPUFAs). Suitable detection systems for this desaturase activity are described in the examples or in WO 2005/083053. The specific polynucleotides according to the invention, i.e. the polynucleotide with a nucleic acid sequence as shown in SEQ ID No. 1 or polynucleotides which code for a polypeptide with an amino acid sequence as shown in SEQ ID No. 2 have been obtained from *Emiliana huxleyi*. The term also comprises variants of the abovementioned specific polynucleotides. These may take the form of homologous,
- 30 orthologous or paralogous sequences. Such variants comprise nucleic acid sequences which feature at least one base substitution, one base addition or one base deletion, it being intended that the variants still code for a polypeptide with the abovementioned biological activity of the respective starting sequence. Variants comprise polynucleotides which are capable of hybridization with the abovementioned polynucleotides, under stringent conditions. Especially preferred stringent conditions are known to the skilled worker and can be found in Current Protocols in Molecular Biology, John
- Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6. A preferred example of stringent hybridization conditions are hybridizations in 6 x sodium chloride/sodium citrate (= SSC) at approximately 45°C, followed by one or more wash steps in 0.2 x SSC, 0.1% SDS at 50 to 65°C. The skilled worker knows that these hybridization conditions differ as a function of the type of nucleic acid and, for example when organic solvents are present, with regard to the temperature and the buffer concentration. Under "standard hybridization conditions", the temperature differs as a function of the type of nucleic acid between
- 40 42°C and 58°C in aqueous buffer with a concentration of from 0.1 to 5 x SSC (pH 7.2). If organic solvent is present in the abovementioned buffer, for example 50% formamide, the temperature under standard conditions is approximately 42°C. The hybridization conditions for DNA:DNA hybrids are preferably for example 0.1 x SSC and 20°C to 45°C, preferably between 30°C and 45°C. The hybridization conditions for DNA:RNA hybrids are preferably for example 0.1 x SSC and 30°C to 55°C, preferably between 45°C and 55°C. The abovementioned hybridization temperatures are
- ⁴⁵ determined for example for a nucleic acid of approximately 100 bp (= base pairs) in length and a G + C content of 50% in the absence of formamide. The skilled worker knows how to determine the hybridization conditions required with the aid of textbooks, such as the one mentioned hereinabove, or from the following textbooks: Sambrook et al., Molecular Cloning, Cold Spring Harbor Laboratory, 1989; Hames and Higgins (eds.) 1985, Nucleic Acids Hybridization: A Practical Approach, IRL Press at Oxford University Press, Oxford; Brown (ed.) 1991, Essential Molecular Biology: A Practical
- ⁵⁰ Approach, IRL Press at Oxford University Press, Oxford. As an alternative, variants of the specific polynucleotides according to the invention may also be provided by polymerase chain reaction (PCR)-based methods. To this end, it is possible first to derive primers from conserved sequences (for example sequences which code for functional domains in the polypeptide). Conserved sequences can be determined by sequence comparisons with polynucleotides which code for polypeptides with a similar activity. The template used may be DNA or cDNA from bacteria, fungi, plants or
- ⁵⁵ animals. DNA fragments obtained by PCR can be used for screening suitable genomic libraries or cDNA libraries in order to if required isolate the complete open reading frame of the polynucleotide and to determine it by sequencing. Described variants comprise polynucleotides which comprise a nucleic acid sequence with at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 85%, at least 85%, at least 86%, at least 87%, at least 85%, at least 85\%, at leas

88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% (or a different percentage than mentioned herein) identity with one of the abovementioned specific nucleic acid sequences and codes for a polypeptide with the respective biological activity. Also described are polynucleotides which comprise nucleic acid sequences which code for a polypeptide with an amino acid

- ⁵ sequence with at least 70%, at least 75%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or at least 99% (or a different percentage than mentioned herein) identity with one of the above-mentioned specific amino acid sequences and where the polypeptide has the respective biological activity of the starting sequence.
- 10 [0021] The percentage of identical nucleotides or amino acids preferably relates to a sequence segment of at least 50% of the sequences to be compared, and especially preferably over the entire length of the sequences to be compared. A multiplicity of programs which implement algorithms for such comparisons are described in the prior art and commercially available. In particular, reference may be made to the algorithms of Needleman and Wunsch or Smith and Waterman, which give particularly reliable results. These algorithms can preferably be implemented by the following programs:
- PileUp (J. Mol. Evolution., 25, 351-360, 1987, Higgins 1989, CABIOS, 5: 151-153), Gap and BestFit (Needleman 1970, J. Mol. Biol. 48; 443-453 and Smith 1981, Adv. Appl. Math. 2; 482-489), as part of the GCG software (Genetics Computer Group, 575 Science Drive, Madison, Wisconsin, USA 53711, 1991). For the purposes of the present invention, it is especially preferred to determine the percentage (%) of the sequence identity with the GAP program over the entire sequence, with the following set parameters: Gap Weight: 50, Length Weight: 3, Average Match: 10.000 and Average Mismatch: 0.000.
 - **[0022]** A polynucleotide which only comprises a fragment of the abovementioned nucleic acid sequences is also a polynucleotide according to the invention. Here, it is intended that the fragment codes for a polypeptide which features the biological activity of the starting sequence, or of the polypeptide which the latter codes for. Polypeptides which are encoded by such polynucleotides therefore comprise, or consist of, domains of the abovementioned specific polypeptides
- (starting polypeptides) which confer the biological activity. A fragment for the purposes of the invention preferably comprises at least 50, at least 100, at least 250 or at least 500 consecutive nucleotides of the abovementioned specific sequences or codes for an amino acid sequence comprising at least 20, at least 30, at least 50, at least 80, at least 100 or at least 150 consecutive amino acids of one of the abovementioned specific amino acid sequences, and confers biological activity, preferably desaturase activity, as described above.
- 30 [0023] The term "desaturase activity" as used in the present context refers to an enzymatic activity by which a dehydrogenation of fatty acids or fatty acid derivatives as substrates catalyzes. The desaturase activity according to the invention preferably takes the form of deta-5 desaturase (also referred to as Δ5-desaturase activity). Δ5-Desaturases are enzymes with the enzymatic function for the dehydrogenation of C20 fatty acids which are dehydrogenated at the C atom 8-9. Here, the C atoms C5 and C6 are dehydrogenated by in each case one hydrogen atom, giving rise to a
- double bond between the two C atoms. It is especially preferred that enzymes with desaturase activity and in particular Δ5-desaturase activity within the meaning of the present invention convert acyl-coenzyme A as substrate.
 [0024] The polynucleotide variants according to the invention preferably feature at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80% or at least 90% of the respective biological activity of the polypeptide which is encoded by the starting sequence. That is to say the polypeptides which are encoded
- ⁴⁰ by the polynucleotides according to the invention can participate in the metabolism of compounds required for the synthesis of fatty acids, fatty acid esters such as diacylglycerides and/or triacylglycerides in an organism, preferably in a plant or plant cell, or can participate in the transport of molecules across membranes, which means C₁₈-, C₂₀- or C₂₂-carbon chains in the fatty acid molecule with double bonds at at least two, advantageously three, four, five or six positions.
- ⁴⁵ [0025] The polynucleotides according to the invention either comprise the abovementioned specific nucleic acid sequences or consist of them. That is to say, that the polynucleotides according to the invention may, in principle, also comprise further nucleotides. These may preferably be 3'- or 5'-untranslated regions of the genomic nucleic acid sequence. They preferably consist of at least 100, 200 or 500 nucleotides at the 5' terminus and of at least 20, 50 or 100 nucleotides at the 3' terminus of the coding region. Further polynucleotides which comprise additional nucleic acid
- 50 sequences are those which code for fusion proteins. Such fusion proteins can code for further polypeptide or polypeptide portions, in addition to the abovementioned polypeptides. The additional polypeptide or polypeptide portion may take the form of further enzymes of lipid or fatty acid biosynthesis. Others which are feasible are polypeptides which may act as expression markers (green, yellow, red, blue fluorescent proteins, alkaline phosphatase and others) or so-called "tags" as labels or as an aid for purification (for example FLAG tags, 6-histidine tags, MYC tags and others).
- ⁵⁵ **[0026]** Polynucleotide variants can be isolated from different natural or artificial sources. For example, they can be generated artificially by *in-vitro* or *in-vivo* mutagenesis. Homologs or orthologs of the specific sequences can be obtained from a wide range of animals, plants and microorganisms. They are preferably obtained from algae. Algae such as Isochrysis, Euglena or Crypthecodinium, algae/diatoms such as Thalassiosira, Phaeodactylum or Thraustochytrium,

Pythium, mosses such as Physcomitrella or Ceratodon are preferred, very especially preferred are the algae of the genus Euglena or the diatoms of the class Oomycota such as the genera Pythium or Phytophtora or fungi from the division Zygomywta from the genera Rhizopus. The polynucleotides can also be preferably be obtained from higher plants such as Primulaceae such as Aleuritia, Calendula stellata, Osteospermum spinescens or Osteospermum hyose-

- ⁵ roides, microorganisms such as fungi, such as Aspergillus, Thraustochytrium, Phytophthora, Entomophthora, Mucor or Mortierella, bacteria such as Shewanella, yeasts or animals such as nematodes, for example Caenorhabditis, insects or fish. The polynucleotide variants are also preferably derived from an animal from the order vertebrates. Especially preferably, the polynucleotides are derived from the class Vertebrata; Euteleostomi, Actinopterygii; Neopterygii; Teleostei; Euteleostei, Protacanthopterygii, Salmoniformes; Salmonidae or Oncorhynchus and, very especially preferably, from
- ¹⁰ the order Salmoniformes such as the family Salmonidae, such as the genus Salmo, for example from the genera and species Oncorhynchus mykiss, Trutta trutta or Salmo trutta fario. Here, the polynucleotides according to the invention can be isolated by means of standard techniques of molecular biology and of the sequence information provided herein. Also, it is possible, with the aid of comparative algorithms, to identify for example a homologous sequence or homologous, conserved sequence regions at the DNA or amino acid level. These can be employed as hybridization probe and standard
- ¹⁵ hybridization techniques (such as, for example, those described in Sambrook et al., Molecular Cloning: A Laboratory Manual. 2nd Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) for isolating further nucleic acid sequences which are useful in the method. Moreover, it is possible to isolate polynucleotides or fragments thereof by means of polymerase chain reaction (PCR), where oligonucleotide primers which are based on this sequence or parts thereof are employed (for example, a nucleic acid molecule comprising the complete
- ²⁰ sequence or part thereof can be isolated by polymerase chain reaction using oligonucleotide primers which have been generated on the basis of this same sequence). For example, it is possible to isolate mRNA from cells (for example by the guanidinium thiocyanate extractive method by Chirgwin et al. (1979) Biochemistry 18:5294-5299, and cDNA can be generated by means of reverse transcriptase (for example Moloney MLV reverse transcriptase, obtainable from Gib-co/BRL, Bethesda, MD, or AMV reverse transcriptase, obtainable from Seikagaku America, Inc., St.Petersburg, FL).
- ²⁵ Synthetic oligonucleotide primers for the amplification by means of polymerase chain reaction can be generated on the basis of the polynucleotide and amino acid sequences shown in the SEQ ID numbers. A nucleic acid according to the invention can be amplified using cDNA or, alternatively, genomic DNA as the template and suitable oligonucleotide primers, following standard PCR amplification techniques. The nucleic acid amplified thus can be cloned into a suitable vector and characterized by means of DNA sequence analysis. Oligonucleotides which correspond to a desaturase
- ³⁰ nucleotide sequence can be generated by standard synthetic methods, for example using an automatic DNA synthesizer. [0027] The polynucleotides according to the invention can either be provided in the form of isolated polynucleotides (i.e. isolated from their natural origin, for example the genomic locus) or else in genetically modified form (i.e. the polynucleotides may also be present at their natural genetic locus, but, in such a case, must be genetically modified). An isolated polynucleotide preferably comprises less than 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleic acid
- ³⁵ sequence which occurs naturally in its environment. The polynucleotide according to the invention may be present as a single-stranded or double-stranded nucleic acid molecule and may take the form of genomic DNA, cDNA or RNA. Preferably, the polynucleotide according to the invention consists of RNA or DNA. The polynucleotides according to the invention comprise all orientations of the sequences shown in the SEQ ID numbers, i.e. also complementary strands and reverse, or reverse-complementary, orientations. The term furthermore also comprises chemically modified nucleic
- acids, such as the naturally occurring methylated DNA molecules, or artificial nucleic acids, for example biotinylated nucleic acids.
 [0028] Owing to the polynucleotides according to the invention, the substrates 20:4^{5,8,11,14} and 20:5^{5,8,11,14,17} can

[0028] Owing to the polynucleotides according to the invention, the substrates $20:4^{\Delta_3,0,11,14}$ and $20:5^{\Delta_3,0,11,14,17}$ can be increased in the recombinant production of long-chain PUFAs. The Δ_5 -desaturase which is encoded by the polynucleotide according to the invention preferentially catalyzes the final synthesis step of $20:3\Delta_8,11,14$ and $20:4\Delta_8,11,14,17$

- ⁴⁵ to give the commercially valuable long-chain polyunsaturated fatty acids. A variety of approaches for isolating Δ5desaturases have been carried out in the past (for example Domergue et al. (2002), Eur J Biochem. 269(16):4105-13, Kajikawa et al. (2004) Plant Mol. Biol. 54:335-52). It has also been possible to demonstrate that all of the previously known Δ5-desaturases utilize the same acyl carrier phosphatidylcholin (Domergue et al. (2003) J Biol Chem. 278(37):35115-26). For Δ6-desaturases, it has been possible to demonstrate that the conversion of acyl-coenzyme A
- 50 (acyl-carrier coenzyme A) is advantageous for the synthesis of long-chain polyunsaturated fatty acids (Domergue et al. (2005) Biochem J. 389(Pt 2):483-90). However, it has not been possible to date to identify any enzyme for the class of the Δ5-desaturases which is capable of converting acyl-coenzyme A as the substrate. Neither do sequence comparisons make it possible to predict the substrate specificity with regard to the acyl carrier. Surprisingly, it was possible to isolate, in the context of the present invention, a sequence from the alga *Emiliana huxleyi* (Eukaryota; Haptophyceae; Isochry-
- ⁵⁵ sidales; Noelaerhabdaceae), which codes for an enzyme with ∆5-desaturase activity and which converts acyl-coenzyme A substrates. In particular, it has emerged, advantageously, that the polynucleotides according to the invention can be employed particularly efficiently for the recombinant production of polyunsaturated fatty acids in host cells and transgenic organisms. In particular, the polypeptides with ∆5-desaturase activity which are encoded by the polynucleotide according

to the invention are capable of C_{18} -, C_{20} - and C_{22} -fatty acids with two, three, four or five double bonds and preferably polyunsaturated C_{20} -fatty acids with three or four double bonds such as $C20:3^{\Delta8,11,14}$ or $C20:4^{\Delta8,11,14,17}$. The polynucleotide and amino acid sequences according to the invention especially preferably lead to an increase in the fatty acids 20:4 Δ 5,8,11,14 (arachidonic acid) and 20:5 Δ 5,8,11,14,17 (eicosapentaenoic acid).

- ⁵ **[0029]** Described are also oligonucleotides of at least 15 bp, preferably at least 20 bp, at least 25 bp, at least 30 bp, at least 35 bp or at least 50 bp, which are capable of specifically hybridizing under stringent conditions with one of the abovementioned polynucleotides. The oligonucleotides may consist of DNA or RNA or both. Such oligonucleotides can be employed as primers for the PCR, as expression-inhibitory antisense oligonucleotides, for RNA interference (RNAi) approaches or for chimeroplastic or genoplastic approaches. RNAi methods are described for example in Fire et al.,
- ¹⁰ Nature (1998) 391:806-811; Fire, Trends Genet. 15, 358-363 (1999); Sharp, RNA interference 2001. Genes Dev. 15,485-490 (2001); Hammond et al. Nature Rev. Genet. 2, 1110-1119 (2001); Tuschl, Chem. Biochem. 2, 239-245 (2001); Hamilton et al., Science 286, 950-952 (1999); Hammond et al., Nature 404, 293-296 (2000); Zamore et al., Cell 101, 25-33 (2000); Bernstein et al., Nature 409, 363-366 (2001); Elbashir et al., Genes Dev. 15, 188-200 (2001); WO 01/29058; WO 99/32619; or Elbashir et al., 2001 Nature 411: 494-498 and serve for inhibiting gene expression by
- ¹⁵ degrading the mRNA. Chimeroplastic or genoplastic approaches serve the *in-vivo* modification (for example the introduction of point mutations) into genes at their endogenous loci. Corresponding methods are disclosed in US5,565,350, US5,756,325, US5,871,984, US5,731,181, US5,795,972, US6,573,046, US6,211,351, US6,586,184, US6,271,360 and US6,479,292.
- [0030] In this context, it is especially preferred to employ the Δ6-desaturase encoded by the polynucleotide sequence with SEQ ID No. 5 (d6Des(Pir)), the Δ6-elongase encoded by the polynucleotide sequence with SEQ ID No. 7 (d6Elo(Pp)), the Δ5-desaturase encoded by the polynucleotide sequence with SEQ ID No. 1 (dSDes(Eh)), the Δ12-desaturase encoded by the polynucleotide sequence with SEQ ID No. 9 (d12Des(Ps)), the Δ15-desaturase encoded by the polynucleotide sequence with SEQ ID No. 13 (d15Des(Perf)), the ω3-desaturase encoded by the polynucleotide sequence with SEQ ID No. 11 (o3Des(Pi)), the Δ5-elongase encoded by the polynucleotide sequence with SEQ ID No. 15 (d5Elo(Ot)), and
- ²⁵ the Δ 4-desaturase encoded by the polynucleotide sequence with SEQ ID No. 17 (d4Des(Tc)) with the desaturase according to the invention in order to synthesize long-chain polyunsaturated fatty acids. The abovementioned polynucleotides are described in WO2006/100241. Alternatively, it was also possible to employ a Δ 9-elongase and a Δ 8desaturase instead of the abovementioned Δ 6-desaturase and the Δ 6-elongase as described in WO2004/057001. Depending on the fatty acid which is to be prepared, it is possible to coexpress, in the host cells or transgenic organisms
- 30 described hereinbelow, or to use in the methods according to the invention, a variety of combinations of the polynucleotides according to the invention with the abovementioned desaturases or elongases. Especially preferred combinations for the production of arachidonic acid in table 1, for eicosapentaenoic acid in table 2 and for docosahexaenoic acid in table 3 are detailed hereinbelow. For example, it is possible to use the Δ5-desaturase according to the invention, alone or in a suitable combination (for example a Δ12-desaturase and a Δ15-desaturase), together with d6Des(Pir), d6Elo(Pp),
- 35 d5Des(Tc), Δ3Des(Pi) for the production of EPA. Equally, the Δ5-desaturase according to the invention, alone or in a suitable combination, can be used together with d6Des(Pir), d6Elo(Pp), d5Des(Tc), ω3Des(Pi), d5Elo(Ot), d4Des(Tc) for the production of docosahexaenoic acid.

[0031] Preferably, it is the fatty acids in phospholipids or CoA fatty acid esters which are desaturated, advantageously in the CoA fatty acid esters. Thus, a simple, inexpensive production of these polyunsaturated fatty acids is possible, specifically in eukaryotic systems. The unsaturated fatty acids produced by means of the polynucleotides according to the invention can then be formulated as oil, lipid and fatty acid compositions and can be employed in a suitable manner.
[0032] The present invention furthermore relates to a vector which comprises the polynucleotide according to the

- invention.
 [0033] The term "vector" refers to a nucleic acid molecule which is capable of transporting another nucleic acid molecule,
 such as the polynucleotides according to the invention, to which it is bound. One type of vector is a "plasmid", a circular double-stranded DNA loop into which additional DNA segments can be ligated. A further type of vector is a viral vector, it being possible for additional DNA segments to be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they have been introduced (for example bacterial vectors with bacterial replication origin). Other vectors are advantageously integrated into the genome of a host cell when they are introduced
- ⁵⁰ into the host cell, and thus replicate together with the host genome. Moreover, certain vectors can govern the expression of genes with which they are in operable linkage. These vectors are referred to in the present context as "expression vectors". Usually, expression vectors which are suitable for DNA recombination techniques take the form of plasmids. In the present description, "plasmid" and "vector" can be used exchangeably since the plasmid is the form of vector which is most frequently used. However, the invention is also intended to comprise other forms of expression vectors,
- ⁵⁵ such as viral vectors, which exert similar functions. Furthermore, the term "vector" is also intended to comprise other vectors with which the skilled worker is familiar, such as phages, viruses such as SV40, CMV, TMV, transposons, IS elements, phasmids, phagemids, cosmids, linear or circular DNA, artificial chromosomes. Finally, the term also comprises constructs for the targeted, i.e. homologous, recombination, or the heterologous insertion of polynucleotides.

[0034] Vectors can be introduced into prokaryotic and eukaryotic cells via conventional transformation or transfection techniques. The terms "transformation" and "transfection", conjugation and transduction, as used in the present context, are intended to comprise a multiplicity of methods known in the prior art for the introduction of foreign nucleic acid (for example DNA) into a host cell, including calcium phosphate or calcium chloride coprecipitation, DEAE-dextran-mediated

- ⁵ transfection, lipofection, natural competence, chemically mediated transfer, electroporation or particle bombardment. Suitable methods for the transformation or transfection of host cells, including plant cells, can be found in Sambrook et al. (Molecular Cloning: A Laboratory Manual., 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) and other laboratory textbooks such as Methods in Molecular Biology, 1995, Vol. 44, Agrobacterium protocols, Ed.: Gartland and Davey, Humana Press, Totowa, New Jersey.
- 10 [0035] Suitable cloning vectors are generally known to the skilled worker. In particular, they include vectors which can replicate in microbial systems, that is mainly vectors which ensure efficient cloning in yeasts or fungi and which make possible the stable transformation of plants. Those which must be mentioned are in particular various binary and cointegrated vector systems which are suitable for the T-DNA-mediated transformation. Such vector systems are, as a rule, characterized in that they comprise at least the vir genes, which are required for the agrobacterium-mediated transfor-
- ¹⁵ mation, and the T-DNA-bordering sequences (T-DNA border). Preferably, these vector systems also comprise further cis-regulatory regions such as promoters and terminators and/or selection markers, by means of which suitably transformed organisms can be identified. While in the case of cointegrated vector systems vir genes and T-DNA sequences are arranged on the same vector, binary systems are based on at least two vectors, one of which bears vir genes, but no T-DNA, and the other bears T-DNA, but no vir gene. As a result, the last-mentioned vectors are relatively small, easy
- to manipulate and to replicate both in E. coli and in Agrobacterium. These binary vectors include vectors from the pBIB-HYG series, the pPZP series, the pBecks series and the pGreen series. Preferably used according to the invention are Bin19, pBI101, pBinAR, pGPTV and pCAMBIA. An overview of binary vectors and their use is found in Hellens et al, Trends in Plant Science (2000) 5, 446-451. The vectors with the inserted polynucleotides according to the invention can be propagated stably under selective conditions in microorganisms, in particular Escherichia coli and Agrobacterium
- ²⁵ tumefaciens, and make possible a transfer of heterologous DNA into plants or microorganisms. The polynucleotides according to the invention can be introduced into organisms such as microorganisms or plants by means of the cloning vectors and thus used for transforming plants. Vectors which are suitable for this purpose are published in: Plant Molecular Biology and Biotechnology (CRC Press, Boca Raton, Florida), chapter 6/7, p. 71-119 (1993); F.F. White, Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, vol. 1, Engineering and Utilization, eds.: Kung and R. Wu, Academic
- ³⁰ Press, 1993, 15-38; B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, vol. 1, Engineering and Utilization, eds.: Kung and R. Wu, Academic Press (1993), 128-143; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225.

[0036] The vector is preferably an expression vector. The polynucleotide is present in the expression vector according to the invention in operative (i.e. functional) linkage with an expression control sequence. The expression control sequence

- ³⁵ together with the polynucleotide and optionally further sequence elements of the vector is also referred to as the expression cassette. The expression control sequence ensures that, after transformation or transfection into a host cell, the polynucleotide can be expressed. The expression control sequence to be used preferably comprises cis-regulatory elements such as promoter and/or enhancer nucleic acid sequences, which are recognized by the transcription machinery of the host cells. The term furthermore comprises other expression control elements, for example polyadenylation signals and
- 40 RNA-stabilizing sequences. These regulatory sequences are described for example in Goeddel: Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990) or see: Gruber and Crosby, in: Methods in Plant Molecular Biology and Biotechnology, CRC Press, Boca Raton, Florida, eds.: Glick and Thompson, chapter 7, 89-108, including the literature cited therein. Expression control sequences comprise those which govern the constitutive expression of a nucleotide sequence in many types of host cells, and those which govern the direct expression of the
- ⁴⁵ nucleotide sequence only in certain host cells under certain conditions. The skilled worker knows that the design of the expression vector may depend on factors such as the choice of the host cell to be transformed, the extent of the expression of the desired protein and the like. The polynucleotides according to the invention may be present in one or more copies in the expression cassette or in the expression vector according to the invention (for example in the form of several expression cassettes). Here, the regulatory sequences or factors can preferably have a positive effect on the gene
- ⁵⁰ expression of the introduced genes, as described above, and thereby increase it. Thus, it is possible to enhance the regulatory elements advantageously at the transcription level by using strong transcription signals such as promoters and/or "enhancers". Besides, it is also possible to enhance the translation, for example by improving the mRNA stability. Further expression control sequences within the meaning of the present invention are translation terminators at the 3' end of the polynucleotides to be translated. An example which can be used here is the OCS1 terminator. As in the case
- of the promoters, a different terminator sequence should be used for each polynucleotide to be expressed.
 [0037] Preferred expression control sequences or regulatory sequences are present in promoters such as the cos, tac, trp, tet, trp-tet, lpp, lac, lpp-lac, laclq, T7, T5, T3, gal, trc, ara, SP6, λ-PR or λ-PL promoters and are advantageously employed in Gramnegative bacteria. Further advantageous regulatory sequences are, for example, present in the Gram-

positive promoters amy and SPO2, in the yeast or fungal promoters ADC1, MFα, AC, P-60, CYC1, GAPDH, TEF, rp28, ADH or in the plant promoters CaMV/35S [Franck et al., Cell 21 (1980) 285-294], PRP1 [Ward et al., Plant. Mol. Biol. 22 (1993)], SSU, OCS, lib4, usp, STLS1, B33, nos or in the ubiquitin or phaseolin promoter. Advantageous in this context are also inducible promoters, such as the promoters described in EP-A-0 388 186 (benzenesulfonamide-inducible),

- ⁵ Plant J. 2, 1992:397-404 (Gatz et al., tetracycline-inducible), EP-A-0 335 528 (abscisic acid-inducible) or WO 93/21334 (ethanol- or cyclohexenol-inducible). Further suitable plant promoters are the cytosolic FBPase promoter or the ST-LSI promoter of potato (Stockhaus et al., EMBO J. 8, 1989, 2445), the glycine max phosphoribosylpyrophosphate amidotransferase promoter (Genbank Accession No. U87999) or the node-specific promoter described in EP-A-0 249 676. Especially advantageous promoters are promoters which make possible the expression in tissues which are involved
- ¹⁰ in the biosynthesis of fatty acids. Very especially advantageous are seed-specific promoters, such as the USP promoter, but also other promoters such as the LeB4, DC3, phaseolin or napin promoter. Further especially advantageous promoters are seed-specific promoters which can be used for monocotyledonous or dicotyledonous plants and which are described in US 5,608,152 (oilseed rape napin promoter), WO 98/45461 (Arobidopsis oleosin promoter), US 5,504,200 (Phaseolus vulgaris phaseolin promoter), WO 91/13980 (Brassica Bce4 promoter), by Baeumlein et al., Plant J., 2, 2, 1992:233-239
- (LeB4 promoter from a legume), these promoters being suitable for dicots. Examples of promoters which are suitable for monocots are the barley lpt-2 or lpt-1 promoter (WO 95/15389 and WO 95/23230), the barley hordein promoter and other suitable promoters described in WO 99/16890. In principle, it is possible to use all natural promoters together with their regulatory sequences, such as those mentioned above, as expression control sequences. It is also possible to use synthetic promoters, either in addition or alone, in particular when they mediate seed-specific expression, as described, for example, in WO 99/16890.

[0038] In order to achieve a particularly high PUFA content, especially in transgenic plants, the polynucleotides of the present invention should preferably be expressed in oil crops in a seed-specific manner. To this end, seed-specific promoters can be used, or those promoters which are active in the embryo and/or in the endosperm. In principle, seed-specific promoters can be isolated both from dicotyledonous and from monocotyledonous plants. Advantageous preferred

- ²⁵ promoters are listed hereinbelow: USP (= unknown seed protein) and vicilin (Vicia faba) [Bäumlein et al., Mol. Gen Genet., 1991, 225(3)], napin (oilseed rape) [US 5,608,152], acyl carrier protein (oilseed rape) [US 5,315,001 and WO 92/18634], oleosin (Arabidopsis thaliana) [WO 98/45461 and WO 93/20216], phaseolin (Phaseolus vulgaris) [US 5,504,200], Bce4 [WO 91/13980], legumines B4 (LegB4 promoter) [Bäumlein et al., Plant J., 2,2, 1992], Lpt2 and lpt1 (barley) [WO 95/15389 and WO 95/23230], seed-specific promoters from rice, maize and wheat [WO 99/16890], Amy32b,
- 30 Amy 6-6 and aleurain [US 5,677,474], Bce4 (oilseed rape) [US 5,530,149], glycinin (soybean) [EP 571 741], phosphoenol pyruvate carboxylase (soybean) [JP 06/62870], ADR12-2 (soybean) [WO 98/08962], isocitrate lyase (oilseed rape) [US 5,689,040] or α-amylase (barley) [EP 781 849].

[0039] Plant gene expression can also be facilitated via a chemically inducible promoter (see a review in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemically inducible promoters are particularly suitable when it

³⁵ is desired that gene expression should take place in a time-specific manner. Examples of such promoters are a salicylic acid-inducible promoter (WO 95/19443), a tetracycline-inducible promoter (Gatz et al. (1992) Plant J. 2, 397-404) and an ethanol-inducible promoter.

[0040] To ensure stable integration of the various biosynthesis genes into the transgenic plant over a plurality of generations, each of the polynucleotides according to the invention should be expressed under the control of a separate promoter, preferably a promoter which differs from the other promoters, since repeating sequence motifs can lead to

instability of the T-DNA, or to recombination events. In this context, the expression cassette is advantageously constructed in such a way that a promoter is followed by a suitable cleavage site (advantageously in a polylinker) for insertion of the nucleic acid to be expressed and, if appropriate, a terminator is then positioned behind the polylinker. This sequence is repeated several times, preferably three, four or five times, so that up to five genes can be combined in one construct

- ⁴⁵ and introduced into the transgenic plant in order to be expressed. Advantageously, the sequence is repeated up to three times. To express the nucleic acid sequences, the latter are inserted behind the promoter via a suitable cleavage site, for example in the polylinker. Advantageously, each nucleic acid sequence has its own promoter and, if appropriate, its own terminator. Such advantageous constructs are disclosed, for example, in DE 101 02 337 or DE 101 02 338. However, it is also possible to insert a plurality of nucleic acid sequences behind a promoter and, if appropriate, in front of a
- 50 terminator. Here, the insertion site, or the sequence, of the inserted nucleic acids in the expression cassette is not of critical importance, that is to say a nucleic acid sequence can be inserted at the first or last position in the cassette without its expression being substantially influenced thereby. Advantageously, different promoters such as, for example, the USP, LegB4 or DC3 promoters, and different terminators can be used in the expression cassette. However, it is also possible to use only one type of promoter in the cassette. This, however, may lead to undesired recombination events.
- ⁵⁵ **[0041]** The recombinant expression vectors used can be designed for the expression in prokaryotic or eukaryotic cells. This is advantageous since intermediate steps of the vector construction are frequently carried out in microorganisms for the sake of simplicity. For example, the Δ 12-desaturase, Δ 15-desaturase, Δ 12- and Δ 15-desaturases, ω 3-desaturase, Δ 6-desaturase, ω 6-elongase, ω 9-elongase, Δ 8-desaturase, Δ 5-desaturase, ω 5-elongase and/or Δ 4-desaturase genes

can be expressed in bacterial cells, insect cells (using Baculovirus expression vectors), yeast and other fungal cells (see Romanos, M.A., et al. (1992) "Foreign gene expression in yeast: a review", Yeast 8:423-488; van den Hondel, C.A.M.J.J., et al. (1991) "Heterologous gene expression in filamentous fungi", in: More Gene Manipulations in Fungi, J.W. Bennet & L.L. Lasure, Eds., pp. 396-428: Academic Press: San Diego; and van den Hondel, C.A.M.J.J., & Punt, P.J. (1991)

- ⁵ "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of Fungi, Peberdy, J.F., et al., Eds., pp. 1-28, Cambridge University Press: Cambridge), algae (Falciatore et al., 1999, Marine Biotechnology.1, 3:239-251), ciliates of the types: Holotrichia, Peritrichia, Spirotrichia, Suctoria, Tetrahymena, Paramecium, Colpidium, Glaucoma, Platyophrya, Potomacus, Desaturaseudocohnilembus, Euplotes, Engelmaniella and Stylonychia, in particular of the genus Stylonychia lemnae, using vectors in a transformation method as described in WO 98/01572 and,
- ¹⁰ preferably, in cells of multi-celled plants (see Schmidt, R. and Willmitzer, L. (1988) "High efficiency Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana leaf and cotyledon explants" Plant Cell Rep.:583-586; Plant Molecular Biology and Biotechnology, C Press, Boca Raton, Florida, Chapter 6/7, pp. 71-119 (1993); F.F. White, B. Jenes et al., Techniques for Gene Transfer, in: Transgenic Plants, Vol. 1, Engineering and Utilization, Eds.: Kung and R. Wu, Academic Press (1993), 128-43; Potrykus, Annu. Rev. Plant Physiol. Plant Molec. Biol. 42 (1991), 205-225
- (and references cited therein)). Suitable host cells are furthermore discussed in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). As an alternative, the recombinant expression vector can be transcribed and translated in vitro, for example using T7-promoter regulatory sequences and T7-polymerase.
- [0042] In most cases, the expression of proteins in prokaryotes involves the use of vectors comprising constitutive or inducible promoters which govern the expression of fusion or nonfusion proteins. Typical fusion expression vectors are, inter alia, pGEX (Pharmacia Biotech Inc; Smith, D.B., and Johnson, K.S. (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, MA) and pRIT5 (Pharmacia, Piscataway, NJ), where glutathione S-transferase (GST), maltose-Ebinding protein and protein A, respectively, are fused with the recombinant target protein. Examples of suitable inducible nonfusion E. coli expression vectors are, inter alia, pTrc (Amann et al. (1988) Gene 69:301-315) and pET 11 d (Studier
- et al., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 60-89). The target gene expression from the vector pTrc is based on the transcription from a hybrid trp-lac fusion promoter by the host RNA polymerase. The target gene expression from the vector pET 11 d is based on the transcription of a T7gn10-lac fusion promoter, which is mediated by a viral RNA polymerase (T7 gn1), which is coexpressed. This viral polymerase is provided by the host strains BL21 (DE3) or HMS174 (DE3) from a resident λ-prophagene which harbors
- ³⁰ a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter. Other vectors which are suitable for prokaryotic organisms are known to the skilled worker, these vectors are, for example in E. coli pLG338, pACYC184, the pBR series such as pBR322, the pUC series such as pUC18 or pUC19, the M113mp series, pKC30, pRep4, pHS1, pHS2, pPLc236, pMBL24, pLG200, pUR290, pIN-III113-B1, λgt11 or pBdCl, in Streptomyces pIJ101, pIJ364, pIJ702 or pIJ361, in Bacillus pUB110, pC194 or pBD214, in Corynebacterium pSA77 or pAJ667.
- ³⁵ **[0043]** In a further embodiment, the expression vector is a yeast expression vector. Examples of vectors for expression in the yeast S. cerevisiae comprise pYeDesaturasec1 (Baldari et al. (1987) Embo J. 6:229-234), pMFa (Kurjan and Herskowitz (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123) and pYES2 (Invitrogen Corporation, San Diego, CA). Vectors and methods for the construction of vectors which are suitable for use in other fungi, such as the filamentous fungi, comprise those which are described in detail in: van den Hondel, C.A.M.J.J., & Punt, P.J. (1991)
- ⁴⁰ "Gene transfer systems and vector development for filamentous fungi, in: Applied Molecular Genetics of fungi, J.F. Peberdy et al., Ed., pp. 1-28, Cambridge University Press: Cambridge, or in: More Gene Manipulations in Fungi [J.W. Bennet & L.L. Lasure, Eds., pp. 396-428: Academic Press: San Diego]. Further suitable yeast vectors are, for example, pAG-1, YEp6, YEp13 or pEMBLYe23.
- [0044] As an alternative, the polynucleotides of the present invention can also be expressed in insect cells using Baculovirus expression vectors. Baculovirus vectors which are available for the expression of proteins in cultured insect cells (for example Sf9 cells) comprise the pAc series (Smith et al. (1983) Mol. Cell Biol.. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39).

[0045] Preferred plant expression vectors comprise those which are described in detail in: Becker, D., Kemper, E., Schell, J., and Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left

- ⁵⁰ border", Plant Mol. Biol. 20:1195-1197; and Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12:8711-8721; Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Vol. 1, Engineering and Utilization, Eds.: Kung and R. Wu, Academic Press, 1993, p. 15-38. A plant expression cassette preferably comprises expression control sequences which are capable of governing the expression of genes in plant cells and which are linked operably so that each sequence can fulfill its function, such as transcriptional termination, for example polyadenylation
- ⁵⁵ signals. Preferred polyadenylation signals are those which are derived from Agrobacterium tumefaciens T-DNA, such as gene 3 of the Ti plasmid pTiACH5 (Gielen et al., EMBO J. 3 (1984) 835 et seq.), which is known as octopine synthase, or functional equivalents thereof, but all other terminators which are functionally active in plants are also suitable. Since plant gene expression is very often not limited to transcriptional levels, a plant expression cassette preferably comprises

other sequences which are linked operably, such as translation enhancers, for example the overdrive sequence, which comprises the tobacco mosaic virus 5'-untranslated leader sequence, which increases the protein/RNA ratio (Gallie et al., 1987, Nucl. Acids Research 15:8693-8711). As described above, plant gene expression must be linked operably with a suitable promoter which triggers gene expression with the correct timing or in a cell- or tissue-specific manner.

- ⁵ Utilizable promoters are constitutive promoters (Benfey et al., EMBO J. 8 (1989) 2195-2202), such as those which are derived from plant viruses, such as 35S CAMV (Franck et al., Cell 21 (1980) 285-294), 19S CaMV (see also US 5352605 and WO 84/02913), or plant promoters, such as the promoter of the small Rubisco subunit, which is described in US 4,962,028. Other preferred sequences for use in operable linkage in plant gene expression cassettes are targeting sequences, which are required for steering the gene product into its corresponding cell compartment (see a review in
- Kermode, Crit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, into the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria, the endoplasmic reticulum, oil bodies, peroxisomes and other compartments of plant cells.
 [0046] As described above, plant gene expression can also be facilitated via a chemically inducible promoter (see
- review in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemically inducible promoters are partic ¹⁵ ularly suitable when it is desired that the gene expression takes place in a time-specific manner. Examples of such promoters are a salicylic-acid-inducible promoter (WO 95/19443), a tetracyclininducible promoter (Gatz et al. (1992) Plant J. 2, 397-404) and an ethanol-inducible promoter. Promoters which respond to biotic or abiotic stress conditions are also suitable, for example the pathogen-induced PRP1 gene promoter (Ward et al., Plant. Mol. Biol. 22 (1993) 361-366), the heat-inducible tomato hsp80 promoter (US 5,187,267), the chill-inducible potato alpha-amylase promoter (WO 96/12814) or the wound-inducible pinll promoter (EP-A-0.375.091)
- 20 (WO 96/12814) or the wound-inducible pinll promoter (EP-A-0 375 091).
 [0047] Especially preferred are those promoters which bring about the gene expression in tissues and organs in which the biosynthesis of fatty acids, lipids and oils takes place, in seed cells, such as the cells of the endosperm and of the developing embryo. Suitable promoters are the oilseed rape napin gene promoter (US 5,608,152), the Vicia faba USP promoter (Baeumlein et al., Mol Gen Genet, 1991, 225 (3):459-67), the Arabidopsis oleosin promoter (WO 98/45461),
- the Phaseolus vulgaris phaseolin promoter (US 5,504,200), the Brassica Bce4 promoter (WO 91/13980) or the legumine B4 promoter (LeB4; Baeumlein et al., 1992, Plant Journal, 2 (2):233-9), and promoters which bring about the seedspecific expression in monocotyledonous plants such as maize, barley, wheat, rye, rice and the like. Suitable noteworthy promoters are the barley lpt2 or lpt1 gene promoter (WO 95/15389 and WO 95/23230) or the promoters from the barley hordein gene, the rice glutelin gene, the rice oryzin gene, the rice prolamine gene, the wheat gliadine gene, the wheat
- 30 glutelin gene, the maize zeine gene, the oat glutelin gene, the sorghum kasirin gene or the rye secalin gene, which are described in WO 99/16890. Especially suitable promoters are likewise those which bring about the plastid-specific expression, since plastids are the compartment in which the precursors and some of the end products of lipid biosynthesis are synthesized. Suitable promoters, such as the viral RNA polymerase promoter, are described in WO 95/16783 and WO 97/06250, and the clpP promoter from Arabidopsis, described in WO 99/46394.
- [0048] The abovementioned vectors are only a small overview over possible vectors which are suitable. Further plasmids are known to the skilled worker and are described for example in: Cloning Vectors (eds. Pouwels, P.H., et al., Elsevier, Amsterdam-New York-Oxford, 1985, ISBN 0 444 904018). Further suitable expression systems for prokaryotic and eukaryotic cells, see chapters 16 and 17 of Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989.
 - **[0049]** As described above, the expression vector can, in addition to the polynucleotides according to the invention, also comprise further genes which are to be introduced into the organisms. It is possible and preferred to introduce into the host organisms, and express in them, regulatory genes, such as genes for inductors, repressors or enzymes which, as a result of their enzymatic activity, engage in the regulation of one or more genes of a biosynthetic pathway. These
- ⁴⁵ genes can be of heterologous or homologous origin. Heterologous genes or polynucleotides are derived from an organism of origin which differs from the target organism into which the genes or polynucleotides are to be introduced. In the case of homologous genes or polynucleotides, target organism and organism of origin are identical. The vector therefore preferably comprises at least one further polynucleotide which codes for a further enzyme which is involved in the biosynthesis of lipids or fatty acids. The enzyme is preferably selected from the group consisting of: acyl-CoA dehydro-
- 50 genase(s), acyl-ACP [= acyl carrier protein] desaturase(s), acyl-ACP thioesterase(s), fatty acid acyltransferase(s), acyl-CoA:lysophospholipid acyltransferase(s), fatty acid synthase(s), fatty acid hydroxylase(s), acetyl-coenzyme A carboxylase(s), acyl-coenzyme A oxidase(s), fatty acid desaturase(s), fatty acid acetylenase(s), lipoxygenase(s), triacylglycerol lipase(s), allene oxide synthase(s), hydroperoxide lyase(s), fatty acid elongase(s), Δ1-desaturase(s), Δ5-desaturase(s), Δ6-desaturase(s), Δ8-desaturase(s), Δ9-desaturase(s), Δ12-desaturase(s), Δ15-desaturase(s), Δ12- and Δ15-desaturase(s), Δ12- ang
- rase(s), ω3-desaturase, Δ5-elongase(s), Δ6-elongase(s) and Δ9-elongase(s).
 Especially preferred gene combinations are listed in tables 5 and 6 in the examples which follow.
 [0050] The invention also relates to a host cell which comprises the polynucleotide according to the invention or the vector according to the invention.

[0051] In principle, host cells for the purposes of the present invention may be all eukaryotic or prokaryotic cells. They may be primary cells from animals, plants or multi-celled microorganisms, for example from those which are mentioned in another place in the description. The term furthermore also comprises cell lines which can be obtained from these organisms.

- 5 [0052] However, host cells for the purposes of the invention may also be single-celled microorganisms, for example bacteria or fungi. Especially preferred microorganisms are fungi selected from the group of the families Chaetomiaceae, Choanephoraceae, Cryptococcaceae, Cunninghamellaceae, Demetiaceae, Moniliaceae, Mortierellaceae, Mucoraceae, Pythiaceae, Sacharomycetaceae, Saprolegniaceae, Schizosacharomycetaceae, Sodariaceae or Tuberculariaceae. Further preferred microorganisms are selected from the group: Choanephoraceae, such as the genera Blakeslea, Cho-
- ¹⁰ anephora, for example the genera and species Blakeslea trispora, Choanephora cucurbitarum, Choanephora infundibulifera var. cucurbitarum, Mortierellaceae, such as the genus Mortierella, for example the genera and species Mortierella isabellina, Mortierella polycephala, Mortierella ramanniana, Mortierella vinacea, Mortierella zonata, the family Mucorales, such as the genera and species Rhizopus oryzae, Rhizopus stolonifer, Fusarium graminearium, Pythiaceae, such as the genera Phytium, Phytophthora, for example the genera and species Pythium debaryanum, Pythium intermedium.
- Pythium irregulare, Pythium megalacanthum, Pythium paroecandrum, Pythium sylvaticum, Pythium ultimum, Phytophthora cactorum, Phytophthora cinnamomi, Phytophthora citricola, Phytophthora citrophthora, Phytophthora cryptogea, Phytophthora drechsleri, Phytophthora erythroseptica, Phytophthora lateralis, Phytophthora megasperma, Phytophthora nicotianae, Phytophthora nicotianae var. parasitica, Phytophthora palmivora, Phytophthora parasitica, Phytophthora syringae, Saccharomycetaceae, such as the genera Hansenula, Pichia, Saccharomyces, Saccharomycodes, Yarrowia,
- for example the genera and species Hansenula anomala, Hansenula californica, Hansenula canadensis, Hansenula capsulata, Hansenula ciferrii, Hansenula glucozyma, Hansenula henricii, Hansenula holstii, Hansenula minuta, Hansenula nonfermentans, Hansenula philodendri, Hansenula polymorpha, Hansenula saturnus, Hansenula subpelliculosa, Hansenula wickerhamii, Hansenula wingei, Pichia alcoholophila, Pichia angusta, Pichia anomala, Pichia bispora, Pichia burtonii, Pichia canadensis, Pichia capsulata, Pichia capsulata, Pichia canadensis, Pichia capsulata, Pichia carsonii, Pichia cellobiosa, Pichia ciferrii, Pichia farinosa, Pichia
- ²⁵ fermentans, Pichia finlandica, Pichia glucozyma, Pichia guilliermondii, Pichia haplophila, Pichia henricii, Pichia holstii, Pichia jadinii, Pichia lindnerii, Pichia membranaefaciens, Pichia methanolica, Pichia minuta var. minuta, Pichia minuta var. nonfermentans, Pichia norvegensis, Pichia ohmeri, Pichia pastoris, Pichia philodendri, Pichia pini, Pichia polymorpha, Pichia quercuum, Pichia rhodanensis, Pichia sargentensis, Pichia stipitis, Pichia strasburgensis, Pichia subpelliculosa, Pichia toletana, Pichia trehalophila, Pichia vini, Pichia xylosa, Saccharomyces aceti, Saccharomyces bailii, Sac-
- ³⁰ charomyces bayanus, Saccharomyces bisporus, Saccharomyces capensis, Saccharomyces carlsbergensis, Saccharomyces cerevisiae, Saccharomyces cerevisiae var. ellipsoideus, Saccharomyces chevalieri, Saccharomyces delbrueckii, Saccharomyces diastaticus, Saccharomyces drosophilarum, Saccharomyces elegans, Saccharomyces ellipsoideus, Saccharomyces fermentati, Saccharomyces florentinus, Saccharomyces fragilis, Saccharomyces heterogenicus, Saccharomyces hienipiensis, Saccharomyces inusitatus, Saccharomyces italicus, Saccharomyces kluyveri, Saccharomyces
- ³⁵ krusei, Saccharomyces lactis, Saccharomyces marxianus, Saccharomyces microellipsoides, Saccharomyces montanus, Saccharomyces norbensis, Saccharomyces oleaceus, Saccharomyces paradoxus, Saccharomyces pastorianus, Saccharomyces pretoriensis, Saccharomyces rosei, Saccharomyces rouxii, Saccharomyces uvarum, Saccharomycodes ludwigii, Yarrowia lipolytica, Schizosaccharomycetaceae such as the genera Schizosaccharomyces e.g. the species Schizosaccharomyces japonicus var. japonicus, Schizosaccharomyces japonicus var. versatilis, Schizosaccharomyces
- 40 malidevorans, Schizosaccharomyces octosporus, Schizosaccharomyces pombe var. malidevorans, Schizosaccharomyces pombe var. pombe, Thraustochytriaceae such as the genera Althornia, Aplanochytrium, Japonochytrium, Schizochytrium, Thraustochytrium e.g. the species Schizochytrium aggregatum, Schizochytrium limacinum, Schizochytrium mangrovei, Schizochytrium minutum, Schizochytrium octosporum, Thraustochytrium aggregatum, Thraustochytrium amoeboideum, Thraustochytrium antacticum, Thraustochytrium arudimentale, Thraustochytrium aureum, Thrausto-
- ⁴⁵ chytrium benthicola, Thraustochytrium globosum, Thraustochytrium indicum, Thraustochytrium kerguelense, Thraustochytrium kinnei, Thraustochytrium motivum, Thraustochytrium multirudimentale, Thraustochytrium pachydermum, Thraustochytrium proliferum, Thraustochytrium roseum, Thraustochytrium rossii, Thraustochytrium striatum or Thraustochytrium visurgense.
- [0053] Equally preferred as microorganisms are bacteria selected from the group of the families Bacillaceae, Enterobacteriacae or Rhizobiaceae. It is especially preferred to mention the following bacteria selected from the group: Bacillaceae, such as the genus Bacillus, for example the genera and species Bacillus acidocaldarius, Bacillus acidoterrestris, Bacillus alcalophilus, Bacillus amyloliquefaciens, Bacillus amylolyticus, Bacillus brevis, Bacillus cereus, Bacillus circulans, Bacillus coagulans, Bacillus sphaericus subsp. fusiformis, Bacillus galactophilus, Bacillus globisporus, Bacillus globisporus subsp. marinus, Bacillus halophilus, Bacillus lentimorbus, Bacillus lentus, Bacillus licheniformis, Bacillus
- ⁵⁵ megaterium, Bacillus polymyxa, Bacillus psychrosaccharolyticus, Bacillus pumilus, Bacillus sphaericus, Bacillus subtilis subsp. spizizenii, Bacillus subtilis subsp. subtilis or Bacillus thuringiensis; Enterobacteriacae such as the genera Citrobacter, Edwardsiella, Enterobacter, Erwinia, Escherichia, Klebsiella, Salmonella or Serratia, for example the genera and species Citrobacter amalonaticus, Citrobacter diversus, Citrobacter freundii, Citrobacter genomospecies, Citrobacter

gillenii, Citrobacter intermedium, Citrobacter koseri, Citrobacter murliniae, Citrobacter sp., Edwardsiella hoshinae, Edwardsiella ictaluri, Edwardsiella tarda, Erwinia alni, Erwinia amylovora, Erwinia ananatis, Erwinia aphidicola, Erwinia billingiae, Erwinia cacticida, Erwinia cancerogena, Erwinia carnegieana, Erwinia carotovora subsp. atroseptica, Erwinia carotovora subsp. betavasculorum, Erwinia carotovora subsp. odorifera, Erwinia carotovora subsp. wasabiae, Erwinia

- ⁵ chrysanthemi, Erwinia cypripedii, Erwinia dissolvens, Erwinia herbicola, Erwinia mallotivora, Erwinia milletiae, Erwinia nigrifluens, Erwinia nimipressuralis, Erwinia persicina, Erwinia psidii, Erwinia pyrifoliae, Erwinia quercina, Erwinia rhapontici, Erwinia rubrifaciens, Erwinia salicis, Erwinia stewartii, Erwinia tracheiphila, Erwinia uredovora, Escherichia adecarboxylata, Escherichia anindolica, Escherichia aurescens, Escherichia blattae, Escherichia coli, Escherichia coli var. communior, Escherichia coli-mutabile, Escherichia fergusonii, Escherichia hermannii, Escherichia sp., Escherichia vul-
- ¹⁰ neris, Klebsiella aerogenes, Klebsiella edwardsii subsp. atlantae, Klebsiella ornithinolytica, Klebsiella oxytoca, Klebsiella planticola, Klebsiella pneumoniae, Klebsiella pneumoniae subsp. pneumoniae, Klebsiella sp., Klebsiella terrigena, Klebsiella terri
- ¹⁵ subsp. salamae, Salmonella daressalaam, Salmonella enterica subsp. houtenae, Salmonella enterica subsp. salamae, Salmonella enteritidis, Salmonella gallinarum, Salmonella heidelberg, Salmonella panama, Salmonella senftenberg, Salmonella typhimurium, Serratia entomophila, Serratia ficaria, Serratia fonticola, Serratia grimesii, Serratia liquefaciens, Serratia marcescens, Serratia marcescens subsp. marcescens, Serratia marinorubra, Serratia odorifera, Serratia plymouthensis, Serratia plymuthica, Serratia proteamaculans, Serratia proteamaculans subsp. quinovora, Serratia quini-
- 20 vorans or Serratia rubidaea; Rhizobiaceae, such as the genera Agrobacterium, Carbophilus, Chelatobacter, Ensifer, Rhizobium, Sinorhizobium, for example the genera and species Agrobacterium atlanticum, Agrobacterium ferrugineum, Agrobacterium gelatinovorum, Agrobacterium larrymoorei, Agrobacterium meteori, Agrobacterium radiobacter, Agrobacterium rhizogenes, Agrobacterium rubi, Agrobacterium stellulatum, Agrobacterium tumefaciens, Agrobacterium vitis, Carbophilus carboxidus, Chelatobacter heintzii, Ensifer adhaerens, Ensifer arboris, Ensifer fredii, Ensifer kostiensis,
- ²⁵ Ensifer kummerowiae, Ensifer medicae, Ensifer meliloti, Ensifer saheli, Ensifer terangae, Ensifer xinjiangensis, Rhizobium ciceri, Rhizobium etli, Rhizobium fredii, Rhizobium galegae, Rhizobium gallicum, Rhizobium giardinii, Rhizobium hainanense, Rhizobium huakuii, Rhizobium huautlense, Rhizobium indigoferae, Rhizobium japonicum, Rhizobium leguminosarum, Rhizobium loessense, Rhizobium loti, Rhizobium lupini, Rhizobium mediterraneum, Rhizobium meliloti, Rhizobium mongolense, Rhizobium phaseoli, Rhizobium radiobacter, Rhizobium rhizogenes, Rhizobium rubi, Rhizobium
- ³⁰ sullae, Rhizobium tianshanense, Rhizobium trifolii, Rhizobium tropici, Rhizobium undicola, Rhizobium vitis, Sinorhizobium adhaerens, Sinorhizobium arboris, Sinorhizobium fredii, Sinorhizobium kostiense, Sinorhizobium kummerowiae, Sinorhizobium medicae, Sinorhizobium meliloti, Sinorhizobium morelense, Sinorhizobium saheli or Sinorhizobium xinjiangense.
- [0054] Further utilizable host cells are detailed in: Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, CA (1990). Expression strains which can be used, for example those with a lower protease activity, are described in: Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, California (1990) 119-128. These include plant cells and certain tissues, organs and parts of plants in all their phenotypic forms such as anthers, fibers, root hairs, stalks, embryos, calli, cotelydons, petioles, harvested material, plant tissue, reproductive tissue and cell cultures which are derived from the actual transgenic plant and/or can be used for bringing about the transgenic plant.
- **[0055]** Polynucleotides or vectors can be introduced into the host cell as described above by means of transformation or transfection methods which are known in the prior art. Conditions and media for the cultivation of the host cells are also known to the skilled worker.
- [0056] The host cell according to the invention preferably additionally comprises at least one further enzyme which is involved in the biosynthesis of lipids or fatty acids. Preferred enzymes have already been mentioned in another place in the description. The enzyme can be present in the host cell in endogenous form, i.e. the host cell already naturally expresses a gene which codes for a corresponding enzyme. Alternatively, it is also possible to introduce, into the host cell, a heterologous polynucleotide which codes for the enzyme. Suitable methods and means for the expression of a heterologous polynucleotide are known in the prior art and are described herein in connection with the polynucleotides, vectors and host cells according to the invention.
- 50 vectors and host cells according to the invention. **100571** The invention also relates to a method of a
 - **[0057]** The invention also relates to a method of generating a polypeptide with desaturase activity, comprising the steps:
 - (a) expressing a polynucleotide according to the invention as defined above in a host cell; and
 - (b) obtaining, from the host cell, the polypeptide which is encoded by the polynucleotide.
- 55

[0058] In this context, the polypeptide can be obtained or isolated by all current protein purification methods. The methods comprise, for example, affinity chromatography, molecular sieve chromatography, high-pressure liquid chromatography or else protein precipitation, if appropriate with specific antibodies. Although this is preferred, the method

need not necessarily provide a pure polypeptide preparation.

30

[0059] The invention therefore also relates to a polypeptide which is encoded by the polynucleotide according to the invention.

- [0060] The term "polypeptide" refers both to an essentially pure polypeptide, and also to a polypeptide preparation
- ⁵ which additionally comprises further components or impurities. The term is also used for fusion proteins and protein aggregates which comprise the polypeptide according to the invention and additionally further components. The term also refers to chemically modified polypeptides. In this context, chemical modifications comprise artificial modifications or naturally occurring modifications, for example posttranslational modifications such as phosphorylation, myristylation, glycosylation and the like. The terms polypeptide, peptide and protein are interchangeable and are used accordingly in
- ¹⁰ the description and in the prior art. The polypeptides according to the invention have the abovementioned biological activities, that is to say desaturase activities, and can influence the biosynthesis of polyunsaturated fatty acids (PUFAs), preferably the long-chain PUFAs (LCPUFAs), as herein described. [0061] The invention also comprises an antibody which specifically recognizes the polypeptide having an amino acid sequence as shown in SEQ ID No. 2.
- ¹⁵ **[0062]** Antibodies against the polypeptide according to the invention can be prepared by means of known methods, where purified polypeptide or fragments thereof with suitable epitopes are used as the antigen. Suitable epitopes can be determined by means of known algorithms for the antigenicity determination, based on the amino acid sequences of the polypeptides according to the invention provided herein. The relevant polypeptides or fragments can then be synthesized or obtained by recombinant techniques. After animals, preferably mammals, for example hares, rats or mice,
- ²⁰ have been immunized, the antibodies can then be obtained from the serum, using known methods. Alternatively, monoclonal antibodies or antibody fragments can be provided with the known methods; see, for example, Harlow and Lane "Antibodies, A Laboratory Manual", CSH Press, Cold Spring Harbor, 1988 or Köhler and Milstein, Nature 256 (1975), 495, and Galfré, Meth. Enzymol. 73 (1981), 3.
- [0063] The antibodies preferably take the form of monoclonal or polyclonal antibodies, single-chain antibodies or chimeric antibodies, and fragments of these such as Fab, Fv or scFv. Further antibodies within the meaning of the invention are bispecific antibodies, synthetic antibodies or their chemically modified derivatives.

[0064] The antibodies according to the invention specifically recognize the polypeptides according to the invention, that is to say they do not cross-react significantly with other proteins. This can be assayed by means of methods known in the prior art. For example, the antibodies can be employed for the purposes of detection reactions, immunoprecipitation, immunhistochemistry or protein purification (for example affinity chromatography).

[0065] The invention furthermore relates to a transgenic, nonhuman organism which comprises the polynucleotide, the vector or the host cell of the present invention. The transgenic, nonhuman organism preferably takes the form of an animal, a plant or a multicellular microorganism.

[0066] The term "transgenic" is understood as meaning that a heterologous polynucleotide, that is to say a polynucle-

- ³⁵ otide which does not occur naturally in the respective organism, is introduced into the organism. This can be achieved either by random insertion of the polynucleotide or by homologous recombination. Naturally, it is also possible to introduce the vector according to the invention instead of the polynucleotide. Methods of introducing polynucleotides or vectors for the purposes of random insertion or homologous recombination are known in the prior art and also described in greater detail hereinbelow. Host cells which comprise the polynucleotide or the vector can also be introduced into an
- ⁴⁰ organism and thus generate a transgenic organism. In such a case, such an organism takes the form of a chimeric organism, where only those cells which are derived from the introduced cells are transgenic, i.e. comprise the heterologous polynucleotide.

[0067] The transgenic nonhuman organisms are preferably oil-producing organisms, which means organisms which are used for the production of oils, for example fungi such as Rhizopus or Thraustochytrium, algae such as Euglena, Nephroselmis, Pseudoscourfielda, Prasinococcus, Scherffelia, Tetraselmis, Mantoniella, Ostreococcus, Crypthecodin-

⁴⁵ Nephroselmis, Pseudoscourfielda, Prasinococcus, Scherffelia, Tetraselmis, Mantoniella, Ostreococcus, Crypthecodinium, Phaeodactylum, or diatoms such as Pythium or Phytophthora or plants.
 [0068] Transgenic plants which can be used are, in principle, are all plants, that is to say both dicotyledonous and monocotyledonous plants. They preferably take the form of oil crop plants which comprise large amounts of lipid compounds, such as peanut, oilseed rape, canola, sunflower, safflower (Carthamus tinctoria), poppy, mustard, hemp, castor-

- ⁵⁰ oil plant, olive, sesame, Calendula, Punica, evening primrose, verbascum, thistle, wild roses, hazelnut, almond, macadamia, avocado, bay, pumpkin/squash, linseed, soybean, pistachios, borage, trees (oil palm, coconut or walnut) or arable crops such as maize, wheat, rye, oats, triticale, rice, barley, cotton, cassava, pepper, Tagetes, Solanaceae plants such as potato, tobacco, eggplant and tomato, Vicia species, pea, alfalfa or bushy plants (coffee, cacao, tea), Salix species, and perennial grasses and fodder crops. Preferred plants according to the invention are oil crop plants such
- ⁵⁵ as peanut, oilseed rape, canola, sunflower, safflower, poppy, mustard, hemp, castor-oil plant, olive, Calendula, Punica, evening primrose, pumpkin/squash, linseed, soybean, borage, trees (oil palm, coconut). Especially preferred are plants which are high in C18:2- and/or C18:3-fatty acids, such as sunflower, safflower, tobacco, verbascum, sesame, cotton, pumpkin/squash, poppy, evening primrose, walnut, linseed, hemp, thistle or safflower. Very especially preferred plants

are plants such as safflower, sunflower, poppy, evening primrose, walnut, linseed or hemp. In principle, however, all plants which are capable of synthesizing fatty acids are suitable, such as all dicotyledonous or monocotyledonous plants, algae or mosses. Advantageous plants are selected from the group of the plant families Adelotheciaceae, Anacardiaceae, Asteraceae, Apiaceae, Betulaceae, Boraginaceae, Brassicaceae, Bromeliaceae, Caricaceae, Cannabaceae, Convol-

⁵ vulaceae, Chenopodiaceae, Crypthecodiniaceae, Cucurbitaceae, Ditrichaceae, Elaeagnaceae, Ericaceae, Euphorbiaceae, Fabaceae, Geraniaceae, Gramineae, Juglandaceae, Lauraceae, Leguminosae, Linaceae, Prasinophyceae or vegetable plants or ornamentals such as Tagetes.
[0060] Every log which may consider the gravity of the mentioned are the following plants colored from the gravity.

[0069] Examples which may especially preferably be mentioned are the following plants selected from the group consisting of: Adelotheciaceae such as the genera Physcomitrella, for example the genus and species *Physcomitrella*

- patens, Anacardiaceae such as the genera Pistacia, Mangifera, Anacardium, for example the genus and species Pistacia vera [pistachio], Mangifer indica [mango] or Anacardium occidentale [cashew], Asteraceae, such as the genera Calendula, Carthamus, Centaurea, Cichorium, Cynara, Helianthus, Lactuca, Locusta, Tagetes, Valeriana, for example the genus and species Calendula officinalis [common marigold], Carthamus tinctorius [safflower], Centaurea cyanus [cornflower], Cichorium intybus [chicory], Cynara scolymus [artichoke], Helianthus annus [sunflower], Lactuca sativa, Lactuca
- 15 crispa, Lactuca esculenta, Lactuca scariola L. ssp. sativa, Lactuca scariola L. var. integrata, Lactuca scariola L. var. integrifolia, Lactuca sativa subsp. romana, Locusta communis, Valeriana locusta [salad vegetables], Tagetes lucida, Tagetes erecta or Tagetes tenuifolia [african or french marigold], Apiaceae, such as the genus Daucus, for example the genus and species Daucus carota [carrot], Betulaceae, such as the genus Corylus, for example the genus and species Corylus colurna [hazelnut], Boraginaceae, such as the genus Borago, for example the genus and
- ²⁰ species Borago officinalis [borage], Brassicaceae, such as the genera Brassica, Camelina, Melanosinapis, Sinapis, Arabadopsis, for example the genera and species Brassica napus, Brassica rapa ssp. [oilseed rape], Sinapis arvensis Brassica juncea, Brassica juncea var. juncea, Brassica juncea var. crispifolia, Brassica juncea var. foliosa, Brassica nigra, Brassica sinapioides, Camelina sativa, Melanosinapis communis [mustard], Brassica oleracea [fodder beet] or Arabadopsis thaliana, Bromeliaceae, such as the genera Anana, Bromelia (pineapple), for example the genera and
- ²⁵ species Anana comosus, Ananas ananas or Bromelia comosa [pineapple], Caricaceae, such as the genus Carica, such as the genus and species Carica papaya [pawpaw], Cannabaceae, such as the genus Cannabis, such as the genus and species Cannabis sative [hemp], Convolvulaceae, such as the genera Ipomea, Convolvulus, for example the genera and species Ipomoea batatus, Ipomoea pandurata, Convolvulus batatas, Convolvulus tiliaceus, Ipomoea fastigiata, Ipomoea tiliacea, Ipomoea triloba or Convolvulus panduratus [sweet potato, batate], Chenopodiaceae, such as the genus
- ³⁰ Beta, such as the genera and species Beta vulgaris, Beta vulgaris var. altissima, Beta vulgaris var. vulgaris, Beta maritima, Beta vulgaris var. perennis, Beta vulgaris var. conditiva or Beta vulgaris var. esculenta [sugarbeet], Crypthe-codiniaceae, such as the genus Crypthecodinium, for example the genus and species Cryptecodinium cohnii, Cucurbitaceae, such as the genus Cucurbita, for example the genera and species Cucurbita maxima, Cucurbita mixta, Cucurbita pepo or Cucurbita moschata [pumpkin/squash], Cymbellaceae, such as the genera Amphora, Cymbella, Okedenia,
- ³⁵ Phaeodactylum, Reimeria, for example the genus and species *Phaeodactylum tricornutum*, Ditrichaceae, such as the genera Ditrichaceae, Astomiopsis, Ceratodon, Chrysoblastella, Ditrichum, Distichium, Eccremidium, Lophidion, Philibertiella, Pleuridium, Saelania, Trichodon, Skottsbergia, for example the genera and species *Ceratodon antarcticus, Ceratodon columbiae, Ceratodon heterophyllus, Ceratodon purpurascens, Ceratodon purpureus, Ceratodon purpureus ssp. convolutus, Ceratodon purpureus ssp. stenocarpus, Ceratodon purpureus var. rotundifolius, Ceratodon ratodon, Reine Stenocarpus, Ceratodon purpureus var. rotundifolius, Ceratodon var.*
- 40 Ceratodon stenocarpus, Chrysoblastella chilensis, Ditrichum ambiguum, Ditrichum brevisetum, Ditrichum crispatissimum, Ditrichum difficile, Ditrichum falcifolium, Ditrichum flexicaule, Ditrichum giganteum, Ditrichum heteromallum, Ditrichum lineare, Ditrichum montanum, Ditrichum montanum, Ditrichum pallidum, Ditrichum punctulatum, Ditrichum pusillum, Ditrichum pusillum var. tortile, Ditrichum rhynchostegium, Ditrichum schimperi, Ditrichum tortile, Distichium capillaceum, Distichium hagenii, Distichium inclinatum, Distichium macounii, Eccremidium floridanum, Eccremidium whiteleggei, Lo-
- ⁴⁵ phidion strictus, Pleuridium acuminatum, Pleuridium alternifolium, Pleuridium holdridgei, Pleuridium mexicanum, Pleuridium ravenelii, Pleuridium subulatum, Saelania glaucescens, Trichodon borealis, Trichodon cylindricus or Trichodon cylindricus var. oblongus, Elaeagnaceae, such as the genus Elaeagnus, for example the genus and species Olea europaea [olive], Ericaceae, such as the genus Kalmia, for example the genera and species Kalmia latifolia, Kalmia angustifolia, Kalmia microphylla, Kalmia polifolia, Kalmia occidentalis, Cistus chamaerhodendros or Kalmia lucida [moun-
- 50 tain laurel], Euphorbiaceae, such as the genera Manihot, Janipha, Jatropha, Ricinus, for example the genera and species Manihot utilissima, Janipha manihot, Jatropha manihot, Manihot aipil, Manihot dulcis, Manihot manihot, Manihot melanobasis, Manihot esculenta [cassava] or Ricinus communis [castor-oil plant], Fabaceae, such as the genera Pisum, Albizia, Cathormion, Feuillea, Inga, Pithecolobium, Acacia, Mimosa, Medicajo, Glycine, Dolichos, Phaseolus, soybean, for example the genera and species Pisum sativum, Pisum arvense, Pisum humile [pea], Albizia berteriana, Albizia julibrissin,
- Albizia lebbeck, Acacia berteriana, Acacia littoralis, Albizia berteriana, Albizzia berteriana, Cathormion berteriana, Feuillea berteriana, Inga fragrans, Pithecellobium berterianum, Pithecellobium fragrans, Pithecolobium berterianum, Pseudalbizzia berteriana, Acacia julibrissin, Acacia nemu, Albizia nemu, Feuilleea julibrissin, Mimosa julibrissin, Mimosa speciosa, Sericanrda julibrissin, Acacia lebbeck, Acacia macrophylla, Albizia lebbeck, Feuilleea lebbeck, Mimosa leb-

beck, Mimosa speciosa [silk tree], Medicago sativa, Medicago falcata, Medicago varia [alfalfa] Glycine max Dolichos soja, Glycine gracilis, Glycine hispida, Phaseolus max, Soja hispida or Soja max [soybean], Funariaceae, such as the genera Aphanorrhegma, Entosthodon, Funaria, Physcomitrella, Physcomitrium, for example the genera and species Aphanorrhegma serratum, Entosthodon attenuatus, Entosthodon bolanderi, Entosthodon bonplandii, Entosthodon cal-

- ⁵ ifornicus, Entosthodon drummondii, Entosthodon jamesonii, Entosthodon leibergii, Entosthodon neoscoticus, Entosthodon rubrisetus, Entosthodon spathulifolius, Entosthodon tucsoni, Funaria americana, Funaria bolanderi, Funaria calcarea, Funaria californica, Funaria calvescens, Funaria convoluta, Funaria flavicans, Funaria groutiana, Funaria hygrometrica, Funaria hygrometrica var. arctica, Funaria hygrometrica var. calvescens, Funaria hygrometrica var. convoluta, Funaria hygrometrica var. muralis, Funaria hygrometrica var. utahensis, Funaria microstoma, Funaria microstoma var.
- ¹⁰ obtusifolia, Funaria muhlenbergii, Funaria orcuttii, Funaria plano-convexa, Funaria polaris, Funaria ravenelii, Funaria rubriseta, Funaria serrata, Funaria sonorae, Funaria sublimbatus, Funaria tucsoni, Physcomitrella californica, Physcomitrella patens, Physcomitrella readeri, Physcomitrium australe, Physcomitrium californicum, Physcomitrium collenchymatum, Physcomitrium coloradense, Physcomitrium cupuliferum, Physcomitrium drummondii, Physcomitrium eurystomum, Physcomitrium flexifolium, Physcomitrium hookeri, Physcomitrium hookeri var. serratum, Physcomitrium immer-
- ¹⁵ sum, Physcomitrium kellermanii, Physcomitrium megalocarpum, Physcomitrium pyriforme, Physcomitrium pyriforme var. serratum, Physcomitrium rufipes, Physcomitrium sandbergii, Physcomitrium subsphaericum, Physcomitrium washingtoniense, Geraniaceae, such as the genera Pelargonium, Cocos, Oleum, for example the genera and species Cocos nucifera, Pelargonium grossularioides or Oleum cocois [coconut], Gramineae, such as the genus Saccharum, for example the genus and species Saccharum officinarum, Juglandaceae, such as the genera Juglans, Wallia, for example the
- ²⁰ genera and species Juglans regia, Juglans ailanthifolia, Juglans sieboldiana, Juglans cinerea, Wallia cinerea, Juglans bixbyi, Juglans californica, Juglans hindsii, Juglans intermedia, Juglans jamaicensis, Juglans major, Juglans microcarpa, Juglans nigra or Wallia nigra [walnut], Lauraceae, such as the genera Persea, Laurus, for example the genera and species Laurus nobilis [bay], Persea americana, Persea gratissima or Persea persea [avocado], Leguminosae, such as the genus Arachis, for example the genus and species Arachis hypogaea [peanut], Linaceae, such as the genera Linum,
- Adenolinum, for example the genera and species Linum usitatissimum, Linum humile, Linum austriacum, Linum bienne, Linum angustifolium, Linum catharticum, Linum flavum, Linum grandiflorum, Adenolinum grandiflorum, Linum lewisii, Linum narbonense, Linum perenne, Linum perenne var. lewisii, Linum pratense or Linum trigynum [linseed], Lythrarieae, such as the genus Punica, for example the genus and species Punica granatum [pomegranate], Malvaceae, such as the genus Gossypium, for example the genera and species Gossypium hirsutum, Gossypium arboreum, Gossypium
- ³⁰ barbadense, Gossypium herbaceum or Gossypium thurberi [cotton], Marchantiaceae, such as the genus Marchantia, for example the genera and species Marchantia berteroana, Marchantia foliacea, Marchantia macropora, Musaceae, such as the genus Musa, for example the genera and species Musa nana, Musa acuminata, Musa paradisiaca, Musa spp. [banana], Onagraceae, such as the genera Camissonia, Oenothera, for example the genera and species Oenothera biennis or Camissonia brevipes [evening primrose], Palmae, such as the genus Elacis, for example the genera and species of the genus and species of the genera and species of the genus and specie
- ³⁵ species *Elaeis guineensis* [oil palm], Papaveraceae, such as the genus Papaver, for example the genera and species *Papaver orientale, Papaver rhoeas, Papaver dubium* [poppy], Pedaliaceae, such as the genus Sesamum, for example the genus and species *Sesamum indicum* [sesame], Piperaceae, such as the genera Piper, Artanthe, Peperomia, Steffensia, for example the genera and species *Piper aduncum, Piper amalago, Piper angustifolium, Piper auritum, Piper betel, Piper cubeba, Piper longum, Piper nigrum, Piper retrofractum, Artanthe adunca, Artanthe elongata, Peper-*
- 40 omia elongata, Piper elongatum, Steffensia elongata [cayenne pepper], Poaceae, such as the genera Hordeum, Secale, Avena, Sorghum, Andropogon, Holcus, Panicum, Oryza, Zea (maize), Triticum, for example the genera and species Hordeum vulgare, Hordeum jubatum, Hordeum murinum, Hordeum secalinum, Hordeum distichon, Hordeum aegiceras, Hordeum hexastichon, Hordeum hexastichum, Hordeum irregulare, Hordeum sativum, Hordeum secalinum [barley], Secale cereale [rye], Avena sativa, Avena fatua, Avena byzantina, Avena fatua var. sativa, Avena hybrida [oats], Sorghum
- ⁴⁵ bicolor, Sorghum halepense, Sorghum saccharatum, Sorghum vulgare, Andropogon drummondii, Holcus bicolor, Holcus sorghum, Sorghum aethiopicum, Sorghum arundinaceum, Sorghum caffrorum, Sorghum cernuum, Sorghum dochna, Sorghum drummondii, Sorghum durra, Sorghum guineense, Sorghum lanceolatum, Sorghum nervosum, Sorghum saccharatum, Sorghum subglabrescens, Sorghum verticilliflorum, Sorghum vulgare, Holcus halepensis, Sorghum miliaceum, Panicum militaceum [millet], Oryza sativa, Oryza latifolia [rice], Zea mays [maize] Triticum aestivum, Triticum
- ⁵⁰ durum, Triticum turgidum, Triticum hybernum, Triticum macha, Triticum sativum or Triticum vulgare [wheat], Porphyridiaceae, such as the genera Chroothece, Flintiella, Petrovanella, Porphyridium, Rhodella, Rhodosorus, Vanhoeffenia, for example the genus and species *Porphyridium cruentum*, Proteaceae, such as the genus Macadamia, for example the genus and species *Macadamia intergrifolia* [macadamia], Prasinophyceae, such as the genera Nephroselmis, Prasinococcus, Scherffelia, Tetraselmis, Mantoniella, Ostreococcus, for example the genera and species *Nephroselmis*
- ⁵⁵ olivacea, Prasinococcus capsulatus, Scherffelia dubia, Tetraselmis chui, Tetraselmis suecica, Mantoniella squamata, Ostreococcus tauri, Rubiaceae, such as the genus Coffea, for example the genera and species Cofea spp., Coffea arabica, Coffea canephora or Coffea liberica [coffee], Scrophulariaceae, such as the genus Verbascum, for example the genera and species Verbascum blattaria, Verbascum chaixii, Verbascum densiflorum, Verbascum lagurus, Verbas-

cum longifolium, Verbascum lychnitis, Verbascum nigrum, Verbascum olympicum, Venbascum phlomoides, Verbascum phoenicum, Verbascum pulverulentum or Verbascum thapsus [verbascum], Solanaceae, such as the genera Capsicum, Nicotiana, Solanum, Lycopersicon, for example the genera and species Capsicum annuum, Capsicum annuum var. glabriusculum, Capsicum frutescens [pepper], Capsicum annuum [paprika], Nicotiana tabacum, Nicotiana alata, Nico-

- tiana attenuata, Nicotiana glauca, Nicotiana langsdorffii, Nicotiana obtusifolia, Nicotiana quadrivalvis, Nicotiana repanda, Nicotiana rustica, Nicotiana sylvestris [tobacco], Solanum tuberosum [potato], Solanum melongena [eggplant], Lycopersicon esculentum, Lycopersicon lycopersicum, Lycopersicon pyriforme, Solanum integrifolium or Solanum lycopersicum [tomato], Sterculiaceae, such as the genus Theobroma, for example the genus and species Theobroma cacao [cacao] or Theaceae, such as the genus Camellia, for example the genus and species Camellia sinensis [tea].
- ¹⁰ **[0070]** Multicellular microorganisms which can be employed as transgenic nonhuman organisms are preferably protists or diatoms selected from the group of the families Dinophyceae, Turaniellidae or Oxytrichidae, such as the genera and species: *Crypthecodinium cohnii, Phaeodactylum tricornutum, Stylonychia mytilus, Stylonychia pustulata, Stylonychia putrina, Stylonychia notophora, Stylonychia sp.,* Colpidium campylum or Colpidium sp.
- [0071] The invention further relates to a method for the production of a substance which has the structure shown in the general formula I hereinbelow

²⁵ where the variables and substituents are as follows:

R¹ = hydroxyl, coenzyme A (thioester), lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, lysodiphosphatidylglycerol, lysophosphatidylserine, lysophosphatidylinositol, sphingo base or a radical of the formula II

20

35

40

R² = hydrogen, lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, lysodiphosphatidylglycerol, lysophosphatidylserine, lysophosphatidylinositol or saturated or unsaturated C₂-C₂₄-alkylcarbonyl,

(II)

 $H_{2}C - O - R^{2}$ $H_{2}C - O - R^{3}$ $H_{2}C - O - f^{-1}$

 R^3 = hydrogen, saturated or unsaturated C₂-C₂₄-alkylcarbonyl, or R² and R³ independently of one another are a radical of the formula la:

50

55

in which

n = 2, 3, 4, 5, 6, 7 or 9, m = 2, 3, 4, 5 or 6 and p = 0 or 3.

and where the method comprises the cultivation of (i) a host cell according to the invention or (ii) a transgenic nonhuman organism according to the invention under conditions which permit the biosynthesis of the substance. Preferably, the abovementioned substance is provided in an amount of at least 1% by weight based on the total lipid content in the host cell or the transgenic organism.

[0072] R¹ in the general formula I is hydroxyl, coenzyme A (thioester), lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, lysodiphosphatidylglycerol, lysophosphatidylserine, lysophosphatidylinositol, sphingo base or a radical of the general formula II

5

¹⁰ **[0073]** The abovementioned radicals of R¹ are always bonded to the compounds of the general formula I in the form of their thioesters.

[0074] R^2 in the general formula II is hydrogen, lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, lysodiphosphatidylglycerol, lysophosphatidylserine, lysophosphatidylinositol or saturated or unsaturated C_2-C_{24} -alkylcarbonyl.

- 15 [0075] Alkyl radicals which may be mentioned are substituted or unsubstituted, saturated or unsaturated C₂-C₂₄-alkylcarbonyl chains such as ethylcarbonyl, n-propylcarbonyl, n-butylcarbonyl, n-pentylcarbonyl, n-hexylcarbonyl, n-heptylcarbonyl, n-octylcarbonyl, n-nonylcarbonyl, n-decylcarbonyl, n-undecylcarbonyl, n-dodecylcarbonyl, n-tridecylcarbonyl, n-tetradecylcarbonyl, n-pentadecylcarbonyl, n-hexadecylcarbonyl, n-heptadecylcarbonyl, n-octadecylcarbonyl, n-nonadecylcarbonyl, n-eicosylcarbonyl, n-docosanylcarbonyl or n-tetracosanylcarbonyl, which comprise one or more double
- ²⁰ bonds. Saturated or unsaturated C₁₀-C₂₂-alkylcarbonyl radicals such as n-decylcarbonyl, n-undecylcarbonyl, n-dodecylcarbonyl, n-tridecylcarbonyl, n-tetradecylcarbonyl, n-pentadecylcarbonyl, n-hexadecylcarbonyl, n-heptadecylcarbonyl, n-octadecylcarbonyl, n-nonadecylcarbonyl, n-eicosylcarbonyl, n-docosanylcarbonyl or n-tetracosanylcarbonyl, which comprise one or more double bonds are preferred. Especially preferred are saturated and/or unsaturated C₁₀-C₂₂-alkylcarbonyl radicals such as C₁₀-alkylcarbonyl, C₁₁-alkylcarbonyl, C₁₂-alkylcarbonyl, C₁₃-alkylcarbonyl, C₁₄-alkylcarbonyl,
- ²⁵ C₁₆-alkylcarbonyl, C₁₈-alkylcarbonyl, C₂₀-alkylcarbonyl or C₂₂-alkylcarbonyl radicals which comprise one or more double bonds. Very especially preferred are saturated or unsaturated C₁₆-C₂₂-alkylcarbonyl radicals such as C₁₆-alkylcarbonyl, C₁₈-alkylcarbonyl, C₂₀-alkylcarbonyl or C₂₂-alkylcarbonyl radicals which comprise one or more double bonds. These advantageous radicals can comprise two, three, four, five or six double bonds. The especially advantageous radicals with 20 or 22 carbon atoms in the fatty acid chain comprise up to six double bonds, advantageously three, four, five or six double bonds. All the abovementioned radicals are derived from the
- 30 six double bonds, especia corresponding fatty acids.
 - [0076] R^3 in the general formula II is hydrogen, saturated or unsaturated C_2 - C_{24} -alkylcarbonyl.

[0077] Alkyl radicals which may be mentioned are substituted or unsubstituted, saturated or unsaturated C₂-C₂₄-alkylcarbonyl chains such as ethylcarbonyl, n-propylcarbonyl, n-butylcarbonyl, n-pentylcarbonyl, n-hexylcarbonyl, n-heptyl-

- ³⁵ carbonyl, n-octylcarbonyl, n-nonylcarbonyl, n-decylcarbonyl, n-undecylcarbonyl, n-dodecylcarbonyl, n-tridecylcarbonyl, n-tetradecylcarbonyl, n-pentadecylcarbonyl, n-hexadecylcarbonyl, n-heptadecylcarbonyl, n-octadecylcarbonyl-, n-nonadecylcarbonyl, n-eicosylcarbonyl, n-docosanylcarbonyl or n-tetracosanylcarbonyl, which comprise one or more double bonds. Saturated or unsaturated C₁₀-C₂₂-alkylcarbonyl radicals such as n-decylcarbonyl, n-undecylcarbonyl, n-dodecylcarbonyl, n-tridecylcarbonyl, n-tetradecylcarbonyl, n-pentadecylcarbonyl, n-hexadecylcarbonyl, n-heptadecylcarbonyl,
- ⁴⁰ n-octadecylcarbonyl, n-nonadecylcarbonyl, n-eicosylcarbonyl, n-docosanylcarbonyl or n-tetracosanylcarbonyl, which comprise one or more double bonds are preferred. Especially preferred are saturated and/or unsaturated C₁₀-C₂₂-alkylcarbonyl radicals such as C₁₀-alkylcarbonyl, C₁₁-alkylcarbonyl, C₁₂-alkylcarbonyl, C₁₃-alkylcarbonyl, C₁₄-alkylcarbonyl, C₁₆-alkylcarbonyl, C₁₈-alkylcarbonyl, C₂₀-alkylcarbonyl or C₂₂-alkylcarbonyl radicals which comprise one or more double bonds. Very especially preferred are saturated or unsaturated C₁₆-C₂₂-alkylcarbonyl radicals such as C₁₆-alkylcarbonyl,
- ⁴⁵ C₁₈-alkylcarbonyl, C₂₀-alkylcarbonyl or C₂₂-alkylcarbonyl radicals which comprise one or more double bonds. These advantageous radicals can comprise two, three, four, five or six double bonds. The especially advantageous radicals with 20 or 22 carbon atoms in the fatty acid chain comprise up to six double bonds, advantageously three, four, five or six double bonds, especially preferably five or six double bonds. All the abovementioned radicals are derived from the corresponding fatty acids.
- ⁵⁰ **[0078]** The abovementioned radicals of R¹, R² and R³ can be substituted by hydroxyl and/or epoxy groups and/or can comprise triple bonds.

[0079] The polyunsaturated fatty acids produced in the method according to the invention advantageously comprise at least two, advantageously three, four, five or six, double bonds. The fatty acids especially advantageously comprise four, five or six double bonds. Fatty acids produced in the method advantageously have 18, 20 or 22 C atoms in the

fatty acid chain; the fatty acids preferably comprise 20 or 22 carbon atoms in the fatty acid chain. Saturated fatty acids are advantageously reacted to a minor degree, or not at all, with the nucleic acids used in the method. To a minor degree is to be understood as meaning that the saturated fatty acids are reacted with less than 5% of the activity, advantageously less than 3%, especially advantageously with less than 2%, very especially preferably with less than 1, 0.5, 0.25 or

0.125% in comparison with polyunsaturated fatty acids. These fatty acids which have been produced can be produced in the method as a single product or be present in a fatty acid mixture.

[0080] Advantageously, the substituents R^2 or R^3 in the general formulae I and II are, independently of one another, saturated or unsaturated C_{18} - C_{22} -alkylcarbonyl, especially advantageously, they are, independently of one another, unsaturated C_{18} -, C_{20} - or C_{22} -alkylcarbonyl with at least two double bonds.

[0081] The polyunsaturated fatty acids produced in the method are advantageously bound in membrane lipids and/or triacylglycerides, but may also occur in the organisms as free fatty acids or else bound in the form of other fatty acid esters. In this context, they may be present as "pure products" or else advantageously in the form of mixtures of various fatty acids or mixtures of different glycerides. The various fatty acids which are bound in the triacylglycerides can be

5

¹⁰ derived from short-chain fatty acids with 4 to 6 C atoms, medium-chain fatty acids with 8 to 12 C atoms or long-chain fatty acids with 14 to 24 C atoms; preferred are long-chain fatty acids, more preferably long-chain polyunsaturated fatty acids with 18, 20 and/or 22 C atoms.

[0082] The method according to the invention advantageously yields fatty acid esters with polyunsaturated C_{18} -, C_{20} - and/or C_{22} -fatty acid molecules with at least two double bonds in the fatty acid ester, advantageously with at least three,

- ¹⁵ four, five or six double bonds in the fatty acid ester, especially advantageously with at least five or six double bonds in the fatty acid ester and advantageously leads to the synthesis of linoleic acid (=LA, C18:2^{Δ9,12}), y-linolenic acid (= GLA, C18:3^{Δ6,9,12}), stearidonic acid (= SDA, C18:4^{Δ6,9,12,15}), dihomo-y-linolenic acid (= DGLA, 20:3^{Δ8,11,14}), ω3-eicosatetraenoic acid (= ETA, C20:4 ^{Δ5,8,11,14}), arachidonic acid (ARA, C20:4 ^{Δ5,8,11,14}), eicosapentaenoic acid (E P A, C20:5^{Δ5,8,11,14,17}), ω6-docosapentaenoic acid (C22:5^{Δ4,7,10,13,16}), ω6-docosatetraenoic acid (C22:4^{Δ7,10,13,16}), ω3-do-
- cosapentaenoic acid (= DPA, C22:5^{Δ7,10,13,16,19}), docosahexaenoic acid (= DHA, C22:6^{Δ4,7,10,13,16,19}) or mixtures of these, preferably ARA, EPA and/or DHA. ω3-Fatty acids such as EPA and/or DHA are very especially preferably produced.
 [0083] The fatty acid esters with polyunsaturated C₁₈-, C₂₀- and/or C₂₂-fatty acid molecules can be isolated in the form of an oil or lipid, for example in the form of compounds such as sphingolipids, phosphoglycerides, lipids, glycolipids such as glycosphingolipids, phospholipids such as phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine,
- ²⁵ phosphatidylglycerol, phosphatidylinositol or diphosphatidylglycerol, monoacylglycerides, diacylglycerides, triacylglycerides or other fatty acid esters such as the acetyl-coenzyme A esters which comprise the polyunsaturated fatty acids with at least two, three, four, five or six, preferably five or six double bonds, from the organisms which have been used for the preparation of the fatty acid esters; advantageously, they are isolated in the form of their diacylglycerides, triacylglycerides. In cylglycerides and/or in the form of phosphatidylcholine, especially preferably in the form of the triacylglycerides.
- ³⁰ addition to these esters, the polyunsaturated fatty acids are also present in the organisms, advantageously the plants, as free fatty acids or bound in other compounds. As a rule, the various abovementioned compounds (fatty acid esters and free fatty acids) are present in the organisms with an approximate distribution of 80 to 90% by weight of triglycerides, 2 to 5% by weight of diglycerides, 5 to 10% by weight of monoglycerides, 1 to 5% by weight of free fatty acids, 2 to 8% by weight of phospholipids, the total of the various compounds amounting to 100% by weight.
- ³⁵ **[0084]** The method according to the invention yields the LCPUFAs produced in a content of at least 3% by weight, advantageously at least 5% by weight, preferably at least 8% by weight, especially preferably at least 10% by weight, most preferably at least 15% by weight, based on the total fatty acids in the transgenic organisms, advantageously in a transgenic plant. In this context, it is advantageous to convert C_{18} - and/or C_{20} -fatty acids which are present in the host organisms to at least 10%, advantageously to at least 20%, especially advantageously to at least 30%, most advanta-
- 40 geously to at least 40% to give the corresponding products such as DPA or DHA, to mention just two examples. The fatty acids are advantageously produced in bound form. These unsaturated fatty acids can, with the aid of the nucleic acids used in the method according to the invention, be positioned at the sn1, sn2 and/or sn3 position of the advantageously produced triglycerides. Since a plurality of reaction steps are performed by the starting compounds linoleic acid (C18:2) and linolenic acid (C18:3) in the method according to the invention, the end products of the method such as, for
- ⁴⁵ example, arachidonic acid (ARA), eicosapentaenoic acid (EPA), ω6-docosapentaenoic acid or DHA are not obtained as absolutely pure products; minor traces of the precursors are always present in the end product. If, for example, both linoleic acid and linolenic acid are present in the starting organism and the starting plant, the end products such as ARA, EPA or DHA are present as mixtures. The precursors should advantageously not amount to more than 20% by weight, preferably not to more than 15% by weight, especially preferably not to more than 10% by weight, most preferably not
- 50 to more than 5% by weight, based on the amount of the end product in question. Advantageously, only ARA, EPA or only DHA, bound or as free acids, are produced as end products in a transgenic plant in the method according to the invention. If the compounds ARA, EPA and DHA are produced simultaneously, they are advantageously produced in a ratio of at least 1:1:2 (EPA:ARA:DHA), advantageously of at least 1:1:3, preferably 1:1:4, especially preferably 1:1:5. [0085] Fatty acid esters or fatty acid mixtures produced by the method according to the invention advantageously
- comprise 6 to 15% of palmitic acid, 1 to 6% of stearic acid, 7-85% of oleic acid, 0.5 to 8% of vaccenic acid, 0.1 to 1% of arachic acid, 7 to 25% of saturated fatty acids, 8 to 85% of monounsaturated fatty acids and 60 to 85% of polyunsaturated fatty acids, in each case based on 100% and on the total fatty acid content of the organisms. Advantageous polyunsaturated fatty acids which are present in the fatty acid esters or fatty acid mixtures are preferably at least 0.1, 0.2, 0.3,

0.4, 0.5, 0.6, 0.7, 0.8, 0.9 or 1% of arachidonic acid, based on the total fatty acid content. Moreover, the fatty acid esters or fatty acid mixtures which have been produced by the method of the invention advantageously comprise fatty acids selected from the group of the fatty acids erucic acid (13-docosaenoic acid), sterculic acid (9,10-methyleneoctadec-9-enoic acid), malvalic acid (8,9-methyleneheptadec-8-enoic acid), chaulmoogric acid (cyclopentenedodecanoic acid),

- ⁵ furan fatty acid (9,12-epoxyoctadeca-9,11-dienoic acid), vernolic acid (9,10-epoxyoctadec-12-enoic acid), tarinic acid (6-octadecynoic acid), 6-nonadecynoic acid, santalbic acid (t11-octadecen-9-ynoic acid), 6,9-octadecenynoic acid, pyrulic acid (t10-heptadecen-8-ynoic acid), crepenynic acid (9-octadecen-12-ynoic acid), 13,14-dihydrooropheic acid, octadecen-13-ene-9,11-diynoic acid, petroselenic acid (cis-6-octadecenoic acid), 9c,12t-octadecadienoic acid, calendulic acid (8t10t12c-octadecatrienoic acid), catalpic acid (9t11t13c-octadecatrienoic acid), eleostearic acid (9c11t13t-octadefunction)
- 10 catrienoic acid), jacaric acid (8c10t12c-octadecatrienoic acid), punicic acid (9c11t13c-octadecatrienoic acid), parinaric acid (9c11t13t15c-octadecatetraenoic acid), pinolenic acid (all-cis-5,9,12-octadecatrienoic acid), laballenic acid (5,6-octadecadienallenic acid), ricinoleic acid (12-hydroxyoleic acid) and/or coriolic acid (13-hydroxy-9c,11t-octadecadienoic acid). The abovementioned fatty acids are, as a rule, advantageously only found in traces in the fatty acid esters or fatty acid mixtures produced by the method according to the invention, that is to say that, based on the total fatty acids, they
- ¹⁵ occur to less than 30%, preferably to less than 25%, 24%, 23%, 22% or 21%, especially preferably to less than 20%, 15%, 10%, 9%, 8%, 7%, 6% or 5%, very especially preferably to less than 4%, 3%, 2% or 1%. The fatty acid esters or fatty acid mixtures produced by the method according to the invention advantageously comprise less than 0.1%, based on the total fatty acids, or no butyric acid, no cholesterol, no clupanodonic acid (= docosapentaenoic acid, C22:5^{Δ48},12,11,21) and no nisinic acid (tetracosahexaenoic acid, C23:6^{Δ3,8,12,15,18,21}). Owing to the nucleic acid sequences
- of the invention, or the nucleic acid sequences used in the method according to the invention, an increase in the yield of polyunsaturated fatty acids of at least 50%, advantageously of at least 80%, especially advantageously of at least 100%, very especially advantageously of at least 150%, in comparison with the nontransgenic starting organism, for example a yeast, an alga, a fungus or a plant such as Arabidopsis or linseed can be obtained in a comparison by GC analysis.
- ²⁵ **[0086]** Chemically pure polyunsaturated fatty acids or fatty acid compositions can also be prepared by the methods described above. To this end, the fatty acids or the fatty acid compositions are isolated from the organism, such as the microorganisms or the plants or the culture medium in or on which the organisms have been grown, or from the organism and the culture medium, in a known manner, for example via extraction, distillation, crystallization, chromatography or combinations of these methods. These chemically pure fatty acids or fatty acid compositions are advantageous for
- 30 applications in the food industry sector, the cosmetic industry sector and especially the pharmacological industry sector. [0087] In principle, all genes of the fatty acid or lipid metabolism can be used in the method for the production of polyunsaturated fatty acids, advantageously in combination with the inventive polynucleotide(s) (for the purposes of the present application, the plural is understood as encompassing the singular and vice versa). Genes of the fatty acid or lipid metabolism which are used are advantageously selected from the group consisting of acyl-CoA dehydrogenase(s),
- 35 acyl-ACP [= acyl carrier protein] desaturase(s), acyl-ACP thioesterase(s), fatty acid acyltransferase(s), acyl-CoA:lysophospholipid acyltransferases, fatty acid synthase(s), fatty acid hydroxylase(s), acetyl-coenzyme A carboxylase(s), acylcoenzyme A oxidase(s), fatty acid desaturase(s), fatty acid acetylenases, lipoxygenases, triacylglycerol lipases, allene oxide synthases, hydroperoxide lyases or fatty acid elongase(s). Genes selected from the group of the Δ4-desaturases, Δ5-desaturases, Δ6-desaturases, Δ8-desaturases, Δ9-desaturases, Δ12-desaturases, Δ15-desaturases, Δ12- and Δ15-
- 40 desaturases, ω3-desaturases, Δ6-elongases, Δ9-elongases or Δ5-elongases in combination with the polynucleotides according to the invention are preferably used, it being possible to use individual genes or a plurality of genes in combination. For especially preferred gene combinations, reference is made here to tables 5 and 6, which are shown in the examples.
- [0088] Advantageously, the desaturases used in the method according to the invention convert their respective substrates in the form of the CoA-fatty acid esters. If preceded by an elongation step, this advantageously results in an increased product yield. The respective desaturation products are thereby synthesized in greater quantities, since the elongation step is usually carried out with the CoA-fatty acid esters, while the desaturation step is predominantly carried out with the phospholipids or the triglycerides. Therefore, a substitution reaction between the CoA-fatty acid esters and the phospholipids or triglycerides, which would require a further, possibly limiting, enzyme reaction, is not necessary.
- ⁵⁰ **[0089]** Owing to the enzymatic activity of the polypeptides used in the method according to the invention, a wide range of polyunsaturated fatty acids can be produced in the method according to the invention. Depending on the choice of the organisms, such as the advantageous plants, used for the method according to the invention, mixtures of the various polyunsaturated fatty acids or individual polyunsaturated fatty acids, such as EPA or ARA, can be produced in free or bound form. Depending on the prevailing fatty acid composition in the starting plant (C18:2- or C18:3-fatty acids), fatty
- ⁵⁵ acids which are derived from C18:2-fatty acids, such as GLA, DGLA or ARA, or fatty acids which are derived from C18:3fatty acids, such as SDA, ETA or EPA, are thus obtained. If only linoleic acid (= LA, C18: $2^{\Delta 9,12}$) is present as unsaturated fatty acid in the plant used for the method, the method can only afford GLA, DGLA and ARA as products, all of which can be present as free fatty acids or in bound form. If only α -linolenic acid (= ALA, C18: $3^{\Delta 9,12,15}$) is present as unsaturated

fatty acid in the plant used for the method, the method can only afford SDA, ETA, EPA and/or DHA as products, all of which can be present as free fatty acids or in bound form, as described above. Owing to the modification of the activity of the enzymes Δ 5-desaturase, Δ 6-desaturase, Δ 4-desaturase, Δ 12-desaturase, Δ 15-desaturase, ω 3-desaturase, Δ 5-elongase and/or Δ 6-elongase which play a role in the synthesis, it is possible to produce, in a targeted fashion, only

- ⁵ individual products in the abovementioned organisms, advantageously in the abovementioned plants. Owing to the activity of Δ 6-desaturase and Δ 6-elongase, for example, GLA and DGLA, or SDA and ETA, are formed, depending on the starting plant and unsaturated fatty acid. DGLA or ETA or mixtures of these are preferably formed. If Δ 5-desaturase, Δ 5-elongase and Δ 4-desaturase are additionally introduced into the organisms, advantageously into the plant, ARA, EPA and/or DHA are additionally formed. Advantageously, only ARA, EPA or DHA or mixtures of these are synthesized,
- ¹⁰ depending on the fatty acids present in the organism, or in the plant, which acts as starting substance for the synthesis. Since biosynthetic cascades are involved, the end products in question are not present as pure substances in the organisms. Small amounts of the precursor compounds are always additionally present in the end product. These small amounts amount to less than 20% by weight, advantageously less than 15% by weight, especially advantageously less than 10% by weight, most advantageously less than 5, 4, 3, 2 or 1% by weight, based on the end product DGLA, ETA
- or their mixtures, or ARA, EPA, DHA or their mixtures, advantageously EPA or DHA or their mixtures.
 [0090] In addition to the production, directly in the organism, of the starting fatty acids for the polypeptides used in the method of the invention, the fatty acids can also be fed externally. The production in the organism is preferred for reasons of economy. Preferred substrates are linoleic acid (C18:2^{Δ9,12}), y-linolenic acid (C18:3^{Δ6,9,12}), eicosadienoic acid (C20:2^{Δ11,14}), dihomo-y-linolenic acid (C20:3^{Δ8,11,14}), arachidonic acid (C20:4^{Δ5,8,11,14}), docosatetraenoic acid (C22:5^{Δ4,7,10,13,15})
- (C22:4^{Δ7,10,13,16}) and docosapentaenoic acid (C22:5^{Δ4,7,10,13,15}).
 [0091] To increase the yield in the described method for the production of oils and/or triglycerides with an advantageously elevated content of polyunsaturated fatty acids, it is advantageous to increase the amount of starting product for the synthesis of fatty acids; this can be achieved for example by introducing, into the organism, a nucleic acid which codes for a polypeptide with a Δ5-desaturase activity according to the invention. This is particularly advantageous in oil-
- ²⁵ producing organisms such as those from the family of the Brassicaceae, such as the genus Brassica, for example oilseed rape; the family of the Elaeagnaceae, such as the genus Elaeagnus, for example the genus and species *Olea europaea*, or the family Fabaceae, such as the genus Glycine, for example the genus and species *Glycine max*, which are high in oleic acid. Since these organisms are only low in linoleic acid (Mikoklajczak et al., Journal of the American Oil Chemical Society, 38, 1961, 678 681), the use of the ∆5-desaturases for producing the starting arachidonic acid, or eicosapen-
- 30 taenoic acid, or docosapentaenoic acid, or docosahexaenoic acid is advantageous. [0092] The method according to the invention advantageously employs the abovementioned nucleic acid sequences or their derivatives or homologs which code for polypeptides which retain the enzymatic activity of the proteins encoded by nucleic acid sequences. These sequences, individually or in combination with the polynucleotides according to the invention, are cloned into expression constructs and used for the introduction into, and expression in, organisms. Owing
- to their construction, these expression constructs make possible an advantageous optimal synthesis of the polyunsaturated fatty acids produced in the method according to the invention.
 [0093] In a preferred embodiment, the method furthermore comprises the step of obtaining a cell or an intact organism which comprises the nucleic acid sequences used in the method, where the cell and/or the organism is transformed with a polynucleotide according to the invention, a gene construct or a vector as described below, alone or in combination
- 40 with further nucleic acid sequences which code for proteins of the fatty acid or lipid metabolism. In a further preferred embodiment, this method furthermore comprises the step of obtaining the oils, lipids or free fatty acids from the organism or from the culture. The culture can, for example, take the form of a fermentation culture, for example in the case of the cultivation of microorganisms, such as, for example, Mortierella, Thalassiosira, Mantoniella, Ostreococcus, Saccharomyces or Thraustochytrium, or a greenhouse- or field-grown culture of a plant. The cell or the organism thus produced
- ⁴⁵ is advantageously a cell of an oil-producing organism, such as an oil crop, such as, for example, peanut, oilseed rape, canola, linseed, hemp, soybean, safflower, sunflowers or borage.
 [0094] In the case of plant cells, plant tissue or plant organs, "growing" is understood as meaning, for example, the cultivation on or in a nutrient medium, or of the intact plant on or in a substrate, for example in a hydroponic culture, potting compost or on arable land.
- ⁵⁰ **[0095]** Suitable organisms or host cells for the method according to the invention are those which are capable of synthesizing fatty acids, specifically unsaturated fatty acids, and/or which are suitable for the expression of recombinant genes. Examples which may be mentioned are plants such as Arabidopsis, Asteraceae such as Calendula or crop plants such as soybean, peanut, castor-oil plant, sunflower, maize, cotton, flax, oilseed rape, coconut, oil palm, safflower (Carthamus tinctorius) or cacao bean, microorganisms, such as fungi, for example the genus Mortierella, Thraustochytri-
- ⁵⁵ um, Saprolegnia, Phytophthora or Pythium, bacteria, such as the genus Escherichia or Shewanella, yeasts, such as the genus Saccharomyces, cyanobacteria, ciliates, algae such as Mantoniella or Ostreococcus, or protozoans such as dinoflagellates, such as Thalassiosira or Crypthecodinium. Preferred organisms are those which are naturally capable of synthesizing substantial amounts of oil, such as fungi, such as Mortierella alpina, Pythium insidiosum, Phytophthora

infestans, or plants such as soybean, oilseed rape, coconut, oil palm, safflower, flax, hemp, castor-oil plant, Calendula, peanut, cacao bean or sunflower, or yeasts such as Saccharomyces cerevisiae, with soybean, flax, oilseed rape, safflower, sunflower, Calendula, Mortierella or Saccharomyces cerevisiae being especially preferred. In principle, suitable as host organisms are, in addition to the abovementioned transgenic organisms, also transgenic animals, advantageously

⁵ nonhuman animals, for example Caenorhabditis elegans. Further suitable host cells and organisms have already been described extensively above.
 [0096] Transgenic plants which comprise the polyunsaturated fatty acids synthesized in the method according to the

invention can advantageously be marketed directly without there being any need for the oils, lipids or fatty acids synthesized to be isolated. Plants for the method according to the invention are listed as meaning intact plants and all plant

- ¹⁰ parts, plant organs or plant parts such as leaf, stem, seeds, root, tubers, anthers, fibers, root hairs, stalks, embryos, calli, cotelydons, petioles, harvested material, plant tissue, reproductive tissue and cell cultures which are derived from the transgenic plant and/or can be used for bringing about the transgenic plant. In this context, the seed comprises all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue. However, the compounds produced in the method according to the invention can also be isolated from the organisms, advantageously
- ¹⁵ plants, in the form of their oils, fats, lipids and/or free fatty acids. Polyunsaturated fatty acids produced by this method can be obtained by harvesting the organisms, either from the crop in which they grow, or from the field. This can be done via pressing or extraction of the plant parts, preferably of the plant seeds. In this context, the oils, fats, lipids and/or free fatty acids can be obtained by pressing by what is known as cold-beating or cold-pressing without applying heat. To allow for greater ease of disruption of the plant parts, specifically the seeds, they are previously comminuted, steamed
- or roasted. The seeds which have been pretreated in this manner can subsequently be pressed or extracted with solvent such as warm hexane. The solvent is subsequently removed. In the case of microorganisms, the latter are, after harvesting, for example extracted directly without further methoding steps or else, after disruption, extracted via various methods with which the skilled worker is familiar. In this manner, more than 96% of the compounds produced in the method can be isolated. Thereafter, the resulting products are methoded further, i.e. refined. In this method, for example
- the plant mucilages and suspended matter are first removed. What is known as desliming can be effected enzymatically or, for example, chemico-physically by addition of acid such as phosphoric acid. Thereafter, the free fatty acids are removed by treatment with a base, for example sodium hydroxide solution. The resulting product is washed thoroughly with water to remove the alkali remaining in the product and then dried. To remove the pigments remaining in the product, the products are subjected to bleaching, for example using fuller's earth or active charcoal. At the end, the product is deodorized, for example using steam.
- deodorized, for example using steam.
 [0097] The PUFAs or LCPUFAs produced by this method are preferably C₁₈-, C₂₀- or C₂₂-fatty acid molecules, advantageously C₂₀- or C₂₂-fatty acid molecules, with at least two double bonds in the fatty acid molecule, preferably three, four, five or six double bonds. These C₁₈-, C₂₀- or C₂₂-fatty acid molecules can be isolated from the organism in the form of an oil, a lipid or a free fatty acid. Suitable organisms are, for example, those mentioned above. Preferred organisms are transgenic plants.

[0098] Described are oils, lipids or fatty acids or fractions thereof which have been produced by the abovedescribed method, especially preferably oil, lipid or a fatty acid composition comprising PUFAs and being derived from transgenic plants.

As described above, these oils, lipids or fatty acids advantageously comprise 6 to 15% of palmitic acid, 1 to 6% of stearic acid, 7-85% of oleic acid, 0.5 to 8% of vaccenic acid, 0.1 to 1% of arachic acid, 7 to 25% of saturated fatty acids, 8 to

- 85% of monounsaturated fatty acids and 60 to 85% of polyunsaturated fatty acids, in each case based on 100% and on the total fatty acid content of the organisms. Advantageous polyunsaturated fatty acids which are present in the fatty acid esters or fatty acid mixtures are preferably at least 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 or 1% of arachidonic acid, based on the total fatty acid content. Moreover, the fatty acid esters or fatty acid mixtures which have been produced
- ⁴⁵ by the method of the invention advantageously comprise fatty acids selected from the group of the fatty acids erucic acid (13-docosaenoic acid), sterculic acid (9,10-methyleneoctadec-9-enoic acid), malvalic acid (8,9-methyleneheptadec-8-enoic acid), chaulmoogric acid (cyclopentenedodecanoic acid), furan fatty acid (9,12-epoxyoctadeca-9,11-dienoic acid), vernolic acid (9,10-epoxyoctadec-12-enoic acid), tarinic acid (6-octadecynoic acid), 6-nonadecynoic acid, santalbic acid (t11-octadecen-9-ynoic acid), 6,9-octadecenynoic acid, pyrulic acid (t10-heptadecen-8-ynoic acid), crepenynic acid
- 50 (9-octadecen-12-ynoic acid), 13,14-dihydrooropheic acid, octadecen-13-ene-9,11-diynoic acid, petroselenic acid (cis-6-octadecenoic acid), 9c,12t-octadecadienoic acid, calendulic acid (8t10t12c-octadecatrienoic acid), catalpic acid (9t11t13c-octadecatrienoic acid), eleostearic acid (9c11t13t-octadecatrienoic acid), jacaric acid (8c10t12c-octadecatrienoic acid), punicic acid (9c11 t13c-octadecatrienoic acid), parinaric acid (9c11t13t15c-octadecatetraenoic acid), pinolenic acid (all-cis-5,9,12-octadecatrienoic acid), laballenic acid (5,6-octadecadienallenic acid), ricinoleic acid (12-hy-
- ⁵⁵ droxyoleic acid) and/or coriolic acid (13-hydroxy-9c,11t-octadecadienoic acid). The abovementioned fatty acids are, as a rule, advantageously only found in traces in the fatty acid esters or fatty acid mixtures produced by the method according to the invention, that is to say that, based on the total fatty acids, they occur to less than 30%, preferably to less than 25%, 24%, 23%, 22% or 21%, especially preferably to less than 20%, 15%, 10%, 9%, 8%, 7%, 6% or 5%, very especially

preferably to less than 4%, 3%, 2% or 1%. The fatty acid esters or fatty acid mixtures produced by the method according to the invention advantageously comprise less than 0.1%, based on the total fatty acids, or no butyric acid, no cholesterol, no clupanodonic acid (= docosapentaenoic acid, C22:5^{A4,8,12,11,21}) and no nisinic acid (tetracosahexaenoic acid, C23:6 $^{\Delta3,8,12,15,18,21}$).

- **[0099]** The oils, lipids or fatty acids preferably comprise at least 0.5%, 1%, 2%, 3%, 4% or 5%, advantageously at least 6%, 7%, 8%, 9% or 10%, especially advantageously at least 11%, 12%, 13%, 14% or 15% of ARA or at least 0.5%, 1%, 2%, 3%, 4% or 5%, advantageously at least 6% or 7%, especially advantageously at least 8%, 9% or 10% of EPA and/or DHA, based on the total fatty acid content of the production organism, advantageously of a plant, especially advantageously of an oil crop plant such as soybean, oilseed rape, coconut, oil palm, safflower, flax, hemp, castor-oil
- plant, Calendula, peanut, cacao bean, sunflower, or the abovementioned further mono- or dicotyledonous oil crop plants. [0100] Furthermore described is the use of the oil, lipid, the fatty acids and/or the fatty acid composition in feedstuffs, foodstuffs, cosmetics or pharmaceuticals. The oils, lipids, fatty acids or fatty acid mixtures can be used in the manner with which the skilled worker is familiar for mixing with other oils, lipids, fatty acids or fatty acid mixtures of animal origin, such as, for example, fish oils. These oils, lipids, fatty acids or fatty acid mixtures, which are composed of vegetable
- ¹⁵ and animal constituents, may also be used for the preparation of feedstuffs, foodstuffs, cosmetics or pharmaceuticals. [0101] The term "oil", "lipid" or "fat" is understood as meaning a fatty acid mixture comprising unsaturated, saturated, preferably esterified, fatty acid(s). The oil, lipid or fat is preferably high in polyunsaturated free or, advantageously, esterified fatty acid(s), in particular linoleic acid, γ-linolenic acid, dihomo-γ-linolenic acid, arachidonic acid, α-linolenic acid, stearidonic acid, eicosatetraenoic acid, eicosapentaenoic acid, docosapentaenoic acid or docosahexaenoic acid.
- The amount of unsaturated esterified fatty acids preferably amounts to approximately 30%, a content of 50% is more preferred, a content of 60%, 70%, 80% or more is even more preferred. For the analysis, the fatty acid content can, for example, be determined by gas chromatography after converting the fatty acids into the methyl esters by transesterification. The oil, lipid or fat can comprise various other saturated or unsaturated fatty acids, for example calendulic acid, palmitic acid, palmitoleic acid, stearic acid, oleic acid and the like. The content of the various fatty acids in the oil or fat can vary in particular depending on the starting organism.
- can vary, in particular depending on the starting organism.
 [0102] The polyunsaturated fatty acids with advantageously at least two double bonds which are produced in the method are, as described above, for example sphingolipids, phosphoglycerides, lipids, glycolipids, phospholipids, monoacylglycerol, diacylglycerol, triacylglycerol or other fatty acid esters.
- **[0103]** Starting from the polyunsaturated fatty acids with advantageously at least five or six double bonds, which acids have been prepared in the method according to the invention, the polyunsaturated fatty acids which are present can be liberated for example via treatment with alkali, for example aqueous KOH or NaOH, or acid hydrolysis, advantageously in the presence of an alcohol such as methanol or ethanol, or via enzymatic cleavage, and isolated via, for example, phase separation and subsequent acidification via, for example, H₂SO₄. The fatty acids can also be liberated directly without the abovedescribed methoding step.
- ³⁵ **[0104]** After their introduction into an organism, advantageously a plant cell or plant, the nucleic acids used in the method can either be present on a separate plasmid or, advantageously, integrated into the genome of the host cell. In the case of integration into the genome, integration can be random or else be effected by recombination such that the native gene is replaced by the copy introduced, whereby the production of the desired compound by the cell is modulated, or by the use of a gene in "trans", so that the gene is linked operably with a functional expression unit which comprises
- 40 at least one sequence which ensures the expression of a gene and at least one sequence which ensures the polyadenylation of a functionally transcribed gene. The nucleic acids are advantageously introduced into the organisms via multiexpression cassettes or constructs for multiparallel expression, advantageously into the plants for the multiparallel seed-specific expression of genes.
- [0105] Mosses and algae are the only known plant systems which produce substantial amounts of polyunsaturated fatty acids such as arachidonic acid (ARA) and/or eicosapentaenoic acid (EPA) and/or docosahexaenoic acid (DHA). Mosses comprise PUFAs in membrane lipids, while algae, organisms which are related to algae and a few fungi also accumulate substantial amounts of PUFAs in the triacylglycerol fraction. This is why nucleic acid molecules which are isolated from such strains that also accumulate PUFAs in the triacylglycerol fraction are particularly advantageous for the method according to the invention and thus for the modification of the lipid and PUFA production system in a host,
- ⁵⁰ in particular plants such as oil crops, for example oilseed rape, canola, linseed, hemp, soybeans, sunflowers and borage. They can therefore be used advantageously in the method according to the invention.
 [0106] Substrates which are suitable for the polypeptides according to the invention of the fatty acid or lipid metabolism selected from the group acyl-CoA dehydrogenase(s), acyl-ACP [= acyl carrier protein] desaturase(s), acyl-ACP thioesterase(s), fatty acid acyltransferase(s), acyl-CoA:lysophospholipid acyltransferase(s), fatty acid synthase(s), fatty acid
- ⁵⁵ hydroxylase(s), acetyl-coenzyme A carboxylase(s), acyl-coenzyme A oxidase(s), fatty acid desaturase(s), fatty acid acetylenase(s), lipoxygenase(s), triacylglycerol lipase(s), allene oxide synthase(s), hydroperoxide lyase(s) or fatty acid elongase(s) are advantageously C₁₆-, C₁₈- or C₂₀-fatty acids. The fatty acids converted as substrates in the method are preferably converted in the form of their acyl-CoA esters and/or their phospholipid esters.

[0107] To produce the long-chain PUFAs according to the method of the invention, the polyunsaturated C_{18} -fatty acids must first be desaturated by the enzymatic activity of a desaturase and subsequently be elongated by at least two carbon atoms via an elongase. After one elongation cycle, this enzyme activity gives C_{20} -fatty acids and after two elongation cycles, C_{22} -fatty acids. The activity of the desaturases and elongases used in the method according to the invention

- ⁵ preferably leads to C_{18} -, C_{20} and/or C_{22} -fatty acids, advantageously with at least two double bonds in the fatty acid molecule, preferably with three, four, five or six double bonds, especially preferably to give C_{20} - and/or C_{22} -fatty acids with at least two double bonds in the fatty acid molecule, preferably with three, four, five or six double bonds, very especially preferably with five or six double bonds in the molecule. After a first desaturation and the elongation have taken place, further desaturation and elongation steps such as, for example, such a desaturation in the $\Delta 5$ and $\Delta 4$
- ¹⁰ positions may take place. Products of the method according to the invention which are especially preferred are dihomoy-linolenic acid, arachidonic acid, eicosapentaenoic acid, docosapentaenoic acid and/or docosahexaenoic acid. The C_{20} -fatty acids with at least two double bonds in the fatty acid can be desatured by the enzymatic activity according to the invention in the form of the free fatty acid or in the form of the esters, such as phospholipids, glycolipids, sphingolipids, phosphoglycerides, monoacylglycerol, diacylglycerol or triacylglycerol.
- ¹⁵ **[0108]** The preferred biosynthesis site of fatty acids, oils, lipids or fats in the plants which are advantageously used is, for example, in general the seed or cell strata of the seed, so that seed-specific expression of the nucleic acids used in the method is sensible. However, it is obvious that the biosynthesis of fatty acids, oils or lipids need not be limited to the seed tissue, but can also take place in a tissue-specific manner in all the other parts of the plant - for example in epidermal cells or in the tubers.
- 20 [0109] If microorganism such as yeasts, such as Saccharomyces or Schizosaccharomyces, fungi such as Mortierella, Aspergillus, Phytophthora, Entomophthora, Mucor or Thraustochytrium, algae such as Isochrysis, Mantoniella, Ostreo-coccus, Phaeodactylum or Crypthecodinium are used as organisms in the method according to the invention, these organisms are advantageously grown in fermentation cultures.
- [0110] Owing to the use of the nucleic acids according to the invention which code for a desaturase, the polyunsaturated fatty acids produced in the method can be increased by at least 5%, preferably by at least 10%, especially preferably by at least 20%, very especially preferably by at least 50% in comparison with the wild type of the organisms which do not comprise the nucleic acids recombinantly.

[0111] In principle, the polyunsaturated fatty acids produced by the method according to the invention in the organisms used in the method can be increased in two different ways. Advantageously, the pool of free polyunsaturated fatty acids

30 and/or the content of the esterified polyunsaturated fatty acids produced via the method can be enlarged. Advantageously, the pool of esterified polyunsaturated fatty acids in the transgenic organisms is enlarged by the method according to the invention.

[0112] If microorganisms are used as organisms in the method according to the invention, they are grown or cultured in a manner with which the skilled worker is familiar, depending on the host organism. As a rule, microorganisms are

- ³⁵ grown in a liquid medium comprising a carbon source, usually in the form of sugars, a nitrogen source, usually in the form of organic nitrogen sources such as yeast extract or salts such as ammonium sulfate, trace elements such as salts of iron, manganese and magnesium and, if appropriate, vitamins, at temperatures of between 0°C and 100°C, preferably between 10°C and 60°C, while introducing oxygen gas. The pH of the nutrient liquid can either be kept constant, that is to say regulated during the culturing period, or not. The cultures can be grown batchwise, semi-batchwise or continuously.
- 40 Nutrients can be provided at the beginning of the fermentation or fed in semicontinuously or continuously. The polyunsaturated fatty acids produced can be isolated from the organisms as described above by methods known to the skilled worker, for example by extraction, distillation, crystallization, if appropriate precipitation with salt, and/or chromatography. To this end, the organisms can advantageously be disrupted beforehand.
- [0113] If the host organisms are microorganisms, the methods according to the invention is advantageously carried out at a temperature of between 0°C and 95°C, preferably between 10°C and 85°C, especially preferably between 15°C and 75°C, very especially preferably between 15°C and 45°C.

[0114] In this method, the pH value is advantageously kept between pH 4 and 12, preferably between pH 6 and 9, especially preferably between pH 7 and 8.

- [0115] The method according to the invention can be operated batchwise, semibatchwise or continuously. An overview over known cultivation methods can be found in the textbook by Chmiel (Bioprozeßtechnik 1. Einführung in die Bioverfahrenstechnik [Biomethod technology 1. Introduction to biomethod technology] (Gustav Fischer Verlag, Stuttgart, 1991)) or in the textbook by Storhas (Bioreaktoren und periphere Einrichtungen [Bioreactors and peripheral equipment] (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)).
- [0116] The culture medium to be used must suitably meet the requirements of the strains in question. Descriptions of culture media for various microorganisms can be found in the textbook "Manual of Methods for General Bacteriology" of the American Society for Bacteriology (Washington D.C., USA, 1981).

[0117] As described above, these media which can be employed in accordance with the invention usually comprise one or more carbon sources, nitrogen sources, inorganic salts, vitamins and/or trace elements.

[0118] Preferred carbon sources are sugars, such as mono-, di- or polysaccharides. Examples of very good carbon sources are glucose, fructose, mannose, galactose, ribose, sorbose, ribulose, lactose, maltose, sucrose, raffinose, starch or cellulose. Sugars can also be added to the media via complex compounds such as molasses or other by-products from sugar raffination. The addition of mixtures of a variety of carbon sources may also be advantageous. Other possible

- ⁵ carbon sources are oils and fats such as, for example, soya oil, sunflower oil, peanut oil and/or coconut fat, fatty acids such as, for example, palmitic acid, stearic acid and/or linoleic acid, alcohols and/or polyalcohols such as, for example, glycerol, methanol and/or ethanol, and/or organic acids such as, for example, acetic acid and/or lactic acid. [0119] Nitrogen sources are usually organic or inorganic nitrogen compounds or materials comprising these compounds. Examples of nitrogen sources comprise ammonia in liquid or gaseous form or ammonium salts such as am-
- ¹⁰ monium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate or ammonium nitrate, nitrates, urea, amino acids or complex nitrogen sources such as cornsteep liquor, soya meal, soya protein, yeast extract, meat extract and others. The nitrogen sources can be used individually or as a mixture.
 [0120] Inorganic salt compounds which may be present in the media comprise the chloride, phosphorus and sulfate.

[0120] Inorganic salt compounds which may be present in the media comprise the chloride, phosphorus and sulfate salts of calcium, magnesium, sodium, cobalt, molybdenum, potassium, manganese, zinc, copper and iron.

¹⁵ **[0121]** Inorganic sulfur-containing compounds such as, for example, sulfates, sulfites, dithionites, tetrathionates, thiosulfates, sulfides, or else organic sulfur compounds such as mercaptans and thiols may be used as sources of sulfur for the production of sulfur-containing fine chemicals, in particular of methionine.

[0122] Phosphoric acid, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts may be used as sources of phosphorus.

- 20 [0123] Chelating agents may be added to the medium in order to keep the metal ions in solution. Particularly suitable chelating agents comprise dihydroxyphenols such as catechol or protocatechuate and organic acids such as citric acid. [0124] The fermentation media used according to the invention for cultivating microorganisms usually also comprise other growth factors such as vitamins or growth promoters, which include, for example, biotin, riboflavin, thiamine, folic acid, nicotinic acid, panthothenate and pyridoxine. Growth factors and salts are frequently derived from complex media
- ²⁵ components such as yeast extract, molasses, cornsteep liquor and the like. It is moreover possible to add suitable precursors to the culture medium. The exact composition of the media compounds depends heavily on the particular experiment and is decided upon individually for each specific case. Information on the optimization of media can be found in the textbook "Applied Microbiol. Physiology, A Practical Approach" (Editors P.M. Rhodes, P.F. Stanbury, IRL Press (1997) pp. 53-73, ISBN 0 19 963577 3). Growth media can also be obtained from commercial suppliers, for example Standard 1 (Merck) or BHI (brain heart infusion, DIFCO) and the like.
- example Standard 1 (Merck) or BHI (brain heart infusion, DIFCO) and the like.
 [0125] All media components are sterilized, either by heat (20 min at 1.5 bar and 121 °C) or by filter sterilization. The components may be sterilized either together or, if required, separately. All media components may be present at the start of the cultivation or added continuously or batchwise, as desired.
- **[0126]** The culture temperature is normally between 15°C and 45°C, preferably at from 25°C to 40°C, and may be kept constant or altered during the experiment. The pH of the medium should be in the range from 5 to 8.5, preferably around 7.0. The pH for cultivation can be controlled during cultivation by adding basic compounds such as sodium hydroxide, potassium hydroxide, ammonia and aqueous ammonia or acidic compounds such as phosphoric acid or sulfuric acid. Foaming can be controlled by employing antifoams such as, for example, fatty acid polyglycol esters. To maintain the stability of plasmids it is possible to add to the medium suitable substances having a selective effect, for
- 40 example antibiotics. Aerobic conditions are maintained by introducing oxygen or oxygen-containing gas mixtures such as, for example, ambient air, into the culture. The temperature of the culture is normally 20°C to 45°C and preferably 25°C to 40°C. The culture is continued until formation of the desired product is at a maximum. This aim is normally achieved within 10 hours to 160 hours.

[0127] The fermentation broths obtained in this way, in particular those containing polyunsaturated fatty acids, usually contain a dry mass of from 7.5 to 25% by weight.

[0128] The fermentation broth can then be methoded further. The biomass may, according to requirement, be removed completely or partially from the fermentation broth by separation methods such as, for example, centrifugation, filtration, decanting or a combination of these methods or be left completely in said broth. It is advantageous to method the biomass after its separation.

- ⁵⁰ **[0129]** However, the fermentation broth can also be thickened or concentrated without separating the cells, using known methods such as, for example, with the aid of a rotary evaporator, thin-film evaporator, falling-film evaporator, by reverse osmosis or by nanofiltration. Finally, this concentrated fermentation broth can be methoded to obtain the fatty acids present therein.
- [0130] The polynucleotides or polypeptides of the present invention which are involved in the metabolism of lipids and fatty acids, PUFA cofactors and enzymes or in the transport of lipophilic compounds across membranes are used in the method according to the invention for the modulation of the production of PUFAs in transgenic organisms, advantageously in plants, such as maize, wheat, rye, oats, triticale, rice, barley, soybean, peanut, cotton, Linum species such as linseed or flax, Brassica species such as oilseed rape, canola and turnip rape, pepper, sunflower, borage, evening primrose

and Tagetes, Solanaceae plants such as potato, tobacco, eggplant and tomato, Vicia species, pea, cassava, alfalfa, bushy plants (coffee, cacao, tea), Salix species, trees (oil palm, coconut) and perennial grasses and fodder crops, either directly (for example when the overexpression or optimization of a fatty acid biosynthesis protein has a direct effect on the yield, production and/or production efficiency of the fatty acid from modified organisms) and/or can have an indirect

- ⁵ effect which nevertheless leads to an enhanced yield, production and/or production efficiency of the PUFAs or a reduction of undesired compounds (for example when the modulation of the metabolism of lipids and fatty acids, cofactors and enzymes leads to modifications of the yield, production and/or production efficiency or the composition of the desired compounds within the cells, which, in turn, can affect the production of one or more fatty acids).
- [0131] The combination of various precursor molecules and biosynthesis enzymes leads to the production of various fatty acid molecules, which has a decisive effect on lipid composition, since polyunsaturated fatty acids (= PUFAs) are not only incorporated into triacylglycerol but also into membrane lipids.
 [0132] Brassicaceae, Boraginaceae, Primulaceae, or Linaceae are particularly suitable for the production of PUFAs,
 - for example stearidonic acid, eicosapentaenoic acid and docosahexaenoic acid. Linseed (Linum usitatissimum) is especially advantageously suitable for the production of PUFAs with the nucleic acid sequences according to the invention, advantageously, as described, in combination with further desaturases and elongases.
- **[0133]** Lipid synthesis can be divided into two sections: the synthesis of fatty acids and their binding to sn-glycerol-3phosphate, and the addition or modification of a polar head group. Usual lipids which are used in membranes comprise phospholipids, glycolipids, sphingolipids and phosphoglycerides. Fatty acid synthesis starts with the conversion of acetyl-CoA into malonyl-CoA by acetyl-CoA carboxylase or into acetyl-ACP by acetyl transacylase. After a condensation

- 20 reaction, these two product molecules together form acetoacetyI-ACP, which is converted via a series of condensation, reduction and dehydratation reactions so that a saturated fatty acid molecule with the desired chain length is obtained. The production of the unsaturated fatty acids from these molecules is catalyzed by specific desaturases, either aerobically by means of molecular oxygen or anaerobically (regarding the fatty acid synthesis in microorganisms, see F.C. Neidhardt et al. (1996) E. coli and Salmonella. ASM Press: Washington, D.C., pp. 612-636 and references cited therein; Lengeler
- et al. (Ed.) (1999) Biology of Procaryotes. Thieme: Stuttgart, New York, and the references therein, and Magnuson, K., et al. (1993) Microbiological Reviews 57:522-542 and the references therein). To undergo the further elongation steps, the resulting phospholipid-bound fatty acids must be returned to the fatty acid CoA ester pool from the phospholipids. This is made possible by acyl-CoA:lysophospholipid acyltransferases. Moreover, these enzymes are capable of transferring the elongated fatty acids from the CoA esters back to the phospholipids. If appropriate, this reaction sequence can be traversed repeatedly.
 - **[0134]** Examples of precursors for the biosynthesis of PUFAs are oleic acid, linoleic acid and linolenic acid. These C_{18} -carbon fatty acids must be elongated to C_{20} and C_{22} in order to obtain fatty acids of the eicosa and docosa chain type. With the aid of the desaturases used in the method, such as the $\Delta 12$ -, $\Delta 15$ -, $\Delta 12$ and $\Delta 15$ -, $\omega 3$ -, $\Delta 4$ -, $\Delta 5$ -and $\Delta 6$ -desaturases and/or the $\Delta 5$ -, $\Delta 6$ -elongases, arachidonic acid, eicosapentaenoic acid, docosapentaenoic acid or docosa-
- ³⁵ hexaenoic acid, advantageously eicosapentaenoic acid and/or docosahexaenoic acid, can be produced and subsequently employed in various applications regarding foodstuffs, feedstuffs, cosmetics or pharmaceuticals. C₂₀- and/or C₂₂-fatty acids with at least two, advantageously at least three, four, five or six, double bonds in the fatty acid molecule, preferably C₂₀- or C₂₂-fatty acids with advantageously four, five or six double bonds in the fatty acid molecule, can be prepared using the abovementioned enzymes. Desaturation may take place before or after elongation of the fatty acid
- 40 in question. This is why the products of the desaturase activities and of the further desaturation and elongation steps which are possible result in preferred PUFAs with a higher degree of desaturation, including a further elongation from C₂₀- to C₂₂-fatty acids, to fatty acids such as γ-linolenic acid, dihomo-γ-linolenic acid, arachidonic acid, stearidonic acid, eicosatetraenoic acid or eicosapentaenoic acid. Substrates of the desaturases and elongases used in the method according to the invention are C₁₆-, C₁₈- or C₂₀-fatty acids such as, for example, linoleic acid, γ-linolenic acid, α-linolenic
- acid, dihomo-γ-linolenic acid, eicosatetraenoic acid or stearidonic acid. Preferred substrates are linoleic acid, γ-linolenic acid, acid and/or α-linolenic acid, dihomo-γ-linolenic acid or arachidonic acid, eicosatetraenoic acid or eicosapentaenoic acid. The synthesized C₂₀-or C₂₂-fatty acids with at least two, three, four, five or six double bonds in the fatty acid are obtained in the method according to the invention in the form of the free fatty acid or in the form of their esters, for example in the form of their glycerides.
- ⁵⁰ **[0135]** The term "glyceride" is understood as meaning a glycerol esterified with one, two or three carboxyl radicals (mono-, di- or triglyceride). "Glyceride" is also understood as meaning a mixture of various glycerides. The glyceride or glyceride mixture may comprise further additions, for example free fatty acids, antioxidants, proteins, carbohydrates, vitamins and/or other substances.
- [0136] For the purposes of the method according to invention, a "glyceride" is furthermore understood as meaning glycerol derivatives. In addition to the abovedescribed fatty acid glycerides, these also include glycerophospholipids and glyceroglycolipids. Preferred examples which may be mentioned in this context are the glycerophospholipids such as lecithin (phosphatidylcholine), cardiolipin, phosphatidylglycerol, phosphatidylserine and alkylacylglycerophospholipids. [0137] Furthermore, fatty acids must subsequently be translocated to various modification sites and incorporated into

the triacylglycerol storage lipid. A further important step in lipid synthesis is the transfer of fatty acids to the polar head groups, for example by glycerol fatty acid acyltransferase (see Frentzen, 1998, Lipid, 100(4-5):161-166).

[0138] Publications on plant fatty acid biosynthesis and on the desaturation, the lipid metabolism and the membrane transport of lipidic compounds, on beta-oxidation, fatty acid modification and cofactors, triacylglycerol storage and tria-

- ⁵ cylglycerol assembly, including the references therein, see the following papers: Kinney, 1997, Genetic Engineering, Ed.: JK Setlow, 19:149-166; Ohlrogge and Browse, 1995, Plant Cell 7:957-970; Shanklin and Cahoon, 1998, Annu. Rev. Plant Physiol. Plant Mol. Biol. 49:611-641; Voelker, 1996, Genetic Engineering, Ed.: JK Setlow, 18:111-13; Gerhardt, 1992, Prog. Lipid R. 31:397-417; Gühnemann-Schäfer & Kindl, 1995, Biochim. Biophys Acta 1256:181-186; Kunau et al., 1995, Prog. Lipid Res. 34:267-342; Stymne et al., 1993, in: Biochemistry and Molecular Biology of Membrane and
- Storage Lipids of Plants, Ed.: Murata and Somerville, Rockville, American Society of Plant Physiologists, 150-158, Murphy & Ross 1998, Plant Journal. 13(1):1-16.
 [0139] The PUFAs produced in the method comprise a group of molecules which higher animals are no longer capable of synthesizing and must therefore take up, or which higher animals are no longer capable of synthesizing themselves in sufficient quantities and must therefore take up additional quantities, although they can be synthesized readily by
- other organisms such as bacteria; for example, cats are no longer capable of synthesizing arachidonic acid. [0140] Phospholipids for the purposes of the invention are understood as meaning phosphatidylcholine, phosphatidylserine, phosphatidylglycerol and/or phosphatidylinositol, advantageously phosphatidyl-choline. The terms "production or productivity" are known in the art and encompasses the concentration of the fermentation product (compounds of the formula I) which is formed within a specific period of time and in a specific fermentation
- volume (for example kg of product per hour per liter). It also comprises the productivity within a plant cell or a plant, that is to say the content of the desired fatty acids produced in the method relative to the content of all fatty acids in this cell or plant. The term "production efficiency" comprises the time required for obtaining a specific production quantity (for example the time required by the cell to establish a certain throughput rate of a fine chemical). The term "yield or product/carbon yield" is known in the art and comprises the efficiency of the conversion of the carbon source into the
- ²⁵ product (i.e. the fine chemical). This is usually expressed for example as kg of product per kg of carbon source. By increasing the yield or production of the compound, the amount of the molecules obtained of this compound, or of the suitable molecules of this compound obtained, in a specific culture quantity over a specified period of time is increased. The terms "biosynthesis or biosynthetic pathway" are known in the art and comprise the synthesis of a compound, preferably an organic compound, by a cell from intermediates, for example in a multi-step and strongly regulated method.
- The terms "catabolism or catabolic pathway" are known in the art and comprise the cleavage of a compound, preferably of an organic compound, by a cell to give catabolites (in more general terms, smaller or less complex molecules), for example in a multi-step and strongly regulated method. The term "metabolism" is known in the art and comprises the totality of the biochemical reactions which take place in an organism. The metabolism of a certain compound (for example the metabolism of a fatty acid) thus comprises the totality of the biosynthetic pathways, modification pathways and catabolic pathways of this compound in the cell which relate to this compound.
- [0141] By employing, in the method according to the invention, the polynucleotides according to the invention and optionally further polynucleotides which code for enzymes of the lipid or fatty acid metabolism it is possible to achieve various advantageous effects. Thus, it is possible to influence the yield, production and/or production efficiency of the polynusaturated fatty acids in a plant, preferably in an oil crop plant, or in a microorganism. The number or activity of
- 40 the polypeptides or polynucleotides according to the invention can be increased, so that larger amounts of the gene products and, ultimately, larger amounts of the compounds of the general formula I are produced. A *de novo* synthesis in an organism, which, before the gene(s) in question was/were introduced, had been lacking the activity and ability to biosynthesize the compounds, is also possible. The same applies analogously to the combination with further desaturases or elongases or further enzymes of the fatty acid and lipid metabolism. The use of a variety of divergent sequences, i.e.
- 45 sequences which differ at the DNA sequence level, may also be advantageous in this context, or else the use of gene expression promoters which makes possible a different gene expression as far as timing is concerned, for example as a function of the degree of maturity of a seed or oil-storing tissue.
 104 101 Durinte during into an expression as expression as far as timing is concerned, for example as a function of the degree of maturity of a seed or oil-storing tissue.

[0142] By introducing, into an organism, a polynucleotide according to the invention alone or in combination with other genes into a cell it is possible not only to increase the biosynthetic flow towards the end product, but also to increase,

- ⁵⁰ or to create *de novo*, the corresponding triacylglycerol composition. Equally, the number or activity of other genes which are required for the import of nutrients for the biosynthesis of one or more fatty acids, oils, polar and/or neutral lipids can be increased, so that the concentration of these precursors, cofactors or intermediates within the cells or within the storage compartment is increased, whereby the ability of the cells to produce PUFAs is further enhanced. By optimizing the activity, or increasing the number, of one or more polynucleotides or polypeptides according to the invention which
- ⁵⁵ are involved in the biosynthesis of these compounds, or by destroying the activity of one or more genes which are involved in the degradation of these compounds, it may be possible to increase the yield, production and/or production efficiency of fatty acid and lipid molecules from organisms, in particular from plants. The fatty acids obtained in the method are suitable as starting materials for the chemical synthesis of further products of interest. For example, they

can be used for the preparation of pharmaceuticals, foodstuffs, animal feeds or cosmetics, either alone or in combination with one another.

[0143] It can be seen from what has been said above that the invention also relates to a method for the preparation of an oil, lipid or fatty acid composition, comprising the steps of the method according to the invention and the further step of formulating the substance as an oil, lipid or fatty acid composition.

[0144] In a preferred embodiment of this method, the oil, lipid or fatty acid composition is formulated further to give a drug, a cosmetic product, a foodstuff, a feedstuff, preferably fish food, or a food supplement.

[0145] Finally, the invention relates to the principle of using the polynucleotide, the vector, the host cell, the polypeptide or the transgenic, nonhuman organism of the present invention for the production of an oil, lipid or fatty acid composition.

¹⁰ The latter is then preferably to be employed as drug, cosmetic product, foodstuff, feedstuff, preferably fish food, or food supplement.

Figures

¹⁵ [0146]

5

Figure 1: Sequence alignment of the O. *tauri* ∆6-desaturase (SEQ ID No. 4) with the sequence from *Emiliana huxleyi* (SEQ ID No. 2).

Figure 2: Gas-chromatographic analysis of the feeding of yeasts transformed with pYES2.1/V5-His-TOPO (A) and pYES-SEQ1(Eh) (B). The substance fed was the fatty acid 20:3Δ8,11,14 (C). The Δ5-activity is demonstrated by the appearance of an additional peak with the identity 20:4Δ5,8,11,14 (D).

Figure 3: Plasmid map of the binary construct LJB1589, transformed into Brassica napus, for the EPA synthesis in seeds.

Figure 4: Synthetic pathways for PUFAs.

Examples

25

30

Example 1: General cloning methods

[0147] The cloning methods such as, for example, restriction cleavages, agarose gel electrophoresis, purification of DNA fragments, transfer of nucleic acids to nitrocellulose and nylon membranes, linkage of DNA fragments, transformation of Escherichia coli cells, bacterial cultures and the sequence analysis of recombinant DNA were carried out as described by Sambrook et al. (1989) (Cold Spring Harbor Laboratory Press: ISBN 0-87969-309-6).

Example 2: Sequence analysis of recombinant DNA

- 40 [0148] Recombinant DNA molecules were sequenced with an ABI laser fluorescence DNA sequencer by the method of Sanger (Sanger et al. (1977) Proc. Natl. Acad. Sci. USA74, 5463-5467). Fragments obtained by polymerase chain reaction were sequenced and verified to avoid polymerase errors in constructs to be expressed.
 - Example 3: Lipid extraction from yeasts and plants
- 45

- **[0149]** The effect of the genetic modification in plants, fungi, algae, ciliates or on the production of a desired compound (such as a fatty acid) can be determined by growing the modified microorganisms or the modified plant under suitable conditions (such as those described above) and analyzing the medium and/or the cellular components for the elevated production of the desired product (i.e. of lipids or a fatty acid). These analytical techniques are known to the skilled worker and comprise spectroscopy, thin-layer chromatography, various types of staining methods, enzymatic and microbiological methods and analytical chromatography such as high-performance liquid chromatography (see, for example, Ullman, Encyclopedia of Industrial Chemistry, Vol. A2, p. 89-90 and p. 443-613, VCH: Weinheim (1985); Fallon, A., et al., (1987) "Applications of HPLC in Biochemistry" in: Laboratory Techniques in Biochemistry and Molecular Biology, Vol. 17; Rehm et al. (1993) Biotechnology, Vol. 3, Chapter III: "Product recovery and purification", p. 469-714, VCH:
- ⁵⁵ Weinheim; Belter, P.A., et al. (1988) Bioseparations: downstream methoding for Biotechnology, John Wiley and Sons; Kennedy, J.F., and Cabral, J.M.S. (1992) Recovery methods for biological Materials, John Wiley and Sons; Shaeiwitz, J.A., and Henry, J.D. (1988) Biochemical Separations, in: Ullmann's Encyclopedia of Industrial Chemistry, Vol. B3; Chapter 11, p. 1-27, VCH: Weinheim; and Dechow, F.J. (1989) Separation and purification techniques in biotechnology,

Noyes Publications).

[0150] In addition to the abovementioned methods, plant lipids are extracted from plant material as described by Cahoon et al. (1999) Proc. Natl. Acad. Sci. USA 96 (22):12935-12940 and Browse et al. (1986) Analytic Biochemistry 152:141-145. The gualitative and guantitative analysis of lipids or fatty acids is described in Christie, William W., Advances

- 5 in Lipid Methodology, Ayr/Scotland: Oily Press (Oily Press Lipid Library; 2); Christie, William W., Gas Chromatography and Lipids. A Practical Guide - Ayr, Scotland: Oily Press, 1989, Repr. 1992, IX, 307 pp. (Oily Press Lipid Library; 1); "Progress in Lipid Research", Oxford: Pergamon Press, 1 (1952) - 16 (1977) under the title: Progress in the Chemistry of Fats and Other Lipids CODEN.
- [0151] In addition to measuring the end product of the fermentation, it is also possible to analyze other components 10 of the metabolic pathways which are used for the production of the desired compound, such as intermediates and byproducts, in order to determine the overall production efficiency of the compound. The analytical methods comprise measuring the amount of nutrients in the medium (for example sugars, hydrocarbons, nitrogen sources, phosphate and other ions), measuring the biomass composition and the growth, analyzing the production of conventional metabolites of biosynthetic pathways and measuring gases which are generated during the fermentation. Standard methods for
- 15 these measurements are described in Applied Microbial Physiology; A Practical Approach, P.M. Rhodes and P.F. Stanbury, Ed., IRL Press, p. 103-129; 131-163 and 165-192 (ISBN: 0199635773) and references cited therein. [0152] One example is the analysis of fatty acids (abbreviations: FAME, fatty acid methyl ester; GC-MS, gas liquid chromatography/mass spectrometry; TAG, triacylglycerol; TLC, thin-layer chromatography). [0153] Unambiguous proof for the presence of fatty acid products can be obtained by analyzing recombinant organisms
- 20 using standard analytical methods: GC, GC-MS or TLC, as described on several occasions by Christie and the references therein (1997, in: Advances on Lipid Methodology, Fourth Edition: Christie, Oily Press, Dundee, 119-169; 1998, Gaschromatographie-Massenspektrometrie-Verfahren [Gas chromatography/mass spectrometry methods], Lipide 33:343-353).
- [0154] The material to be analyzed can be disrupted by sonication, grinding in a glass mill, liquid nitrogen and grinding 25 or via other applicable methods. After disruption, the material must be centrifuged. The sediment is resuspended in distilled water, heated for 10 minutes at 100°C, cooled on ice and recentrifuged, followed by extraction for one hour at 90°C in 0.5 M sulfuric acid in methanol with 2% dimethoxypropane, which leads to hydrolyzed oil and lipid compounds, which give transmethylated lipids. These fatty acid methyl esters are extracted in petroleum ether and finally subjected to a GC analysis using a capillary column (Chrompack, WCOT Fused Silica, CP-Wax-52 CB, 25 microM, 0.32 mm) at
- 30 a temperature gradient of between 170°C and 240°C for 20 minutes and 5 minutes at 240°C. The identity of the resulting fatty acid methyl esters must be defined using standards which are available from commercial sources (i.e. Sigma).

Example 4: Cloning a desaturase gene from the alga Emiliana huxleyi

- 35 [0155] A sequence database of Emiliana huxleyi was searched using the known sequence of the Ostreococcus tauri △6-desaturase (Domergue et al. (2005) Biochem J. 389(Pt 2):483-90, SEQ ID No. 3). It was possible to identify a sequence with homology to the amino acid sequence of the Ostreococcus tauri ∆6-desaturase (SEQ ID No. 4). The sequence was elongated in the 5' and 3' direction by means of RACE-PCR (Clontech, USA) following the manufacturer's instructions (SEQ ID No. 1), and the coding amino acid sequence (SEQ ID No. 2) checked with the amino acid sequence
- 40 of the Ostreococcus tauri ∆6-desaturase (SEQ ID No. 4) in a sequence alignment (Fig. 1). According to ClustalW, the sequence alignment gives a sequence identity of 41 %. Other amino acid sequences such as, for example, the Mortierella alpina d5-desaturase (WO2000/012720) show 22% identity. [0156] To characterize the functions of SEQ ID No. 1 and of the corresponding amino acid sequence, the open reading

frame of the DNA was cloned downstream of the galactose-inducible GAL1 promoter of pYES2.1/V5-His-TOPO (Invit-

- 45 rogen), giving rise to the plasmid pYES-SEQ1(Eh). This plasmid was then transformed into the yeast strain INVSC-1 (Invitrogen) following the manufacturer's instructions and selected on plates with DOB-U agar on the basis of uracil auxotrophism. Positive colonies were identified by PCR. To this end, in each case 1 µl of defrosted cells, 200 µM dNTPs, 2.5 U Tag polymerase and 100 pmol of each primer were used to carry out in a total volume of 50 µl. The PCR conditions are as follows: first denaturation at 95°C for 5 minutes, followed by 30 cycles of 30 seconds at 94°C, 1 minute at 55°C
- 50 and 2 minutes at 72°C, and a last elongation step for 10 minutes at 72°C. In parallel, the empty vector pYES2.1/V5-His-TOPO was transformed in the abovedescribed manner into competent yeast cells of the strain INVSC-1. Yeast cells with the plasmids pYES-SEQ1(Eh) were incubated for 12 h in liquid DOB-U medium at 28°C, 200 rpm, and then for a further 12 h in induction medium (DOB-U+2% (w/v) galactose + 2% (w/v) raffinose) and 250 µM of fatty acids added to the medium. The specificity and activity of the gene to be characterized can be determined with reference to the added
- 55 fatty acids.

[0157] Yeasts which have been transformed with the plasmids pYES2/V5-His-TOPO or pYES-SEQ1 (Eh) were analyzed as follows:

[0158] The yeast cells from the main cultures were harvested by centrifugation (100 x g, 5 min, 20°C) and washed

with 100 mM NaHCO₃, pH 8.0 to remove residual medium and fatty acids. Starting with the yeast cell sediments, fatty acid methyl esters (FAMEs) were prepared by acid methanolysis. To this end, the cell sediments were incubated for one hour at 80°C together with 2 ml of 1 N methanolic sulfuric acid and 2% (v/v) of dimethoxypropane. The FAMEs were extracted twice with petroleum ether (PE). To remove nonderivatized fatty acids, the organic phases were washed in

- ⁵ each case once with 2 ml of 100 mM NaHCO₃ pH 8.0 and 2 ml of distilled water. Thereafter, the PE phases were dried with Na₂SO₄, evaporated under argon and taken up in 100 μl of PE. The samples were separated on a DB-23 capillary column (30 m, 0.25 mm, 0.25 μm, Agilent) in a Hewlett-Packard 6850 gas chromatograph equipped with flame ionization detector. The conditions for the GLC analysis were as follows: the oven temperature was programmed from 50°C to 250°C with an increment of 5°C/min and finally 10 min at 250°C (holding).
- ¹⁰ **[0159]** The signals are identified by comparing the retention times with corresponding fatty acid standards (Sigma). The methodology is described for example in Napier and Michaelson, 2001, Lipids. 36(8):761-766; Sayanova et al., 2001, Journal of Experimental Botany. 52(360):1581-1585, Sperling et al., 2001, Arch. Biochem. Biophys. 388(2):293-298 and Michaelson et al., 1998, FEBS Letters. 439(3):215-218.

¹⁵ Activity and substrate determination of the desaturases identified

[0160] The substrate specificity of SEQ ID No. 1 was determined after expression and feeding of various fatty acids. Surprisingly, only $20:3\Delta 8,11,14$ and $20:4\Delta 8,11,14,17$ of the fed substrates were converted. Thus, the coding sequence SEQ ID No. 1 has $\Delta 5$ -desaturase activity and is hereinbelow referred to as d5Des(Eh). The specific conversion of the fatty acids fed is shown in fig. 2. After 48 h. 65,70% of the fed fatty acid is converted into the product, the conversion

fatty acids fed is shown in fig. 2. After 48 h, 65-70% of the fed fatty acid is converted into the product, the conversion rate being calculated using the following formula:

Conversion rate in % = [product quantity/substrate quantity + product quantity]*100

25

[0161] The percentage of the converted fatty acid in the total fatty acids is 7-8%. The converted fatty acid is distributed to in each case 9% to the lipids phosphatidylethanolamine, phosphatidylinositol and phosphatidylserine. The lipid phosphatidylcholin only accounts for 2%. The remaining fatty acids are found in the neutral lipids. The fact that only little of the product of the d5Des(Eh) is accumulated in phosphatidylcholine, in combination with the distribution to a multiplicity of further lipid classes, shows the coenzyme A specificity of d5Des(Eh).

30

Example 7: Production of transgenic plants for the production of long-chain polyunsaturated fatty acids

[0162] To produce long-chain polyunsaturated fatty acids in plants, various genes of the metabolic pathway are combined on a binary vector. To produce the fatty acid arachidonic acid (20:4∆5,8,11,14), genes as described in table 1 were combined. Analogously, genes as described in Table 2 were combined for the production of the fatty acid eicosapentaenoic acid (20:5∆5,8,11,14,17). Analogously, the genes as described in Table 3 were combined for producing the fatty acid docosahexaenoic acid (22:6∆4,7,10,13,16,19).

	0
-4	υ

45

Table 1: Gene combination for the production of arachidonic acid

Genes	Activity	SEQ ID No.
D6Des(Pir)	Δ 6-desaturase	5
D6Elo(Pp)	∆6-elongase	7
D5Des(Eh)	Δ 5-desaturase	1
D12Des(Ps)	Δ 12-desaturase	9

50

Table 2: Gene combination for the production of eicosapentaenoic acid

Genes	Activity	SEQ ID No.
D6Des(Pir)	∆6-desaturase	5
D6EIo(Pp)	∆6-elongase	7
D5Des(Eh)	∆5-desaturase	1

(continued)

Genes	Activity	SEQ ID No.
ω3-Des(Pi)	omega 3-desaturase	11
D12Des(Ps)	∆12-desaturase	9
D15Des(Perf)	Δ 15-desaturase	13

10

15

20

5

Table 3: Gene combination for the production of docosahexaenoic acid

Genes	Activity	SEQ ID No.
D6Des(Pir)	∆6-desaturase	5
D6Elo(Pp)	∆6-elongase	7
D5Des(Eh)	∆5-desaturase	1
ω3-Des(Pi)	omega 3-desaturase	11
D12Des(Ps)	∆12-desaturase	9
D15Des(Perf)	Δ 15-desaturase	13
D5Elo(Ot)	∆5-elongase	15
D4Des(Tc)	∆4-desaturase	17

25

35

[0163] Further transformation vectors based on pSUN-USP were generated for the transformation of plants. To this end, Notl cleavage sites were introduced at the 5' and at the 3' end of the coding sequence, using the following primer pairs (see Table 7).

³⁰ Composition of the PCR mix (50 μ l):

[0164]

- 5.00 µl template cDNA
- 5.00 μ l 10x buffer (Advantage polymerase) + 25mM MgCl₂
 - 5.00 μl 2mM dNTP
 - 1.25 μ l of each primer (10 pmol/ μ L)
 - 0.50 µl Advantage polymerase
- 40 **[0165]** The Advantage polymerase from Clontech is employed.

PCR reaction conditions:

[0166]

45

Annealing temperature: 1 min 55°C Denaturation temperature: 1 min 94°C Elongation temperature: 2 min 72°C Number of cycles: 35

50

Table 7: Primer sequences	for cloning transformation vectors	based on pSUN-USP)
---------------------------	------------------------------------	--------------------

Gene	Primer	SEQ ID No.
D6-Des(Pir)	Fwd: gcggccgcgccatggtggacctcaagcctgg	18
	Rvs: gcggccgttacatcgctgggaactcgg	19
D5-Des(Eh)	Fwd: gcggccgcgccatgtcattggctgctaaagatg	20

	Gene	Primer	SEQ ID No.
		Rvs: gcggccgtcaatgacctgtaactctaac	21
	O3-Des(Pi)	Fwd: gcggccgcgccatggcgacgaaggaggcgta	22
		Rvs: gcggccgcgttacgtggacttggtcttggcc	23
	D6-Elo(Pp)	Fwd: gcggccgcgccatggaggtcgtggagagattc	24
		Rvs: gcggccgcgtcactcagttttagctccc	25
	D12Des(Ps)	Fwd: gcggccgccatggcgatcctgaacccggag	26
		Rvs: gcggccgcttagagcttgttcttgtagaag	27
	D15Des(Perf)	Fwd: gcggccgccatggccgtttcttccggtgc	28
		Rvs: gcggccgcctaaatctttttggaaggaaag	29
	D5Elo(Ot)	Fwd: gcggccgcgccatgagcgcctccggtgcgctg	30
		Rvs: gcggccgcgttagtcaatttttc	31
	D4Des(Tc)	Fwd: gcggccgcgccatgacggtcggctacgacgag	32
		Rvs: gcggccgcgtcaggcagcgcgctgccagg	33

(continued)

[0167] The PCR products were incubated with the restriction enzyme Notl for 4 h at 37°C. The plant expression vector pSUN300-USP is incubated in the same manner. Thereafter, the PCR products and the 7624 bp vector are separated by agarose gel electrophoresis, and the corresponding DNA fragments are excised. The DNA is purified by means of the Qiagen gel purification kit, following the manufacturer's instructions. Thereafter, vector and PCR products are ligated.

- The Rapid Ligation kit from Roche is used for this purpose. The plasmids generated are verified by sequencing. **[0168]** pSUN300 is a derivative of the plasmid pPZP (Hajdukiewicz, P, Svab, Z, Maliga, P., (1994) The small versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989-994). pSUN-USP originated from pSUN300, by inserting a USP promoter into pSUN300 in the form of an EcoRI fragment. The polyadenylation signal is the QCC paper from the A-type family of Agrobacterium binary vectors.
- is the OCS gene from the A. tumefaciens Ti plasmid (ocs-Terminator, Genbank Accession V00088) (De Greve, H., Dhaese, P., Seurinck, J., Lemmers, M., Van Montagu, M. and Schell, J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene J. Mol. Appl. Genet. 1 (6), 499-511 (1982). The USP promoter corresponds to nucleotides 1 to 684 (Genbank Accession X56240), where part of the noncoding region of the USP gene is present in the promoter. The promoter fragment which is 684 base pairs in size was amplified
- by a PCR reaction using standard methods with the aid of a synthesized primer and by means of a commercially available
 T7 standard primer (Stratagene).

(Primer sequence:

40

5

10

15

20

25

5'-GTCGACCCGCGGACTAGTGGGCCCTCTAGACCCGGGGGGATCC GGATCTGCTGGCTATGAA-3') [SEQ ID NO. 82].

[0169] The PCR fragment was recut with EcoRI/Sall and inserted into the vector pSUN300 with OCS terminator. This gave rise to the plasmid named pSUN-USP, which can be employed for transforming plants by means of *Agrobacterium tumefaciens*.

a) Generation of transgenic oilseed rape plants (modified method of Moloney et al., 1992, Plant Cell Reports, 8:238-242)

- [0170] To generate transgenic oilseed rape plants, binary vectors such as the pSUN plasmids described hereinabove or, by way of example, the derivative LJB1589 (SEQ ID No. 34, plasmid map in fig. 3) with the relevant gene combinations were transformed into Agrobacterium tumefaciens C58C1:SHA001 (Deblaere et al, 1984, Nucl. Acids. Res. 13, 4777-4788). A 1:50 dilution of an overnight culture of a positively transformed agrobacterial colony in Murashige-Skoog medium (Murashige and Skoog 1962 Physiol. Plant. 15, 473) supplemented with 3% sucrose (3MS medium) was used
- for transforming oilseed rape plants (cv. Kumily, Swalöf Weibul, Sweden). Petioles or hypocotyls of freshly germinated sterile oilseed rape plants (in each case approx. 1 cm²) were incubated with a 1:50 agrobacterial dilution for 5-10 minutes in a Petri dish. This was followed by 3 days of coincubation in the dark at 25°C on 3MS medium supplemented with 0.8% Bacto agar. After 3 days, the cultivation was continued with 16 hours light/8 hours dark and was continued, in a

1-week rhythm, on MS medium supplemented with 500 mg/l Claforan (cefotaxim-sodium), 50 mg/l Kanamycin, 20 microM benzylaminopurine (BAP) and 1.6 g/l glucose. Growing shoots were transferred to MS medium supplemented with 2% sucrose, 250 mg/l Claforan and 0.8% Bacto agar. If no roots had formed after three weeks, the growth hormone 2-indolebutyric acid was added to the medium to promote rooting.

- ⁵ **[0171]** Regenerated shoots were obtained on 2MS medium supplemented with kanamycin and Claforan, transferred into soil once rooted, and after cultivation for two weeks grown in a controlled-environment cabinet or in a greenhouse, flowering was induced, mature seeds were harvested and analyzed for expression of the desaturase or elongase genes by means of lipid analyses as described by way of example in Qiu et al. 2001, J. Biol. Chem. 276, 31561-31566.
- ¹⁰ b) Generation of transgenic linseed plants

[0172] Transgenic linseed plants can be generated for example by the method of Bell et al., 1999, In Vitro Cell. Dev. Biol.-Plant. 35(6):456-465 by means of particle bombardment. Agrobacterial-mediated transformations can be effected for example as described by Mlynarova et al. (1994), Plant Cell Report 13: 282-285.

15

SEQUENCE LISTING

[0173]

20 <110> BASF PLANT SCIENCE GMBH

<120> Deasaturase and method for the production of polyunsaturated fatty acids in transgenic organisms

²⁵ <130> BPS65606PC

<160> 35

<400> 1

<170> PatentIn version 3.5

30

<210> 1	
<211> 13	368
<212> D	NA
<213> E	miliana huxley

- 35

40

45

- 50

	atgtcattgg	ctgctaaaga	tgcagcctcg	gcccactcat	ccgtcttgga	ccctaagtat	60
	cacggagcta	caaataagtc	aagaactgat	gcagcagacc	ttacagttag	ttctatcgac	120
5	acttctaagg	agatgatcat	aaggggtcgt	gtgtatgatg	tctctgattt	tattaaaagg	180
	cacccgggag	gaagcattat	taaactctcc	ttaggttctg	atgcaacaga	cgcttataac	240
	aacttccata	ttaggtctaa	aaaagcggat	aaaatgttga	gagctttgcc	aagtaggcca	300
10	gtagcggatg	gattcgctag	agacgctttg	tctgcagact	tcgaggccct	gagagcccaa	360
	ctcgaggccg	aaggttactt	cgaaccgaat	ctgtggcatg	tagcttatcg	agttgcggaa	420
	gtcgttgcta	tgtactgggc	gggtattaga	cttatctggg	cgggttattg	gtttttagga	480
15	gccattgtag	caggaatagc	tcaggggaga	tgcggttggc	ttcagcatga	gggtggtcat	540
	tattcgctca	caggtaatat	taaacttgat	cgacacatgc	aaatgattat	ctatggatta	600
	ggttgcggaa	tgtccggttg	ttattggaga	aaccaacata	acaagcacca	tgcgacaccg	660
20	caaaagttgg	gtgcagatcc	agaccttcaa	acaatgcctc	tggttgcgtt	ccatggactc	720
	atcggtgcta	aggctagggg	agcaggaaag	tcgtggctag	catggcaagc	tccacttttc	780
	tttggaggcg	ttatcacaac	cctggtatct	tttggttggc	agttcgtcca	acatccaaag	840
25	cacgcattga	gagtaggaaa	ccaactcgaa	ttaggctata	tggctttacg	atatgcttta	900
	tggtatgcag	cattcggtca	tcttgggctt	ggtggtgctt	tcagattgta	cgctttttat	960
	gtggcagtcg	gaggtacata	tatcttcacg	aactttgcgg	tgtctcacac	acataaggat	1020
30	gttgttccac	acgataagca	tatttcttgg	accttgtatt	ctgcaaacca	taccactaat	1080
	caatctaaca	cacctctagt	caattggtgg	atggcctatc	tgaattttca	aattgaacat	1140
	caccttttcc	ctagcatgcc	acaatataac	catcctaaaa	tctgcggaag	agtgaaacaa	1200
35	ttgtttgaaa	aacatggcgt	agagtacgat	gtcagaactt	acgcgaagtc	aatgcgtgat	1260
	acatacgtga	atctcttggc	tgtgggaaat	gcatctcatt	cccttcatca	gagaaacgag	1320
	ggattaacga	ctagggagtc	tgcggctgtt	agagttacag	gtcattga		1368

40 <210> 2 <211> 455 <212> PRT <213> Emiliana huxleyi

45 <400> 2

50

	Met 1	Ser	Leu	Ala	Ala 5	Lys	Asp	Ala	Ala	Ser 10	Ala	His	Ser	Ser	Val 15	Leu
5	Asp	Pro	Lys	Tyr 20	His	Gly	Ala	Thr	Asn 25	Lys	Ser	Arg	Thr	Asp 30	Ala	Ala
10	Asp	Leu	Thr 35	Val	Ser	Ser	Ile	Asp 40	Thr	Ser	Lys	Glu	Met 45	Ile	Ile	Arg
	Gly	Arg 50	Val	Туr	Asp	Val	Ser 55	Asp	Phe	I]e	Lys	Arg 60	His	Pro	Gly	Gly
15	Ser 65	Ile	Ile	Lys	Leu	Ser 70	Leu	Gly	Ser	Asp	Ala 75	⊤hr	Asp	Ala	туг	Asn 80
20	Asn	Phe	His	Ile	Arg 85	Ser	Lys	Lys	Ala	Asp 90	Lys	Met	Leu	Arg	A]a 95	Leu
	Pro	Ser	Arg	Pro 100	Val	Ala	Asp	Gly	Phe 105	Ala	Arg	Asp	Ala	Leu 110	Ser	Ala
25	Asp	Phe	Glu 115	Ala	Leu	Arg	Ala	G]n 120	Leu	Glu	Ala _.	Glu	G]y 125	туr	Phe	Glu
30	Pro	Asn 130	Leu	Тгр	His	Val	A]a 135	Tyr	Arg	Val	Ala	Glu 140	Val	Val	Ala	Met
	Туг 145	тгр	Ala	Gly	Ile	Arg 150	Leu	Ile	Тгр	Ala	Gly 155	туг	Тгр	Phe	Leu	Gly 160
35	Ala	Ile	Val	Ala	Gly 165	I]e	Ala	Gln	Gly	Arg 170	Cys	Gly	Тгр	Leu	G]n 175	His
40	Glu	Gly	Gly	His 180	Туr	Ser	Leu	⊤hr	Gly 185	Asn	Ile	Lys	Leu	Asp 190	Arg	His
	Met	Gln	Met 195	Ile	Ile	Туr	Gly	Leu 200	Gly	Cys	Gly	Met	Ser 205	Gly	Cys	Туr
45	Тrр	Arg 210	Asn	Gln	His	Asn	Lys 215	His	His	Ala	Thr	Pro 220	Gln	Lys	Leu	Gly
50	Ala 225	Asp	Pro	Asp	Leu	Gln 230	⊤hr	Met	Pro	Leu	Va] 235	Ala	Phe	His	Gly	Leu 240
	Ile	Gly	Ala	Lys	Ala 245	Arg	Gly	Ala	Gly	Lys 250	Ser	Тгр	Leu	Ala	Тгр 255	Gln
55	Ala	Pro	Leu	Phe	Phe	Gly	Gly	Val	Ile	Thr	Thr	Leu	Val	Ser	Phe	Gly
				260					265					270		
----	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------	------------
5	Тгр	Gln	Phe 275	Val	Gln	His	Pro	Lys 280	His	Ala	Leu	Arg	Va1 285	Gly	Asn	Gln
	Leu	Glu 290	Leu	Gly	Tyr	Met	Ala 295	Leu	Arg	туr	Ala	Leu 300	Тгр	Туr	Ala	Ala
10	Phe 305	Gly	His	Leu	Gly	Leu 310	Gly	Gly	Ala	Phe	Arg 315	Leu	Tyr	Ala	Phe	Туг 320
15	Val	Ala	Val	Gly	G]y 325	Thr	Tyr	Ile	Phe	Thr 330	Asn	Phe	Ala	Val	Ser 335	His
	Thr	His	Lys	Asp 340	Val	Val	Pro	His	Asp 345	Lys	His	Ile	Ser	Тгр 350	Thr	Leu
20	Туr	Ser	Ala 355	Asn	His	⊤hr	Thr	Asn 360	Gln	Ser	Asn	Thr	Pro 365	Leu	Val	Asn
25	Тгр	Trp 370	Met	Ala	Tyr	Leu	Asn 375	Phe	Gln	Ile	Glu	His 380	His	Leu	Phe	Pro
	Ser 385	Met	Pro	Gln	Tyr	Asn 390	His	Pro	Lys	Ile	Ċys 395	Gly	Arg	Val	Lys	G]n 400
30	Leu	Phe	Glu	Lys	His 405	Gly	Val	Glu	Tyr	Asp 410	val	Arg	Thr	Tyr	A]a 415	Lys
35	Ser	Met	Arg	Asp 420	Thr	Tyr	Val	Asn	Leu 425	Leu	Ala	Val	Gly	Asn 430	Ala	Ser
	His	Ser	Leu 435	His	Gln	Arg	Asn	G]u 440	Gly	Leu	Thr	Thr	Arg 445	Glu	Ser	Ala
40	Ala	Va1 450	Arg	Val	Thr	Gly	His 455									
45	<210> 3															
45	<211> 1371															

<211> 1371 <212> DNA <213> Ostreococcus tauri

<400> 3

50

	atgtgtgttg	agaccgagaa	caacgatgga	atccctactg	tggagatcgc	tttcgatgga	60
	gagagagaaa	gagctgaggc	taacgtgaag	ttgtctgctg	agaagatgga	acctgctgct	120
5	ttggctaaga	ccttcgctag	aagatacgtg	gttatcgagg	gagttgagta	cgatgtgacc	180
	gatttcaaac	atcctggagg	aaccgtgatt	ttctacgctc	tctctaacac	tggagctgat	240
	gctactgagg	ctttcaagga	gttccaccac	agatctagaa	aggctaggaa	ggctttggct	300
10	gctttgcctt	ctagacctgc	taagaccgct	aaagtggatg	atgctgagat	gctccaggat	360
	ttcgctaagt	ggagaaagga	gttggagagg	gacggattct	tcaagccttc	tcctgctcat	420
15	gttgcttaca	gattcgctga	gttggctgct	atgtacgctt	tgggaaccta	cttgatgtac	480
	gctagatacg	ttgtgtcctc	tgtgttggtt	tacgcttgct	tcttcggagc	tagatgtgga	540
	tgggttcaac	atgagggagg	acattcttct	ttgaccggaa	acatctggtg	ggataagaga	600
20	atccaagctt	tcactgctgg	attcggattg	gctggatctg	gagatatgtg	gaactccatg	660
	cacaacaagc	accatgctac	tcctcaaaaa	gtgaggcacg	atatggattt	ggataccact	720
	cctgctgttg	ctttcttcaa	caccgctgtg	gaggataata	gacctagggg	attctctaag	780
25	tactggctca	gattgcaagc	ttggaccttc	attcctgtga	cttctggatt	ggtgttgctc	840
	ttctggatgt	tcttcctcca	tccttctaag	gctttgaagg	gaggaaagta	cgaggagctt	900
	gtgtggatgt	tggctgctca	tgtgattaga	acctggacca	ttaaggctgt	tactggattc	960
30	accgctatgc	aatcctacgg	actcttcttg	gctacttctt	gggtttccgg	atgctacttg	1020
	ttcgctcact	tctctacttc	tcacacccat	ttggatgttg	ttcctgctga	tgagcatttg	1080
	tcttgggtta	ggtacgctgt	ggatcacacc	attgatatcg	atccttctca	gggatgggtt	1140
35	aactggttga	tgggatactt	gaactgccaa	gtgattcatc	acctcttccc	ttctatgcct	1200
	caattcagac	aacctgaggt	gtccagaaga	ttcgttgctt	tcgctaagaa	gtggaacctc	1260
	aactacaagg	tgatgactta	tgctggagct	tggaaggcta	ctttgggaaa	cctcgataat	1320
40	gtgggaaagc	actactacgt	gcacggacaa	cattctggaa	agaccgcttg	a	1371
	<210> 4						

45
45
45
45
45
45

<400> 4

50

	Met 1	Cys	Val	Glu	⊤hr 5	Glu	Asn	Asn	Asp	Gly 10	Ile	Pro	Thr	Val	Glu 15	Ile
5	Ala	Phe	Asp	Gly 20	Glu	Arg	Glu	Arg	Ala 25	Glu	Ala	Asn	Val	Lys 30	Leu	Ser
10	Ala	Glu	Lys 35	Met	Glu	Pro	Ala	Ala 40	Leu	Ala	Lys	Thr	Phe 45	Ala	Arg	Arg
	Туr	Val 50	Val	Ile	Glu	Gly	Val 55	Glu	Туг	Asp	Val	Тhr 60	Asp	Phe	Lys	His
15	Pro 65	Gly	Gly	Thr	Val	Ile 70	Phe	⊤yr	Ala	Leu	Ser 75	Asn	⊤hr	Gly	Ala	Asp 80
20	Ala	Thr	Glu	Ala	Phe 85	Lys	Glu	Phe	His	His 90	Arg	Ser	Arg	Lys	A]a 95	Arg
	Lys	Ala	Leu	Ala 100	Ala	Leu	Pro	Ser	Arg 105	Pro	Ala	Lys	Thr	Ala 110	Lys	Val
25																
30																
35																
40																
45																
50																
55																

	Asp	Asp	A]a 115	Glu	Met	Leu	Gln	Asp 120	Phe	Ala	Lys	Тгр	Arg 125	Lys	Glu	Leu
5	Glu	Arg 130	Asp	Gly	Phe	Phe	Lys 135	Pro	Ser	Pro	Ala	His 140	Val	Ala	Туг	Arg
10	Phe 145	Ala	Glu	Leu	Ala	Ala 150	Met	Туr	Ala	Leu	Gly 155	Thr	Туr	Leu	Met	Туг 160
	Ala	Arg	Туr	Val	Va] 165	Ser	Ser	Val	Leu	Va] 170	Tyr	Ala	Cys	Phe	Phe 175	Gly
15	Ala	Arg	Cys	Gly 180	тгр	Val	Gln	His	Glu 185	Gly	Gly	His	Ser	Ser 190	Leu	Thr
20	Gly	Asn	I]e 195	Тгр	тгр	Asp	Lys	Arg 200	I]e	Gln	Ala	Phe	Thr 205	Ala	Gly	Phe
	Gly	Leu 210	Ala	Gly	Ser	Gly	Asp 215	Met	тгр	Asn	Ser	Met 220	His	Asn	Lys	His
25	His 225	Ala	⊤hr	Pro	Gln	Lys 230	Val	Arg	His	Asp	Met 235	Asp	Leu	Asp	Thr	Thr 240
30	Pro	Ala	Val	Ala	Phe 245	Phe	Asn	Thr	Ala	Va] 250	Glu	Asp	Asn	Arg	Pro 255	Arg
	Gly	Phe	Ser	Lys 260	Tyr	Trp	Leu	Arg	Leu 265	Gln	Ala	Trp	Thr	Phe 270	Ile	Pro
35	Val	Thr	Ser 275	Gly	Leu	Val	Leu	Leu 280	Phe	Тгр	Met	Phe	Phe 285	Leu	His	Pro
40	Ser	Lys 290	Ala	Leu	Lys	Gly	Gly 295	Lys	Tyr	Glu	Glu	Leu 300	Val	Тгр	Met	Leu
	Ala 305	Ala	His	Val	Ile	Arg 310	Thr	Trp	Thr	Ile	Lys 315	Ala	Val	Thr	Gly	Phe 320
45	Thr	Ala	Met	Gln	Ser 325	Tyr	Gly	Leu	Phe	Leu 330	Ala	Thr	Ser	Trp	Va1 335	Ser
50	Gly	Cys	Tyr	Leu 340	Phe,	Ala	His	Phe	Ser 345	Thr	Ser	His	Thr	His 350	Leu	Asp
	Val	Val	Pro 355	Ala	Asp	Glu	His	Leu 360	Ser	Trp	Val	Arg	Туг 365	Ala	Val	Asp
55	His	тhr 370	I]e	Asp	Ile	Asp	Pro 375	Ser	Gln	Gly	тгр	Va1 380	Asn	тгр	Leu	Met

		Gly 385	туг	Leu	Asn	Cys	Gln 390	Val	Ile	His	His	Leu 395	Phe	Pro	Ser	Met	Pro 400
5		Gln	Phe	Arg	Gln	Pro 405	Glu	Val	Ser	Arg	Arg 410	Phe	Val	Ala	Phe	A]a 415	Lys
10		Lys	Trp	Asn	Leu 420	Asn	Туr	Lys	Val	Met 425	Thr	Tyr	Ala	Gly	A]a 430	тrр	Lys
		Ala	Thr	Leu 435	Gly	Asn	Leu	Asp	Asn 440	Val	Gly	Lys	His	Туг 445	Туr	Val	His
15		Gly	G]n 450	His	Ser	Gly	Lys	Thr 455	Ala								·
20	<210> 5 <211> 1 <212> [<213> F	5 1380 DNA Pythiur	n irreg	julare													
	<400> 5	5															
25																	
30																	
35																	
40																	
45																	
50																	
55																	

	atggtggacc	tcaagcctgg	agtgaagcgc	ctggtgagct	ggaaggagat	ccgcgagcac	60
	gcgacgcccg	cgaccgcgtg	gatcgtgatt	caccacaagg	tctacgacat	ctccaagtgg	120
5	gactcgcacc	cgggtggctc	cgtgatgctc	acgcaggccg	gcgaggacgc	cacggacgcc	180
	ttcgcggtct	tccacccgtc	ctcggcgctc	aagctgctcg	agcagttcta	cgtcggcgac	240
	gtggacgaaa	cctccaaggc	cgagatcgag	ggggagccgg	cgagcgacga	ggagcgcgcg	300
10	cgccgcgagc	gcatcaacga	gttcatcgcg	tcctaccgcc	gtctgcgcgt	caaggtcaag	360
	ggcatggggc	tctacgacgc	cagcgcgctc	tactacgcgt	ggaagctcgt	gagcacgttc	420
	ggcatcgcgg	tgctctcgat	ggcgatctgc	ttcttcttca	acagtttcgc	catgtacatg	480
15	gtcgccggcg	tgattatggg	gctcttctac	cagcagtccg	gatggctggc	gcacgacttc	540
	ttgcacaacc	aggtgtgcga	gaaccgcacg	ctcggcaacc	ttatcggctg	cctcgtgggc	600
	aacgcctggc	agggcttcag	catgcagtgg	tggaagaaca	agcacaacct	gcaccacgcg	660
20	gtgccgaacc	tgcacagcgc	caaggacgag	ggcttcatcg	gcgacccgga	catcgacacc	720
	atgccgctgc	tggcgtggtc	taaggagatg	gcgcgcaagg	cgttcgagtc	ggcgcacggc	780
	ccgttcttca	tccgcaacca	ggcgttccta	tacttcccgc	tgctgctgct	cgcgcgcctg	840
25	agctggctcg	cgcagtcgtt	cttctacgtg	ttcaccgagt	tctcgttcgg	catcttcgac	900
	aaggtcgagt	tcgacggacc	ggagaaggcg	ggtctgatcg	tgcactacat	ctggcagctc	960
	gcgatcccgt	acttctgcaa	catgagcctg	tttgagggcg	tggcatactt	cctcatgggc	1020
30	caggcgtcct	gcggcttgct	cctggcgctg	gtgttcagta	ttggccacaa	cggcatgtcg	1080
	gtgtacgagc	gcgaaaccaa	gccggacttc	tggcagctgc	aggtgaccac	gacgcgcaac	1140
	atccgcgcgt	cggtattcat	ggactggttc	accggtggct	tgaactacca	gatcgaccat	1200
35	cacctgttcc	cgctcgtgcc	gcgccacaac	ttgccaaagg	tcaacgtgct	catcaagtcg	1260
	ctatgcaagg	agttcgacat	cccgttccac	gagaccggct	tctgggaggg	catctacgag	1320
40	gtcgtggacc	acctggcgga	catcagcaag	gaatttatca	ccgagttccc	agcgatgtaa	1380
	<210> 6 <211> 459 <212> PRT						

45 <213> Pythium irregulare

<400> 6

50

	Met 1	Val	Asp	Leu	Lys 5	Pro	Gly	Val	Lys	Arg 10	Leu	Val	Ser	тгр	Lys 15	Glu
5	Ile	Arg	Glu	His 20	Ala	⊤hr	Pro	Ala	Thr 25	Ala	Тгр	Ile	Val	Ile 30	His	His
10	Lys	Val	Tyr 35	Asp	Ile	Ser	Lys	тгр 40	Asp	Ser	His	Pro	Gly 45	Gly	Ser	Val
	Met	Leu 50	Thr	Gln	Ala	Gly	Glu 55	Asp	Ala	⊤hŗ	Asp	Ala 60	Phe	Ala	Val	Phe
15	Ніs 65	Pro	Ser	Ser	Ala	Leu 70	Lys	Leu	Leu	Glu	G]n 75	Phe	⊤yr	Val	Gly	Asp 80
20	Val	Asp	Glu	Thr	Ser 85	Lys	Ala	Glu	Ile	Glu 90	Gly	Glu	Pro	Ala	Ser 95	Asp
	Glu	Glu	Arg	Ala 100	Arg	Arg	Glu	Arg	I]e 105	Asn	Glu	Phe	Ile	Ala 110	Ser	Tyr
25	Arg	Arg	Leu 115	Arg	Val	Lys	Val	Lys 120	Gly	Met	Gly	Leu	Tyr 125	Asp	Ala	Ser
30	Ala	Leu 130	туr	Туr	Ala	тгр	Lys 135	Leu	Val	Ser	⊤hr	Phe 140	Gly	I]e	Ala	Val
	Leu 145	Ser	Met	Ala	Ile	Cys 150	Phe	Phe	Phe	Asn	Ser 155	Phe	Ala	Met	Туr	Met 160
35	Val	Ala	Gly	Val	1]e 165	Met	Gly	Leu	Phe	Tyr 170	Gln	Gln	Ser	Gly	Тгр 175	Leu
40	Ala	His	Asp	Phe 180	Leu	His	Asn	Gln	Val 185	Cys	Glu	Asn	Arg	Thr 190	Leu	Gly
	Asn	Leu	Ile 195	Gly	Cys	Leu	Val	G]y 200	Asn	Ala	Тrр	Gln	Gly 205	Phe	Ser	Met
45	Gln	Тгр 210	Trp	Lys	Asn	Lys	His 215	Asn	Leu	His	His	A]a 220	Val	Pro	Asn	Leu
50	His 225	Ser	Ala	Lys	Asp	Glu 230	Gly	Phe	Ile	Gly	Asp 235	Pro	Asp	Ile	Asp	Thr 240

	Met	Pro	Leu	Leu	Ala 245	тгр	Ser	Lys	Glu	Met 250	Ala	Arg	Lys	Ala	Phe 255	Glu
5	Ser	Ala	His	G]y 260	Pro	Phe	Phe	I]e	Arg 265	Asn	Gln	Ala	Phe	Leu 270	Tyr	Phe
10	Pro	Leu	Leu 275	Leu	Leu	Ala	Arg	Leu 280	Ser	Тгр	Leu	Ala	G]n 285	Ser	Phe	Phe
	Tyr	Va1 290	Phe	Thr	Glu	Phe	Ser 295	Phe	Gly	Ile	Phe	Asp 300	Lys	Val	Glu	Phe
15	Asp 305	Gly	Pro	Glu	Lys	A]a 310	Gly	Leu	Ile	Val	His 315	Tyr	Ile	тгр	Gln	Leu 320
20	Ala	Ile	Pro	Туr	Phe 325	Cys	Asn	Met	Ser	Leu 330	Phe	Glu	Gly	Val	Ala 335	Туr
	Phe	Leu	Met	Gly 340	Gln	Ala	Ser	Cys	G]y 345	Leu	Leu	Leu	Ala	Leu 350	Val	Phe
25	Ser	I]e	G]y 355	His	Asn	Gly	Met	Ser 360	Val	Туr	Glu	Arg	Glu 365	Thr	Lys	Pro
30	Asp	Phe 370	Тгр	Gln	Leu	Glŋ	Va] 375	Thr	Thr	Thr	Arg	Asn 380	Ile	Arg	Ala	Ser
	Va1 385	Phe	Met	Asp	Trp	Phe 390	Thr	Gly	Gly	Leu	Asn 395	Tyr	Gln	Ile	Asp	Ніs 400
35	His	Leu	Phe	Pro	Leu 405	Val	Pro	Arg	His	Asn 410	Leu	Pro	Lys	Val	Asn 415	Val
40	Leu	Ile	Lys	Ser 420	Leu	Cys	Lys	Glu	Phe 425	Asp	Ile	Pro	Phe	Ніs 430	Glu	Thr
	Gly	Phe	Trp 435	Glu	Gly	Ile	Tyr	G]u 440	Val	Val	Asp	His	Leu 445	Ala	Asp	Ile
45	Ser	Lys 450	Glu	Phe	Ile	Thr	Glu 455	Phe	Pro	Ala	Met					
50	<210> 7 <211> 873 <212> DNA <213> Physo	comitre	ella pa	tens												

<400> 7

	atggaggtcg	tggagagatt	ctacggtgag	ttggatggga	aggtctcgca	gggcgtgaat	60
	gcattgctgg	gtagttttgg	ggtggagttg	acggatacgc	ccactaccaa	aggcttgccc	120
5	ctcgttgaca	gtcccacacc	catcgtcctc	ggtgtttctg	tatacttgac	tattgtcatt	180
	ggagggcttt	tgtggataaa	ggccagggat	ctgaaaccgc	gcgcctcgga	gccatttttg	240
10	ctccaagctt	tggtgcttgt	gcacaacctg	ttctgttttg	cgctcagtct	gtatatgtgc	300
10	gtgggcatcg	cttatcaggc	tattacctgg	cggtactctc	tctggggcaa	tgcatacaat	360
	cctaaacata	aagagatggc	gattctggta	tacttgttct	acatgtctaa	gtacgtggaa	420
45	ttcatggata	ccgttatcat	gatactgaag	cgcagcacca	ggcaaataag	cttcctccac	480
15	gtttatcatc	attcttcaat	ttccctcatt	tggtgggcta	ttgctcatca	cgctcctggc	540
	ggtgaagcat	attggtctgc	ggctctgaac	tcaggagtgc	atgttctcat	gtatgcgtat	600
20	tacttcttgg	ctgcctgcct	tcgaagtagc	ccaaagttaa	aaaataagta	ccttttttgg	660
20	ggcaggtact	tgacacaatt	ccaaatgttc	cagtttatgc	tgaacttagt	gcaggcttac	720
	tacgacatga	aaacgaatgc	gccatatcca	caatggctga	tcaagatttt	gttctactac	780
25	atgatctcgt	tgctgtttct	tttcggcaat	ttttacgtac	aaaaatacat	caaaccctct	840
20	gacggaaagc	aaaagggagc	taaaactgag	tga			873

<210> 8 <211> 290 <212> PRT <213> Physcomitrella patens

<400> 8

35

30

40

45

50

	Met 1	Glu	Val	Val	Glu 5	Arg	Phe	туг	Gly	Glu 10	Leu	Asp	Gly	Lys	Val 15	Ser
5	Gln	Gly	Val	Asn 20	Ala	Leu	Leu	Gly	Ser 25	Phe	Gly	Val	Glu	Leu 30	Thr	Asp
10	Thr	Pro	⊤hr 35	Thr	Lys	Gly	Leu	Pro 40	Leu	Val	Asp	Ser	Pro 45	Thr	Pro	Ile
	Val	Leu 50	Gly	Val	Ser	Val	Tyr 55	Leu	Thr	Ile	Val	Ile 60	Gly	Gly	Leu	Leu
15	Тгр 65	Ile	Lys	Ala	Arg	Asp 70	Leu	Lys	Pro	Arg	Ala 75	Ser	Glu	Pro	Phe	Leu 80
20	Leu	Gln	Ala	Leu	Va ⁻] 85	Leu	Val	His	Asn	Leu 90	Phe	Cys	Phe	Ala	Leu 95	Ser
	Leu	Туг	Met	Cys 100	Val	Gly	Ile	Ala	Туг 105	Gln	Ala	Ile	Thr	тгр 110	Arg	туr
25	Ser	Leu	тгр 115	Gly	Asn	Ala	Туr	Asn 120	Pro	Lys	His	Lys	Glu 125	Met	Ala	Ile
30	Leu	Va] 130	туг	Leu	Phe	⊤yr	Met 135	Ser	Lys	⊤yr	Val	Glu 140	Phe	Met	Asp	Thr

	Val 145	I]e	Met	I]e	Leu	Lys 150	Arg	Ser	Thr	Arg	G]n 155	I]e	Ser	Phe	Leu	Ніs 160
5	Val	Туr	His	His	Ser 165	Ser	Ile	Ser	Leu	I]e 170	тгр	Тгр	Ala	Ile	Ala 175	His
10	His	Ala	Pro	Gly 180	Gly	Glu	Ala	Tyr	Trp 185	Ser	Ala	Ala	Leu	Asn 190	Ser	Gly
	Val	His	Va] 195	Leu	Met	Туr	Ala	Tyr 200	Tyr	Phe	Leu	Ala	A]a 205	Cys	Leu	Arg
15	Ser	Ser 210	Pro	Lys	Leu	Lys	Asn 215	Lys	Туr	Leu	Phe	Тгр 220	Gly	Arg	Туr	Leu
20	Thr 225	Gln	Phe	Gln	Met	Phe 230	Gln	Phe	Met	Leu	Asn 235	Leu	Val	Gln	Ala	туг 240
	Tyr	Asp	Met	Lys	Thr 245	Asn	Ala	Pro	Tyr	Pro 250	Gln	Тгр	Leu	Ile	Lys 255	Ile
25	Leu	Phe	Tyr	туг 260	Met	Ile	Ser	Leu	Leu 265	Phe	Leu	Phe	Gly	Asn 270	Phe	Tyr
30	Val	Gln	Lys 275	Tyr	Ile	Lys	Pro	Ser 280	Asp	Gly	Lys	Gln	Lys 285	Gly	Ala	Lys
	Thr	Glu 290														
35	<210> 9															

<211> 1197 <212> DNA <213> Phytophtora sojae

40 <400> 9

45

50

	atggctattt	tgaaccctga	ggctgattct	gctgctaacc	tcgctactga	ttctgaggct	60
	aagcaaagac	aattggctga	ggctggatac	actcatgttg	agggtgctcc	tgctcctttg	120
5	cctttggagt	tgcctcattt	ctctctcaga	gatctcagag	ctgctattcc	taagcactgc	180
	ttcgagagat	ctttcgtgac	ctccacctac	tacatgatca	agaacgtgtt	gacttgcgct	240
	gctttgttct	acgctgctac	cttcattgat	agagctggag	ctgctgctta	tgttttgtgg	300
10	cctgtgtact	ggttcttcca	gggatcttac	ttgactggag	tgtgggttat	cgctcatgag	360
	tgtggacatc	aggcttattg	ctcttctgag	gtggtgaaca	acttgattgg	actcgtgttg	420
	cattctgctt	tgttggtgcc	ttaccactct	tggagaatct	ctcacagaaa	gcaccattcc	480
15	aacactggat	cttgcgagaa	cgatgaggtt	ttcgttcctg	tgaccagatc	tgtgttggct	540
	tcttcttgga	acgagacctt	ggaggattct	cctctctacc	aactctaccg	tatcgtgtac	600
	atgttggttg	ttggatggat	gcctggatac	ctcttcttca	acgctactgg	acctactaag	660
20	tactggggaa	agtctaggtc	tcacttcaac	ccttactccg	ctatctatgc	tgatagggag	720
	agatggatga	tcgtgctctc	cgatattttc	ttggtggcta	tgttggctgt	tttggctgct	· 78 0
25	ttggtgcaca	ctttctcctt	caacaccatg	gtgaagttct	acgtggtgcc	ttacttcatt	840
	gtgaacgctt	acttggtgtt	gattacctac	ctccaacaca	ccgataccta	catccctcat	900
	ttcagagagg	gagagtggaa	ttggttgaga	ggagctttgt	gcactgtgga	tagatcattt	960
30	ggtccattcc	tcgattctgt	ggtgcataga	atcgtggata	cccatgtttg	ccaccacatc	1020
	ttctccaaga	tgcctttcta	tcattgcgag	gaggctacca	acgctattaa	gcctctcctc	1080
	ggaaagttct	acttgaagga [,]	taccactcct	gttcctgttg	ctctctggag	atcttacacc	1140
35	cattgcaagt	tcgttgagga	tgatggaaag	gtggtgttct	acaagaacaa	gctctag	1197

<210> 10

<211> 398

- <212> PRT
- 40 <213> Phytophtora sojae

<400> 10

45

50

	Met 1	Ala	Ile	Leu	Asn 5	Pro	Glu	Ala	Asp	Ser 10	Ala	Ala	Asn	Leu	Ala 15	⊤hr
5	Asp	Ser	Glu	Ala 20	Lys	Gln	Arg	Gln	Leu 25	Ala	Gไน	Ala	Gly	туr 30	Thr	His
10	Val	Gไน	G]y 35	Ala _.	Pro	Ala	Pro	Leu 40	Pro	Leu	Glu	Leu	Pro 45	His	Phe	Ser
	Leu	Arg 50	Asp	Leu	Årg	Ala	Ala 55	Ile	Pro	Lys	His	Cys 60	Phe	Glu	Arg	Ser
15	Phe 65	Val	Thr	Ser	Thr	Tyr 70	Туr	Met	Ile	Lys	Asn 75	Val	Leu	Thr	Cys	Ala 80
20	Ala	Leu	Phe	Tyr	Ala 85	Ala	Thr	Phe	Ile	Asp 90	Arg	Ala	Gly	Ala	Ala 95	Ala
	Tyr	Val	Leu	Trp 100	Pro	Val	Tyr	Trp	Phe 105	Phe	Gln	Gly	Ser	Tyr 110	Leu	Thr
25	Gly	Val	Trp 115	Val	Ile	Ala	His	Glu 120	Cys	Gly	His	Gln	A]a 125	Туr	Cys	Ser
30	Ser	Glu 130	Val	Val	Asn	Asn	Leu 135	Ile	Gly	Leu	Val	Leu 140	His	Ser	Ala	Leu
	Leu 145	Val	Pro	Tyr	His	Ser 150	Тгр	Arg	Ile	Ser	His 155	Arg	Lys	His	His	Ser 160
35	Asn	Thr	Gly	Ser	Cys 165	Glu	Asn	Asp	Glu	Val 170	Phe	Val	Pro	Val	Thr 175	Arg

	Ser	Val	Leu	Ala 180	Ser	Ser	тгр	Asn	Glu 185	Thr	Leu	Glu	Asp	Ser 190	Pro	Leu
5	Tyr	Gln	Leu 195	Тyr	Arg	Ile	Val	Туг 200	Met	Leu	Val	Val	G]y 205	Тгр	Met	Pro
10	Gly	Туг 210	Leu	Phe	Phe	Asn	A]a 215	⊤hr	Gly	Pro	Thr	Lys 220	Туr	⊤rp	Gly	Lys
	Ser 225	Arg	Ser	His	Phe	Asn 230	Pro	Туг	Ser	Ala	Ile 235	Туr	Ala	Asp	Arg	Glu 240
15	Arg	тrр	Met	Ile	Va] 245	Leu	Ser	Asp	Ile	Phe 250	Leu	Val	Ala	Met	Leu 255	Ala
20	Val	Leu	Ala	Ala 260	Leu	Val	His	Thr	Phe 265	Ser	Phe	Asn	Thr	Met 270	Val	Lys
	Phe	тyr	Va] 275	Val	Pro	туг	Phe	I]e 280	Val	Asn	Ala	туr	Leu 285	Val	Leu	Ile
25	Thr	туr 290	Leu	Gln	His	⊤hr	Asp 295	⊤hr	Туr	Ile	Pro	ніs 300	Phe	Arg	Gไน	Gly
30	Glu 305	Тгр	Asn	Тгр	Leu	Arg 310	Gly	Ala	Leu	Cys	Thr 315	Val	Asp	Arg	Ser	Phe 320
	Gly	Pro	Рḥе	Leu	Asp 325	Ser	Val	Val	His	Arg 330	Ile	Val	Asp	Thr	His 335	Val
35	Cys	His	His	Ile 340	Phe	Ser	Lys	Met	Pro 345	Phe	туr	His	Cys	Glu 350	Glu	Ala
40	Thr	Asn	A]a 355	Ile	Lys	Pro	Leu	Leu 360	Gly	Lys	Phe	Tyr	Leu 365	Lys	Asp	⊤hr
	Thr	Pro 370	Val	Pro	Val	Ala	Leu 375	Тгр	Arg	Ser	Tyr	Thr 380	His	Cys	Lys	Phe
45	Va1 385	Glu	Asp	Asp	Gly	Lys 390	Val	Val	Phe	туr	Lys 395	Asn	Lys	Leu		
50	<210> 11 <211> 1080 <212> DNA <213> Phy	6 A tophtor	a infe	stans												

<400> 11

55

,

	atggcgacga	aggaggcgta	tgtgttcccc	actctgacgg	agatcaagcg	gtcgctacct	60
	aaagactgtt	tcgaggcttc	ggtgcctctg	tcgctctact	acaccgtgcg	ttgtctggtg	120
5	atcgcggtgg	ctctaacctt	cggtctcaac	tacgctcgcg	ctctgcccga	ggtcgagagc	180
	ttctgggctc	tggacgccgc	actctgcacg	ggctacatct	tgctgcaggg	catcgtgttc	240
10	tggggcttct	tcacggtggg	ccacgatgcc	ggccacggcg	ccttctcgcg	ctaccacctg	300
	cttaacttcg	tggtgggcac	tttcatgcac	tcgctcatcc	tcacgccctt	cgagtcgtgg	360
	aagctcacgc	accgtcacca	ccacaagaac	acgggcaaca	ttgaccgtga	cgaggtcttc	420
15	tacccgcaac	gcaaggccga	cgaccacccg	ctgtctcgca	acctgattct	ggcgctcggg	480
	gcagcgtggc	tcgcctattt	ggtcgagggc	ttccctcctc	gtaaggtcaa	ccacttcaac	540
	ccgttcgagc	ctctgttcgt	gcgtcaggtg	tcagctgtgg	taatctctct	tctcgcccac	600
20	ttcttcgtgg	ccggactctc	catctatctg	agcctccagc	tgggccttaa	gacgatggca	660
	atctactact	atggacctgt	ttttgtgttc	ggcagcatgc	tggtcattac	caccttccta	720
	caccacaatg	atgaggagac	cccatggtac	gccgactcgg	agtggacgta	cgtcaagggc	780
25	aacctctcgt	ccgtggaccg	atcgtacggc	gcgctcattg	acaacctgag	ccacaacatc	840
	ggcacgcacc	agatccacca	ccttttccct	atcattccgc	actacaaact	caagaaagcc	900
	actgcggcct	tccaccaggc	tttccctgag	ctcgtgcgca	agagcgacga	gccaattatc	960
30	aaggctttct	tccgggttgg	acgtctctac	gcaaactacg	gcgttgtgga	ccaggaggcg	1020
	aagctcttca	cgctaaagga	agccaaggcg	gcgačcgagg	cggcggccaa	gaccaagtcc	1080
	acgtaa						1086

<210> 12 <211> 361 <212> PRT <213> Phytophtora infestans

40 <400> 12

45

35

50

	Met 1	Ala	Thr	Lys	Glu 5	Ala	туг	Val	Phe	Pro 10	Тhr	Leu	Thr	Glu	Ile 15	Lys
5	Arg	Ser	Leu	Pro 20	Lys	Asp	Cys	Phe	Glu 25	Ala	Ser	Val	Pro	Leu 30	Ser	Leu
10	Туr	Тyr	Thr 35	Val	Arg	Cys	Leu	Va1 40	Ile	Ala	Val	Ala	Leu 45	Thr	Phe	Gly
	Leu	Asn 50	Туr	Ala	Arg	Ala	Leu 55	Pro	Glu	Val	Glu	Ser 60	Phe	тгр	Ala	Leu
15	Asp 65	Ala	Ala	Leu	Cys	тhr 70	Gly	Tyr	Ile	Leu	Leu 75	Gln	Glý	Ile	Val	Phe 80
20	Тгр	ĞÌy	Phe	Phe	Тhr 85	Val	Gly	His	Asp	Ala 90	Gly	His	GÌy	Ala	Phe 95	Ser
	Arg	Туr	His	Leu 100	Leu	Asn	Phe	Val	Val 105	Gly	Thr	Phe	Met	His 110	Ser	Leu
25	Ile	Leu	Thr 115	Pro	Phe	Glu	Ser	Тгр 120	Lys	Leu	Thr	His	Arg 125	His	His	His

	Lys	Asn 130	Thr	Gly	Asn	Ile	Asp 135	Arg	Asp	Glu	Val	Phe 140	Туr	Pro	Gln	Arg
5	Lys 145	Ala	Asp	Asp	His	Pro 150	Leu	Ser	Arg	Asn	Leu 155	Ile	Leu	Ala	Leu	Gly 160
10	Ala	Ala	Тгр	Leu	АÌа 165	туr	Leu	Val	Glu	Gly 170	Phe	Pro	Pro	Arg	Lys 175	Val
	Asn	His	Phe	Asn 180	Pro	Phe	Glu	Pro	Leu 185	Phe	Val	Arg	Gln	Va] 190	Ser	Ala
15	Val	Val	I]e 195	Ser	Leu	Leu	Ala	His 200	Phe	Phe	Val	Ala	Gly 205	Leu	Ser	Ile
20	Туr	Leu 210	Ser	Leu	Gln	Leu	Gly 215	Leu	Lys	Thr	Met	Ala 220	Ile	⊤yr	Tyr	Tyr
	G]y 225	Pro	Val	Phe	Val	Phe 230	Gly	Ser	Met	Leu	Va] 235	Ile	Thr	Thr	Phe	Leu 240
25	ніs	His	Asn	Asp	Glu 245	Glu	Thr	Pro	тгр	туг 250	Ala	Asp	Ser	Glu	тгр 255	Thr
30	Tyr	Val	Lys	Gly 260	Asn	Leu	Ser	Ser	Va] 265	Asp	Arg	Ser	туr	Gly 270	Ala	Leu
	Ile	Asp	Asn 275	Leu	Ser	His	Asn	Ile 280	Gly	⊤hr	His	Gln	I]e 285	His	His	Leu
35	Phe	Pro 290	Ile	Ile	Pro	His	туг 295	Lys	Leu	Lys	Lys	Ala 300	Thr	Ala	Ala	Phe
40	ніs 305	Gln	Ala	Phe	Pro	Glu 310	Leu	Val	Arg	Lys	Ser 315	Asp	Glu	Pro	Ile	I]e 320
	Lys	Ala	Phe	Phe	Arg 325	Val	Gly	Arg	Leu	Tyr 330	Ala	Asn	Tyr	Gly	Va] 335	Val
45	Asp	Gln	Glu	A]a 340	Lys	Leu	Phe	Thr	Leu 345	Lys	Glu	Ala	Lys	Ala 350	Ala	Thr
50	Glu	Ala	Ala 355	Ala	Lys	Thr	Lys	Ser 360	Thr							
	<210> 1 <211> 1 <212> [3 176 DNA	frution													
55	<400> 1	-eriiia 3	mutico	58												

.

atggctgttt cttctggagc taggctttct aagtctggag ctgatggaga agttttcgat 60

5	ggacagcaac	agtacgaggg	aattggaaag	agagctgctg	ataagtttga	tcctgctgct	120
	cctcctcctt	tcaagatcgc	tgatatcagg	gctgctattc	ctgctcattg	ctgggttaag	180
	aacccttgga	ggagtctttc	ttacgttgtg	tgggatgttg	ctgctgtttt	cgctcttctt	240
10	gctgctgctg	tgtacattaa	ctcttgggct	ttctggcctg	tttactggat	tgctcaggga	300
	actatgttct	gggctctttt	cgttcttgga	cacgattgtg	gacacggatc	tttctctgat	360
	aacactactc	ttaacaacgt	tgtgggacac	gttcttcact	cttctatcct	tgtgccttac	420
15	cacggatgga	gaatctctca	taggactcac	catcagaacc	atggacacgt	tgagaaggat	480
	gagtcttggg	ttccacttcc	tgagaacctt	tacaagaagc	ttgatttctc	tactaagttc	540
	cttaggtaca	agatcccttt	ccctatgttc	gcttaccctc	tttacctttg	gtacagatct	600
20	cctggaaaga	ctggatctca	cttcaaccct	tactctgatc	ttttcaagcc	taacgagagg	660
	ggacttatcg	tgacttctac	tatgtgttgg	gctgctatgg	gagtgtttct	tctttacgct	720
	tctactatcg	tgggtcctaa	catgatgttc	aagctttacg	gagtgcctta	ccttattttc	780
25	gtgatgtggc	ttgatactgt	gacttacctt	caccaccacg	gatacgataa	gaagcttcct	840
	tggtacaggt	caaaggagtg	gtcttacctt	agaggaggac	ttactactgt	ggatcaggat	900
	tacggattct	tcaacaagat	ccaccacgat	attggaactc	acgtgatcca	tcaccttttc	960
30	cctcagattc	ctcactacca	ccttgttgag	gctactagag	aggctaagag	ggtgttggga	1020
	aactactacc	gtgagcctag	aaagtctgga	cctgtgcctc	ttcatcttat	ccctgctctt	1080
	ttgaagtctc	ttggaaggga	tcactacgtg	tctgataacg	gagatatcgt	gtactaccag	1140
35	actgatgatg	agcttttccc	ttctaagaag	atctga			1176

- <210> 14
- <211> 391 <212> PRT
- 40 <213> Perilla fruticosa

<400> 14

45

50

	Met 1	Ala	Val	Ser	Ser 5	Gly	Ala	Arg	Leu	Ser 10	Lys	Ser	Gly	Ala	Asp 15	Gly
5	Glu	Val	Phe	Asp 20	Gly	Gln	Gln	Gln	туr 25	Glu	Gly	Ile	Gly	Lys 30	Arg	Ala
10	Ala	Asp	Lys 35	Phe	Asp	Pro	Ala	A]a 40	Pro	Pro	Pro	Phe	Lys 45	Ile	Ala	Asp
	Ile	Arg 50	Ala	Ala	Ile	Pro	Ala 55	His	Cys	Тгр	Val	Lys 60	Asn	Pro	тгр	Arg
15	Ser 65	Leu	Ser	⊤yr	Val	Va] 70	тгр	Asp	Val	Ala	A]a 75	Val	Phe	Ala	Leu	Leu 80
20	Ala	Ala	Ala	Val	Tyr 85	Ile	Asn	Ser	Trp	Ala 90	Phe	Trp	Pro	Val	Туг 95	Тгр
25																
30																
35																
40																
45																
50																
55																

	Ile	Ala	Gln	G]y 100	Thr	Met	Phe	тгр	A]a 105	Leu	Phe	Val	Leu	G]y 110	His	Asp
5	Cys	Gly	His 115	Gly	Ser	Phe	Ser	Asp 120	Asn	Thr	Thr	Leu	Asn 125	Asn	Val	Val
10	Gly	ніs 130	Val	Leu	His	Ser	Ser 135	Ile	Leu	Val	Pro	Tyr 140	His	Gly	Тгр	Arg
	Ile 145	Ser	His	Arg	Thr	His 150	His	Gln	Asn	His	G]y 155	His	Val	Glu	Lys	Asp 160
15	Glu	ر Ser	⊤rp	Val	Pro 165	Leu	Pro	Glu	Asn	Leu 170	туr	Lys	Lys	Leu	Asp 175	Phe
20	Ser	⊤hr	Lys	Phe 180	Leu	Arg	Туr	Lys	Ile 185	Pro	Phe	Pro	Met	Phe 190	Ala	Tyr
	Prǫ	Leu	Tyr 195	Leu	Тгр	Туr	Arg	Ser 200	Pro	Gly	Lys	Thr	Gly 205	Ser	His	Phe
25	Asn	Pro 210	Туr	Ser	Asp	Leu	Phe 215	Lys	Pro	Asn	Glu	Arg 220	Gly	Leu	Ile	Val
30	Thr 225	Ser	Thr	Met	Cys	Trp 230	Ala	Ala	Met	Gly	Va] 235	Phe	Leu	Leu	Туr	Ala 240
	Ser	Thr	Ile	Val	G]y 245	Pro	Asn	Met	Met	Р ћ е 250	Lys	Leu	Туr	Gly	Va1 255	Pro
35	Туr	Leu	Ile	Phe 260	Val	Met	тгр	Leu	Asp 265	Thr	Val	Thr	Tyr	Leu 270	His	His
40	His	Gly	Tyr 275	Asp	Lys	Lys	Leu	Pro 280	Тгр	Туr	Arg	Ser	Lys 285	Glu	Тгр	Ser
	Tyr	Leu 290	Arg	Gly	Gly	Leu	Тh г 295	Thr	Val	Asp	Gln	Asp 300	Tyr	Gly	Phe	Phe
45	Asn 305	Lys	Ile	His	His	Asp 310	Ile	Gly	Thr	His	Val 315	Ile	His	His	Leu	Phe 320
50	Pro	Gln	Ile	Pro	His 325	Tyr	His	Leu	Val	Glu 330	Ala	⊤hr	Arg	Glu	Ala 335	Lys
	Arg	Val	Leu	G]y 340	Asn	Tyr	Tyr	Arg	Glu 345	Pro	Arg	Lys	Ser	Gly 350	Pro	Val
55	Pro	Leu	His 355	Leu	I]e	Pro	Ala	Leu 360	Leu	Lys	Ser	Leu	G]y 365	Arg	Asp	His

Tyr Val Ser Asp Asn Gly Asp Ile Val Tyr Tyr Gln Thr Asp Asp Glu 370 375 380

5 Leu Ph

Leu Phe Pro Ser Lys Lys Ile 385 390

<210> 15

<211> 903 10 <212> DNA

<212> DNA <213> Ostreococcus tauri

<400> 15

15 60 atgtctgctt ctggagcttt gttgcctgct attgctttcg ctgcttacgc ttacgctacc tacgcttatg ctttcgagtg gtctcatgct aacggaatcg ataacgtgga tgctagagag 120 180 tggattggag ctttgtcttt gagactccct gcaattgcta ccaccatgta cctcttgttc 20 240 tgccttgtgg gacctagatt gatggctaag agggaggctt ttgatcctaa gggattcatg 300 ctcgcttaca acgcttacca aaccgctttc aacgttgtgg tgctcggaat gttcgctaga 360 gagatctctg gattgggaca acctgtttgg ggatctacta tgccttggag cgataggaag 25 420 tccttcaaga ttttgttggg agtgtggctc cattacaaca ataagtacct cgagttgttg 480 gatactgtgt tcatggtggc taggaaaaag accaagcagc tctctttctt gcatgtgtac 540 catcatgctt tgttgatttg ggcttggtgg cttgtttgtc atctcatggc taccaacgat 30 tgcatcgatg cttatttcgg agctgcttgc aactctttca tccacatcgt gatgtactcc 600 660 tactacctca tgtctgcttt gggaattaga tgcccttgga agagatatat cacccaggct 720 cagatgttgc aattcgtgat cgtgttcgct catgctgttt tcgtgctcag acaaaagcac 35 780 tgccctgtta ctttgccttg ggcacaaatg ttcgtgatga caaatatgtt ggtgctcttc 840 ggaaacttct acctcaaggc ttactctaac aagtctaggg gagatggagc ttcttctgtt 900 aagcctgctg agactactag agcaccttct gtgagaagaa ccaggtccag gaagatcgat 40 903 tga

<210> 16 <211> 300 45 <212> PRT <213> Ostreococcus tauri

<400> 16

50

Met Ser Ala Ser Gly Ala Leu Leu Pro Ala Ile Ala Phe Ala 1 5 10	Ala Tyr 15
5 Ala Tyr Ala Thr Tyr Ala Tyr Ala Phe Glu Trp Ser His Ala 20 25 30	Asn Gly
Ile Asp Asn Val Asp Ala Arg Glu Trp Ile Gly Ala Leu Ser 35 40 45	Leu Arg
Leu Pro Ala Ile Ala Thr Thr Met Tyr Leu Leu Phe Cys Leu 50 55 60	Val Gly
15	
20	
25	
30	
35	
40	
45	
50	
55	

	Pro 65	Arg	Leu	Met	Ala	Lys 70	Arg	Glu	Ala	Phe	Asp 75	Pro	Lys	GJY	Phe	Met 80
5	Leu	Ala	туr	Asn	A]a 85	туг	Gln	Thr	Ala	Phe 90	Asn	Val	Val	Val	Leu 95	Gly
10	Met	Phe	Ala	Arg 100	Glu	Ile	Ser	Gly	Leu 105	Gly	Gln	Pro	Val	Trp 110	Gly	Ser
	Thr	Met	Pro 115	тгр	Ser	Asp	Arg	Lys 120	Ser	Phe	Lys	Ile	Leu 125	Leu	Gly	Val
15	Тгр	Leu 130	His	туг	Asn	Asn	Lys 135	Туr	Leu	Glu	Leu	Leu 140	Asp	Thr	Val	Phe
20	Met 145	Val	Ala	Arg	Lys	Lys 150	⊤hr	Lys	Gln	Leu	Ser 155	Phe	Leu	His	Val	Туг 160
	His	His	Ala	Leu	Leu 165	Ile	⊤rp	Ala	⊤rp	Trp 170	Leu	Val	Cys	His	Leu 175	Met
25	Ala	.⊤hr	Asn	Asp 180	Cys	Ile	Asp	Ala	Туг 185	Phe	Gly	Ala	Ala	Cys 190	Asn	Ser
30	Phe	Ile	His 195	I]e	Val	Met	Туr	Ser 200	Туr	Туг	Leu	Met	Ser 205	Ala	Leu	Gly
	Ile	Arg 210	Cys	Pro	Тгр	Lys	Arg 215	туr	Ile	Thr	Gln	Ala 220	Gln	Met	Leu	Gln
35	Phe 225	Val	Ile	Val	Phe	A]a 230	His	Ala	Val	Phe	Va1 235	Leu	Arg	Gln	Lys	His 240
40	Cys	Pro	Val	⊤hr	Leu 245	Pro	тгр	Ala	Gln	Met 250	Phe	Val	Met	Thr	Asn 255	Met
	Leu	Val	Leu	Phe 260	Gly	Asn	Phe	туr	Leu 265	Lys	Ala	туг	Ser	Asn 270	Lys	Ser
45	Arg	Gly	Asp 275	Gly	Ala	Ser	Ser	Val 280	Lys	Pro	Ala	Glu	Thr 285	Thr	Arg	Ala
50	Pro	Ser 290	Val	Arg	Arg	Thr	Arg 295	Ser	Arg	Lys	Ile	Asp 300		ı		
	<210> <211> <212>	17 1560 DNA														
55	<213>	Thrau: 17	stochy	trium s	ssp.											

atgactgttg gatacgatga ggagatccca ttcgagcaag ttagggctca taacaagcca 60

5	gatgatgctt	ggtgtgctat	tcatggacac	gtgtacgatg	ttaccaagtt	cgcttctgtt	120
	catccaggag	gagatattat	cttgctcgct	gctggaaagg	aagctactgt	gctctacgag	180
	acctaccatg	ttagaggagt	gtctgatgct	gtgctcagaa	agtacagaat	cggaaagttg	240
10	ccagatggac	aaggaggagc	taacgagaag	gagaagagaa	ccttgtctgg	attgtcctct	300
	gcttcttact	acacctggaa	ctccgatttc	tacagagtga	tgagggagag	agttgtggct	360
	agattgaagg	agagaggaaa	ggctagaaga	ggaggatacg	agttgtggat	caaggctttc	420
15	ttgctccttg	ttggattctg	gtcctctctt	tactggatgt	gcaccctcga	tccatctttc	480
	ggagctatct	tggctgctat	gtctttggga	gtgttcgctg	cttttgttgg	aacctgcatc	540
	caacatgatg	gaaaccatgg	agctttcgct	caatctagat	gggttaacaa	ggtggcagga	600
20	tggactttgg	atatgatcgg	agcttctgga	atgacttggg	agttccaaca	tgtgttggga	660
	catcacccat	acactaactt	gatcgaggag	gagaacggat	tgcaaaaggt	gtccggaaag	720
	aagatggata	ccaagttggc	tgatcaagag	tctgatccag	atgtgttctc	cacctaccca	780
25	atgatgagat	tgcatccatg	gcatcagaag	agatggtatc	acaggttcca	gcatatctac	840
	ggaccattca	tcttcggatt	catgaccatc	aacaaggtgg	tgactcaaga	tgttggagtg	900
	gtgttgagaa	agaggctctt	ccaaatcgat	gctgagtgca	gatatgcttc	cccaatgtac	960
30	gttgctaggt	tctggatcat	gaaggctttg	accgtgttgt	acatggttgc	tctcccatgt	1020
	tatatgcaag	gaccatggca	tggattgaag	ctcttcgcta	tcgctcattt	cacttgcgga	1080
	gaggttttgg	ctaccatgtt	catcgtgaac	cacattatcg	agggagtgtc	ttacgcttct	1140
35	aaggatgctg	ttaagggaac	tatggctcca	ccaaagacta	tgcatggagt	gaccccaatg	1200
	aacaacacta	gaaaggaggt	tgaggctgag	gcttctaagt	ctggagctgt	ggttaagtct	1260
	gtgccattgg	atgattgggc	tgctgttcaa	tgccaaacct	ctgtgaactg	gtctgttgga	1320
40	tcttggttct	ggaaccattt	ctctggagga	ctcaaccatc	aaatcgagca	tcatctcttc	1380
	ccaggattgt	ctcacgagac	ctactaccac	atccaagatg	tggttcaatc	tacctgtgct	1440
	gagtacggag	ttccatacca	acatgagcca	tctttgtgga	ctgcttactg	gaagatgctc	1500
45	gaacatttga	gacaattggg	aaacgaggag	actcacgagt	cttggcaaag	agctgcttga	1560

- <210> 18 <211> 519 <212> PRT
- *50* <213> Thraustochytrium ssp.

<400> 18

	Met 1	Тhr	Val	Gly	Tyr 5	Asp	Glu	Glu	Ile	Pro 10	Phe	Glu	Gln	Val	Arg 15	Ala
5	His	Asn	Lys	Pro 20	Asp	Asp	Ala	Trp	Cys 25	Ala_	Ile	His	Gly	His 30	Val	Туr
10	Asp	Val	Thr 35	Lys	Phe	Ala	Ser	Val 40	His	Pro	Gly	Gly	Asp 45	Ile	Ile	Leu
15																
20																
25																
30																
35																
40																
45																
50																
55																

	Leu	Ala 50	Ala	Gly	Lys	Glu	A]a 55	Thr	Val	Leu	туг	G]u 60	Thr	туг	His	Val
5	Arg 65	Gly	Val	Ser	Asp	Ala 70	Val	Leu	Arg	Lys	Tyr 75	Arg	Ile	GÌy	Lys	Leu 80
10	Pro	Asp	Gly	Gln	G]y 85	Gly	Ala	Asn	Glu	Lys 90	Glu	Lys	Arg	⊤hr	Leu 95	Ser
	Gly	Leu	Ser	Ser 100	Ala	Ser	Tyr	Туr	Thr 105	Тгр	Asn	Ser	Asp	Phe 110	Туr	Arg
15	Val	Met	Arg 115	Glu	Arg	Val	Val	A]a 120	Arg	Leu	Lys	Glu	Arg 125	Gly	Lys	Ala
20	Arg	Arg 130	Gly	Gly	Тyr	Glu	Leu 135	тrр	Ile	Lys	Ala	Phe 140	Leu	Leu	Leu	Val
	Gly 145	Phe	Тгр	Ser	Ser	Leu 150	Туr	тгр	Met	Cys	Thr 155	Leu	Asp	Pro	Ser	Phe 160
25	Gly	Ala	Ile	Leu	Ala 165	Ala	Met	Ser	Leu	Gly 170	Val	Phe	Ala	Ala	Phe 175	Val
30	Gly	Thr	Cys	I]e 180	Gln	His	Asp	Gly	Asn 185	His	Gly	Ala	Phe	Ala 190	Gln	Ser
	Arg	тгр	Val 195	Asn	Lys	Val	Ala	Gly 200	Trp	Thr	Leu	Asp	Met 205	Ile	Gly	Ala
35	Ser	Gly 210	Met	Thr	Trp	Glu	Phe 215	Gln	His	Val	Leu	G]y 220	His	His	Pro	Туr
40	Thr 225	Asn	Leu	Ile	Glu	Glu 230	Glu	Asn	Gly	Leu	G]n 235	Lys	Val	Ser	Gly	Lys 240
	Lys	Met	Asp	Thr	Lys 245	Leu	Ala	Asp	Gln	Glu 250	Ser	Asp	Pro	Asp	Va] 255	Phe
45	Ser	Thr	туr	Pro 260	Met	Met	Arg	Leu	His 265	Pro	тгр	Hijs	Gln	Lys 270	Arg	тгр
50	туг	His	Arg 275	Phe	Gln	His	I]e	Туг 280	Gly	Pro	Phe	I]e	Phe 285	Gly	Phe	Met
	⊤hr	Ile 290	Asn	Lys	Val	Val	Thr 295	Gln	Asp	Val	Gly	Va] 300	Val	Leu	Arg	Lys
55	Arg 305	Leu	Phe	Gln	Ile	Asp 310	Ala	Glu	Cys	Arg	Tyr 315	Ala	Ser	Pro	Met	Туг 320

Val Ala Arg Phe Trp Ile Met Lys Ala Leu Thr Val Leu Tyr Met Val 325 330 335 Ala Leu Pro Cys Tyr Met Gln Gly Pro Trp His Gly Leu Lys Leu Phe 340 345 350 5 Ala Ile Ala His Phe Thr Cys Gly Glu Val Leu Ala Thr Met Phe Ile 355 360 365 10 Val Asn His Ile Ile Glu Gly Val Ser Tyr Ala Ser Lys Asp Ala Val 370 375 380 Lys Gly Thr Met Ala Pro Pro Lys Thr Met His Gly Val Thr Pro Met 385 390 395 400 15 Asn Asn Thr Arg Lys Glu Val Glu Ala Glu Ala Ser Lys Ser Gly Ala 405 410 415 20 Val Val Lys Ser Val Pro Leu Asp Asp Trp Ala Ala Val Gln Cys Gln 420 425 430 Thr Ser Val Asn Trp Ser Val Gly Ser Trp Phe Trp Asn His Phe Ser 435 440 445 25 Gly Gly Leu Asn His Gln Ile Glu His His Leu Phe Pro Gly Leu Ser 450 455 460 30 His Glu Thr Tyr Tyr His Ile Gln Asp Val Val Gln Ser Thr Cys Ala 465 470 475 480 Glu Tyr Gly Val Pro Tyr Gln His Glu Pro Ser Leu Trp Thr Ala Tyr 485 490 495 35 Trp Lys Met Leu Glu His Leu Arg Gln Leu Gly Asn Glu Glu Thr His 500 505 510 40 Glu Ser Trp Gln Arg Ala Ala 515 45 <210> 19 <211> 31 <212> DNA <213> Artificial 50 <220> <223> Primer <400> 19 31 gcggccgcgc catggtggac ctcaagcctg g 55 <210> 20

EP 2 281 051 B1

<211> 27 <212> DNA

	<213> Artificial
5	<220> <223> Primer
	<400> 20 gcggccgtta catcgctggg aactcgg 27
10	<210> 21 <211> 33 <212> DNA <213> Artificial
15	<220> <223> Primer
	<400> 21 gcggccgcgc catgtcattg gctgctaaag atg 33
20	<210> 22 <211> 28 <212> DNA <213> Artificial
25	<220> <223> Primer
30	<400> 22 gcggccgtca atgacctgta actctaac 28 <210> 23
05	<211> 31 <212> DNA <213> Artificial
35	<220> <223> Primer
40	<400> 23 gcggccgcgc catggcgacg aaggaggcgt a 31
45	<210> 24 <211> 31 <212> DNA <213> Artificial
	<220> <223> Primer
50	<400> 24 gcggccgcgt tacgtggact tggtcttggc c 31
55	<210> 25 <211> 32 <212> DNA <213> Artificial

<220>

	<223> Primer
5	<400> 25 gcggccgcgc catggaggtc gtggagagat tc 32
	<210> 26 <211> 28 <212> DNA <213> Artificial
10	<220> <223> Primer
15	<400> 26 gcggccgcgt cactcagttt tagctccc 28
20	<210> 27 <211> 30 <212> DNA <213> Artificial
	<220> <223> Primer
25	<400> 27 gcggccgcca tggcgatcct gaacccggag 30
30	<210> 28 <211> 30 <212> DNA <213> Artificial
35	<220> <223> Primer
	<400> 28 gcggccgctt agagcttgtt cttgtagaag 30
40	<210> 29 <211> 29 <212> DNA <213> Artificial
45	<220> <223> Primer
	<400> 29 gcggccgcca tggccgtttc ttccggtgc 29
50	<210> 30 <211> 30 <212> DNA <213> Artificial
55	<220> <223> Primer

	gcggccgcct aaatcttttt ggaaggaaag	30
5	<210> 31 <211> 32 <212> DNA <213> Artificial	
10	<220> <223> Primer	
	<400> 31 gcggccgcgc catgagcgcc tccggtgcgc tg	32
15	<210> 32 <211> 23 <212> DNA	
	<213> Artificial	
20	<223> Primer	
	<400> 32 gcggccgcgt tagtcaattt ttc 23	
25	<210> 33 <211> 32 <212> DNA	
	<213> Artificial	
30	<220> <223> Primer	
05	<400> 33 gcggccgcgc catgacggtc ggctacgacg ag	32
35	<210> 34 <211> 29	
40	<212> DNA <213> Artificial	
40	<220> <223> Primer	
45	<400> 34 gcggccgcgt caggcagcgc gctgccagg	29
	<210> 35 <211> 26755 <212> DNA	
50	<213> Artificial	
	<220> <223> Plasmid	
55	<400> 35	

	ctatacaaag	ttgatagctt	ggcgtaatcg	atgtaccgat	atcaatttaa	attggccggc	60
	cgagctccct	gcagggggcc	cggcgcgcct	ctagattaat	taaaggcctt	agttactaat	120
5	cagtgatcag	attgtcgttt	cccgccttca	gtttaaacta	tcagtgtttg	acaggatata	180
	ttggcgggta	aacctaagag	aaaagagcgt	ttattagaat	aatcggatat	ttaaaagggc	240
	gtgaaaaggt	ttatccgttc	gtccatttgt	atgtcaatat	ccatgataag	tcgcgctgta	300
10	tgtgtttgtt	tgaatattca	tggaacgcag	tggcggtttt	catggcttgt	tatgactgtt	360
	ttttggggt	acagtctatg	cctcgggcat	ccaagcagca	agcgcgttac	gccgtgggtc	420
	gatgtttgat	gttatggagc	agcaacgatg	ttacgcagca	gggcagtcgc	cctaaaacaa	480
15	agttaaacat	catgggtgaa	gcggtcatcg	ccgaggtgtc	cacccagctg	tcggaagtcg	540
	tgggtgtcat	cgagcgccac	ctcgaaccga	ccctcctcgc	cgtgcatctg	tatggtagcg	600
	ccgttgacgg	cggccttaag	ccccattcgg	acatcgacct	gcttgtcacc	gttaccgtcc	660
20							
25							

	gtctcgacga	gaccacgcgc	cgcgcgctta	tcaacgacct	tctggaaacg	tccgcctccc	720
	ccggcgagag	cgaaatcctg	cgcgcggttg	aggtgacgat	tgtggtgcac	gatgacatca	780
5	tcccctggcg	ctatccggcc	aaacgcgaac	tccagttcgg	cgaatggcag	cgtaatgata	840
	ttctggcggg	tatctttgaa	ccggccacca	tcgacattga	tctggcgatc	ctgctcacca	900
	aggcccggga	gcatagcgtg	gccctcgtcg	gccccgcggc	cgaggaactt	ttcgacccgg	960
10	tgccggaaca	ggatctgttc	gaagcactga	acgagacgct	gaccctgtgg	aactccccgc	1020
	cggattgggc	gggcgatgag	cgcaatgtgg	tccttacgct	gagccggatt	tggtactcgg	1080
	cggttaccgg	caagatcgcg	ccgaaggatg	tcgccgccga	ctgggcgatg	gagcgccttc	1140
15	cggcgcaata	ccagcccgtg	atcctcgaag	cgcgccaagc	ctatctgggc	caagaagaag	1200
10	accgtctcgc	gtcccgggcc	gaccagctcg	aagaatttgt	ccactatgtc	aagggcgaga	1260
	tcacgaaggt	cgttggcaaa	taatgtctag	ctagaaattc	gttcaagccg	acgccgcttc	1320
20	gcggcgcggc	ttaactcaag	cgttagatgc	actaagcaca	taattgctca	cagccaaact	1380
20	atcgatgagt	tgaaggaccc	cgtagaaaag	atcaaaggat	cttcttgaga	tccttttttt	1440
	ctgcgcgtaa	tctgctgctt	gcaaacaaaa	aaaccaccgc	taccagcggt	ggtttgtttg	1500
	ccggatcaag	agctaccaac	tctttttccg	aaggtaactg	gcttcagcag	agcgcagata	1560
25	ccaaatactg	tccttctagt	gtagccgtag	ttaggccacc	acttcaagaa	ctctgtagca	1620
	ccgcctacat	acctcgctct	gctaatcctg	ttaccagtgg	ctgctgccag	tggcgataag	1680
	tcgtgtctta	ccgggttgga	ctcaagac <mark>ga</mark>	tagttaccgg	ataaggcgca	gcggtcgggc	1740
30	tgaacggggg	gttcgtgcac	acagcccagc	ttggagcgaa	cgacctacac	cgaactgaga	1800
	tacctacagc	gtgagctatg	agaaagcgcc	acgcttcccg	aagggagaaa	ggcggacagg	1860
	tatccggtaa	gcggcagggt	cggaacagga	gagcgcacga	gggagcttcc	agggggaaac	1920
35	gcctggtatc	tttatagtcc	tgtcgggttt	cgccacctct	gacttgagcg	tcgatttttg	1980
	tgatgctcgt	cagggggggg	gagcctatgg	aaaaacgcca	gcaacgcggc	ctttttacgg	2040
	ttcctggcct	tttgctggcc	ttttgctcac	atgttctttc	ctgcgttatc	ccctgattct	2100
40	gtggataacc	gtattaccgc	ctttgagtga	gctgataccg	ctcgccgcag	ccgaacgacc	2160
	gagcgcagcg	agtcagtgag	cgaggaagcg	gaagagcgcc	tgatgcggta	ttttctcctt	2220
	acgcatctgt	gcggtatttc	acaccgcata	ggccgcgata	ggccgacgcg	aagcggcggg	2280
45	gcgtagggag	cgcagcgacc	gaagggtagg	cgctttttgc	agctcttcgg	ctgtgcgctg	2340
	gccagacagt	tatgcacagg	ccaggcgggt	tttaagagtt	ttaataagtt	ttaaagagtt	2400
	ttaggcggaa	aaatcgcctt	ttttctcttt	tatatcagtc	acttacatgt	gtgaccggtt	2460
50	cccaatgtac	ggctttgggt	tcccaatgta	cgggttccgg	ttcccaatgt	acggctttgg	2520
	gttcccaatg	tacgtgctat	ccacaggaaa	gagacctttt	cgaccttttt	cccctgctag	2580
	ggcaatttgc	cctagcatct	gctccgtaca	ttaggaaccg	gcggatgctt	cgccctcgat	2640
55	caggttgcgg	tagcgcatga	ctaggatcgg	gccagcctgc	cccgcctcct	ccttcaaatc	2700
	gtactccggc	aggtcatttg	acccgatcag	cttgcgcacg	gtgaaacaga	acttcttgaa	2760

	ctctccggcg	ctgccactgc	gttcgtagat	cgtcttgaac	aaccatctgg	cttctgcctt	2820
	gcctgcggcg	cggcgtgcca	ggcggtagag	aaaacggccg	atgccggggt	cgatcaaaaa	2880
5	gtaatcgggg	tgaaccgtca	gcacgtccgg	gttcttgcct	tctgtgatct	cgcggtacat	2940
	ccaatcagca	agctcgatct	cgatgtactc	cggccgcccg	gtttcgctct	ttacgatctt	3000
	gtagcggcta	atcaaggctt	caccctcgga	taccgtcacc	aggcggccgt	tcttggcctt	3060
10	cttggtacgc	tgcatggcaa	cgtg cgtggt	gtttaaccga	atgcaggttt	ctaccaggtc	3120
	gtctttctgc	tttccgccat	cggctcgccg	gcagaacttg	agtacgtccg	caacgtgtgg	3180
	acggaacacg	cggccgggct	tgtctccctt	cccttcccgg	tatcggttca	tggattcggt	3240
15	tagatgggaa	accgccatca	gtaccaggtc	gtaatcccac	acactggcca	tgccggcggg	3300
	gcctgcggaa	acctctacgt	gcccgtctgg	aagctcgtag	cggatcacct	cgccagctcg	3360
	tcggtcacgc	ttcgacagac	ggaaaacggc	cacgtccatg	atgctgcgac	tatcgcgggt	3420
20	gcccacgtca	tagagcatcg	gaacgaaaaa	atctggttgc	tcgtcgccct	tgggcggctt	3480
	cctaatcgac	ggcgcaccgg	ctgccggcgg	ttgccgggat	tctttgcgga	ttcgatcagc	3540
	ggccccttgc	cacgattcac	cggggcgtgc	ttctgcctcg	atgcgttgcc	gctgggcggc	3600
25	ctgcgcggcc	ttcaacttct	ccaccaggtc	atcacccagc	gccgcgccga	tttgtaccgg	3660
	gccggatggt	ttgcgaccgc	tcacgccgat	tcctcgggct	tgggggttcc	agtgccattg	3720
	cagggccggc	agacaaccca	gccgcttacg	cctggccaac	cgcccgttcc	tccacacatg	3780
30	gggcattcca	cggcgtcggt	gcctggttgt	tcttgatttt	ccatgccgcc	tcctttagcc	3840
	gctaaaattc	atctactcat	ttattcattt	gctcatttac	tctggtagct	gcgcgatgta	3900
	ttcagatagc	agctcggtaa	tggtcttgcc	ttggcgtacc	gcgtacatct	tcagcttggt	3960
35	gtgatcctcc	gccggcaact	gaaagttgac	ccgcttcatg	gctggcgtgt	ctgccaggct	4020
	ggccaacgtt	gcagccttgc	tgctgcgtgc	gctcggacgg	ccggcactta	gcgtgtttgt	4080
	gcttttgctc	attttctctt	tacctcatta	actcaaatga	gttttgattt	aatttcagcg	4140
40	gccagcgcct	ggacctcgcg	ggcagcgtcg	ccctcgggtt	ctgattcaag	aacggttgtg	4200
	ccggcggcgg	cagtgcctgg	gtagctcacg	cgctgcgtga	tacgggactc	aagaatgggc	4260
	agctcgtacc	cggccagcgc	ctcggcaacc	tcaccgccga	tgcgcgtgcc	tttgatcgcc	4320
45	cgcgacacga	caaaggccgc	ttgtagcctt	ccatccgtga	cctcaatgcg	ctgcttaacc	4380
	agctccacca	ggtcggcggt	ggcccaaatg	tcgtaagggc	ttggctgcac	cggaatcagc	4440
	acgaagtcgg	ctgccttgat	cgcggacaca	gccaagtccg	ccgcctgggg	cgctccgtcg	4500
50	atcactacga	agtcgcgccg	gccgatggcc	ttcacgtcgc	ggtcaatcgt	cgggcggtcg	4560
	atgccgacaa	cggttagcgg	ttgatcttcc	cgcacggccg	cccaatcgcg	ggcactgccc	4620
	tggggatcgg	aatcgactaa	cagaacatcg	gccccggcga	gttgcagggc	gcgggctaga	4680
55	tgggttgcga	tggtcgtctt	gcctgacccg	cctttctggt	taagtacagc	gataaccttc	4740
	atgcgttccc	cttgcgtatt	tgtttattta	ctcatcgcat	catatacgca	gcgaccgcat	4800

	gacgcaagct	gttttactca	aatacacatc	acctttttag	atgatcagtg	attttgtgcc	4860
	gagctgccgg	tcggggagct	gttggctggc	tggtggcagg	atatattgtg	gtgtaaacaa	4920
5	attgacgctt	agacaactta	ataacacatt	gcggacgtct	ttaatgtact	gaatttagtt	4980
	actgatcact	gattaagtac	tgcgatcgcc	tcgacatatt	gtttttgttt	cacataaatg	5040
	tcgttttgga	ttattcatgt	aatattttaa	actaaagtac	aatttttgac	tactttagtt	5100
10	tactagttaa	gcttttattt	ttttgactaa	ccattgaatg	atgaagagat	caacgcatca	5160
	tatttacaac	ttacatagtc	ttttggaagt	gtaaattgct	aatactacct	aaaatatatc	5220
	tataattaac	taatatttt	tcgtcaatta	taatagatca	attaaaaggc	tatcaaaagg	52 8 0
15	aaaaaatga	aatccacatc	ctgccatcat	aacctcatgc	tggaaaaaga	aatgaaaaaa	5340
10	tataaaaaat	ttcttttgtt	tattaaattt	acaactttaa	tactagtttc	ttttctattt	5400
	tttaaaagct	tttgtcactt	acttaaaaaa	aaaaaacttt	ttgaaatatt	cctacttcca	5460
20	atgtctgatt	agtgcttctg	gatttccttt	ttggatcatg	tgaatcctaa	atcagaaaaa	5520
20	ttcatataat	acccaattca	gtatattttc	atacttcaat	ttacaagagt	tctctatgtt	5580
	tttagcttct	ttcttttaag	ccaaatgttt	taagcatctt	ttatacatta	aaataattta	5640
	gtgttgagtt	gagattttt	tttttttt	ttggatttac	ttgttcaaaa	tctgaaaaaa	5700
25	tgtttacaga	aggttaaaat	gaaccaaaag	gcatatcaag	ctagattttg	aattacccta	5760
	tttcatcgta	tacacaaaac	tgataatgtg	gacacagttg	attttacttc	tcgatgacat	5820
	cgtagtttta	tttaatttgg	aaaccacggc	ccatatgagc	acatttcaat	taaaaaccaa	5880
30	tggtaagagc	attttccatg	caagattcga	gagatattaa	cccagtgact	gttaaaacag	5940
	cttagaaccc	taataacgaa	tttcaattac	tcaatttacc	attcgcattt	cgcaataacc	6000
	aaactgagcc	agtcacaagg	agtaaaccga	accggattat	ttatttataa	aatgaaagaa	6060
35	aggaaaccaa	acaacaacag	cagtagtagt	ctgacgtaaa	ccaaaaagca	ggcagatcaa	6120
	caactaaaag	aaactcaaat	taccaaaaca	aacaggaaat	tgcaaactaa	gttttttac	6180
	catatgcata	caaagaccat	aaaaggttct	gataatcacc	ggtttcatct	cgtcgagatt	6240
40	accctgttat	ccctatcagt	atttaatccg	gccatctcct	tccgttatga	catcgttgaa	6300
	agtgccacca	ttcgggatca	tcggcaacac	atgttcttgg	tgcggacaaa	tcacatccaa	6360
	caggtaaggt	cctggtgtat	ccagcattgt	ctgaatagct	tctcggagat	ctgctttctt	6420
45	tgtcaccctc	gccgctggaa	tcccgcaagc	tgctgcaaac	agcaacatgt	tcgggaatat	6480
	ctcgtcctcc	tgagccggat	ccccgagaaa	tgtgtgagct	cggttagctt	tgtagaaccg	6540
	atcttcccat	tgcataacca	tgccaagatg	ctggttgttt	aataaaagta	ccttcactgg	6600
50	aagattctct	acacgaatag	tggctagctc	ttgcacattc	attataaagc	ttccatctcc	6660
	gtcaatatcc	acaactatcg	catcagggtt	agcaacagac	gctccaatcg	cagcaggaag	6720
	tccaaatccc	atagctccaa	ggcctcctga	tgatagccac	tgccttggtt	tcttgtaatt	6780
55	gtagaactgc	gccgcccaca	tttgatgttg	cccgacacca	gtacttatta	tggcttttcc	6840
	atcagtcaac	tcatcaagga	ccttaatcgc	atactgtgga	ggaatagctt	ccccaaacgt	6900

	cttaaagctc	aacggaaact	tctgtttctg	tacgttcaac	tcattcctcc	aaactccaaa	6960
	atcaagctta	agctcctccg	ctcggttctc	aagaacctta	ttcatccctt	gcaaagccag	7020
5	cttaacatca	ccacacacag	acacatgagg	agtcttattc	ttcccaatct	cagccgagtc	7080
	aatatcaata	tgaacaatct	tagccctact	agcaaaagcc	tcaagcttac	ccgtgacacg	7140
	atcatcaaac	cttaccccaa	acgccaacaa	caaatcacta	tgctccacag	cgtaatttgc	7200
10	atacacagtc	ccatgcattc	caagcatatg	taacgacaac	tcatcatcac	aaggataaga	7260
	tcccagcccc	atcaacgtac	tcgcaacagg	gatccccgta	agctcaacaa	acctacccaa	7320
	ttcatcgcta	gaattcaaac	aaccaccacc	aacatacaac	acaggcttct	tagactcaga	7380
15	aatcaaccta	acaatctgct	ccaaatgaga	atcttccgga	ggtttaggca	tcctagacat	7440
	ataaccaggt	aatctcatag	cctgttccca	attaggaatc	gcaagctgtt	gttgaatatc	7500
	tttaggaaca	tcaaccaaaa	caggtccagg	tctaccagaa	gtagctaaaa	agaaagcttc	7560
20	ctcaataatc	ctagggatat	cttcaacatc	catcacaaga	tagttatgct	tcgtaatcga	7620
	acgcgttacc	tcaacaatcg	gagtctcttg	aaacgcatct	gtaccaatca	tacgacgagg	7680
	gacttgtcct	gtgattgcta	caagaggaac	actatctaac	aacgcatcgg	ctaatccgct	7740
25	aacgagattt	gtagctccgg	gacctgaagt	ggctatacag	atacctggtt	tacctgagga	7800
	tcgagcgtat	ccttctgctg	cgaatacacc	tccttgttcg	tgacgaggaa	ggacgttacg	7860
	gattgaggaa	gagcgggtta	aggcttggtg	aatctccatt	gatgtacctc	cagggtaagc	7920
30	gaatacggtt	tctacgcctt	gacgttctaa	agcttcgacg	aggatatcag	cgcctttgcg	7980
	gggttgatct	ggagcgaatc	gggagatgaa	tgtttcgggt	ttggtaggtt	tggttggaga	8040
	gggagtggtt	gtgacattgg	tggttgtgtt	gagcacggcg	gagatggagg	agggagagct	8100
35	ggatttgata	ccgcggcggc	gggaggagga	ggatgatttg	ttggggttta	gggagaatgg	8160
	gagggagaat	ctggagattg	gtaatggtga	tttggaggag	gaaggagatg	gtttggtgga	8220
	gaaggagatc	gaagaagatg	ttgttgttgt	tgttgttgcc	gccgccatgg	ttcagctgca	8280
40	catacataac	atatcaagat	cagaacacac	atatacacac	acaaatacaa	tcaagtcaac	8340
	aactccaaaa	agtccagatc	tacatatata	catacgtaaa	taacaaaatc	atgtaaataa	8400
	tcacaatcat	gtaatccaga	tctatgcaca	tatatatata	cacaattaat	aaaaaaatg	8460
45	atataacaga	tctatatcta	tgtatgtaac	aacacaatca	gatgagagaa	gtgatgtttt	8520
	cagatctgta	tacatacaaa	cacaaacaga	tgaacaattg	atacgtagat	ccatatgtat	8580
	acgtacaatt	agctacacga	ttaaatgaaa	aaaatcaacg	atttcggatt	ggtacacaca	8640
50	aacgcaacaa	tatgaagaaa	ttcatatctg	attagatata	aacataacca	cgtgtagata	8700
	cacagtcaaa	tcaacaaatt	tatagcttct	aaacggatga	gatgaacaag	ataaagatat	8760
	tcacataagg	catacataag	ataagcagat	taacaaacta	gcaataatac	atacctaatt	8820
55	aaaacaagga	ataacagaga	gagagagaga	gagagagatt	taccttgaaa	atgaagagga	8880
	gaagagagga	tttcttaaaa	ttgggggtag	agaaagaaag	atgatgaatt	gtgagaaagg	8940

	agagatagaa	gggggggttg	tatatatagg	ctgtagaaga	ttatttttgt	gtttgaggcg	9000
	gtgaaggaag	aggggatctg	actatgacac	gtttgcggtt	acgtatttcg	ataggagtct	9060
5	ttcaacgctt	aacgccgtta	ctctatatga	ccgtttgggc	cgtaacgggg	ccgtttgtta	9120
	acgctgatgt	tgattctttt	ctttctttct	ttcttccttt	tttaaagaag	caattgtaca	9180
	atcgttgcta	gctgtcaaac	ggataattcg	gatacggata	tgcctatatt	catatccgta	9240
10	atttttggat	tcgaattttc	ccctctaggg	ataacagggt	aatggatcta	tattgttttt	9300
	gtttcacata	aatgtcgttt	tggattattc	atgtaatatt	ttaaactaaa	gtacaatttt	9360
	tgactacttt	agtttactag	ttaagctttt	attttttga	ctaaccattg	aatgatgaag	9420
15	agatcaacgc	atcatattta	caacttacat	agtcttttgg	aagtgtaaat	tgctaatact	9480
10	acctaaaata	tatctataat	taactaatat	tttttcgtca	attataatag	atcaattaaa	9540
	aggctatcaa	aaggaaaaaa	atgaaatcca	catcctgcca	tcataacctc	atgctggaaa	9600
20	aagaaatgaa	aaaatataaa	aaatttcttt	tgtttattaa	atttacaact	ttaatactag	9660
20	tttcttttct	atttttaaa	agcttttgtc	acttacttaa	aaaaaaaaa	ctttttgaaa	9720
	tattcctact	tccaatgtct	gattagtgct	tctggatttc	ctttttggat	catgtgaatc	9780
	ctaaatcaga	aaaattcata	taatacccaa	ttcagtatat	tttcatactt	caatttacaa	9840
25	gagttctcta	tgtttttagc	ttctttcttt	taagccaaat	gttttaagca	tcttttatac	9900
	attaaaataa	tttagtgttg	agttgagatt	tttttttt	tttttggat	ttacttgttc	9960
	aaaatctgaa	aaaatgttta	cagaaggtta	aaatgaacca	aaaggcatat	caagctagat	10020
30	tttgaattac	cctatttcat	cgtatacaca	aaactgataa	tgtggacaca	gttgatttta	10080
	cttctcgatg	acatcgtagt	tttatttaat	ttggaaacca	cggcccatat	gagcacattt	10140
	caattaaaaa	ccaatggtaa	gagcattttc	catgcaagat	tcgagagata	ttaacccagt	10200
35	gactgttaaa	acagcttaga	accctaataa	cgaatttcaa	ttactcaatt	taccattcgc	10260
	atttcgcaat	aaccaaactg	agccagtcac	aaggagtaaa	ccgaaccgga	ttatttattt	10320
	ataaaatgaa	agaaaggaaa	ccaaacaaca	acagcagtag	tagtctgacg	taaaccaaaa	10380
40	agcaggcaga	tcaacaacta	aaagaaactc	aaattaccaa	aacaaacagg	aaattgcaaa	10440
	ctaagttttt	ttaccatatg	catacaaaga	ccataaaagg	ttctgataat	caccggtttc	10500
	atctcagatc	cgcgatcgcc	aattgacgcg	tactagtgta	caagcttgcg	gccgcgaatt	10560
45	cggtacatcc	ggccagtgaa	ttatcaacta	tgtataataa	agttgggtac	cggcctatta	10620
	ggccacggtc	cgtacagtgt	ttgccacaat	cagtaaattg	aacggagaat	attattcata	10680
	aaaatacgat	agtaacgggt	gatátattca	ttagaatgaa	ccgaaaccgg	cggtaaggat	10740
50	ctgagctaca	catgctcagg	tttttacaa	cgtgcacaac	agaattgaaa	gcaaatatca	10800
	tgcgatcata	ggcgtctcgc	atatctcatt	aaagcagcaa	tcaattatta	attaatcaat	10860
	gacctgtaac	tctaacagcc	gcagactccc	tagtcgttaa	tccctcgttt	ctctgatgaa	10920
55	gggaatgaga	tgcatttccc	acagccaaga	gattcacgta	tgtatcacgc	attgacttcg	10980
	cgtaagttct	gacatcgtac	tctacgccat	gtttttcaaa	caattgtttc	actcttccgc	11040
	agattttagg	atggttatat	tgtggcatgc	tagggaaaag	gtgatgttca	atttgaaaat	11100
----	------------	------------	------------	------------	------------	------------	-------
	tcagataggc	catccaccaa	ttgactagag	gtgtgttaga	ttgattagtg	gtatggtttg	11160
5	cagaatacaa	ggtccaagaa	atatgcttat	cgtgtggaac	aacatcctta	tgtgtgtgag	11220
	acaccgcaaa	gttcgtgaag	atatatgtac	ctccgactgc	cacataaaaa	gcgtacaatc	11280
	tgaaagcacc	accaagccca	agatgaccga	atgctgcata	ccataaagca	tatcgtaaag	11340
10	ccatatagcc	taattcgagt	tggtttccta	ctctcaatgc	gtgctttgga	tgttggacga	11400
	actgccaacc	aaaagatacc	agggttgtga	taacgcctcc	aaagaaaagt	ggagcttgcc	11460
	atgctagcca	cgactttcct	gctcccctag	ccttagcacc	gatgagtcca	tggaacgcaa	11520
15	ccagaggcat	tgtttgaagg	tctggatctg	cacccaactt	ttgcggtgtc	gcatggtgct	11580
	tgttatgttg	gtttctccaa	taacaaccgg	acattccgca	acctaatcca	tagataatca	11640
	tttgcatgtg	tcgatcaagt	ttaatattac	ctgtgagcga	ataatgacca	ccctcatgct	11700
20	gaagccaacc	gcatctcccc	tgagctattc	ctgctacaat	ggctcctaaa	aaccaataac	11760
	ccgcccagat	aagtctaata	cccgcccagt	acatagcaac	gacttccgca	actcgataag	11820
	ctacatgcca	cagattcggt	tcgaagtaac	cttcggcctc	gagttgggct	ctcagggcct	11880
25	cgaagtctgc	agacaaagcg	tctctagcga	atccatccgc	tactggccta	cttggcaaag	11940
	ctctcaacat	tttatccgct	tttttagacc	taatatggaa	gttgttataa	gcgtctgttg	12000
	catcagaacc	taaggagagt	ttaataatgc	ttcctcccgg	gtgcctttta	ataaaatcag	12060
30	agacatcata	cacacgaccc	cttatgatca	tctccttaga	agtgtcgata	gaactaactg	12120
	taaggtctgc	tgcatcagtt	cttgacttat	ttgtagctcc	gtgatactta	gggtccaaga	12180
	cggatgagtg	ggccgaggct	gcatctttag	cagccaatga	catggaaggc	gcggaggtgt	12240
35	gagagtgagt	tgtgagttgt	gtggtgggtt	tggtgagatt	ggggatggtg	ggtttatata	12300
	gtggagactg	aggaatgggg	tcgtgagtgt	taactttgca	tgggctacac	gtgggttctt	12360
	ttgggcttac	acgtagtatt	attcatgcaa	atgcagccaa	tacatatacg	gtattttaat	12420
40	aatgtgtggg	aatacaatat	gccgagtatt	ttactaattt	tggcaatgac	aagtgtacat	12480
	ttggattatc	ttacttggcc	tctcttgctt	taatttggat	tattttatt	ctcttacctt	12540
	ggccgttcat	attcacatcc	ctaaaggcaa	gacagaattg	aatggtggcc	aaaaattaaa	12600
45	acgatggata	tgacctacat	agtgtaggat	caattaacgt	cgaaggaaaa	tactgattct	12660
	attaggggtg	agagttgatc	ggttaattat	ccaatacatg	ccgttggtta	attaggatta	12720
	tataaaaaat	cgatcatcta	ttagaatcga	ttacggttaa	ataggtataa	aaatggagag	12780
50	aattgaatca	gttataaatt	tgttttcagt	taaaatattt	ctatgatctt	caatcgattt	12840
	cggtattta	tactcaacat	ggaaaaaatt	tcaaatgtat	ttcttctaaa	agcaaaagaa	12900
	tctataaaaa	ctatcatttt	atccaaaaca	ccaaaatagt	cttttacaat	cttttacagc	12960
55	cttcacataa	acgaaaacaa	aagtgaacaa	tttcttttta	cagcctttac	accaaaaaga	13020
	ctacgatgaa	ctatgataaa	atttcataat	ctaaaaacat	taatgaggta	aagactctct	13080

73

	caaatgggat	attcttcgaa	aattttcata	atcgaacgat	atacttgaat	ttgcaactca	13140
	tgaccgaaat	tgtcccaatc	cataatactc	tttgacaccc	tatcagatcc	caacgttgtc	13200
5	cctggtttcg	aaaccaccat	ttcaaacatg	aacatatcac	aaaataaaca	tttagacacc	13260
	aaatatctgc	taatggccgg	cctaacctgc	aggatacaag	tgcgcacaga	ctagcggccg	13320
	ctaatcccgg	gaattaccgg	tagtaggcgc	cttgttttag	actgaatata	acacaacgat	13380
10	tatatagccg	ctgtctttgt	ttgaagagaa	tggactacat	gctgaaaaat	agtgatacaa	13440
	gaatcgttgt	tttaatgcta	aaatgaccat	ctcgtgattt	aacttttctg	gaccaatgat	13500
	tgtaaagttt	tttttagaga	ggtggtgata	aacatatatt	gatttttgaa	atgaatagag	13560
15	ttagaaagta	agaaaaatac	aataaaaatg	ttaaataatg	ttgtagaaat	agaaatggaa	13620
10	gagaagtgta	aagaaattta	aataaaaatt	agatgggaga	gtaagttagt	ttatattgat	13680
	ttgttttgtg	gttagtttat	ctatgttata	cttttaactt	ataataatcc	tttccatcat	13740
20	taagcaattt	ttaaaaatga	cataatttta	aaattatgaa	gtaataattg	gcatggtgaa	13800
20	taatagacag	tgtaaatggt	gtaaatatat	gagctcccat	tttatttatt	gctcccattt	13860
	tatttattt	agtttgtgtg	acagatgaac	attattagga	ggaaaggtat	aagcagggtt	13920
	taactgtcac	agggaaggtg	gttttgggag	tcttagttaa	ttaatcagat	cttcttagaa	13980
25	gggaaaagct	catcatcagt	ctggtagtac	acgatatctc	cgttatcaga	cacgtagtga	14040
	tcccttccaa	gagacttcaa	aagagcaggg	ataagatgaa	gaggcacagg	tccagacttt	14100
	ctaggctcac	ggtagtagtt	tcccaacacc	ctcttagcct	ctctagtagc	ctcaacaagg	14160
30	tggtagtgag	gaatctgagg	gaaaaggtga	tc tttgacaccc tatcagatcc caacgttgtc 1320 tg aacatatcac aaaataaaca tttagacacc 1326 gc aggatacaag tgcgcacaga ctagcggccg 1332 gc cttgtttag actgaatata acacaacgat 1338 aa tggactacat gctgaaaaat agtgatacaa 1344 at ctcgtgatt aactttctg gaccaatgat 1350 ta aacatatat gattttgaa atgaatagag 1356 tg ttaaataatg ttgtagaaat agaaatggaa 1362 tt agatgggaga gtaagttagt ttatattgat 1368 ta cttttaactt ataataatcc tttccatcat 1374 ta aaattatga gtaataatg gcatggtgaa 1380 at gagctcccat tttattat gctcccatt 1386 ac attattaga ggaaaggtat aagcagggtt 1392 ag tcttagttaa ttaatcagat cttctagaa 1398 ac acgatatcc cgttatcaga cacgtagtga 1404 gg ataagatgaa gaggcacagg tccagactt 1410 cc ctcttagcct ctctagtagc ctcaacaagg 1416 ga tggatcacgt gagttccaat atcgtggtgg 1422 cc acagtagtaa gtcccctt aaggtaagac 1428 tc ttatcgtat cgtggtgg aaggtaagtc 1434 gg taaggacacc cgtagtgg aaggtaagtc 1434 gg taaggcactc cgtaagct gaacatcatg 1440 ga agaaacactc ccatagcag ccaacacata 1446 ta ggcttgaaa gatcagagta agggtaagtc 1434 gg taaggcact ggttcgat agggtagag 1452 ac caaaggtaa gatcagagta agggtagag 1458 ta gagaaacaac ccaacatgg gtgggtccaa 1476 aa gagtaccag ggttcgag gaacataggg 1458 ta gagaaatcaa gcttctgat gaggtccaa 1476 aa gatcggt ggttcgag gtaggtccaa 1476 aa gatccgt ggttggg ggaggtccaa 1476 aa gatccgt ggttcgag gtgagtccta 1476 aa gactcgg ggtccgag aggccaga ggaccaagg 1488 rcg aaaacagcag cacatccg ccaacaagg 1488 rcg aaacagcag cacatccca cacaacgag 1488 rcg aaacagcag cacatccca cacaacgaa 1494 ag caatgagcag gaatagcag cctgatatca 1500 rga tcaaacttat cagcagct ctttccaatt 1506 rct ctccacag cccagact aggaagcca 1476	14220		
	atcttgttga	agaatccgta	atcctgatcc	acagtagtaa	gtcctcctct	aaggtaagac	14280
	cactcctttg	acctgtacca	aggaagcttc	ttatcgtatc	cgtggtggtg	aaggtaagtc	14340
35	acagtatcaa	gccacatcac	gaaaataagg	taaggcactc	cgtaaagctt	gaacatcatg	14400
	ttaggaccca	cgatagtaga	agcgtaaaga	agaaacactc	ccatagcagc	ccaacacata	14460
	gtagaagtca	cgataagtcc	cctctcgtta	ggcttgaaaa	gatcagagta	agggttgaag	14520
40	tgagatccag	tctttccagg	agatctgtac	caaaggtaaa	gagggtaagc	gaacataggg	14580
	aaagggatct	tgtacctaag	gaacttagta	gagaaatcaa	gcttcttgta	aaggttctca	14640
	ggaagtggaa	cccaagactc	atccttctca	acgtgtccat	ggttctgatg	gtgagtccta	14700
45	tgagagattc	tccatccgtg	gtaaggcaca	aggatagaag	agtgaagaac	gtgtcccaca	14760
	acgttgttaa	gagtagtgtt	atcagagaaa	gatccgtgtc	cacaatcgtg	tccaagaacg	14820
	aaaagagccc	agaacatagt	tccctgagca	atccagtaaa	caggccagaa	agcccaagag	14880
50	ttaatgtaca	cagcagcagc	aagaagagcg	aaaacagcag	caacatccca	cacaacgtaa	14940
	gaaagactcc	tccaagggtt	cttaacccag	caatgagcag	gaatagcagc	cctgatatca	15000
	gcgatcttga	aaggaggagg	agcagcagga	tcaaacttat	cagcagctct	ctttccaatt	15060
55	ccctcgtact	gttgctgtcc	atcgaaaact	tctccatcag	ctccagactt	agaaagccta	15120
	gctccagaag	aaacagccat	ggtggatccg	gcgcgccggt	catgcattca	tgcattaacc	15180

	atcactctct	tctctattta	tacaacaaca	aatgcaaaat	ctttccaact	tttttctttc	15240
	attttattat	tcaactccaa	attaacaatt	attaaacaac	gatggcaatg	catccacgtc	15300
5	atcaaaaaag	tatatgaaat	aattagttta	aatttaaata	gatatttatg	gagagaagcg	15360
	gtttggcagg	tagcaatggg	aagtgagagg	agtgctgagg	tggcagtgtg	catggccagt	15420
	aggctcataa	tgagaagagg	tgggagctga	ggtggcagca	tgcatgccca	gtggtgtcat	15480
10	catgggaaga	ggaaggagct	cacgtggcaa	catgcatggc	gagttgtgtc	atagtgaaaa	15540
	aaccaaagtc	gaaagtgaca	tgagacatgt	gtggagagga	gggagctgag	gtggcagcgt	15600
	gcatggtgag	ttgtgtcatg	tggggaatct	aaaattctaa	tttgattttc	ccttttttat	15660
15	ttaattgtat	atattatata	tattccctag	tttatcctta	tttattttac	tctgttgtga	15720
	actacaatga	ttgtactaca	tacatgacta	aatgatcaca	caggtgtgag	aggatctgaa	15780
	tgactttaga	atgtttttt	aaaattatat	tttttaaata	tttgtatttc	tataaactct	15840
20	aatcatgtat	tagaatgttt	tgaaaaactc	taagttttta	caaaaatata	tgtataacat	15900
	atattgttat	aattagatgt	atttttgtgt	gtgttatatt	taatgatatc	aaaacatttc	15960
	atccttatga	taacctgacg	gtagtgggtt	tattgtgttt	ctcgtgtgta	ctttttttg	16020
25	tttaattcta	acttcaagac	ttaactaaaa	gtttctaata	agatgtttaa	caaaattgtt	16080
	ttcttgaaat	cttgtctctg	agtggtgctc	atgactagaa	aacctaatta	caattattat	16140
	attaaaagtt	taagtctctt	atattattat	tacagaaaca	aagagataag	gacatttttt	16200
30	ttaatctttt	ttcttcctta	ccttccttaa	tctcaaatga	aacataaatt	tgttttgtta	16260
	actgttgccc	ctttgtctgg	tgatgaggaa	ataacacatt	ttctatagaa	ggatcctggc	16320
	cggcctagta	gatttaaatt	ggccttagtg	gccaagcttg	gcgtaatcat	ggccactttg	16380
35	tacaagaaag	ctgggtggta	ccggcctatt	aggccacggt	ccgtacagtg	tttgccattg	16440
	atgcatgttg	tcaatcaatt	ggcaagtcat	aaaatgcatt	aaaaatatt	ttcatactca	16500
	actacaaatc	catgagtata	actataatta	taaagcaatg	attagaatct	gacaaggatt	16560
40	ctggaaaatt	acataaagga	aagttcataa	atgtctaaaa	cacaagagga	catacttgta	16620
	ttcagtaaca	tttgcagctt	ttctaggtct	gaaaatatat	ttgttgccta	gtgaataagc	16680
	ataatggtac	aactacaagt	gttttactcc	tcatattaac	ttcggtcatt	agaggccacg	16740
45	atttgacaca	tttttactca	aaacaaaatg	tttgcatatc	tcttataatt	tcaaattcaa	16800
	cacacaacaa	ataagagaaa	aaacaaataa	tattaatttg	agaatgaaca	aaaggaccat	16860
	atcattcatt	aactcttctc	catccatttc	catttcacag	ttcgatagcg	aaaaccgaat	16920
50	aaaaacaca	gtaaattaca	agcacaacaa	atggtacaag	aaaaacagtt	ttcccaatgc	16980
	cataatactc	gaaccaatca	attattaatt	aactagagct	tgttcttgta	gaacaccacc	17040
	tttccatcat	cctcaacgaa	cttgcaatgg	gtgtaagatc	tccagagagc	aacaggaaca	17100
55	ggagtggtat	ccttcaagta	gaactttccg	aggagaggct	taatagcgtt	ggtagcctcc	17160
	tcgcaatgat	agaaaggcat	cttggagaag	atgtggtggc	aaacatgggt	atccacgatt	17220

	ctatgcacca	cagaatcgag	gaatggacca	aatgatctat	ccacagtgca	caaagctcct	17280
	ctcaaccaat	tccactctcc	ctctctgaaa	tgagggatgt	aggtatcggt	gtgttggagg	17340
5	taggtaatca	acaccaagta	agcgttcaca	atgaagtaag	gcaccacgta	gaacttcacc	17400
	atggtgttga	aggagaaagt	gtgcaccaaa	gcagccaaaa	cagccaacat	agccaccaag	17460
	aaaatatcgg	agagcacgat	catccatctc	tccctatcag	catagatagc	ggagtaaggg	17520
10	ttgaagtgag	acctagactt	tccccagtac	ttagtaggtc	cagtagcgtt	gaagaagagg	17580
	tatccaggca	tccatccaac	aaccaacatg	tacacgatac	ggtagagttg	gtagagagga	17640
	gaatcctcca	aggtctcgtt	ccaagaagaa	gccaacacag	atctggtcac	aggaacgaaa	17700
15	acctcatcgt	tctcgcaaga	tccagtgttg	gaatggtgct	ttctgtgaga	gattctccaa	17760
15	gagtggtaag	gcaccaacaa	agcagaatgc	aacacgagtc	caatcaagtt	gttcaccacc	17820
	tcagaagagc	aataagcctg	atgtccacac	tcatgagcga	taacccacac	tccagtcaag	17880
20	taagatccct	ggaagaacca	gtacacaggc	cacaaaacat	aagcagcagc	tccagctcta	17940
20	tcaatgaagg	tagcagcgta	gaacaaagca	gcgcaagtca	acacgttctt	gatcatgtag	18000
	taggtggagg	tcacgaaaga	tctctcgaag	cagtgcttag	gaatagcagc	tctgagatct	18060
	ctgagagaga	aatgaggcaa	ctccaaaggc	aaaggagcag	gagcaccctc	aacatgagtg	18120
25	tatccagcct	cagccaattg	tctttgctta	gcctcagaat	cagtagcgag	gttagcagca	18180
	gaatcagcct	cagggttcaa	aatagccatg	gcggatccgg	cgcggtgttt	ttaatcttgt	18240
	ttgtattgat	gagttttggt	ttgagtaaag	agtgaagccg	atgagttaat	ttataggcta	18300
30	taaaggagat	ttgcatggcg	atcacgtgta	ataatgcatg	cacgcatgtg	attgtatgtg	18360
	tgtgctgtga	gagagaagct	cttaggtgtt	tgaagggagt	gacaagtggc	gaagaaaaac	18420
	aattctccgc	ggctgcatgc	tatgtgtaac	gtgtagctaa	tgttctggca	tggcatctta	18480
35	tgaacgattc	tttttaaaaa	caaggtaaaa	acttaacttc	ataaaattaa	aaaaaaacg	18540
	tttactaagt	tggtttaaaa	ggggatgaga	gtctataaat	tttggaggta	gtgccgttgg	18600
	gaatataaat	tgggagctta	atcagaatta	tagaagttaa	agttgattta	gtcacggtca	18660
40	atataaattg	ggaatttgag	tcaaaatctt	ccaaattcgg	aatccgtctt	gttacacccg	18720
	gtggatagga	gccgaacggt	ttgaaaatac	ttgaaatgtg	gatgcaggtg	caggctggtt	18780
	taattttatg	ttgaatggat	acatgtcaat	cgaatttgag	ttataggtac	acattttact	18840
45	ctgatactaa	aatgtaacat	ttgtctcaag	aatgggtagg	tcatccttat	ggccggccta	18900
	acctgcagga	tacaagtgcg	cacagactag	cggccgctaa	tcccgggaat	taccggtagt	1 896 0
	aggcgccatt	gatgcatgtt	gtcaatcaat	tggcaagtca	taaaatgcat	taaaaaatat	19020
50	tttcatactc	aactacaaat	ccatgagtat	aactataatt	ataaagcaat	gattagaatc	19080
	tgacaaggat	tctggaaaat,	tacataaagg	aaagttcata	aatgtctaaa	acacaagagg	19140
	acatacttgt	attcagtaac	atttgcagct	tttctaggtc	tgaaaatata	tttgttgcct	19200
55	agtgaataag	cataatggta	caactacaag	tgttttactc	ctcatattaa	cttcggtcat	19260
	tagaggccac	gatttgacac	atttttactc	aaaacaaaat	gtttgcatat	ctcttataat	19320

	ttcaaattca	acacacaaca	aataagagaa	aaaacaaata	atattaattt	gagaatgaac	19380
	aaaaggacca	tatcattcat	taactcttct	ccatccattt	ccatttcaca	gttcgatagc	19440
5	gaaaaccgaa	taaaaacac	agtaaattac	aagcacaaca	aatggtacaa	gaaaaacagt	19500
	tttcccaatg	ccataatact	cgaactcagg	tagacttggt	cttagcagca	gcttcagtag	19560
	cagccttagc	ctccttcaaa	gtgaagagct	tagcctcttg	atcaaccact	ccgtagttag	19620
10	catacaacct	tcccactctg	aagaaagcct	tgatgattgg	ctcatcggac	tttctcacaa	19680
	gctctgggaa	agcttggtgg	aaagcagcag	tagccttctt	gagcttgtag	tgtgggataa	19740
	ttgggaagag	gtggtggatc	tggtgagttc	cgatgttgtg	ggagaggtta	tcgatgagag	19800
15	caccgtaaga	tctatccaca	gaggacaagt	ttcccttcac	gtaagtccac	tcagaatcag	19860
	cataccatgg	agtctcctca	tcgttgtggt	gcaagaaggt	ggtaatcacc	aacatagatc	19920
	cgaacacgaa	aactggtccg	tagtagtaga	tagccatggt	cttaagtccc	aactggagag	19980
20	acaagtagat	agagagtcca	gcaacgaaga	agtgagcgag	caaagagata	accacagcgg	20040
	acacttgtct	cacaaaaagt	ggctcgaatg	ggttgaagtg	gttcaccttt	cttggtggga	20100
	atccctccac	caaataagca	agccaagcag	ctcccaaagc	caagatcaag	ttcctggaca	20160
25	atgggtgatc	atcagccttt	ctctgtgggt	agaacacctc	atctctatcg	atgtttccgg	20220
	tgttcttgtg	gtggtgtctg	tgggtcaact	tccaagactc	gaatggggtc	aagatgagag	20280
	agtgcatgaa	ggttcccaca	acgaagttca	agaggtggta	tctagagaaa	gctccgtgtc	20340
30	cagcatcgtg	tccaacagtg	aagaatcccc	agaacacaat	tccctggagg	aggatatatc	20400
	cagtgcacaa	agcagcatcc	aaagcccaga	aagactcaac	ctctggcaaa	gctctagcgt	20460
	agttcaatcc	gaaggtcaaa	gccacagcaa	taaccaagca	tctcacagtg	tagtagagag	20520
35	acaaaggcac	agaagcctcg	aagcaatcct	ttgggagaga	tctcttgatc	tcggtgagag	20580
	ttgggaaaac	gtaagcctcc	tttgtagcca	tggttgttt	taatcttgtt	tgtattgatg	20640
	agttttggtt	tgagtaaaga	gtgaagccga	tgagttaatt	tataggctat	aaaggagatt	20700
40	tgcatggcga	tcacgtgtaa	taatgcatgc	acgcatgtga	ttgtatgtgt	gtgctgtgag	20760
	agagaagctc	ttaggtgttt	gaagggagtg	acaagtggcg	aagaaaaaca	attctccgcg	20820
	gctgcatgct	atgtgtaacg	tgtagctaat	gttctggcat	ggcatcttat	gaacgattct	20880
45	ttttaaaaac	aaggtaaaaa	cttaacttca	taaaattaaa	aaaaaacgt	ttactaagtt	20940
	ggtttaaaag	gggatgagag	tctataaatt	ttggaggtag	tgccgttggg	aatataaatt	21000
	gggagcttaa	tcagaattat	agaagttaaa	gttgatttag	tcacggtcaa	tataaattgg	21060
50	gaatttgagt	caaaatcttc	caaattcgga	atccgtcttg	ttacacccgg	tggataggag	21120
	ccgaacggtt	tgaaaatact	tgaaatgtgg	atgcaggtgc	aggctggttt	aattttatgt	21180
	tgaatggata	catgtcaatc	gaatttgagt	tataggtaca	cattttactc	tgatactaaa	21240
55	atgtaacatt	tgtctcaaga	atgggtaggt	catccttatg	gccggcctag	tagatttaaa	21300
	ttggccttag	tggccaagct	tggcgtaatc	atggagcctg	cttttttgta	caaacttggg	21360

	taccggccta	ttaggccacg	gtccgtacag	tgtttgcccc	ccactccgcc	ctacactcgt	21420
	atatatatgc	ctaaacctgc	cccgttcctc	atatgtgata	ttattatttc	attattaggt	21480
5	ataagatagt	aaacgataag	gaaagacaat	ttattgagaa	agccatgcta	aaatatagat	21540
	agatatacct	tagcaggtgt	ttattttaca	acataacata	acatagtagc	tagccagcag	21600
	gcaggctaaa	acatagtata	gtctatctgc	agggggtacg	gtcgaggcgg	ccttaattaa	21660
10	ttatcaagcg	gtctttccag	aatgttgtcc	gtgcacgtag	tagtgctttc	ccacattatc	21720
	gaggtttccc	aaagtagcct	tccaagctcc	agcataagtc	atcaccttgt	agttgaggtt	21780
	ccacttctta	gcgaaagcaa	cgaatcttct	ggacacctca	ggttgtctga	attgaggcat	21840
15	agaagggaag	aggtgatgaa	tcacttggca	gttcaagtat	cccatcaacc	agttaaccca	21900
10	tccctgagaa	ggatcgatat	caatggtgtg	atccacagcg	tacctaaccc	aagacaaatg	21960
	ctcatcagca	ggaacaacat	ccaaatgggt	gtgagaagta	gagaagtgag	cgaacaagta	22020
20	gcatccggaa	acccaagaag	tagccaagaa	gagtccgtag	gattgcatag	cggtgaatcc	22080
20	agtaacagcc	ttaatggtcc	aggttctaat	cacatgagca	gccaacatcc	acacaagctc	22140
	ctcgtacttt	cctcccttca	aagccttaga	aggatggagg	aagaacatcc	agaagagcaa	22200
	caccaatcca	gaagtcacag	gaatgaaggt	ccaagcttgc	aatctgagcc	agtacttaga	22260
25	gaatccccta	ggtctattat	cctccacagc	ggtgttgaag	aaagcaacag	caggagtggt	22320
	atccaaatcc	atatcgtgcc	tcactttttg	aggagtagca	tggtgcttgt	tgtgcatgga	22380
	gttccacata	tctccagatc	cagccaatcc	gaatccagca	gtgaaagctt	ggattctctt	22440
30	atcccaccag	atgtttccgg	tcaaagaaga	atgtcctccc	tcatgttgaa	cccatccaca	22500
	tctagctccg	aagaagcaag	cgtaaaccaa	cacagaggac	acaacgtatc	tagcgtacat	22560
	caagtaggtt	cccaaagcgt	acatagcagc	caactcagcg	aatctgtaag	caacatgagc	22620
35	aggagaaggc	ttgaagaatc	cgtccctctc	caactccttt	ctccacttag	cgaaatcctg	22680
	gagcatctca	gcatcatcca	ctttagcggt	cttagcaggt	ctagaaggca	aagcagccaa	22740
	agccttccta	gcctttctag	atctgtggtg	gaactccttg	aaagcctcag	tagcatcagc	22800
40	tccagtgtta	gagagagcgt	agaaaatcac	ggttcctcca	ggatgtttga	aatcggtcac	22860
	atcgtactca	actccctcga	taaccacgta	tcttctagcg	aaggtcttag	ccaaagcagc	22920
	aggttccatc	ttctcagcag	acaacttcac	gttagcctca	gctctttctc	tctctccatc	22980
45	gaaagcgatc	tccacagtag	ggattccatc	gttgttctcg	gtctcaacac	acatggtggc	23040
	gcggttcagc	ttgatcgctc	tattaattag	ttcattgttt	tatacgtgaa	gaaaaagaaa	23100
	gagacggaat	atatggcaaa	aaacatgcaa	ggggacgtgt	gttaacatac	gtgtcttatg	23160
50	actaattatt	cgtagtggca	gtttctacca	tctggaaatg	gaattgatat	acacaggcca	23220
	gcaagacact	ctagcttacc	atagagcatt	ttcatgcaca	cttttttaaa	agacaaagga	23280
	agtatattaa	tagatggtca	taattctgaa	tgttttatta	cctttaacat	tccaacaagg	23340
55	ttaaaaccaa	tgtttcaaga	tgtcaatgtg	tccttcacaa	actcatatat	tgaattacta	23400
	gtttgaccaa	gatataaggg	ttaactctaa	aacataagaa	aatatgacac	aaatataaaa	23460

	taaatatcag	atatattgag	agatctcaaa	attattaaga	ataaaatatc	taagtattaa	23520
	tattgttggt	ggtattctaa	aggtgacagg	tgataaatta	tattattgta	aaatttaaaa	23580
5	taagagaata	tttttatatt	gttgtaaaat	ttaaaataag	agaatatttt	tgagttacgt	23640
	tttgtactaa	atttctattg	atggattttg	gactttgaaa	taccataatt	tctattcaat	23700
	tcattacaca	ttttttcca	gcatacaatt	tagcattaca	aagtttttat	ataggcttga	23760
10	agaaaagtaa	catagaaaac	aataattcaa	aaatcaagac	gaggactatt	tggttttctc	23820
	aatcttaatg	atacaacttt	atcataattt	taaataagga	caataattat	aatgtgatga	23880
	ttacaatttt	cttataatac	ttactaaagg	tagtggtggt	tacaacacat	taattttaac	23940
15	actcccctt	aatgtgttgc	tctttaactc	ccattacttc	tctaagttgt	taaaatcttc	24000
	ctctttgtag	tattttagta	aaagtgtctg	taagttgctc	ttatgaactg	cagaaaggta	24060
	actgcacatt	tccttcttca	atcactcttc	gaatgaagtg	gtgttttatg	ttaatgtgtc	24120
20	tagtccgact	atgaaaaaca	ggattctttg	tgttgtacta	caaaatttt	cctctcagtc	24180
	ttcaagaatt	ttctcataag	atcttccatg	acatcaagtt	tgcagcactg	atacatcaat	24240
	ttaggtttgg	aattggcaca	agagcaaaat	ggtcaattgc	acactgaaaa	gtcaaacttt	24300
25	gacttttgca	tcaacatcaa	atttcaagaa	tcacatttca	tcaagacatg	ttagaatatg	24360
	aagtttgttt	tattaagaaa	gtcaaaagtc	aagtttgctt	tggaaaagtc	aaaattctaa	24420
	acacttagaa	atttttctaa	ctgttaagaa	atatgacaag	ttcagaactt	ctggccagat	24480
30	tttcaccatg	atgcaagttg	attctggaag	aacttctgac	acaagagttg	tagatttcaa	24540
	tgagatctaa	gacattgcgg	aacagaactt	ctcttaaaaa	tgatgggatt	tcaagttata	24600
	aatctttgaa	gacacgtcca	tgaaactgaa	gtactcaata	aattttgggc	cttcccaaga	24660
35	cggaatttgg	ttagaacttc	tggagcagtt	ttcacgtagg	ttcaatcaga	gtttgcaaga	24720
	gtaattcaaa	gaaagtctac	aaagcatgtt	acaagctttc	tgaaaagtct	tagaactcct	24780
	tcagaacatg	ttggaacaga	gagattcaaa	gatcagaagt	tggatacagt	ccgggccgtc	24840
40	gatggccggc	ctaacctgca	ggatacaagt	gcgcacagac	tagcggccgc	taatcccggg	24900
	aattaccggt	agtaggcgcc	ctgaattaac	gccgaattaa	ttcgggggat	ctggatttta	24960
	gtactggatt	ttggttttag	gaattagaaa	ttttattgat	agaagtattt	tacaaataca	25020
45	aatacatact	aagggtttct	tatatgctca	acacatgagc	gaaaccctat	aggaacccta	25080
	attcccttat	ctgggaacta	ctcacacatt	attatggaga	aactcgagct	tgtcgagata	25140
	tcgggctaga	gcgccaccgc	ggtggagatc	tgcggcctta	attaatcaag	cggacttctt	25200
50	cttctttgga	gccatgtagg	attgcacgaa	gaactgagcg	aagaggaaga	aaagggagag	25260
	aatgtacacg	aagtacacga	tggtgattct	gagggaaacc	ttatcgcatc	cgtggaaaac	25320
	caagtaggta	gcttgggaca	tcatgatggt	gaattgcaag	agttggaaag	cggtcaaaga	25380
55	tgacttccac	cagattggca	aagactttcc	ggtcttagaa	tccttggtgt	gcatgcagat	25440
	gaagtagtag	gtgtacatca	cggtgtgaat	gaatccgttg	aggaggatgg	tcaagaagat	25500

79

	atctccatcg	tagagcacgt	tagcgttcaa	ccagtagaag	aggaagatgg	tggtatgatg	25560
	gtacacgtgc	aagaaagaga	gttgtctcca	cttctttccg	agcacaatga	agatggtatc	25620
5	ccagaaatcc	cacactttgg	agatgtagaa	gagccagagc	aagttagcaa	ctggtggatc	25680
	gttcacgttg	aagtggttgc	atggcataac	ggtgtatccg	ttcctataag	cgaggaatcc	25740
	agcctcaaca	gtcatgtaag	cgcagaggaa	gatttgagac	acgttgtaga	ggaacttgat	25800
10	agggtatggg	tccatagctg	ggagagattg	catcacagca	gatcccaaga	tcacgaaagc	25860
	gatgtagatg	agagcaatgg	tgatagcgga	tctgaaatcg	cacaaccacc	aatcctccct	25920
	atcagctctg	aactttccat	ctggat cact	ccaatcgatg	atagcagctc	caatcttatc	25980
15	catagcagcg	ttataagcat	ccatggtact	ggctatgaag	aaattataat	cgtgtaaaac	26040
	ttagtgagtg	tgtatgaatg	aaagtattgc	aaaatcctca	ttatatagac	tacatgcata	26100
	actagttgca	tgtaaatttg	tagttttctt	cattattgca	tcctccaagt	ggatgtcatg	26160
20	gttttacaca	tggcttccat	gcaaatcatt	tccaaaatat	ttttaaactt	tccacagggc	26220
	atccatgcat	gcacctcaaa	acttgtgtgt	ggtaacattg	ttgtcttgaa	aaattactaa	26280
	accttttgtc	cacgtgacgt	tcatgcacct	caaatcttgt	gtggtaccat	tattatcctc	26340
25	aagaattatt	gaatgtttgg	tgtatatgcc	atccatgcag	cattgcaaca	attaaatctc	26400
	caaaccttgt	ggtaccatat	tcactcactt	taattctcct	atagtagaaa	tattagcaaa	26460
	tatttacatt	tccagttgat	tagtatatgt	atttagaaga	caaaaataat	ttagaatcaa	26520
30	ttaatcaact	tgcaaattgc	taagtgttgg	caaacgttag	cataaaaggt	gttataaatt	26580
	tagtaccaaa	tataaaaatt	tatcgcaaat	caaatacata	acacacatag	taaaacaaaa	26640
	acaaattaca	agggtttaga	cgtttagtgg	caatgtgtaa	atttgctgca	gtggccggcc	26700
35	tagtagattt	aaattggcct	tagtggccaa	gcttggcgta	atcatggcaa	ctttt	26755

Claims

55

40 **1.** A polynucleotide comprising a nucleic acid sequence selected from the group consisting of:

(a) nucleic acid sequence as shown in SEQ ID NO. 1;

- (b) nucleic acid sequence which codes for a polypeptide having an amino acid sequence as shown in SEQ ID NO. 2;
- (c) nucleic acid sequence which hybridizes to a nucleic acid of (a) or (b) under stringent hybridization conditions, wherein stringent hybridization conditions are hybridizations in 6 x sodium chloride/sodium citrate (SSC) at approximately 45 °C, followed by one or more wash steps in 0.2 x SSC, 0.1 % SDS at 50 to 65 °C and wherein the nucleic acid sequence codes for a polypeptide with ∆5 desaturase activity and acyl CoA specificity.
- ⁵⁰ **2.** The polynucleotide according to claim 1, wherein the polynucleotide consists of RNA or DNA.
 - 3. A vector comprising the polynucleotide according to claim 1 or 2.
 - 4. The vector according to claim 3, wherein the vector is an expression vector.
 - **5.** The vector according to claim 3 or 4, wherein the vector comprises at least one further polynucleotide which codes for a further enzyme which is involved in the biosynthesis of lipids or fatty acids.

- 6. A host cell comprising the polynucleotide according to claim 1 or 2 or the vector according to any of claims 3 to 5.
- 7. The host cell according to claim 6, wherein the host cell additionally comprises at least one further enzyme which is involved in the biosynthesis of lipids or fatty acids.
- 8. The vector according to claim 5 or the host cell according to claim 7, wherein the enzyme is selected from the group consisting of: acyl-CoA dehydrogenase(s), acyl-ACP [= acyl carrier protein] desaturase(s), acyl-ACP thioesterase(s), fatty acid acyltransferase(s), acyl-CoA:lysophospholipid acyltransferase(s), fatty acid synthase(s), fatty acid hydroxylase(s), acetyl-coenzyme A carboxylase(s), acylcoenzyme A oxidase(s), fatty acid desaturase(s), fatty acid acetylenase(s), lipoxygenase(s), triacylglycerol lipase(s), allene oxide synthase(s), hydroperoxide lyase(s), fatty acid elongase(s), Δ4-desaturase(s), Δ5-desaturase(s), Δ6-desaturase(s).
- 15

10

5

- 9. A method of generating a polypeptide with desaturase activity, comprising the steps:
 - (a) expressing a polynucleotide according to claim 1 or 2 in a host cell; and
 - (b) obtaining, from the host cell, the polypeptide which is encoded by the polynucleotide according to (a).
- **10.** A polypeptide which is encoded by the polynucleotide according to claim 1 or 2.
- 11. An antibody which specifically recognizes the polypeptide having an amino acid sequence as shown in SEQ ID NO.2.
- **12.** A transgenic, nonhuman organism comprising the polynucleotide according to claim 1 or 2, the vector according to any of claims 3 to 5 or the host cell according to claim 8.
- 25

20

- **13.** The transgenic, nonhuman organism according to claim 12, wherein the organism is an animal, a plant or a multicellular microorganism.
- 14. A method for the production of a substance which has the structure shown in the general formula I hereinbelow

35

where the variables and substituents are as follows:

- 40 R¹ = hydroxyl, coenzyme A (thioester), lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, lysodiphosphatidylglycerol, lysophosphatidylserine, lysophosphatidylinositol, sphingo base or a radical of the formula II

50

55

45

 R^2 = hydrogen, lysophosphatidylcholine, lysophosphatidylethanolamine, lysophosphatidylglycerol, lysodiphosphatidylglycerol, lysophosphatidylserine, lysophosphatidylinositol or saturated or unsaturated C₂-C₂₄-alkylcarbonyl,

 R^3 = hydrogen, saturated or unsaturated C_2 - C_{24} -alkylcarbonyl, or R^2 and R^3 independently of one another are a radical of the formula la:

n = 2, 3, 4, 5, 6, 7 or 9, m = 2, 3, 4, 5 or 6 and p = 0 or 3; and

- ¹⁰ wherein the method comprises the cultivation of (i) a host cell according to any of claims 3 to 5 or (ii) of a transgenic, nonhuman organism according to claim 12 or 13 under conditions which permit the biosynthesis of the substance.
 - **15.** A method for the production of an oil, lipid or fatty acid composition, comprising the steps of the method according to claim 14 and the further step of formulating the substance as an oil, lipid or fatty acid composition.
- 15

25

5

- **16.** The method according to claim 15, wherein the oil, lipid or fatty acid composition is formulated further to give a drug, a cosmetic product, a foodstuff, a feedstuff, preferably fish food, or a food supplement.
- 17. The use of the polynucleotide according to claim 1 or 2, of the vector according to any of claims 3 to 5, of the host cell according to claim 6 or 7, of the vector or the host cell according to claim 8, of the polypeptide according to claim 10 or of the transgenic, nonhuman organism according to claim 12 or 13 for the production of an oil, lipid or fatty acid composition.
 - **18.** The use according to claim 17, wherein the oil, lipid or fatty acid composition is to be employed as a drug, cosmetic product, foodstuff, feedstuff, preferably fish food, or food supplement.

Patentansprüche

- 30 **1.** Polynukleotid, umfassend eine Nukleinsäuresequenz, ausgewählt aus der Gruppe bestehend aus:
 - (a) Nukleinsäuresequenz gemäß SEQ ID NO. 1;
 - (b) Nukleinsäuresequenz, die für ein Polypeptid mit einer Aminosäuresequenz gemäß SEQ ID NO. 2 codiert;
- (c) Nukleinsäuresequenz, die unter stringenten Hybridisierungsbedingungen mit einer Nukleinsäure gemäß (a)
 ³⁵ oder (b) hybridisiert, wobei stringente Hybridisierungsbedingungen Hybridisierungen in 6 x Natriumchlorid/Natriumcitrat (SSC) bei ungefähr 45°C, gefolgt von einem oder mehreren Waschschritten in 0,2 x SSC, 0,1% SDS bei 50 bis 65°C sind und wobei die Nukleinsäuresequenz für ein Polypeptid mit ∆5-Desaturaseaktivität und Acyl-CoA-Spezifität codiert.
- 40 **2.** Polynukleotid nach Anspruch 1, wobei das Polynukleotid aus RNA oder DNA besteht.
 - 3. Vektor, umfassend das Polynukleotid nach Anspruch 1 oder 2.
 - 4. Vektor nach Anspruch 3, wobei der Vektor ein Expressionsvektor ist.
- 45
- 5. Vektor nach Anspruch 3 oder 4, wobei der Vektor mindestens ein weiteres Polynukleotid umfasst, das für ein weiteres Enzym codiert, das an der Biosynthese von Lipiden oder Fettsäuren beteiligt ist.
- 6. Wirtszelle, umfassend das Polynukleotid nach Anspruch 1 oder 2 oder den Vektor nach einem der Ansprüche 3 bis 5.
- 50
- 7. Wirtszelle nach Anspruch 6, wobei die Wirtszelle zusätzlich mindestens ein weiteres Enzym umfasst, das an der Biosynthese von Lipiden oder Fettsäuren beteiligt ist.
- Vektor nach Anspruch 5 oder Wirtszelle nach Anspruch 7, wobei das Enzym aus der Gruppe bestehend aus: Acyl-CoA-Dehydrogenase(n), Acyl-ACP[= Acyl Carrier Protein]-Desaturase(n), Acyl-ACP-Thioesterase(n), Fettsäureacyltransferase(n), Acyl-CoA:Lysophospholipidacyltransferase(n), Fettsäuresynthase(n), Fettsäurehydroxylase(n), Acetyl-Coenzym-A-Carboxylase(n), Acyl-Coenzym-A-Oxidase(n), Fettsäuredesaturase(n), Fettsäureacetylenase(n), Lipoxygenase(n), Triacylglycerollipase(n), Allenoxidsynthase(n), Hydroperoxidlyase(n), Fettsäureelonga-

se(n), Δ 4-Desaturase(n), Δ 5-Desaturase(n), Δ -Desaturase(n), Δ 8-Desaturase(n), Δ 9-Desaturase(n), Δ 12-Desaturase(n), Δ 5-Elongase(n), Δ 6-Elongase(n) und Δ 9-Elongase(n) ausgewählt ist.

9. Verfahren zur Herstellung eines Polypeptids mit Desaturaseaktivität, umfassend die Schritte:

(a) Exprimieren eines Polynukleotids nach Anspruch 1 oder 2 in einer Wirtszelle; und(b) Gewinnen des Polypeptids, das von dem Polynukleotid gemäß (a) codiert wird, aus der Wirtszelle.

- 10. Polypeptid, das von dem Polynukleotid nach Anspruch 1 oder 2 codiert wird.
- 10

5

- 11. Antikörper der spezifisch das Polypeptid mit einer Aminosäuresequenz gemäß SEQ ID NO. 2 erkennt.
- 12. Transgener, nichtmenschlicher Organismus, umfassend das Polynukleotid nach Anspruch 1 oder 2, den Vektor nach einem der Ansprüche 3 bis 5 oder die Wirtszelle nach Anspruch 8.
- 15
- **13.** Transgener, nichtmenschlicher Organismus nach Anspruch 12, wobei es sich bei dem Organismus um ein Tier, eine Pflanze oder einen mehrzelligen Mikroorganismus handelt.
- 14. Verfahren zur Herstellung einer Substanz mit der Struktur gemäß der allgemeinen Formel I unten

25

worin die Variablen und Substituenten folgendermaßen sind:

30 R¹ = Hydroxyl, Coenzym A (Thioester), Lysophosphatidylcholin, Lysophosphatidylethanolamin, Lysophosphatidylglycerol, Lysophosphatidylglycerol, Lysophosphatidylserin, Lysophosphatidylinositol, Sphingobase oder ein Rest der Formel II

40

45

35

 R^2 = Wasserstoff, Lysophosphatidylcholin, Lysophosphatidylethanolamin, Lysophosphatidylglycerol, Lysodiphosphatidylglycerol, Lysophosphatidylserin, Lysophosphatidylinositol oder gesättigtes oder ungesättigtes C_2 - C_{24} -Alkylcarbonyl,

R³ = Wasserstoff, gesättigtes oder ungesättigtes C₂-C₂₄-Alkylcarbonyl, oder R² und R³ sind unabhängig voneinander ein Rest der Formel Ia:

50

 $\ \, ^{55} \qquad n=2,\,3,\,4,\,5,\,6,\,7 \ oder \ 9,\,m=2,\,3,\,4,\,5 \ oder \ 6 \ und \ p=0 \ oder \ 3; \\ und$

wobei das Verfahren das Kultivieren von (i) einer Wirtszelle nach einem der Ansprüche 3 bis 5 oder (ii) eines transgenen, nichtmenschlichen Organismus nach Anspruch 12 oder 13 unter Bedingungen, die die Biosynthese

der Substanz gestatten, umfasst.

- 15. Verfahren zur Herstellung einer Öl-, Lipid- oder Fettsäurezusammensetzung, umfassend die Schritte des Verfahrens nach Anspruch 14 und den weiteren Schritt des Formulierens der Substanz als Öl-, Lipid- oder Fettsäurezusammensetzung.
- **16.** Verfahren nach Anspruch 15, wobei die Öl-, Lipid- oder Fettsäurezusammensetzung zu einem Arzneistoff, einem Kosmetikprodukt, einem Nahrungsmittel, einem Futtermittel, vorzugsweise Fischfutter, oder einem Nahrungsergänzungsmittel weiterformuliert wird.
- 10

5

- Verwendung des Polynukleotids nach Anspruch 1 oder 2, des Vektors nach einem der Ansprüche 3 bis 5, der Wirtszelle nach Anspruch 6 oder 7, des Vektors oder der Wirtszelle nach Anspruch 8, des Polypeptids nach Anspruch 10 oder des transgenen, nichtmenschlichen Organismus nach Anspruch 12 oder 13 für die Herstellung einer Öl-, Lipid- oder Fettsäurezusammensetzung.
- 15

25

30

40

18. Verwendung nach Anspruch 17, wobei die Öl-, Lipid- oder Fettsäurezusammensetzung als Arzneistoff, Kosmetikprodukt, Nahrungsmittel, Futtermittel, vorzugsweise Fischfutter, oder Nahrungsergänzungsmittel zu verwenden ist.

20 Revendications

- 1. Polynucléotide comprenant une séquence d'acide nucléique choisie dans le groupe constitué de :
 - (a) une séquence d'acide nucléique telle que décrite dans SEQ ID NO. 1 ;
- (b) une séquence d'acide nucléique qui code pour un polypeptide ayant une séquence d'acides aminés telle que décrite dans SEQ ID NO. 2 ;
 - (c) une séquence d'acide nucléique qui s'hybride avec un acide nucléique de (a) ou (b) dans des conditions d'hybridation stringentes, des conditions d'hybridation stringentes étant des hybridations dans 6 x chlorure de sodium/citrate de sodium (SSC) à approximativement 45 °C, suivies d'une ou plusieurs étapes de lavage dans 0,2 x SSC, 0,1 % SDS à 50 à 65 °C et la séquence d'acide nucléique codant pour un polypeptide ayant une activité Δ5 désaturase et une spécificité pour l'acyl-CoA.
- 2. Polynucléotide selon la revendication 1, le polynucléotide étant constitué d'ARN ou d'ADN.
- 35 **3.** Vecteur comprenant le polynucléotide selon la revendication 1 ou 2.
 - 4. Vecteur selon la revendication 3, le vecteur étant un vecteur d'expression.
 - 5. Vecteur selon la revendication 3 ou 4, le vecteur comprenant au moins un autre polynucléotide qui code pour une autre enzyme qui est impliquée dans la biosynthèse des lipides ou des acides gras.
 - 6. Cellule hôte comprenant le polynucléotide selon la revendication 1 ou 2 ou le vecteur selon l'une quelconque des revendications 3 à 5.
- 45 7. Cellule hôte selon la revendication 6, la cellule hôte comprenant en outre au moins une autre enzyme qui est impliquée dans la biosynthèse des lipides des acides gras.
- Vecteur selon la revendication 5 ou cellule hôte selon la revendication 7, l'enzyme étant choisie dans le groupe constitué des : acyl-CoA déshydrogénase(s), acyl-ACP [= protéine de transport d'acyle] désaturase(s), acyl-ACP thioestérase(s), acide gras acyltransférase(s), acyl-CoA:lysophospholipide acyltransférase(s), acide gras synthase(s), acide gras hydroxylase(s), acétyl-coenzyme A carboxylase(s), acylcoenzyme A oxydase(s), acide gras désaturase(s), acide gras acétylénase(s), lipoxygénase(s), triacylglycérol lipase(s), oxyde d'allène synthase(s), hydroperoxyde lyase(s), acide gras élongase(s), Δ-désaturase(s), Δ5-désaturase(s), Δ6-désaturase(s), Δ8-désaturase(s), Δ9-désaturase(s), Δ12-désaturase(s), Δ5-élongase(s), Δ6-élongase(s), et Δ9-élongase(s).
- 55
- 9. Procédé de génération d'un polypeptide ayant une activité désaturase, comprenant les étapes de :
 - (a) expression d'un polynucléotide selon la revendication 1 ou 2 dans une cellule hôte ; et

- (b) obtention, à partir de la cellule hôte, du polypeptide qui est codé par le polynucléotide selon (a).
- 10. Polypeptide qui est codé par le polynucléotide selon la revendication 1 ou 2.
- 5 11. Anticorps qui reconnaît spécifiquement le polypeptide ayant une séquence d'acides aminés telle que décrite dans SEQ ID NO. 2.
 - **12.** Organisme transgénique, non humain comprenant le polynucléotide selon la revendication 1 ou 2, le vecteur selon l'une quelconque des revendications 3 à 5 ou la cellule hôte selon la revendication 8.
- 10
- **13.** Organisme transgénique, non humain selon la revendication 12, l'organisme étant un animal, une plante ou un micro-organisme multicellulaire.
- 14. Procédé de production d'une substance qui a la structure décrite dans la formule générale l ci-dessous

25

20

les variables et substituants étant comme suit :

R¹ = hydroxyle, coenzyme A (thioester), lysophosphatidylcholine, lysophosphatidyléthanolamine, lysophosphatidylglycérol, lysophosphatidylglycérol, lysophosphatidylsérine, lysophosphatidylinositol, sphingobase ou un radical de formule II

30

35

40

 R^2 = hydrogène, lysophosphatidylcholine, lysophosphatidyléthanolamine, lysophosphatidylglycérol, lysodiphosphatidylglycérol, lysophosphatidylsérine, lysophosphatidylinositol ou alkylcarbonyle en C₂-C₂₄ saturé ou insaturé,

 R^3 = hydrogène, alkylcarbonyle en C₂-C₂₄ saturé ou insaturé, ou R^2 et R^3 indépendamment l'un de l'autre sont un radical de formule la :

45

50

 $H_{2}C - O - R^{2}$ $H_{C} - O - R^{3}$ $H_{2}C - O - f$

n = 2, 3, 4, 5, 6, 7 ou 9, m = 2, 3, 4, 5 ou 6 et p = 0 ou 3 ; et

- le procédé comprenant la culture de (i) une cellule hôte selon l'une quelconque des revendications 3 à 5 ou (ii) un
 organisme transgénique non humain selon la revendication 12 ou 13 dans des conditions qui permettent la biosyn thèse de la substance.
 - 15. Procédé de production d'une composition d'huile, de lipide ou d'acide gras, comprenant les étapes du procédé

selon la revendication 14 et l'étape supplémentaire de formulation de la substance sous la forme d'une composition d'huile, de lipide ou d'acide gras.

- 16. Procédé selon la revendication 15, dans lequel la composition d'huile, de lipide ou d'acide gras est en outre formulée pour obtenir un médicament, un produit cosmétique, un aliment pour humains, un aliment pour animaux, de préférence un aliment pour poissons, ou un supplément alimentaire.
- 17. Utilisation du polynucléotide selon la revendication 1 ou 2, du vecteur selon l'une quelconque des revendications 3 à 5, de la cellule hôte selon la revendication 6 ou 7, du vecteur ou de la cellule hôte selon la revendication 8, du polypeptide selon la revendication 10 ou de l'organisme transgénique non humain selon la revendication 12 ou 13 pour la production d'une composition d'huile, de lipide ou d'acide gras.
 - **18.** Utilisation selon la revendication 17, dans laquelle la composition d'huile, de lipide ou d'acide gras est destinée à être utilisé en tant que médicament, produit cosmétique, aliment pour humains, aliment pour animaux, de préférence un aliment pour poissons, ou supplément alimentaire.

20			
25			
30			
35			
40			
45			
50			
55			

5

15

		*	20	*	40	*		
SEQ ID 1 d6-Des(Ot)	:	––MSLAAKDAAS MCVETENNDGIP	AHSSVLDPKYH TVEIAFDGERE	GATNK-SRI RAEANVKLSAF	'DAADLT <mark>y</mark> ssid' Kmepaalaktf.	I SKBM ARRYV	:	45 50
SEQ ID 1 d6-Des(Ot)	::	60 IIRGRVYDVSDF VIRGVBYDVTDF	* IKRHPGGSIIK KHPGGTVIF	80 ISLGSDAT YALSNTGADAT	* DAYNNFHIRSKI EAFKEFHHRSRI	100 KADKM KARKA	::	92 98
SEQ ID 1 d6-Des(Ot)	:	* LRALPSRPVADG LAALPSRPAKTA	120 FARDALS-ADF KVLDAEMLQDF	* EALRAQLEAEC AKWRK <mark>ELE</mark> RDC	140 Syfe Pniwhvayi Ffk Pspahvayi	* RVAEV REAEL	:	141 148
SEQ ID 1 d6-Des(Ot)	:	160 V <mark>AMYWACIRLIW AAMY</mark> ALCTY <mark>LMY</mark>	* ACYWELCAIVA ARYYVSSVLVY	180 GIAQG-RCGWI ACFFGARCGWV	* .QHEGGH <mark>Y</mark> SLTGI 'QHEGGH <mark>S</mark> SLTGI	200 VI VID VI WWD	:	190 198
SEQ ID 1 d6-Des(Ot)	:	* RHMOMIIYGLGC KRIQAFIAGEGL	220 GMSGCYWRNOH AGSGDMWNSMH	* NKHHAT PQKLË NKHHAT PQKV	240 ADPDIOTMPLV/ HDMDIDTTPAV/	* AF <mark>HGL</mark> AFENT	::	240 248
SEQ ID 1 d6-Des(Ot)	:	260 IGAKARGAGK AVEDNRPRGFSK	* SWLAWOAPIFF YWLRE <u>OA</u> WTFI	280 GGVITTLVSEC P-VTSGLVÄLF	* MOEVOHEKHALI MMEELHESKALI	300 VGNQ CCRY	:	288 297
SEQ ID 1 d6-Des(Ot)	:	* L <mark>EICYMALRYAL EEIVMMLAAHVI</mark>	320 WYAAFGH <mark>L</mark> GLG RTWTIKA <mark>V</mark> TGF	* CAERIYAFYVA TAMQSYGLFLA	340 V©CTYIFTI TSMVSCCYLFAI	* JEAVS IESIS	:	335 347
SEQ ID 1 d6-Des(Ot)	:	360 HTHKDVVPHDKH HTHLDVVPKDEH	* ISMTLYSANHT LSMVRYAVDHT	380 TNQS-NTPLVN IDIDESCEWVN	* MMMATINEOISI MEMCATINEOISI	400 HLFP HLFP	:	384 397
SEQ ID 1 d6-Des(Ot)	:	* SMPQYNHPKICG SMPQFRQPEVSR	420 RVKQLFEKHGV RFVAFAKKWNL	* BYDVRTYAKSM NYKVMTYAGAW	440 RDTYVNILÄVG KATECNIÖNVG-	* IASHS -KHYY	:	434 446
SEQ ID 1 d6-Des(Ot)	:	460 LHORNECLTTRE VHCOHSCKTA	* SAAVRVTGH : :	455 456				

REFERENCES CITED IN THE DESCRIPTION

This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description

- WO 9113972 A [0009]
- WO 9311245 A [0009]
- WO 9411516 A [0009]
- EP 0550162 A [0009]
- WO 9418337 A [0009]
- WO 9730582 A [0009]
- WO 9721340 A [0009]
- WO 9518222 A [0009]
- EP 0794250 A [0009]
- WO 9306712 A [0009]
- US 5614393 A [0009]
- WO 9621022 A [0009]
- WO 0021557 A [0009]
- WO 9927111 A [0009]
- WO 9846763 A [0009]
- WO 9846764 A [0009]
- WO 9846765 A [0009]
- WO 9964616 A [0009]
- WO 9846776 A [0009]
- DE 10219203 A [0016]
- WO 2005083053 A [0020]
- WO 0129058 A [0029]
- WO 9932619 A [0029]
- US 5565350 A [0029]
- US 5756325 A [0029]
- US 5871984 A [0029]
- US 5731181 A [0029]
- US 5795972 A [0029]
- US 6573046 B [0029]
- US 6211351 B [0029]
- US 6586184 B [0029]

- WO 2004057001 A [0030]

Non-patent literature cited in the description

- POULOS, A. Lipids, 1995, vol. 30, 1-14 [0003]
- HORROCKS, LA; YEO YK. Pharmacol Res, 1999, vol. 40, 211-225 [0003]
- STUKEY et al. J. Biol. Chem., 1990, vol. 265, 20144-20149 [0009]
- WADA et al. Nature, 1990, vol. 347, 200-203 [0009]
- HUANG et al. Lipids, 1999, vol. 34, 649-659 [0009]
- MCKEON et al. Methods in Enzymol., 1981, vol. 71, 12141-12147 [0009]

- EP 0388186 A [0037]
- EP 0335528 A [0037]
- WO 9321334 A [0037]
- EP 0249676 A [0037]
- US 5608152 A [0037] [0038] [0047]
- WO 9845461 A [0037] [0038] [0047]
- US 5504200 A [0037] [0038] [0047]
- WO 9113980 A [0037] [0038] [0047]
- WO 9515389 A [0037] [0038] [0047]
- WO 9523230 A [0037] [0038] [0047]
- WO 9916890 A [0037] [0038] [0047]
- US 5315001 A [0038]
- WO 9218634 A [0038]
- WO 9320216 A [0038]
- US 5677474 A [0038]
- US 5530149 A [0038]
- EP 571741 A [0038]
- JP 6062870 A [0038]
- WO 9808962 A [0038]
- US 5689040 A [0038]
- EP 781849 A [0038]
- WO 9519443 A [0039] [0046]
- DE 10102337 [0040]
- DE 10102338 [0040]
- WO 9801572 A [0041]
- US 5352605 A [0045]
- WO 8402913 A [0045]
- US 4962028 A [0045]
- US 5187267 A [0046]
- WO 9612814 A [0046]
- EP 0375091 A [0046]
- WO 9516783 A [0047]
- WO 9706250 A [0047]
- WO 9946394 A [0047]
- WO 2000012720 A [0155]
- WANG et al. Plant Physiol. Biochem., 1988, vol. 26, 777-792 [0009]
- R. VAZHAPPILLY; F. CHEN. Botanica Marina, 1998, vol. 41, 553-558 [0010]
- K. TOTANI; K. OBA. Lipids, 1987, vol. 22, 1060-1062 [0010]
- M. AKIMOTO et al. Appl. Biochemistry and Biotechnology, 1998, vol. 73, 269-278 [0010]
- YU, R. et al. Lipids, 2000, vol. 35, 1061-1064 [0011]

- US 6271360 B [0029]
- US 6479292 B [0029]
- WO 2006100241 A [0030]

- TAKEYAMA, H. et al. *Microbiology*, 1997, vol. 143, 2725-2731 [0011]
- ZANK, T.K. et al. Plant Journal, 2002, vol. 31, 255-268 [0012] [0015]
- SAKURADANI, E. et al. Gene, 1999, vol. 238, 445-453 [0012]
- SPRECHER. Biochim. Biophys. Acta, 2000, vol. 1486, 219-231 [0012]
- TOCHER et al. Prog. Lipid Res., 1998, vol. 37, 73-117 [0013]
- DOMERGUE et al. Eur. J. Biochem., 2002, vol. 269, 4105-4113 [0013]
- SHIMIKAWA. World Rev. Nutr. Diet., 2001, vol. 88, 100-108 [0014]
- CALDER. Proc. Nutr. Soc., 2002, vol. 61, 345-358
 [0014]
- CLELAND ; JAMES. J. Rheumatol., 2000, vol. 27, 2305-2307 [0014]
- BEAUDOIN et al. Biochem Soc Trans, 2000, vol. 28, 661-663 [0015]
- Current Protocols in Molecular Biology. John Wiley & Sons, 1989, 6.3.1-6.3.6 [0020]
- SAMBROOK et al. Molecular Cloning. Cold Spring Harbor Laboratory, 1989 [0020]
- Nucleic Acids Hybridization: A Practical Approach. Oxford University Press, 1985 [0020]
- Essential Molecular Biology: A Practical Approach. Oxford University Press, 1991 [0020]
- PILEUP. J. Mol. Evolution., 1987, vol. 25, 351-360
 [0021]
- HIGGINS. CABIOS, 1989, vol. 5, 151-153 [0021]
- NEEDLEMAN. J. Mol. Biol., 1970, vol. 48, 443-453
 [0021]
- SMITH. Adv. Appl. Math., 1981, vol. 2, 482-489 [0021]
- SAMBROOK et al. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, 1989 [0026] [0034]
- CHIRGWIN et al. Biochemistry, 1979, vol. 18, 5294-5299 [0026]
- DOMERGUE et al. Eur J Biochem., 2002, vol. 269 (16), 4105-13 [0028]
- KAJIKAWA et al. Plant Mol. Biol., 2004, vol. 54, 335-52 [0028]
- DOMERGUE et al. *J Biol Chem.*, 2003, vol. 278 (37), 35115-26 [0028]
- DOMERGUE et al. Biochem J., 2005, vol. 389, 483-90 [0028] [0155]
- FIRE et al. Nature, 1998, vol. 391, 806-811 [0029]
- FIRE. Trends Genet., 1999, vol. 15, 358-363 [0029]
- SHARP. RNA interference, 2001 [0029]
- Genes Dev., 2001, vol. 15, 485-490 [0029]
- HAMMOND et al. Nature Rev. Genet., 2001, vol. 2, 1110-1119 [0029]
- TUSCHL. Chem. Biochem., 2001, vol. 2, 239-245 [0029]
- HAMILTON et al. *Science*, 1999, vol. 286, 950-952 [0029]

- HAMMOND et al. Nature, 2000, vol. 404, 293-296
 [0029]
- ZAMORE et al. Cell, 2000, vol. 101, 25-33 [0029]
- BERNSTEIN et al. Nature, 2001, vol. 409, 363-366
 [0029]
- ELBASHIR et al. Genes Dev., vol. 15, 188-200 [0029]
- ELBASHIR et al. Nature, 2001, vol. 411, 494-498
 [0029]
- Agrobacterium protocols. Methods in Molecular Biology. Humana Press, 1995, vol. 44 [0034]
- HELLENS et al. Trends in Plant Science, 2000, vol. 5, 446-451 [0035]
- Plant Molecular Biology and Biotechnology. CRC Press, 1993, 71-119 [0035]
- Vectors for Gene Transfer in Higher Plants. F.F. WHITE. Transgenic Plants, vol. 1, Engineering and Utilization. Academic Press, 1993, vol. 1, 15-38 [0035]
- Techniques for Gene Transfer. **B. JENES et al.** Transgenic Plants, vol. 1, Engineering and Utilization. Academic Press, 1993, vol. 1, 128-143 [0035]
- POTRYKUS. Annu. Rev. Plant Physiol. Plant Molec. Biol., 1991, vol. 42, 205-225 [0035] [0041]
- GOEDDEL. Gene Expression Technology: Methods in Enzymology. Academic Press, 1990, vol. 185 [0036] [0041]
- GRUBER ; CROSBY. Methods in Plant Molecular Biology and Biotechnology. CRC Press, 89-108 [0036]
- FRANCK et al. *Cell,* 1980, vol. 21, 285-294 [0037] [0045]
- WARD et al. Plant. Mol. Biol., 1993, 22 [0037]
- GATZ et al. tetracycline-inducible. *Plant J.*, 1992, vol. 2, 397-404 [0037]
- STOCKHAUS et al. EMBO J., 1989, vol. 8, 2445
 [0037]
- BAEUMLEIN et al. Plant J., 1992, vol. 2 (2), 233-239
 [0037]
- BÄUMLEIN et al. Mol. Gen Genet., 1991, vol. 225 (3 [0038]
- BÄUMLEIN et al. Plant J., 1992, vol. 2, 2 [0038]
- GATZ. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1997, vol. 48, 89-108 [0039] [0046]
- GATZ et al. Plant J., 1992, vol. 2, 397-404 [0039]
 [0046]
- ROMANOS, M.A. et al. Foreign gene expression in yeast: a review. Yeast, 1992, vol. 8, 423-488 [0041]
- Heterologous gene expression in filamentous fungi.
 VAN DEN HONDEL, C.A.M.J.J. et al. More Gene Manipulations. Academic Press, 1991, 396-428
 [0041]
- Gene transfer systems and vector development for filamentous fungi. VAN DEN HONDEL, C.A.M.J.J. et al. Applied Molecular Genetics of Fungi. Cambridge University Press, 1991, 1-28 [0041]
- FALCIATORE et al. Marine Biotechnology, 1999, vol. 1 (3), 239-251 [0041]

- SCHMIDT, R.; WILLMITZER, L. High efficiency Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana leaf and cotyledon explants. *Plant Cell Rep*, 1988, 583-586 [0041]
- Plant Molecular Biology and Biotechnology. C Press, 1993, 71-119 [0041]
- Techniques for Gene Transfer. F.F. WHITE, B. JENES et al. Transgenic Plants, Vol. 1, Engineering and Utilization. Academic Press, 1993, vol. 1, 128-43 [0041]
- SMITH, D.B.; JOHNSON, K.S. Gene, 1988, vol. 67, 31-40 [0042]
- AMANN et al. Gene, 1988, vol. 69, 301-315 [0042]
- STUDIER et al. Gene Expression Technology: Methods in Enzymology. Academic Press, 1990, 60-89 [0042]
- BALDARI et al. Embo J., 1987, vol. 6, 229-234 [0043]
- KURJAN; HERSKOWITZ. Cell, 1982, vol. 30, 933-943 [0043]
- SCHULTZ et al. Gene, 1987, vol. 54, 113-123 [0043]
- Gene transfer systems and vector development for filamentous fungi. VAN DEN HONDEL, C.A.M.J.J.; PUNT, P.J. et al. Applied Molecular Genetics of fungi. 1991, 1-28 [0043]
- More Gene Manipulations in Fungi. Academic Press, 396-428 [0043]
- SMITH et al. Mol. Cell Biol., 1983, vol. 3, 2156-2165 [0044]
- LUCKLOW; SUMMERS. Virology, 1989, vol. 170, 31-39 [0044]
- BECKER, D.; KEMPER, E.; SCHELL, J.; MAS-TERSON, R. New plant binary vectors with selectable markers located proximal to the left border. *Plant Mol. Biol.*, 1992, vol. 20, 1195-1197 [0045]
- BEVAN, M.W. Binary Agrobacterium vectors for plant transformation. *Nucl. Acids Res.*, 1984, vol. 12, 8711-8721 [0045]
- Vectors for Gene Transfer in Higher Plants. Transgenic Plants, Vol. 1, Engineering and Utilization. Academic Press, 1993, vol. 1, 15-38 [0045]
- GIELEN et al. EMBO J., vol. 3, 835 [0045]
- GALLIE et al. Nucl. Acids Research, 1987, vol. 15, 8693-8711 [0045]
- BENFEY et al. EMBO J., 1989, vol. 8, 2195-2202 [0045]
- KERMODE. Crit. Rev. Plant Sci., 1996, vol. 15 (4), 285-423 [0045]
- WARD et al. Plant. Mol. Biol., 1993, vol. 22, 361-366
 [0046]
- BAEUMLEIN et al. Mol Gen Genet, 1991, vol. 225 (3), 459-67 [0047]
- BAEUMLEIN et al. Plant Journal, 1992, vol. 2 (2), 233-9 [0047]
- Cloning Vectors. Elsevier, 1985 [0048]
- SAMBROOK, J.; FRITSCH, E.F.; MANIATIS, T. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, 1989 [0048]

- HARLOW ; LANE. Antibodies, A Laboratory Manual. CSH Press, 1988 [0062]
- KÖHLER; MILSTEIN. Nature, 1975, vol. 256, 495
 [0062]
- GALFRÉ. Meth. Enzymol., 1981, vol. 73, 3 [0062]
- MIKOKLAJCZAK et al. Journal of the American Oil Chemical Society, 1961, vol. 38, 678-681 [0091]
- CHMIEL. Bioprozeßtechnik 1. Einführung in die Bioverfahrenstechnik. Gustav Fischer Verlag, 1991 [0115]
- **STORHAS.** Bioreaktoren und periphere Einrichtungen. Vieweg Verlag, 1994 [0115]
- Manual of Methods for General Bacteriology. American Society for Bacteriology, 1981 [0116]
- Applied Microbiol. Physiology, A Practical Approach. IRL Press, 1997, 53-73 [0124]
- F.C. NEIDHARDT et al. E. coli and Salmonella. ASM Press, 1996, 612-636 [0133]
- Biology of Procaryotes. Thieme, 1999 [0133]
- MAGNUSON, K. et al. *Microbiological Reviews*, 1993, vol. 57, 522-542 [0133]
- FRENTZEN. Lipid, 1998, vol. 100 (4-5), 161-166
 [0137]
- KINNEY. Genetic Engineering. 1997, vol. 19, 149-166 [0138]
- OHLROGGE ; BROWSE. Plant Cell, 1995, vol. 7, 957-970 [0138]
- SHANKLIN; CAHOON. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1998, vol. 49, 611-641 [0138]
- VOELKER. Genetic Engineering. 1996, vol. 18, 111-13 [0138]
- GERHARDT. Prog. Lipid R., 1992, vol. 31, 397-417 [0138]
- GÜHNEMANN-SCHÄFER; KINDL. Biochim. Biophys Acta, 1995, vol. 1256, 181-186 [0138]
- KUNAU et al. Prog. Lipid Res., 1995, vol. 34, 267-342 [0138]
- STYMNE et al. Biochemistry and Molecular Biology of Membrane and Storage Lipids of Plants. American Society of Plant Physiologists, 1993, 150-158 [0138]
- MURPHY ; ROSS. *Plant Journal.*, 1998, vol. 13 (1), 1-16 [0138]
- SANGER et al. Proc. Natl. Acad. Sci. USA, 1977, vol. 74, 5463-5467 [0148]
- ULLMAN. Encyclopedia of Industrial Chemistry. VCH, 1985, vol. A2, 89-90, 443-613 [0149]
- FALLON, A. et al. Applications of HPLC in Biochemistry. Laboratory Techniques in Biochemistry and Molecular Biology, 1987, vol. 17 [0149]
- Product recovery and purification. REHM et al. Biotechnology. VCH, 1993, vol. 3, 469-714 [0149]
- BELTER, P.A. et al. Bioseparations: downstream methoding for Biotechnology. John Wiley and Sons, 1988 [0149]
- KENNEDY, J.F. ; CABRAL, J.M.S. Recovery methods for biological Materials. John Wiley and Sons, 1992 [0149]

- Ullmann's Encyclopedia of Industrial Chemistry. SHAEIWITZ, J.A.; HENRY, J.D. Biochemical. VCH, 1988, vol. B3, 1-27 [0149]
- DECHOW, F.J. Separation and purification techniques in biotechnology. Noyes Publications, 1989 [0149]
- CAHOON et al. Proc. Natl. Acad. Sci. USA, 1999, vol. 96 (22), 12935-12940 [0150]
- BROWSE et al. Analytic Biochemistry, 1986, vol. 152, 141-145 [0150]
- CHRISTIE, WILLIAM W. Advances in Lipid Methodology, Ayr/Scotland. Oily Press [0150]
- CHRISTIE, WILLIAM W. Gas Chromatography and Lipids. A Practical Guide - Ayr, Scotland. Oily Press, 1989, vol. IX, 307 [0150]
- Progress in Lipid Research. Pergamon Press, 1952, vol. 1, 16 [0150]
- Applied Microbial Physiology; A Practical Approach. IRL Press, 103-129, 131-163, 165-192 [0151]
- Advances on Lipid Methodology. Oily Press, 1997, 119-169 [0153]
- Gaschromatographie-Massenspektrometrie-Verfahren. *Lipide*, vol. 33, 343-353 **[0153]**
- NAPIER ; MICHAELSON. Lipids, 2001, vol. 36 (8), 761-766 [0159]

- SAYANOVA et al. Journal of Experimental Botany, 2001, vol. 52 (360), 1581-1585 [0159]
- SPERLING et al. Arch. Biochem. Biophys, 2001, vol. 388 (2), 293-298 [0159]
- MICHAELSON et al. FEBS Letters, 1998, vol. 439 (3), 215-218 [0159]
- HAJDUKIEWICZ, P; SVAB, Z; MALIGA, P. The small versatile pPZP family of Agrobacterium binary vectors for plant transformation. *Plant Mol Biol*, 1994, vol. 25, 989-994 [0168]
- DE GREVE, H.; DHAESE, P.; SEURINCK, J.; LEMMERS, M.; VAN MONTAGU, M.; SCHELL, J. Nucleotide sequence and transcript map of the Agrobacterium tumefaciens Ti plasmid-encoded octopine synthase gene. J. Mol. Appl. Genet., 1982, vol. 1 (6), 499-511 [0168]
- DEBLAERE et al. Nucl. Acids. Res., 1984, vol. 13, 4777-4788 [0170]
- MURASHIGE ; SKOOG. Physiol. Plant., 1962, vol. 15, 473 [0170]
- QIU et al. J. Biol. Chem., 2001, vol. 276, 31561-31566 [0171]
- BELL et al. In Vitro Cell. Dev. Biol.-Plant., 1999, vol. 35 (6), 456-465 [0172]
- MLYNAROVA et al. Plant Cell Report, 1994, vol. 13, 282-285 [0172]