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ABSTRACT 

van den Bosch, F., and Gilligan, C. A. 2003. Measures of durability of 
resistance. Phytopathology 93:616-625.  

Conventional models for the durability of resistant cultivars focus on 
the dynamics of the frequency of resistance genes. This leads to a defini-
tion of the durability of resistance as the time from introduction of the 
cultivar to the time when the frequency of the virulence gene reaches a 
preset threshold. It is questionable whether this is the most appropriate 
way to measure durability. Here we use a simple epidemiological model 
to link population dynamics and population genetics to compare three 
measures of durability: (i) the expected time until invasion of the virulent 
genotype, by mutation or immigration, and subsequent establishment of a 

population (Tinvasion); (ii) the virulence frequency related measure of the 
time for the virulent genotype to take-over the pathogen population  
(Ttake-over); and (iii) the additional yield, measured by the additional 
number of uninfected host growth days (Tadditional). Specifically, we show 
how the measures of durability are affected by deployment and epi-
demiological parameters. We use a combination of numerical solution 
and analytical approximation of a model for the population dynamics of 
avirulent and virulent genotypes of a pathogen growing in dynamically 
changing populations of resistant and susceptible cultivars. The three 
measures of durability are compared. Some consequences of the results 
for durable resistance in multilines and mixtures and the regional 
deployment of resistant cultivars are discussed. 

 
The objectives of this paper are twofold. Firstly, three measures 

of durability of a cultivar resistant to a plant pathogen are com-
pared, two of which are new to the study of disease resistance in 
crops. Secondly, the dependence of these measures on the crop-
ping ratio of the resistant cultivar and on epidemiological parame-
ters is studied. In this introduction, we argue that the measure of 
durability conventionally used by plant pathologists only repre-
sents one aspect of durability. Next, two new measures of durabil-
ity are introduced describing other aspects of durability. Finally, 
the approach taken in this paper is described. 

The deployment of resistant cultivars is a widely used method 
for pest and disease management. Limited durability of the resis-
tance, however, remains a major problem in the deployment of 
resistant cultivars. The selection pressure on the parasite popula-
tion selects for virulent forms rendering the resistant cultivar inef-
fective. The period between the release of a resistant cultivar and 
the end of its usefulness for disease management differ markedly 
among host–pathogen systems. Some resistance genes have re-
mained effective for a long time. Notable among these is resis-
tance to cabbage yellows caused by Fusarium oxysporum f. sp. 
conglutinans, which has lasted for more than 90 years (37), and 
resistance to leaf rust, Puccinia triticina, conferred by Lr34, 
which has lasted for 30 years (19). Others are remarkably ephem-
eral, for example, Yr17 for the control of yellow rust on wheat 
was rapidly overcome in two to three seasons by virulent isolates 
of P. striiformis f. sp. tritici in the U.K. followed by Denmark, 
France, and Germany (1). The durability of various rice blast 
resistance genes is often less than 3 years (18,40). Various deploy-
ment strategies have been proposed to increase the durability of 
resistance genes. These include restriction of the area sown to 
resistant cultivars, rotational use of cultivars with different resis-
tance genes, pyramiding of resistance genes within one cultivar, 

and integration of resistant cultivars with fungicidal treatments. In 
this paper, we focus on controlling the area sown to resistant 
crops, termed the cropping ratio, �. 

The durability of resistance has attracted empirical and theoreti-
cal attention to gain insight into mechanisms that favor prolonged 
resistance (recent reviews of Vera Cruz et al. [37] and Parlevliet 
[32]). Johnson (14–16) formalized the empirical identification of 
sources of durable resistance, by monitoring persistence under 
wide-scale cultivation, and showed how to use these in selection 
programs (13,17). Following early work by Vanderplank (36) and 
Leonard (22), an increasing number of models to study virulence 
dynamics in plant pathogens have been published (3,12,20,23, 
25,27). 

A common characteristic of these models is that they consider 
the dynamics of the relative frequencies, rather than densities, of 
genes and genotypes in the pathogen population. This approach 
stems from the modeling approaches developed in theoretical 
population genetics (8). Correspondingly, most experimental stud-
ies also consider the frequency of virulence genes (4,5,28,29). It 
follows from these studies that the obvious way to measure dur-
ability is the time-span from introduction of the resistant cultivar 
to the time when frequency of the virulence gene reaches a preset 
threshold, above which resistance is considered broken down. 
This definition of durability is, however, restrictive when con-
sidering the deployment of resistance genes to maximize the po-
tential advantage for disease control. When the cropping ratio of 
the resistant cultivar is small, the durability, as defined previously, 
is large. The contribution of the cultivar to the total crop yield 
however is small. Conversely, when the cropping ratio is large, the 
contribution of the resistant cultivar to yield is large but durability 
is small. Durability defined in this way, therefore, does not reflect 
the use of the resistant cultivar to increase yield, which is the 
ultimate practical goal of using resistant cultivars. 

Another problem is that the models usually assume the virulent 
genotype is present in the genetic background of the pathogen 
population, i.e., that there is preexisting virulence (36). This re-
sults in an increase of the virulent genotype from the moment of 
release of the resistant cultivar. It fails, however, to provide a 
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measure for durability that takes account of the time for the viru-
lent genotype to enter the system (through mutation or immigra-
tion) and establish a population when the virulent genotype is ab-
sent from the region of deployment. Extension of the concept of 
durability to consider invasion and yield requires a population 
dynamic, as opposed to a population genetic, model formulation. 

New measures of durability. In this paper, we study three defi-
nitions of durability and their relationships with cropping ratios 
and epidemiological parameters. First, we assume that the virulent 
pathogen genotype is absent from the population. Durability can 
then be defined as the time-span from the release of the resistant 
cultivar until the virulent genotype appears in the population 
through mutation or immigration and subsequently establishes a 
population. The process of “appearance” and subsequent “estab-
lishment” together constitute an “invasion.” This measure is the 
expected time until virulence invasion, Tinvasion. 

For comparison, we study the traditionally used virulence fre-
quency related measure of durability. This measure is defined as 
the time-span from the release of the resistant cultivar to the time 
when the frequency of the virulent pathogen genotype reaches a 
preset (in our case 90%) level, given that the virulent genotype is 
present in the genetic background of the pathogen population. 
This measure is the time until the virulent genotype takes over the 
pathogen population, Ttake-over. 

Assuming that yield is largely determined by the number of 
days during the growing season that a plant is uninfected, we can 
also define durability as the additional number of uninfected host 
growth days added due to the use of the resistant cultivar. This 
measure is the added number of uninfected host growth days, 
Tadditional. A comparable measure was first used by Bonhoeffer et 
al. (2) in models for antibiotic resistance. 

The approach. We derive a simple model. The model ignores 
spatial structure. Further, we assume that the pathogen reproduces 
asexually and that there are overlapping generations of crop and 
pathogen. In parts of the paper where mutations are considered, it 
is assumed that avirulent pathogens mutate into virulent patho-
gens. This assumption corresponds most closely to a single gene 
mutation. Furthermore, we will often assume that the cultivar and 
the pathogen strain (or strains) present in the system are in steady 
state at the moment of release of the resistant cultivar. 

Specifically, we study how the measures of durability are af-
fected by (i) deployment parameters represented by the cropping 
ratio of the resistant cultivar and (ii) epidemiological parameters 
for transmission, migration, and mutation of pathogen genotypes. 

The approach, using a simple model, allows us to derive a set of 
relations between cropping ratio, epidemic parameters, and dura-
bility that will serve as baseline results in future model expan-
sions. In the discussion, we describe how these simplifying 
assumptions will be relaxed in future research. 

The questions are addressed by a combination of numerical 
solution and analytical approximation of a model for the dynamics 
of avirulent and virulent genotypes of a pathogen growing in 
dynamically changing populations of resistant and susceptible cul-
tivars. 

THEORY AND APPROACHES 

The model. Consider a pathosystem open to pathogen immigra-
tion with a susceptible and a resistant cultivar infected by an 
avirulent and a virulent pathogen genotype. The density of unin-
fected susceptible cultivar, HS(t), and uninfected resistant cultivar, 
HR(t), increase in time due to planting and decrease due to 
harvesting. Both the virulent and the avirulent pathogen genotypes 
can infect the susceptible cultivar, but only the virulent genotype 
can infect the resistant cultivar. The virulent, V(t), and the 
avirulent, A(t), pathogen genotypes increase due to infection and a 
small rate of immigration and decrease due to death. This leads to 
the system of four differential equations: 

dHS(t)/dt = (planting)S – (harvesting)S – (V infection)S – (A infection)S  

dHR(t)/dt = (planting)R – (harvesting)R – (V infection)R   
(1) 

dA(t)/dt = (infectious HS)A – (death)A + (immigration)A  

dV(t)/dt = (infectious HS)V – (infectious HR)V – (death)V + (immigration)V  

The amounts of plant tissue infected by the avirulent or the viru-
lent strains are used as measures of pathogen density so we do not 
explicitly keep track of infected plant density. We assume a 
constant total planting rate, �. A fraction, �, of the planted crop is 
the resistant cultivar and a fraction (1 – �) is the susceptible culti-
var. This leads to (planting)S = (1 – �)� and (planting)R = ��. The 
period between planting and harvesting has a length of 1/� time 
units which results in the crop harvest terms (harvest)S = �HS(t) 
and (harvest)R = �HR(t). The net effect of sowing and harvest is a 
monomolecular approach to an asymptotic limit in the increase of 
host tissue over time in the absence of disease. The limit for each 
host type is determined by the cropping ratio, thus dHS/dt =  
�[�(1 – �)/� – HS] and dHR/dt = �(��/� – HR). 

The pathogen produces � spores per unit time per unit area. The 
probability that a spore lands on an uninfected host and causes an 
infection is assumed to be linearly related to uninfected host 
density, with proportionality constant �. The infection rates of 
uninfected hosts can thus be written as (V infection)S = �HS(t)V(t), 
(V infection)R = �HR(t)V(t), and (A infection)S = �HS(t)A(t), where 
� = �� is the infection rate. 

Each infection results in g spore-producing pathogen units, re-
sulting in the terms (infectious HS)A = �gHS(t)A(t), (infectious 
HS)V = �gHS(t)V(t), and (infectious HR)V = �gHR(t)V(t). Pathogens 
have a constant probability per unit time to die, which gives 
(death)A = µA(t) and (death)V = µV(t). We assume a small constant 
rate of pathogen immigration, thus, (immigration)A = �1 and 
(immigration)V = �2. 

The model equations thus read 

dHS(t)/dt = (1 – �)� – �HS(t) – �HS(t)A(t) – �HS(t)V(t) 

dHR(t)/dt = �� – �HR(t) – �HR(t)V(t)  

dA(t)/dt = �gHS(t)A(t) – µA(t) + �1  

dV(t)/dt = �gHS(t)V(t) + �gHR(t)V(t) – µV(t) + �2  

 
 

(2) 

TABLE 1. Variables and parameters used in the model and their interpreta-
tion and dimension 

Variables Interpretation Dimension 

HS Density of susceptible cultivar L–2 
HR Density of resistant cultivar L–2 
A Density of avirulent pathogen L–2 
V Density of virulent pathogen L–2 
Parameters   
� Infection rate t–1 

�1 Immigration rate of avirulent pathogen t–1 
�2 Immigration rate of virulent pathogen t–1 
� Cropping ratio 1 
g Number of spore producing pathogen units  

    per infection 
# 

O Area of the pathosystem L2 
� Planting rate t–1 
µ 1/µ is the pathogen average life span t–1 
� 1/� is the time between sawing and harvest t–1 

a  L is length and t is time. 
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Definitions and dimensions of the variables and parameters are 
summarized in Table 1.  

Model dynamics. The dynamical behavior of the model in 
equation 2 is not the subject of this paper. To put the calculation of 
the three measures of durability into perspective, however, we 
require some information on the dynamics for seven scenarios: for 
presence and absence of the resistant cultivar with and without 
immigration of the pathogen. These are summarized in Table 2. 
The virulent migrants are assumed to be much rarer than avirulent 
migrants either because the source of the virulent migrants is much 
farther away or because both types of migrants come from a com-
mon source in which the virulent genotype is rare. We therefore 
assume throughout the paper that �2 is very small. In situations in 
which this assumption does not hold and �2 is large, durability will 
be close to zero and investigating the effects of epidemic processes 
on durability is no longer relevant.  

Calculating the measures of durability of resistance. In this 
section, we describe the numerical methods used to calculate the 
three measures of durability. Numerical solutions are used because 
analytical solution of the general model (equation 2) is not 
possible. In the results section, we derive several approximations 
analytically, most of them relying on the assumption that immi-
gration is very small or entirely absent from the system. 

Time until the virulent pathogen genotype invades, Tinvasion. Con-
sider a system in which the resistant cultivar is not yet in use (� = 
0) and the virulent pathogen genotype is absent from the system. 
Uninfected susceptible crop and avirulent genotype are in steady 
state (Table 2). The introduction of the resistant cultivar is 
mimicked by changing the planting ratio, �, from zero to the 
appropriate value at time (t) = 0. The density of the resistant crop 
will in the course of time increase from zero to its final level, 

./����RH  Because the avirulent genotype cannot infect the re-

TABLE 2. Summary of the dynamics of model equations 2 for four scenarios involving presence or absence of the resistant cultivar with and without 
immigration of pathogensa 

 
Resistant cultivar 

Immigration/ 
no immigration 

 
Summary 

Resistant cultivar 
absent � = 0 

No immigration  
�1 = 0, �2 = 0 

Both pathogen 
strains present 

Given both genotypes are present at t = 0, A and V coexist for all time if 
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i.e., pathogen net-reproductive number >1. A(t)/[V(t) + A(t)] = A(0)/[V(0) + A(0)]. Internal steady 
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Resistant cultivar 
present � > 0 

No immigration 
�1 = 0, �2 = 0 

Both pathogen 
genotypes absent 

   

Resistant and susceptible cultivar both present at all time. Cultivar densities approach 
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� RS HH ,
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  Avirulent genotype 
present, virulent 
genotype absent    

Coexistence of resistant and susceptible cultivar and the avirulent pathogen genotype if 
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   i.e., avirulent pathogen strain net-reproductive number >1. The internal steady state is stable: 
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   i.e., virulent pathogen strain net-reproductive number >1. The steady state is stable and the 
    avirulent genotype goes extinct: 
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 Immigration 
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Avirulent genotype 
present, virulent 
genotype absent 

Resistant cultivar dynamics independent of the dynamics of susceptible cultivar and avirulent 
    pathogen strain. Avirulent pathogen strain exists irrespective of parameter values. All variables 
    converge to steady-state value 

   

A
gg

H

g

g
AH

S

R

�
�

��
�

�
�
�

� 	
�
��

�
�


�
�	

��


�

��
�

�
�
�

� 	
�
��

�
����

�
�

�
�
� ������

�
�


�

1

112

)1(
1

,,)1(,4
2

1
,

 

 Immigration  
�1 > 0, �2 > 0 

Both pathogen 
genotypes present 

Coexistence of susceptible and resistant cultivar with both avirulent and virulent pathogen 
    genotype. The steady state densities can only be solved numerically. The avirulent pathogen 
    genotype does not die out only due to continuous immigration, steady state densities of A are 
    very small since immigration is small. Internal steady state is stable. 

a When a cultivar or pathogen genotype is absent, the equation describing its dynamics and all terms in the other equations involving its density are deleted 
from model equations 2. Entries in the table describe the dynamics of this reduced system. 
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sistant cultivar, its resource, the susceptible cultivar decreases and 
subsequently the density of the avirulent genotype also decreases. 
In the long term, it converges to a new steady state. After a 
transient period, the density of the uninfected susceptible crop 
settles at the same steady-state density before the introduction of 
the resistant cultivar. This situation is shown in Figure 1A. 

In this system, avirulent genotypes mutate at a low rate into 
virulent genotypes and virulent genotypes immigrate at a low rate 
into the system. We assume the immigration rate of the virulent 
pathogen, �2, to be so small that immigration is a chance process. 
How long will it take before the virulent genotype invades the sys-
tem? Two processes determine the time until invasion of the 
virulent genotype, Tinvasion. First, an avirulent genotype has to mu-
tate into a virulent genotype or a virulent genotype has to immi-
grate; this process is termed appearance. Secondly, after a muta-
tion has occurred or an immigrant has arrived, there is one 
virulent genotype individual. This pathogen has to build up an ini-
tial population; this process is termed establishment (38). At such 
low densities, the pathogen is highly sensitive to random (demo-
graphic) fluctuations. Many of the appearances go extinct before 
the initial population has established and will therefore never be 
of influence or be detected in the field. We thus define the virulent 
strain to have invaded after it has appeared and subsequently 
established a population. 

Appearance is calculated as follows. Each avirulent genotype 
has a probability � per unit time to mutate into a virulent geno-
type. The number of mutations into a virulent genotype thus 
equals the product of the mutation rate and the number of the 
avirulent genotype individuals, �OA(t), where O is the area of the 
system. Before the virulent genotype has invaded, the total num-
ber of virulent genotypes entering the system per unit time, K1, is  

K1 = �OA(t) + �2O (3) 

Establishment is calculated as follows. Various authors 
(6,24,35) have shown that the probability, K2, of not going extinct 
due to random fluctuations is given by 

K2 = 1 – 1/R0 (4) 

where R0 is the basic reproductive number. In our case, the basic 
reproductive number of the virulent genotype has to be calculated 
with the system of susceptible cultivar, resistant cultivar, and 
avirulent genotype (Fig. 1A) as the background environment of 
the virulent genotype, denoted here by .0R�  

A virulent genotype can infect both the susceptible and the re-
sistant cultivar. The number of new infections in the susceptible 
cultivar per unit time is �gHS(t) and in the resistant cultivar is 
�gHR(t). The pathogen’s average life span is 1/µ. Combining 
these, we find the basic reproductive number 

�

���
��

)()(
0

tgHtgH
R RS  (5) 

The probability per unit time that the virulent genotype appears 
through a mutation or immigration and establishes, 	(t), is the 
product of the number of mutations and immigrations per unit 
time, �OA(t) + �2O, and the probability it will establish, K2. Given 
	(t), the probability density of the waiting time until invasion of 
the virulent genotype, f(t), can be calculated. Once this density is 
known, the expected time until invasion, Tinvasion, is found from 



�

�
0

invasion )( dtttfT  (6) 

The cumulative probability density, F(t), of the probability den-
sity, f(t), can be interpreted as the probability that the virulent 
genotype has established at time t. We can derive a differential 

equation that describes the rate of change of F with time. The 
probability that the virulent genotype establishes in a small time 
interval from time t to t + �t equals F(t + �t) – F(t). It is also 
equal to the probability that the virulent genotype has not yet es-
tablished at time t, 1 – F(t), multiplied by the probability that it 
will become established in this time interval. For a short period of 
time, �t, the latter probability can be approximated with 	(t)�t. 
We thus have 

F(t + �t) – F(t) 	 
(t)�t[1 – F(t)] (7) 

Dividing both sides by �t and taking the limit of �t�0, we arrive 
at the differential equation 

dF(t)/dt = 
(t)[1 – F(t)] (8) 

Given a solution of model equations 2, it is possible to calculate 
	(t), which in its turn makes it possible to solve differential equa-
tion 8 and, hence, to obtain the expected waiting time until inva-
sion of the virulent genotype. 

Fig. 1. Dynamics of model equation 2. Parameter values set at � = 2 × 10–4, 
g = 200, µ = 3, � = 0.1, � = 100, �1 = 20, and �2 = 0.02, unless stated 
otherwise. A, Dynamics of equation 2 when the virulent pathogen genotype 
is absent from the system at time (t) = 0, and when the resistant cultivar is 
released and no immigration of the virulent pathogen takes place and no 
avirulent pathogens mutate into virulent pathogens. Compare this graph with 
equilibrium densities in Table 2, fourth row. B, Dynamics of the model when 
at t = 0 the virulent pathogen genotype is present in very low densities and 
the resistant cultivar is released and deployed from t = 0. Dotted line is the 
fraction of the pathogen population virulent. The Ttake-over on the x axis shows 
the definition of the time until the virulent genotype comprises 90% of the 
pathogen population. This quantity is used in Figure 3. Compare this graph 
with Table 2, sixth row. C, Same simulation as middle graph but also shows 
the total density of uninfected crop, HS + HR. The hatched area shows the 
definition of Tadditional, the total number of additional uninfected crop growth 
days due to the release and deployment of the resistant cultivar. This 
quantity is used in Figure 4. Compare this graph with Table 2, sixth row. 
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For later use, we note that equation 8 can be solved, and after 
differentiating with respect to time, we obtain the probability den-
sity of the waiting time until invasion of the virulent genotype 

�
�

�
�
�

�
��� 


t

dxxttf
0

)(exp)()(  (9) 

Time until the virulent genotype takes over, Ttake-over. Consider a 
system in which the resistant cultivar is not in use (� = 0). Unin-
fected susceptible crop and pathogen are in steady state. In this 
system, the resistant cultivar is introduced. The virulent genotype 
is already present at low densities in the genetic background of the 
pathogen population. It is at a selective advantage once the 
resistant cultivar is introduced and will start to increase. In the 

long term, the system stabilizes at a new steady state (Table 2, 
bottom row). Figure 1B shows the dynamics of both pathogen 
genotypes together with the dynamics of the frequency of the viru-
lent genotype. Using such plots, the time until the frequency of the 
virulence reaches a prescribed criterion, here defined as 0.9, is 
found. 

The added number of uninfected host growth days, Tadditional. 
Consider the same situation described in the previous section in 
which the resistant cultivar is introduced and the virulent genotype 
is in the genetic background of the pathogen population. In the 
long term, the system will stabilize at a new steady state (Table 2, 
bottom row). Figure 1C shows the dynamics of both pathogen 
genotypes and total density of uninfected crop. The shaded area 
under the curve is the added number of uninfected host growth 
days due to the use of the resistant crop before the virulent geno-
type has taken over, Tadditional. After the virulent genotype has in-
creased to its new steady state, the resistant cultivar will no longer 
have a positive effect on yield. Tadditional is calculated from 

� 
dtHtHHtHT RRSS

�

����

0
additional )()(  (10) 

where SH  and RH  are the steady-state densities of the susceptible 
and resistant cultivars after the system has converged to its new 
steady state.  

RESULTS 

Numerical results. The results of the numerical study are sum-
marized in Figures 2 to 4 and Table 3. 

Expected time until the virulent pathogen genotype invades, 
Tinvasion. Figure 2 shows the expected time until virulence invades 
the pathogen population, Tinvasion, as a function of the cropping ra-
tio, �. The invasion time is longer for both small and large crop-
ping ratios than for intermediate values. The infection rate, �, has 
a moderate effect on Tinvasion, with an increase in the pathogen in-
fection rate shortening the invasion time. At a cropping ratio of 
0.5, a fourfold decrease in infection rate results in an increase in 
the time until the virulent genotype invades in the population by 
50%. Immigration rate of the virulent pathogen genotype, �2, has a 
much more profound effect on the expected time until the virulent 
genotype invades. This effect is largest at high cropping ratios. At 
a cropping ratio of 0.9, a fourfold decrease in immigration results 
in an increase of more than 200% in the invasion time for the 
virulent form. The mutation rate from avirulent to virulent patho-
gen genotype also has a marked effect that is slightly more pro-
nounced at smaller cropping ratios. At low mutation rates, the U-
shape of the curve changes into a J-shape, with the shortest time 
for invasion occurring at large cropping ratios. 

Time until the virulent genotype takes over, Ttake-over. Figure 3 
shows the time until the virulent pathogen genotype has taken 
over the pathogen population, i.e., its frequency has increased be-
yond 0.9, given that at time (t) = 0 there is a small population of 
the virulent genotype in the genetic background of the pathogen 
population. The curves are all characteristically J-shaped with a 
monotonic decrease in Ttake-over with increasing cropping ratio. The 
0.9 virulence frequency threshold is an arbitrary choice. The 
numerical value of Ttake-over decreases with decreasing threshold. 
We, however, have not found qualitative differences in the relation 
between Ttake-over and model parameters for lower values of the 
threshold. We therefore restrict the results to the 0.9 threshold 
throughout the paper. The effects of parameter values on this 
measure of durability are far less pronounced than for the waiting 
time until invasion (cf. Fig. 2). Changing the infection rate has a 
small effect (at � = 0.5), with a fourfold increase shortening  
Ttake-over by 50%. The immigration rate of the virulent pathogen 
genotype, �2, hardly has any effect on the time until the virulent 
genotype takes over. This also holds for the initial density of the 

Fig. 2. Expected time until the virulent pathogen genotype invades, Tinvasion, 
as a function of the fraction of resistant cultivar planted (cropping ratio, �). 
A, The effect of infection rate, �. B, The effect of immigration rate of the 
virulent pathogen genotype, �2. C, The effect of mutation rate, �. Bold lines 
indicate the default parameter set at � = 2 × 10–4, g = 200, µ = 3, � = 0.1, � = 
100, �1 = 20, �2 = 0.02, � = 10–5, and O = 1. 
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virulent pathogen genotype, V(0), assuming that the initial popu-
lation of the virulent strain in the pathogen population remains 
constant for total populations of different densities. 

The added number of uninfected host growth days, Tadditional. 
Changing the cropping ratio had very little effect on Tadditional in 
marked contrast to the two previous measures of durability, 
whereas changing the infection rate, �, of the pathogen had a great 
effect (Fig. 4). Note the difference in scales on the y axis in Figure 
4. At a cropping ratio of 0.9, a fourfold decrease in the infection 
rate increased Tadditional by almost 500%. The immigration rate of 
the virulent pathogen genotype has a small effect on the additional 
number of uninfected host growth days, which is most pronounced 
for small values of the cropping ratio. Again, in contrast to the 
previous analysis (Fig. 3), the initial density of the virulent 
genotype, V(0), also influenced the amount of Tadditional (Fig. 4).  

Approximation formulas. In this section, we develop several 
approximations to the three measures of durability. In deriving 
such approximations, we make specific simplifying assumptions. 
Comparing the approximations with the results of the full model 
shows to what extent the measures of durability are sensitive to 
underlying processes. Results from the numerical analyses and the 
approximations are compared later. 

Time until the virulent pathogen genotype invades, Tinvasion. 
After introduction of the resistant cultivar, the system converges 
to a new steady state (Fig. 1A). When the convergence to this new 
steady state is fast and the rates of mutation, �, and immigration of 
the virulent genotype, �2, are small, the system is far on its way 
toward convergence before the virulent genotype invades. In this 
situation, we can approximate the rate of appearance of new 
virulent pathogens by mutation and immigration, K1, and the basic 

 

Fig. 3. Time until the virulent genotype comprises 90% of the pathogen 
population, given that it is initially present in the genetic background of the 
population, Ttake-over, as a function of the cropping ratio, � (cf. Fig. 1). A, The
effect of infection rate, �. B, The effect of immigration rate of the virulent 
pathogen genotype, �2. C, The effect of initial denst ity of the virulent 
genotype, V0. Bold lines indicate the default parameter set � = 2 × 10–4, g = 
200, µ = 3, � =0.1, � = 100, �1 = 20, �2 = 0.02, � = 10–5, O = 1, and V0 = 0.1. 

Fig. 4. Total number of additional uninfected crop growth days due to the 
release and deployment of the resistant cultivar, Tadditional, as a function of the 
cropping ratio, �. The quantity Tadditional is the hatched area in Figure 1, bot-
tom graph. A, The effect of infection rate, �. B, The effect of immigration rate
of the virulent pathogen genotype, �2. C, The effect of initial density of the 
virulent genotype, V0. Bold lines indicate the default parameter set at � = 2 × 
10–4, g = 200, µ = 3, � =0.1, � = 100, �1 = 20, �2 = 0.02, � = 10–5, and O = 1. 
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reproductive number, 0R� , with its value when the new steady state 
has developed. Substituting the appropriate steady-state values, 
we find 
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Following the procedure to calculate Tinvasion outlined previously, 
the first approximation to Tinvasion, ,inv1�T
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 is simply the reciprocal 
of 	, which finally yields 
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Figure 5 shows the simulated time until the virulent pathogen 
genotype invades together with approximation formula 12. For 
comparison, equation 12 is also plotted when there is no immigra-
tion (�2 = 0), from which the major dependence of this measure of 
durability on immigration becomes apparent. There is reasonably 
good agreement between the analytical approximation in equation 
12 and the numerical solution over a wide range of cropping 
ratios, from 0.1 to 0.9; thus, for � = 0.2, 0.4, 0.6, and 0.8, the 
approximated value is 17, 13, 9, and 6% smaller than the exact 
value, respectively. The difference between exact and ap-
proximated values is largest for small cropping ratios. 

In the derivation of equation 12, we assumed that all variables 
in the system were in their final steady state. We also assumed 
that the deviation is mainly due to the time it takes for the resis-
tant cultivar after its release to reach its final level. Because the 
virulent pathogen genotype is not present yet, the resistant cultivar 
is not infected by any pathogen and the dynamics follow a simple 
monomolecular model 

)1()( t
R etH ���
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�  (13) 

From this equation, we see that the steady-state assumption per-
tains to taking the limit of both � and � to infinity such that �/� is 
a constant. In the second approximation, we assume that both 
parameters are large but not infinitely large. The calculations are 
straightforward if tedious and are given in the Appendix. For this 
second approximation, the time until the virulent pathogen geno-
type appears in the population, ,inv2�T

�

 is given by 
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where inv1�T
�

 is the value derived as our first approximation (equa-
tion 12). This approximation gives a better description for smaller 

cropping ratios compared with inv1�T
�

 (Fig. 5); the approximated 
values are now 10, 8, 6, and 5% smaller than the exact value for 
cropping ratios of 0.2, 0.4, 0.6, and 0.8, respectively. 

Time until the virulent genotype takes over, Ttake-over. The fre-
quency of the virulent pathogen genotype in the population, v(t), is 
given by v(t) = V(t)/[A(t) + V(t)]. Differentiation of v with respect 
to time, substituting equations 2 and rearranging, finally yields the 
differential equation 

dv(t)/dt = �gHR(t)v(t)[1 – v(t)] (15) 

The appearance of the density of the uninfected resistant cultivar, 
HR(t), in this equation implies that it is not possible to rewrite the 
model for increase of the virulence frequency given in equation 2 
into a model of frequencies only, as is usual in population genet-
ics. The dynamics of uninfected crop density, which is itself influ-
enced by pathogen density, plays an essential role in the virulence 
dynamics of the system. Population genetics and population 
dynamics cannot therefore be considered independently. 

If HR(t) is known, equation 15 can be solved. Denoting the ini-
tial frequency of the virulent pathogen genotype with v(0) = v0, the 
solution is given by 
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and a value for Ttake-over that corresponds to the virulent genotype 
reaching a given frequency, v(Ttake-over) = �, is then found from 
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The added number of uninfected host growth days, Tadditional. It is 
possible to derive an explicit expression for Tadditional by neglecting 
the immigration of avirulent and virulent genotypes from outside 
the system. Recall from equation 10 that 
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where SH  and RH  are the steady-state density of the susceptible 
and resistant cultivars after the system has converged to its new 
steady state, for which 
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The differential equation for V(t) in equation 2 can be rewritten as 
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TABLE 3. Summary of the response of three measures of durability to changes in the cropping ratio and in epidemiological parameters 

Measure  
of durability 

 
Criterion 

Pre-existing virulence 
at sites of release 

Cropping 
ratio, � 

Infection 
rate, � 

Immigration 
rate, � 

Mutation 
rate, � 

Initial 
density, V0 

Tinvasion Invasion (i.e., appearance and subsequent 
    establishment) of virulent strain 

 
No 

 
U-shaped 

 
Moderate 

 
Strong 

 
Very strong 

 
– 

Ttake-over Critical frequency (0.9) of virulent strain 
    in pathogen population 

 
Yes 

 
J-shaped 

 
Moderate 

 
Negligible 

 
– 

 
Negligible 

Tadditional Additional number  
    of uninfected host growth days 

 
Yes 

Largely 
independent 

 
Very strong 

 
Moderate 

 
– 

 
Strong 
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Substituting equation 18 into 19 and the resulting formula into 
equation 10, we find 
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where V is the steady-state value when the system has converged. 
Substituting this yields 
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DISCUSSION 

In this discussion, we first tie up the results of the numerical 
study with the insight gained from the approximation formulas. 
Next, we discuss the model assumptions. We also discuss our re-
sults in the context of multiline crops and the consequences of the 
results for the regional deployment of resistant cultivars. For ease 
of reference, the principal results are summarized in Table 3.  

Measures of durability. Expected time until the virulent patho-
gen genotype invades, Tinvasion. The U-shape of the Tinvasion versus � 
curve (Fig. 2) is due to the balance of two processes that have to 
occur sequentially to result in invasion, the appearance of the 
virulent form and its subsequent establishment. The probability 
per unit time that a virulent genotype appears in the population 
through mutation is proportional to the number of avirulent geno-
type individuals, which in turn decreases with increasing cropping 
ratio. In the absence of immigration, the number of virulent indi-
viduals appearing by mutation in the population declines sharply 
at high cropping ratios, because few avirulent individuals are left 
to mutate into virulent genotypes. Figure 2 shows that immigra-
tion rate has a major effect on Tinvasion, especially at higher 
cropping ratios. This is understandable because, in this parameter 
region, the number of mutations is small because avirulent patho-
gen numbers are small, immigration then is the main source of 
virulent pathogen. The other process shows the opposite trend 
with cropping ratio; the probability of establishment increases 
with cropping ratio because more sites become available for sole 
colonization by the virulent form. The combination of these two 
trends explains the U-shaped curves in Figure 2. The approxima-
tion formulas (equations 12 and 14) and Figure 5 show that migra-
tion rate is a key parameter determining Tinvasion. We conclude, 
therefore, that the immigration rate dominates the process of 
appearance of virulence at large cropping ratios. Figure 5 shows 
little difference between the numerical solutions of the full system 
and the steady-state approximation and the fast convergence ap-
proximation. This implies that Tinvasion is only to a minor extent 
influenced by the transient dynamics that occur after the introduc-
tion of the resistant cultivar. This is surprising because, in this 
transient phase, the density of the resistant cultivar increases from 
zero to its asymptotic level and the density of the avirulent strain 
decreases substantially. These changes do not influence the 
invasion of the virulent strain to any relevant extent. 

Time until the virulent genotype takes over, Ttake-over. Note again 
that our definition of this measure assumes that the virulent patho-
gen genotype is initially present at low densities in the genetic 
background of the population. At large cropping ratios, the amount 
of resource available to the virulent genotype is large compared 
with the avirulent form. The virulent form therefore increases 
rapidly. It takes less time for the virulent genotype to reach a 
frequency of 0.9 at large cropping ratios than at small cropping 
ratios, explaining the J-shape of the curves. The approximation 
formula (equation 17) and Figure 3 show that Ttake-over is rather 
insensitive to the initial frequency of the virulent genotype. For 

the default parameter set and an initial density of V0 = 0.1, we 
calculate that v0 = 0.0000162 and ln[(1 – v0)/v0] � 11.0. Increasing 
V0 by a factor of 10 yields ln[(1 – v0)/v0] � 13.3. It is clear from 
Figure 3 that the dynamical behavior of HR(t) is such that this 
difference becomes even smaller in the exact (simulated) system. 

The added number of uninfected host growth days, Tadditional. The 
approximation formula (equation 21) shows that in the absence of 
pathogen immigration, the added number of uninfected growth 
days is independent of the cropping ratio. We interpret this sur-
prising result according to the following biological mechanisms. 
When the cropping ratio is small, using the resistant cultivar does 
not give much additional yield. The virulent pathogen genotype 
however grows slowly only to a level such that the resistant cul-
tivar hardly gives any extra yield compared with the susceptible 
cultivar. At large cropping ratios, the situation is reversed; the 
virulent genotype now increases very fast on the large amount of 
available host, rapidly canceling out the potential advantage of 
uninfected growth days from the release of the resistant cultivar. 
The yield gain due to the use of the resistant cultivar is however 
very large. The effect of cropping ratio on yield, and on the rate of 
increase of the virulent strain, results in Tadditional being indepen-
dent of cropping ratio. 

Comparing equation 21 and Figure 4 shows that the small de-
crease in Tadditional at smaller cropping ratios is due to immigration. 
Clearly, the effect of immigration diminishes when the initial den-
sity of the virulent genotype is large (Fig. 4C). Approximation 
equation 21, furthermore, shows that the added number of healthy 
host growth days is logarithmically dependent on the density of 
the virulent pathogen genotype in the genetic background of the 
population.  

Clearly, the three measures relate to different aspects of durabil-
ity (Table 3). In particular, Ttake-over is derived for a system in 
which there is preexisting virulence at the time of release of the 
resistant cultivar, whereas Tinvasion is not. Can these be combined to 
measure the total time for the virulent form to take-over the 
population in the absence of preexisting virulence? Although this 
is possible by numerical simulation of equations 2, simple 
summation of Tinvasion + Ttake-over is not possible. The former is de-
rived from the time to establishment but does not yield an explicit 
solution for the proportion of the virulent genotype in the popula-
tion [v(0)] for input into the calculation of Ttake-over.  

Fig. 5. Comparison of numerical solutions with the various approximation 
formulas to the measures of durability. Expected time until the virulent 
pathogen genotype invades, Tinvasion, is plotted as function of the cropping 
ratio, �. The line representing no immigration is the steady-state approxi-
mation when the immigration rate of the virulent pathogen genotype is zero. 
Parameter values are the default parameter set at � = 2 × 10–4, g = 200, µ = 3, 
� =0.1, � = 100, �1 = 20, �2 = 0.02, � = 10–5, and O = 1. 
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Notes on the model assumptions. The model used in this pa-
per is the simplest possible model that shows the effects of 
population dynamics and population genetics on durability. More-
over, in the analysis, we assumed the system to be in steady state 
at the moment the susceptible cultivar is released. This is a logical 
assumption given that we modeled a system with continuous 
planting and harvesting. In real life, plant–pathogen systems are 
hardly ever in steady state, not least because of the seasonal nature 
of planting and harvesting. Before generic conclusions can be 
drawn, the model has to be extended to include seasonal dynamics 
with pulsed (9) rather than continuous changes due to harvest and 
sowing and to include pathogen survival through the crop-free 
season. The model also ignores the effects of the spatial pattern of 
susceptible and resistant crop fields within a landscape (30,31) 
and spatial differences in the field density between regions. This 
assumption is valid when the dispersal distance of the infectious 
units is much larger than the spatial scale of the crop–noncrop varia-
tions. For airborne pathogens, ignoring spatial structure will be a 
valid assumption when considering an assemblage of fields cover-
ing a region of a few square kilometers, whereas it will not be a 
valid assumption for soilborne pathogens on the same crop–noncrop 
spatial scale. We assumed that the pathogen does not experience a 
cost of resistance. There is, however, evidence that such costs of 
resistance exist (21) and in future work we have to take such 
possible costs into account. The models here are deterministic but 
stochastic effects are likely to play an important part in persis-
tence of pathogen genotypes at low densities (10). Our simple 
model yields a set of baseline results, which show unexpected dif-
ferences between measures of durability. These results can be 
used as a starting point in further study of the dynamics of virulent 
pathogen strains in the presence of a resistant cultivar. All of the 
model assumptions discussed will be considered in subsequent re-
search in this project and will be returned to in future publications. 

Multilines. The use of multilines and cultivar mixtures, in 
which each component carries one or more resistance gene unique 
to that component, is attracting renewed interest (7,26,41) stimu-
lated by increased ease of genetic transformation of cereals and 
other crops (34) and the demands for sustainability in disease con-
trol. Both theoretical and experimental studies on pathogen geno-
type dynamics in multilines and cultivar mixtures consider geno-
type frequency only (20,22,23,39). The main conclusion of these 
studies is that the rate of increase in the frequency of the virulent 
genotype decreases with decreasing fraction of the resistant line in 
the crop, �. Our results show the same pattern. The time until the 
virulent genotype increases to high levels (0.9 in Fig. 3) decreases 
with increasing fraction of the resistant line in the crop. This 
would lead to the conclusion that the resistant cultivar should be 
used as little as possible to safeguard the source of resistance in 
order to prolong the durability of the resistant cultivar (33). Our 
study, however, shows that this conclusion relies on (i) the use of 
virulence frequency as a determinant of the usefulness of the 
resistant cultivar and (ii) on the assumption that the virulent geno-
type is already present in the pathogen population. If the virulent 
genotype is not present and the time until arrival by mutation or 
immigration and establishment is assumed to reflect durability, 
both a low and a high proportion of the resistant line in the crop 
prolong durability. Moreover, these analyses show that the benefit 
in additional uninfected host growth days is barely affected by the 
proportion of the resistant crop in the multiline or mixture.  

Deployment strategies. The conventional approach to preserv-
ing the durability of newly released resistance genes is to intro-
duce resistant cultivars at low cropping ratios (33). This reduces 
the selection pressure on the pathogen population and thus pro-
motes durability. Deployment of resistance genes in crops exerts 
strong selection on the matching virulent pathogen genotype. Fail-
ure of resistance following the release and rapid expansion in the 
acreage of a newly resistant cultivar within a few years is well 
documented (1) and leads to the so-called boom and bust cycle as 

the domination of the virulent genotype renders the resistant culti-
var useless. Our results show that low cropping ratio does indeed 
preserve durability (Figs. 2 and 3). 

Nevertheless, our results challenge the universality of the buff-
ering effect of low cropping ratios by showing that the expected 
time to invasion (Tinvasion) can be delayed by high as well as low 
cropping ratios. This holds when there is no preexisting virulence 
in the region of deployment of the resistant cultivars. In our 
model, yield gain of a resistant cultivar, measured by Tadditional, is 
only slightly dependent on cropping ratio. The effect, though 
small, is such that at low cropping ratios the yield advantage of 
the resistant cultivar is not fully exploited (Fig. 4). Yields are 
slightly larger at high cropping ratios in open systems with patho-
gen immigration (Fig. 4). Wide-scale empirical testing of the ad-
vantages of high cropping ratios for the release of resistant culti-
vars is premature. One possible alternative would be to use a high 
cropping ratio in a restricted part of the crop’s area and none in the 
remaining area. If the total cropping area can be subdivided into 
several smaller areas with little migration between them, this 
might delay virulent genotype invasion and produce maximum 
added yields. Our model is not spatially explicit, except in allow-
ing for immigration. Holt and Chancellor (11) have recently 
argued that to maximize area-wide strategic impact, small geno-
type units and random patterns were best, but to protect individual 
fields, large units and concentrated deployment were the best. 
These strategies require further investigation and will likely be 
reported in subsequent publications.  

Final remarks. Besides the more detailed results presented in 
this paper, the principal message is that previous studies on the 
deployment of resistant cultivars and the dynamics of virulent 
genotypes are hampered by considering virulence frequency only. 
This has led to only one, and possibly not the most useful, defini-
tion of durability, namely the time until virulence take-over,  
Ttake-over. As we have shown in this paper, other measures of dur-
ability such as the expected time until invasion of the virulent 
strain, Tinvasion, and the additional yield, measured by the additional 
number of uninfected host growth days, Tadditional, depend on the 
interplay between population dynamics and population genetics. 
We have shown that these interactions can have a major influence 
on the outcome of deployment of resistance studies.  

APPENDIX 

Derivation of equation 14. Substituting equation 9 into equa-
tion 6, we can rewrite this expression as 
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Substitution of equation 12 into equation 5 and recalling that 	 is 
the product of equations 3 and 4, we find 
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Assuming that � is large, we can approximate 	(t) by 
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is the value of 	 for the system in steady state. Substituting in 
equation A1, we find 
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