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Abstract

The need to control soil erosion has received increasing attention, but quantitative

data on the sources of suspended sediment in many river–reservoir systems is still

lacking. The goal of this research was to compare the application of spectroscopic

[mid-infrared (MIR)] and mineralogical [X-ray diffraction (XRD)] fingerprints for

assessing relative sediment source contributions from different land use groups (agri-

cultural lands, forests and human settlements) in the Konar–Damodar river–reservoir

system in India. Source apportionment was estimated using partial least square (PLS)

regression for spectroscopic tracers (MIR) and the Bayesian MixSIAR model for min-

eralogical tracers. Both methods identified differences between the pre- and post-

monsoon sediment contributions of forests (overall contribution bounds of �35–

43%). During monsoon seasons, both fingerprinting methods indicated agricultural

land use as the primary source of suspended sediment. Although there were some

temporal variations in the predicted contributions of the land use sources, the MIR-

PLS and mineralogical–MixSIAR methods produced comparable ranges. The respec-

tive variations in contributions, using MIR-PLS and mineralogical–MixSIAR, were

�31 to 66% compared with �36 to 61% for agricultural lands, �21 to 43% compared

with �15 to 39% for forests and �16 to 37% compared with �19 to 32% for human

settlements.
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1 | INTRODUCTION

Accelerated soil erosion and sediment delivery are considered one of

the major concerns in all river basins globally due to adverse on-site

and off-site consequences (Das et al., 2022). The on-site conse-

quences include (i) decreased soil productivity due to removal of top-

soil, (ii) reduction in the ability of soil to store water, (iii) exposure of

subsoil with poor physical and chemical properties, (iv) loss of newly

planted crops and (v) siltation in low lying areas (Schoorl &

Veldkamp, 2001). Suspended sediment is among the most common

pollutants in streams, rivers and lakes (Issaka & Ashraf, 2017).

Sediment can indeed be both a pollutant and a natural component of

the catchment system, serving essential ecological functions while

also posing environmental challenges. The most adverse off-site

effects of sediment in water bodies include (i) damage to aquatic

biota, (ii) loss of reservoir storage capacity and (iii) degraded function-

ing of navigation routes and hydraulic structures. Therefore, reliable

quantitative information on suspended sediment sources is required

for implementing effective mitigation strategies (Collins et al., 2017).

The Chota Nagpur plateau is recognised as one of India’s most

vulnerable areas to water-driven soil erosion due to its predominantly

water-eroded laterite soil. Soil degradation in this region is driven by
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geological formations of granite gneiss, underdeveloped soil profiles,

undulating plateau topography with occasional hills and anthropo-

genic factors such as ongoing agricultural expansion, excessive

groundwater extraction and irrigation (Mahala, 2017). Changes in land

use, deforestation and inadequate soil and land management practices

have further increased the region’s susceptibility to soil erosion

(Mahala, 2018). The study reported herein was conducted on a repre-

sentative catchment of the Chota Nagpur plateau (i.e. the Konar River

catchment).

Recently, significant attention has been directed towards using

physical models to address sedimentation issues. For example,

Das et al. (2019) discussed future directions for sediment distribution

and transport modelling in river–reservoir systems. Comprehensive

reviews in the literature highlight the growing application and scope

of sediment source fingerprinting (Collins et al., 2017, 2020;

Guan et al., 2017; Koiter et al., 2013; Owens et al., 2016;

Smith et al., 2013). Although sediment distribution and transport

models, such as USLE and its modified versions, EROSION-3D, WEPP

and many others (Pandey et al., 20162016), are advancing, they often

lack the ability to evaluate the proportional yield contributed by vari-

ous sediment sources. Despite these technological advancements, the

literature increasingly emphasises the need for direct methods (Collins

et al., 2017). Few methods can directly identify, differentiate and

quantify unique sediment sources in a catchment with minimal prior

information, such as expert knowledge and semi-quantitative data

(Davis & Fox, 2009). Sediment fingerprinting is a powerful technique

used to identify and quantify the sources of sediment within a catch-

ment. This method is advantageous in terms of using prior knowledge

about catchment characteristics (i.e. land use, soil types, geology and

topography) and erosion sources to guide sampling and the interpreta-

tion of results. By analysing the unique properties of sediment from

various potential sources, source fingerprinting can be used to trace

the origins of sediment found at the catchment outlet (Collins et al.,

2020). Critically, sediment source fingerprinting links the sampled tar-

get sediment directly to the key sources without the need to explicitly

quantify the intervening parts of the fine sediment delivery cascade

and transportation to river channels (Collins et al., 2017).

The factors influencing soil erosion and sediment transport

include inherent controls such as geology, geomorphology and pedol-

ogy. In addition, sediment generation and transport are influenced by

extreme weather, runoff patterns and human-induced land use

change.

Discrimination of potential sediment sources has been accom-

plished using various combinations of properties or tracers. Tech-

niques such as spectroscopy have been utilised to distinguish

sediment sources based on their spectral characteristics. For instance,

studies by Ni et al. (2019) and Tiecher et al. (2017) demonstrated how

variations in spectral data can reveal differences in sediment origins.

Geochemical analysis identifies unique chemical signatures of sedi-

ments from different sources. This method, used by Bahadori et al.

(2019) and Nosrati and Collins (2019), leverages the distinct geochem-

ical fingerprints that different environments impart on sediments. The

mineral composition of sediments provides distinguishing features for

source discrimination. Research by Sisinggih, Sunada and Oishi (2006)

and Srivastava, Khare and Ingle (2011) highlighted how mineralogical

profiles can effectively differentiate sediment sources. Radiometric

tracers, such as isotopic signatures, have been used to trace sediment

origins. Studies by Kim et al. (2013) and Navratil et al. (2012) utilised

radiometric properties to provide insights into sediment provenance.

Biological markers, including DNA and other biological residues, have

the potential to differentiate sediment sources. Kraushaar et al.

(2021) explored how biological properties can offer unique identifiers

for sediments from various sources.

Similarly, different mixing model structures have been used for

source apportionment studies for generating relative proportional

quantification of sediment sources. Research by Collins et al. (2017,

2020) and Habibi et al. (2019) applied these models to accurately

attribute sediment to its sources. Explicit estimation of uncertainties

associated with the results is crucial for robustness and reliability.

Gaspar et al. (2019) emphasised the importance of incorporating

uncertainty estimation to enhance the credibility of source apportion-

ment findings. By integrating these diverse properties and advanced

modelling approaches, researchers can effectively identify and quan-

tify sediment sources, providing valuable insights for catchment man-

agement and sediment control strategies.

Although most previous fingerprinting studies have used geo-

chemical fingerprints to determine sediment sources (Wadman

et al., 2017), the use of spectroscopic approaches has gained atten-

tion. Conversely, some initial studies showed that traditional finger-

prints give more reliable results than spectral fingerprints (Tiecher

et al., 2015), more successful spectroscopic fingerprinting studies

have been conducted focusing on aspects including discrimination of

land use classes, sub-catchments and lithological units in drainage

basins (Legout et al., 2013; Poulenard et al., 2012; Tiecher

et al., 2017).

The application of mineralogical fingerprints for tracing sediment

sources is a traditional qualitative method for sediment source appor-

tionment (Ramon et al., 2020; Rowntree, van der Waal, &

Pulley, 2017). Mineralogical fingerprints are based on a unique set of

mineralogical characteristics or profiles that can be used to identify

the origin of sediment. These fingerprints are based on the specific

minerals present in the sample, their relative abundances and their

physical and chemical properties. Soil erosion from different land use

types varies significantly due to their distinct physicochemical proper-

ties. Consequently, XRD analysis for mineralogical characteristics can

be utilised to differentiate the relative contributions of various land

use classes to sediment samples. Although the application of XRD

spectroscopy to understand land use–related sediment dynamics in

catchments is limited, this study aimed to investigate the influence of

major land use classes (Das et al., 2023). There is a huge potential pro-

vided by the spatial and profile variability of soil mineralogy for con-

ducting fingerprinting studies, as minerals constitute �70% of river

sediments by weight (Hillier, 2001). Mineralogical fingerprinting stud-

ies using commonly found minerals in soil such as quartz, mica, feld-

spar and calcite have been conducted and established satisfactory

links between sources and target sediments (Eberl, 2004; Nath

et al., 2007). The Damodar River basin is one of the mineral-rich areas

of India, consisting of granites and granitic-gneisses of the Archeans,

sandstones and shales of the Gondwanas and recent alluvial deposits

(Singh et al., 2005). The Konar River catchment situated in the

upstream portion of the basin consists of granites comprising quartz,

mica and feldspar (Singh & Hasnain, 1999). The diversity of minerals

in this study catchment therefore justifies the application of mineral-

ogical fingerprinting to discriminate the sources of sediments therein.
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Here, reliable variations in soil mineralogical composition due to dif-

ferent land uses have been found (Jeong, 2001), which further sup-

ports its application in sediment source fingerprinting.

Although other researchers have employed spectroscopic and

mineralogical fingerprinting methods to establish relationships

between target suspended sediment samples and their sources, a

comparative study is still lacking in this context. Only a few studies

have used more conventional geochemical methods to assess the

results of spectroscopic analysis (Ni et al., 2019; Verheyen

et al., 2014). There are comparative studies conducted on land use

classes with both spectroscopic and conventional geochemical tracers,

which have reported some disparities in the results (viz. Ramon

et al., 2020; Verheyen et al., 2014), whereas studies including those

by Tiecher et al. (2017, 2016) found the two approaches to be in good

agreement. Here, explicit consideration of different mineralogical

groups (viz. bulk minerals, clay minerals and heavy minerals) for such

comparisons can also provide crucial information on sediment sources

(D’Haen, Verstraeten, & Degryse, 2012).

Based on the above context, our research herein aimed to deter-

mine whether the sediment fingerprinting technique can effectively

distinguish between different land uses that contribute to sedimenta-

tion. The major assumptions of our sediment fingerprinting study

were as follows: (1) potential sediment sources (i.e. the land use clas-

ses) can be discriminated based on composite spectral and mineralogi-

cal signatures obtained from MIR and XRD spectroscopy; (2) these

properties determined for both sources and target reservoir sediments

provide a robust basis for apportioning the contributions of the land

use classes to the sampled target sediment; and (3) the spectral and

mineralogical tracers exhibit conservative behaviour because they

retain their unique signatures from their source areas without under-

going significant alteration during transport and deposition. This tracer

conservation is crucial for accurately identifying and differentiating

sediment sources in sediment fingerprinting studies.

An important aspect of any sediment fingerprinting study is the

selection of mixing models. The combination of partial least square

(PLS) regression with spectroscopic methods is very well established

(Legout et al., 2013; Poulenard et al., 2012, 2009) and the application

of Bayesian models for quantitative unmixing of sediment sources

using geochemical tracers has also received very wide attention in

recent decades (Cooper et al., 2015; Huangfu et al., 2020). Hence, the

specific objectives of this study were to explore (1) the applicability of

spectroscopic and mineralogical tracers for discriminating land use

classes based on sediment contributions and (2) the potential of PLS

and Bayesian modelling techniques combined with spectroscopic and

mineralogical tracers, respectively, to quantify land use source contri-

butions in different seasons.

2 | MATERIALS AND METHODS

The key stages in the methodology adopted in this study are

summarised into six main steps in Figure 1. Both modelling techniques

(PLS regression for spectroscopic tracers and Bayesian mixing

modelling—MixSIAR; Stock & Semmens, 2018) for mineralogical

F I GU R E 1 Overview of the
methodological framework.
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tracers were evaluated using laboratory mixtures and informative

priors.

2.1 | Study area

This study was conducted in the Konar reservoir (990 km2) catchment

(23�51́02300N–24�8́02600N and 85�14́03200E–85�47́01000E) in Jharkhand,

India, which is upstream of the Damodar River. The sedimentation

rate in Konar has been estimated at 1.12 M m3/year (Kumar,

Raghuwanshi, & Mishra, 2015). The terrain of the region is very

diverse in terms of topographical features, whereas the elevation and

the land use are shown in Figure 2. Land use (Figure 2b) can be classi-

fied into three major classes (agricultural lands 37%, forests and

shrubs 45% and human settlement areas 18%) and several minor

classes (e.g. fallow lands and grasslands). The prevalence of agricul-

tural lands, forests and human settlements alongside minor categories

like fallow lands, channel banks and waste lands in this catchment

complicates the identification of sediment sources. In addition to the

minor land use classes like fallow lands and wastelands detailed in Das

et al. (2022), channel banks can represent significant sediment

sources, as supported by previous sediment fingerprinting studies

(Smith & Blake, 2014). However, the presence of forests and grass-

lands covering most of the channel banks in the study catchment

poses a challenge in distinguishing between sediment sources. To

tackle this challenge, all minor land use classes were merged into

major ones, streamlining the source discrimination process (Das

et al., 2023). The catchment comprises deciduous and tropical forests

and the farmers rely on rain-fed agriculture. Detailed descriptions of

the land use classes are provided in Table 1. The forest areas mainly

F I GU R E 2 (a) Catchment location. (b) DEM of the study area. (c) Land use patterns in the study catchment with soil and target sediment
sampling locations. (d) Soil map of the Konar catchment. [Color figure can be viewed at wileyonlinelibrary.com]

T AB L E 1 Land use classes and their descriptions.

Land use class Description Area covered (%) Sub-classes information Soil class distribution

Agricultural

lands

The land engaged in agriculture. It

covers the rain-fed and irrigated

cultivated lands along with fallow lands.

Major crops grown are paddy maize,

cereal and wheat.

37% Around 50% of the agricultural lands

are rain-fed and 30% are irrigated. The

remainder of the lands in this class are

fallow lands, cultivated in certain

seasons and certain years.

Most of the agricultural

areas (�44%) are situated

on lithosols and ferric

luvisols (�31%).

Forests These lands mainly consist of dense and

light forests along with grasslands.

Forests are mostly tropical and

deciduous.

45% Around 40% of the forests consist of

dense vegetation, and 30% of the land

is covered by light and scattered

vegetation. The remainder is covered

by grasslands.

Forests in the catchment

are mostly situated on

ferric luvisols (44%),

followed by lithosols

(34%).

Human

settlements

These lands consist of urban and rural

areas dominated by houses, mines,

paved roads, industrial areas and

transportation services.

18% Nearly 45% of the human settlements

are rural, 30% of this class are urban

and the remainder are mining and

industrial areas.

Most of the human

settlement areas are

situated on eutric nitosols

(51%) followed by

lithosols (27%).

4358 DAS ET AL.
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consist of dry tropical and mixed deciduous forests (Figure 3c,d).

Recent land management practices in this region have resulted in a

declining deforestation rate (i.e. �10% in 2001–2010 to �3% in 2010

to 2020) (Das et al., 2022). Major crops include rice, groundnuts and

maize in the monsoon season and wheat, mustard and other vegeta-

bles in the non-monsoon period. Terrace farming is used in agricul-

tural areas due to the uneven and steep terrain (Figure 3a,b). This

region consists of human settlements with urban areas with dense

settlements and rural areas with sparse settlements (Figure 3e,f).

Although terrace farming practices reduce rain-induced soil erosion,

compared to agricultural fields on bare slopes, they can still generate

more sediment than other land use classes such as forests and human

settlements. Three types of soils are present, that is, lithosols (46%),

ferric luvisols (38%) and eutric nitosols (16%) (http://www.fao.org/

soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-

map-of-the-world) (Figure 2d). The presence of lithosols in the catch-

ment soil implies that the climate is humid to arid (de Medeiros

et al., 2019). Lithosols are not very suitable for agricultural practices

due to their rocky texture. However, ferric luvisols and eutric nitosols

have higher water-holding capacity and are more appropriate for agri-

culture. Ferric luvisols are rich in oxides of iron and alumina giving a

distinct red colour, which provided a basis for the mineralogical finger-

printing in this study. Humidity ranges from 40% to 95%, with a tem-

perature variation of 3�C to 44�C. The catchment receives an annual

rainfall of 1250 mm and 80% occurs from July to September. This wet

period delivers a considerable amount of sediment to the reservoir.

2.2 | Source and target sediment sampling

A total of 63 sampling sites (Figure 2c) were selected to characterise

the potential sediment sources in different parts of the study catch-

ment [25, 22 and 16 from agricultural land, forests and human settle-

ment areas, respectively (Supplementary Table S1)]. Each sampling

site was selected to represent an area of nearly 12–18 km2. At each

sampling site, composite sampling was undertaken to account for the

variations in the erodible soil layer characteristics by mixing three to

four sub-samples in a radius of 100–500 m, depending on the acces-

sibility of the locations (Collins et al., 2017). The soil samples (0–5 cm

depth) from potential sources were collected using a non-metallic

trowel (Tiecher et al., 2017). The trowel was washed thoroughly after

each sampling to avoid contamination. The source soil sampling was

conducted in a single campaign, given that the lithological properties

of the area are conservative. For each season, three target

suspended sediment samples each of 2-L volume were collected from

a depth of 0–10 cm from the reservoir inlet (Wang et al., 2019), and

high-density polyethylene bottles were used to store the bulk sedi-

ment samples.

F I GU R E 3 Images of agricultural and forest lands in the Konar study catchment. (a, b) Terrace farming practices in the region. (c, d) Dry and
mixed deciduous forests in the region. (e, f) Human settlements in urban and rural areas of the region. [Color figure can be viewed at
wileyonlinelibrary.com]
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2.3 | Sample processing and laboratory analysis

The sediment samples were centrifuged and filtered to separate sedi-

ment for spectroscopic and mineralogical analysis. The soil samples

were oven-dried for 12 h (Tiecher et al., 2017) and sieved through a

63-μm sieve to separate silt, clay and fine sand fractions (Bahadori

et al., 2019). For assessing the accuracy of the MIR-PLS regression

models, 30 laboratory mixtures were prepared with different ratios of

source soil samples (Supplementary Figure S2). The MIR spectra

of the samples were measured on KBr pellets (comprising �1 mg of

sample mixed with 200 mg of FTIR grade KBr) at wavelengths span-

ning 400–4000 cm�1 using a NICOLET 6700 (Thermo Fisher Scien-

tific Instruments) FTIR spectrometer in reflection mode (2-cm�1

resolutions for all the sediment and soil samples with 32 scans per

sample in triplicate). The spectra obtained from the pellets were

corrected with respect to the pure KBr pellets and ambient air. Three

spectral pre-treatments were used: Savitzky–Golay filter baseline cor-

rection, first derivative and multiplicative scatter correction (Ni

et al., 2019).

All soil and sediment samples were also analysed using X-ray dif-

fraction. Here, the spectra were measured in triplicate in the range of

10 to 80 degrees using a Bruker D2 phaser XRD system. The spectra

obtained from XRD contain several peaks (�400 peaks) for different

minerals, which were further analysed using the Xpert Highscore soft-

ware to obtain the representative mineralogical composition by mass

of the samples.

2.4 | Discrimination potential of spectroscopic and
mineralogical tracers

The uncertainty due to the collection of a limited number of soil sam-

ples in representing the heterogeneity of the study catchment was

examined using ‘K-fold’, ‘Holdout’ and leave-one-out (LOO) cross-

validation methods. The K-fold cross-validation was executed using

five folds of the sample data, and the ‘Holdout’ method was per-

formed by partitioning 30% of the data for testing. The MIR spectral

variables of the 63 soil samples from the three land use classes were

analysed using PCA-DA to test the discrimination potential and obtain

the misclassification rate of the source samples (Equation 1):

X1,1 � � � X1,n

..

. . .
. ..

.

X63,1 � � � X63,n

2
664

3
775,

a1�26

f1�22

h1�15

2
64

3
75 ð1Þ

(a = agricultural samples, f = forest samples, h = human settle-

ment samples, n = 1869 spectral variables)

X1, 1 = variable 1 of spectral data of Sample 1.

For successful sediment source discrimination and apportion-

ment, the input tracer data need to be conservative (i.e. no substantial

change during transport between source and target sediment sam-

pling location) and informative (i.e. how well it can differentiate

between the individual sources) (Upadhayay et al., 2017). Mixing

models consider that the mixing of sediment from the potential

sources is homogeneous. Therefore, to differentiate between the indi-

vidual sampled sources, the tracers should fall in the range of

credibility. Considering the mineralogical composition of the source

soil samples for the respective classes (Equation 2), the samples were

cross-validated with all the tracers using linear discriminant analysis

(LDA). The misclassification rate was determined to evaluate the

source discrimination potential of the tracers:

Y1,1 � � � Y1,p

..

. . .
. ..

.

Y63,1 � � � Y63,p

2
664

3
775,

a1�26

f1�22

h1�15

2
64

3
75 ð2Þ

Y1, 1 = proportion of mineral 1 in Sample 1.

p = number of minerals used in the study.

2.5 | Source apportionment using mineralogy–
MixSIAR mixing model

Unmixing of sediment samples was carried out to determine the pro-

portional contribution of the individual sediment sources (i.e. land use

classes):

X¼
XS

s¼1
αs:βs ð3Þ

X = tracer composition of the mixture.

αs = tracer composition of sources.

βs = proportional contribution of tracer in source s.

For multiple tracers, the generalised equation is formulated as

Equation 4:

X¼
XS

s¼1
αn,s:βn,s ð4Þ

n = number of tracers.

The MixSIAR R package was used for source apportionment

(Parnell et al., 2013) with the following values for our Markov chain

Monte Carlo settings: number of chains = 3,

chain length = 3,000,000, burn = 1,500,000, thin = 500. This open-

source R software package, MixSIAR was developed by researchers

taking into account some important considerations for source finger-

printing, including taking explicit account of (i) hierarchical structure,

(ii) uncertainty in the means and variances of source data,

(iii) covariance in tracer values and (iv) covariates in the mixing model

(Stock & Semmens, 2018). The efficiency of Bayesian sediment finger-

printing models has been reported elsewhere (Cooper et al., 2015;

Gateuille et al., 2019; Gholami et al., 2017).

To check the potential of the tracers for discriminating the sedi-

ment sources, a range test followed by a Kruskal–Wallis (KW) test

(p < 0.01) was performed (Collins et al., 2017). As a result, a set of

minerals was selected to execute the mixing model. To analyse the

ability to discriminate between the source mineralogical signatures, a

discriminant function analysis (DFA) was carried out using the statisti-

cal 13.4 software. DFA is mainly performed to determine the ability of

the tracers to discriminate between two or more groups. Finally, the

selected tracers were applied in the Bayesian mixing model for

the apportionment of the sources (i.e. land use classes).
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Prior information about the study catchment was used with the

Bayesian mixing model framework. Here, the Dirichlet distribution is

most widely applied for informative priors (Stock & Semmens, 2018).

The proportion of area covered by the individual land use groups was

used as an informative prior vector (α = 45, 37 and 18 for agricultural

lands, forests and human settlements, respectively) in this analysis. To

avoid skewing the model results, the priors were scaled using

Equation 5:

αm ¼ knk=
P

nk ð5Þ

m = respective source,

k = rescaling factor (considered 5 for this study).

nk = (%) area covered by respective land use classes.

Based on Equation 5, the improved moderate prior vectors were

estimated: 2.25 for agricultural lands (45%), 1.85 for forests (37%) and

0.9 (18%) for human settlements (Supplementary Figure S3).

2.6 | Source apportionment using spectroscopy–
PLS regression mixing model

In spectroscopic studies, PLS regression is applied as a multiple

regression approach for predicting a dependent variable from a set of

predictor variables. In this method, the scores of variables are selected

to maximise scores between the correlations within the variables. The

main difference between PCA and PLS regression is that the scores of

the variables are not selected based on preserving the maximum cor-

relation between the variables (Long, 2013). In this study, the PLS

regression model was used to predict the source contributions by

decomposing both the predictor and dependent variables.

Three PLS regression models were entrenched to predict the con-

tribution of the land use classes to the target sediment samples. The

number of PLS variables selected for model calibration and validation

was decided based on the lowest root mean square error of cross-

validation (RMSECV). The PLS regression method was used to analyse

the MIR spectra of the laboratory mixtures (x variate) and the

T AB L E 2 Results indicating variation (mean and standard deviation) of mineralogical tracers in the three land use classes in the Konar
catchment as obtained from XRD analysis.

Minerals

Agricultural lands (%) Forests (%) Human settlements (%)

Mean SD Mean SD Mean SD

Quartz 34.88 7.66 29.88 4.85 34.36 8.16

Silica 29.63 7.12 31.11 9.85 24.85 12.8

Alumina 9.85 5.56 11.23 4.88 7.63 5.25

Halite 8.12 4.07 6.89 5.88 7.12 4.12

Calcite 7.82 5.21 5.63 5.01 5.03 4.23

Green cinnabar 6.85 3.36 5.67 2.67 6.1 4.8

Bornite 3.03 2.45 3.65 1.68 3.22 1.25

Fluorite 1.02 0.67 0.87 0.53 2.01 1.27

Silicon 0.92 0.4 0.45 0.48 0.81 0.23

Mica 0.69 0.32 0.51 0.37 0.46 0.11

Burnt ochre 0.09 0.13 0.49 0.1 0.03 0.06

Dolomite 0.07 0.019 0.48 0.03 0.025 0.06

T AB L E 3 Variation of mineralogical tracers in the sediment samples collected from the reservoir.

Sampling
timescale

Mean/
SD

Quartz
(%)

Silica
(%)

Alumina
(%)

Halite
(%)

Calcite
(%)

Green cinnabar
(%)

Mica
(%)

Bornite
(%)

Dolomite
(%)

July 2018 Mean 33.48 28.03 5.47 7.20 11.97 3.71 2.63 10.01 6.19

SD 2.21 1.32 0.55 2.31 1.90 3.74 2.66 0.39 1.99

August 2018 Mean 35.67 29.33 3.67 8.67 15.00 2.33 1.65 3.67 7.46

SD 4.51 1.53 1.53 2.08 3.00 2.52 1.79 3.06 1.79

October 2018 Mean 41.33 36.67 7.00 2.67 7.00 4.33 3.07 0.00 2.30

SD 1.53 2.08 4.36 2.52 5.57 0.58 0.41 0.00 2.17

December 2018 Mean 35.00 27.00 13.17 3.00 8.33 5.67 4.03 4.67 2.58

SD 6.24 3.46 0.76 1.00 2.52 2.08 1.48 1.53 0.86

March 2019 Mean 37.47 29.10 11.07 1.67 3.33 12.07 8.57 2.33 1.44

SD 3.14 4.75 2.90 0.58 1.15 1.05 0.75 3.21 0.50

June 2019 Mean 37.23 36.17 1.36 6.13 11.69 1.79 1.27 4.29 5.27

SD 0.75 0.76 0.21 0.06 0.50 0.06 0.04 0.18 0.05
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contribution from the land use classes (y variate). The model perfor-

mances were evaluated using statistical indicators: that is, RMSECV,

root mean square error of calibration (RMSEC), root mean square

error of prediction (RMSEP), coefficient of determination (R2) and

Nash–Sutcliffe efficiency (NSE) (Tiecher et al., 2017).

3 | RESULTS

3.1 | MixSIAR model based on mineralogical
tracers

The main minerals detected in the source and target sediment sam-

ples were quartz, silica, alumina, halite, calcite, green cinnabar, bornite,

fluorite, silicon, mica, dolomite and burnt ochre. The variation of the

minerals in the soil samples is depicted in Table 2 and sediment sam-

ples in Table 3. Based on the range test (Figure S4), dolomite and mica

were rejected as tracers for the analysis due to the lack of

conservation.

From the KW test results in Table 4, it can be seen that fluo-

rite, silicon and burnt ochre failed to provide robust source discrimi-

nation. The results of DFA illustrated that minerals present in the

source soil samples discriminated the land use classes more effi-

ciently than spectroscopic variables (Figure 4). From the posterior

distributions of sediment source contributions for July, August and

March (Figure 5a,b,e), it can be observed that the major contributor

of sampled sediment was agricultural lands. In contrast, the contri-

bution of forests was dominant in June (Figure 5f). Moreover, we

checked the applicability of the MixSIAR with the artificial mixtures

(Figure S5).

3.2 | PLS regression models based on MIR spectra

The sediment samples collected from the reservoir were subjected to

particle size analysis and based on the mean particle size distribution

of the sediment samples (shown in Figure S1), 95% of the particles

were found to be silt and clay (i.e. particle size range of <63 μm). The

MIR reflectance spectrum of soil depicts the presence of minerals and

organic compounds in different forms. The detailed information of dif-

ferent bonds corresponding to different peaks has been reported in

several publications (Ni et al., 2019; Tiecher et al., 2017). Figure 6

shows pronounced variations in the spectral features of soil from the

different land use classes, including in the characteristics peaks of C–

H stretch (3500–3000, 3000–2800, 2250 and 2133 cm�1), O–H

stretch (3694, 3620, 1628 and 915 cm�1), mixture of C–H, O–H and

N–H stretch and Si–O stretch (1975, 1872, 1158, 1110, 810, 790

and 698 cm�1) (Tiecher et al., 2017). The variations in carbonate

peaks in the soil samples depict the presence of loess. The carbonate

peaks are stronger in forest soil than the other two classes of land use

in the Konar River reservoir system. The peaks in the range of the

non-organic range are comparatively lower in the forest source sam-

ples than in the other two classes of land use. The discrimination

potential of the MIR spectra for the soil samples collected from differ-

ent land uses was determined based on the results of PCA-DA. The

T AB L E 4 Results of the Kruskal–Wallis (KW) test to identify
significant mineralogical tracers in the Konar study catchment.

Tracers
H-value (>28.13)
*(test static) p-value (<0.01)

Quartz 38.530 0.0001

Silica 31.980 0.0003

Alumina 32.950 0.0009

Halite 28.290 0.0028

Calcite 29.776 0.0056

Green cinnabar 30.757 0.0004

Bornite 34.029 0.0002

Fluorite 17.160 0.0098

Silicon 3.788 0.1532

Burnt ochre 9.060 0.1270

F I GU R E 4 Results of DFA conducted on the mineralogical composition of the source samples collected to represent the land use classes in

the Konar study catchment. [Color figure can be viewed at wileyonlinelibrary.com]
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PCA analysis indicates five principal components explained �90% of

the variance in the data (Figure S6). LDA was performed on these five

principal components for the three land use classes (Figure 7).

Although, from Figure 7, it can be seen clearly that there are some

overlaps between the forest and agricultural soil spectra, discrimina-

tion between the three land uses is still evident. One possible reason

for this overlapping of forest and agricultural source samples could be

the presence of light vegetation and the merging of minor classes

F I GU R E 5 MixSIAR model density
plots for the land use source
contributions for different time periods:
(a) July 2018, (b) August 2018, (c) October
2018, (d) December 2018, (e) March 2019
and (f) June 2019. [Color figure can be
viewed at wileyonlinelibrary.com]

F I GU R E 6 Mean MIR spectra of the
soil and sediment samples collected from
the Konar catchment. [Color figure can be
viewed at wileyonlinelibrary.com]
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including fallow lands or grasslands into the agricultural and forest

classes, respectively.

The set of 30 artificial mixtures created in the laboratory was

used to examine the performance of the MIR-PLS regression models

(Poulenard et al., 2012; Tiecher et al., 2017). Based on the lowest

RMSECV values, five PLS components were selected for the agricul-

tural, forest and human settlement models (Table 5). Figure 8 shows

the agreement between the actual and the predicted contributions of

the land use classes based on the set of 30 artificial laboratory mix-

tures. The variations between observed and predicted source contri-

butions in the calibration and validation datasets, based on RMSEP

and RMSEV, were consistently less than �4%, with an R2 exceeding

�0.8 and NSE values ranging between 0.71 to 0.76. The correlations

(Table 5) between actual and predicted proportions were higher for

the agriculture and forest sources (R2 of 0.89 and 0.87, respectively)

but weaker for the human settlement source (R2 of 0.82).

3.3 | Comparative inspection of the modelled
source proportions

The predicted contributions of the land use classes from both models

are compared in Figure 9a. The results indicate that agricultural land

use is predicted to be the largest contributor of sediment (�41% to

�60%) during monsoon months (July–August) by both models. How-

ever, there are disparities in the estimated contributions of forests

and human settlement areas. During the post-monsoon months

(October–December), the results reveal a sudden increase in the

F I GU R E 7 Results of PCA-DA analysis conducted on the MIR spectra of the land use classes using the first five principal components. [Color
figure can be viewed at wileyonlinelibrary.com]

T AB L E 5 Performance evaluation of the MIR-PLSR models based on spectroscopic variables.

Sources PLS components RMSECV (%) RMSEC (%) RMSEV (%) R2 NSE

Agricultural lands 5 4.21 2.86 2.72 0.89 0.76

Forests 5 3.89 2.14 2.93 0.87 0.74

Human settlements 5 4.26 3.71 3.79 0.82 0.71

F I GU R E 8 Results of the MIR-PLSR modelling showing the agreement between the actual (i.e. known using artificial mixtures) and predicted
proportions of the land use sources sampled in the Konar study catchment: (a) agricultural lands, (b) forests and (c) human settlements. [Color
figure can be viewed at wileyonlinelibrary.com]
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sediment contribution from forest areas (�35% to �43%) and a

decrease in agricultural lands. The results of both modelling

approaches, in general, showed good agreement. The sum of predic-

tions of the models varies between 94% and 102% for MIR-PLSR and

96% and 111% for mineralogy–MixSIAR model (Figure 9b). In most

seasons, the sum of predictions from both models is close to 100%.

However, in the post-monsoon month of December, the MixSIAR

model sum of prediction is 111% but exhibits better accuracy for the

remaining seasons.

3.4 | Source discrimination

The cross-validation tests executed on the MIR spectra and mineral-

ogical composition of the source samples revealed the uncertainty in

the discrimination potential of the variables (Table 6). The

misclassification rates of the source samples for the MIR spectral vari-

ables using K-fold, holdout and LOO methods were 0.23, 0.22 and

0.20, respectively. The corresponding misclassification rates for the

mineralogical variables were 0.19, 0.16 and 0.17, respectively.

3.5 | Geological insights on the source
discrimination results

In view of the high erodibility of ferric luvisols and the fact that agri-

cultural lands were found to be the primary source of sampled sedi-

ment in this study, it can be deduced that more than half of the

agricultural lands are located on the ferric luvisol, which is most critical

in terms of soil erosion and sediment yield (Figure 10). Our results are

consistent with the findings of Kuhn et al. (2009). Considering that

roughly half of the forest is located on lithosols with a low propensity

T AB L E 6 Results of cross-validation for the spectroscopic and mineralogical tracers.

Type of
variables

No. of
variables

Model
used

Misclassification rate

K-fold cross-validation
(K = 5)

Holdout cross-validation
(p = 0.3)

Leave out cross-validation
(n = 1)

Spectral (MIR) 1869 PCA-DA 0.23 0.22 0.20

Mineralogical 10 LDA 0.19 0.16 0.17

F I GU R E 9 (a) Box plots, with 95% confidence intervals, showing the comparison of spectroscopic and mineralogical tracing results in the
Konar study catchment using MIR-PLSR and mineralogy–MixSIAR modelling. (b) Sum of predicted contributions for the MIR-PLSR and
mineralogy–MixSIAR modelling. [Color figure can be viewed at wileyonlinelibrary.com]
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for erosion, this section of forest can be expected to contribute the

least sediment in the study region (Elliot, Page-Dumroese, &

Robichaud, 2018). Studies that analysed soil erosion using regional

geology and soil classifications including lithosols, nitosols and luvisols

also reported similar conclusions (Bekele & Gemi, 2021).

4 | DISCUSSION

4.1 | Sediment sourcing using spectroscopic
fingerprints

As spectral data are highly correlated and noisy with the presence of

more variables than samples, the PLS regression model is the most

effective tool for processing such data (Karaman et al., 2013;

Vercruysse & Grabowski, 2018). Variation in reflectance of the spec-

tra signifies the influence of particle size, organic compounds and min-

erals in the soils of the study area and similar factors have been

discussed in other studies (Brosinsky et al., 2014; Ni et al., 2019). The

results of PCA-DA performed on the spectroscopic variables revealed

an overlap between forest and agricultural soils, whereas the human

settlement samples were very well distinguished. This probably

reflects the presence of organic matter and finer particles in both for-

est and agricultural soils. As the Konar catchment is situated in one of

the mineral-rich valleys (Damodar valley) of India, soil organic matter

(SOM) and mineral-associated (high-density) SOM-based tracing could

provide some extra important information on soil erosion manage-

ment as organo-mineral associations are very prominent in different

land uses, especially forests (Ludwig et al., 2015). Nevertheless, huge

challenges remain for this SOM research theme because of (i) the

unstable nature of and other uncertainties associated with biomarkers

and (ii) high degrees of environmental and analytical uncertainty

(Li et al., 2020).

A study by Ni et al. (2019) performed PCA-DA analysis for sam-

ples collected from topsoil and channel sediments and found promis-

ing results. However, in our case, the overall reflectance of forest soil

spectra showed greater variation, which most likely reflects the higher

contents of finer particles compared with the other land use classes,

which are more prone to water erosion (Figure S7).

Previous work has reported successful application of spectral fin-

gerprints using PLS regression models (e.g. Tiecher et al., 2015; Uber

et al., 20192019). One limitation associated with the use of spectral

fingerprints includes sediment-bound organic matter, which is non-

conservative, making spectral fingerprints unsuitable for suspended

sediment source tracing (Collins et al., 2014). Stevens et al. (2008)

highlighted one limitation of PLS regression associated with its site-

specific nature.

4.2 | Sediment sourcing using mineralogical
fingerprints

The results of DFA performed on the mineralogical variables in this

study showed that the discrimination of the land use classes is feasi-

ble without any overlapping of the samples. Previous sediment finger-

printing studies have employed mineralogy for the (i) development of

effective beneficial best management practices (BMPs) and under-

standing of the connectivity of sediment delivery and land uses

(Koiter et al., 2013) and (ii) determination of the provenance of flood-

plain deposits (D’Haen et al., 2013) and many more applications. In

our case, although, the mineralogical and spectroscopic tracers gener-

ated similar results, the 95% confidence intervals of the mineralogical

method were more precise (Figure 9a). Laceby et al. (2015) highlighted

the importance of including meaningful mineralogical elements and

their geological basis for use as tracers and discussed the uncertainty

of merely relying on statistical techniques alone. Batista et al. (2019)

argued that statistical methods using geochemical element finger-

prints can yield very similar results to the use of any knowledge-based

(i.e. of pedogenetic processes) tracers in the case of finer particle size

fractions but that greater disparities can occur in the case of coarser

sediment particles.

4.3 | Comparison between mineralogical and
spectroscopic source apportionment

There are very few studies comparing spectroscopic and geochemical

analysis (Tiecher et al., 2016; Verheyen et al., 2014). The existing

studies suggest that both methods can deliver source discrimination

but that some disparities can exist between the results because of the

nature of the specific variables selected or mixing models applied.

Evrard et al. (2013), for example, used diffuse reflectance infrared

Fourier transform spectroscopy and showed that its results were con-

sistent with the conventional geochemical approach but emphasised

the need to consider the organic carbon content of soils as the results

were influenced by the presence of organic matter. Our study herein

also advocates the possibility of combining both mineralogical compo-

sition and spectroscopic information for robust estimation of sedi-

ment sources. In the post-monsoon season, the mineralogy–MixSIAR

model predicts the contribution of forests to be closer to that of the

agricultural land use class, whereas the results are different in the case

of the MIR-PLS regression model. Artificial mixtures of known source

contributions provided an efficient opportunity to assess the accuracy

of the sediment fingerprinting methods (Cooper et al., 2014; D’Haen

et al., 2013).

F I GU R E 1 0 Proportion of soil classes in the land use classes of
the Konar catchment. [Color figure can be viewed at
wileyonlinelibrary.com]
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4.4 | Catchment land use properties

Our study catchment includes forests as a major land use class and a

large proportion of the forest areas are located very near to the reser-

voir with reasonable sediment connectivity as reported by Das et al.

(2022). This is most likely justification for the estimated contribution

of forests in both the monsoon and non-monsoon seasons. The

appearance of sediment from forests in post-monsoon seasons could

be connected to the time lag and residence time of suspended sedi-

ment and the nature of monsoon-driven erosion patterns in the study

catchment. Another possible reason for the increase in sediment

inputs from forests could be the fragmented forest cover and mixed

forests resulting in a reduction in infiltration and concomitant increase

in runoff as reported by Rajbanshi and Bhattacharya (2020). However,

most of the rainfall in this region (�80%) takes place in the monsoon

season. From this irregular pattern of sediment generation, it can be

inferred that the high predicted contribution of sediment (�35% and

43% by the PLSR and MixSIAR models, respectively) from forests in

the post-monsoon season is not illogical. Moreover, the explanation

for these seasonal differences could also be associated with seasonal

cropping patterns and agricultural management practices, as well as

the influence of pre-monsoon showers. Seasonal patterns in the den-

sity of crop cover generate a seasonal control on sediment delivery in

our study area (Kretz et al., 2021; Loaiza, 2008).

4.5 | Limitations and uncertainties

The source apportionment reported in this study inevitably has some

limitations. A common limitation of the sediment fingerprinting

method concerns difficulty in validating the source proportions in the

absence of independent monitoring data (Collins et al., 2017).

The total number of samples collected from the potential sources

inevitably depends on some practical constraints such as research

budget, accessibility of the locations and the requirements of any

tests used for statistical source discrimination. The findings of this

study are specific to the studied catchment and might not be directly

applicable to larger or different river basins with varying geomorpho-

logical and land use characteristics. In some catchments, channel

banks may serve as significant source groups, contributing to a more

comprehensive understanding of sediment dynamics. This aspect was

not considered in our study. However, recent studies by Pulley and

Collins (2024) and Pulley and Foster (2017) have emphasised the

importance of channel banks as potentially substantial sources of sed-

iment. To enhance the robustness and accuracy of our results, future

research should include sampling from channel banks. The merging of

minor land use classes into major categories could oversimplify the

complex interactions between different land uses and sediment pro-

duction. The precision and accuracy of the XRD and MIR analytical

techniques used for tracer identification might introduce uncertainties

in the results. Moreover, the non-linearities in modelled outcomes

compared to laboratory mixtures arises probably due to complex sedi-

ment transport processes, spatial and temporal variations in sources,

mixing and transformation of sediments, non-conservative behaviour

and simplified modelling assumptions. Addressing these challenges

highlights the need for advanced modelling techniques. Other poten-

tial uncertainties could be associated with the spatial heterogeneity of

rainfall, slope and lithological characteristics of the catchment. To

explore temporal uncertainty, sediment sampling was performed for a

water year (Nosrati, 2017). Our study was conducted during 2018–

2019, which can be considered as a typical, rather than atypical, water

year (Bahadur et al., 2020).

We performed limited interpretation of the effect of geo-

morphologic events [(e.g. landslides as mentioned in Pickup and Marks

(2000) and Fathabadi and Jansen (2022)]. Future research could

investigate sediment provenance by focusing on processes like rock

deterioration (Pola et al., 2014), other environmental stresses

(Collins et al., 2020) and geomorphological events such as landslides

(Pickup & Marks, 2000). As mentioned in Jacq et al. (2019), sediment

fingerprinting has much more potential for deriving new knowledge

if there are proper collaborations between palaeo-climatologists,

geomorphologists and hydrologists. A better understanding of

sediment sources within gully systems and the quantification of gully

sediment transport at the catchment scale are essential for effective

management and control policies (Lin et al., 2015). However, this

aspect is not considered in our study. Thus, future sediment sourcing

work in the Konar drainage basin should acknowledge that sediment

transport processes are rather complex in nature and can be triggered

by various factors including channel morphology or channel properties

and landslides (Xiong et al., 2022) as well as by conventional fluvial

and hydrological dynamics. Although we recognise the importance of

economic considerations and the transferability of methods, as

discussed in Pulley and Collins (2021), this study has not considered

the cost–benefit evaluations of multiple tracer and data processing

analyses. For future research, we recommend incorporating

cost–benefit evaluations and exploring the broader applicability and

economic feasibility of various methods, such as sampling strategies

of MIR spectroscopy and XRD with MixSIAR modelling, to enhance

the transferability of our findings.

5 | CONCLUSIONS

Our work illustrated a reasonable agreement between both source

tracing techniques in the Konar study catchment for the monsoon and

post-monsoon seasons. The findings suggested that agricultural land

use was the major sediment source, especially during the monsoon

season, whereas forests deliver a greater proportion of the target sedi-

ment in the post-monsoon months. These results are critical for priori-

tizing the implementation of land use and erosion control measures.

Our study illustrates how a detailed evaluation of sediment sources

with different tracer sets, fingerprinting techniques and mixing models,

is advisable to help confirm management targets more robustly.
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