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EpiGeNet:

A Graph Database of Interdependencies Between Genetic

and Epigenetic Events in Colorectal Cancer

IRINA BALAUR,1 MANSOOR SAQI,1 ANA BARAT,2 ARTEM LYSENKO,3 ALEXANDER MAZEIN,1

CHRISTOPHER J. RAWLINGS,3 HEATHER J. RUSKIN,4 and CHARLES AUFFRAY1

ABSTRACT

The development of colorectal cancer (CRC)—the third most common cancer type—has
been associated with deregulations of cellular mechanisms stimulated by both genetic and
epigenetic events. StatEpigen is a manually curated and annotated database, containing
information on interdependencies between genetic and epigenetic signals, and specialized
currently for CRC research. Although StatEpigen provides a well-developed graphical user
interface for information retrieval, advanced queries involving associations between mul-
tiple concepts can benefit from more detailed graph representation of the integrated data.
This can be achieved by using a graph database (NoSQL) approach. Data were extracted
from StatEpigen and imported to our newly developed EpiGeNet, a graph database for
storage and querying of conditional relationships between molecular (genetic and epige-
netic) events observed at different stages of colorectal oncogenesis. We illustrate the en-
hanced capability of EpiGeNet for exploration of different queries related to colorectal
tumor progression; specifically, we demonstrate the query process for (i) stage-specific
molecular events, (ii) most frequently observed genetic and epigenetic interdependencies in
colon adenoma, and (iii) paths connecting key genes reported in CRC and associated events.
The EpiGeNet framework offers improved capability for management and visualization of
data on molecular events specific to CRC initiation and progression.

Keywords: computational molecular biology, graph database, epigenetics, molecular inter-

dependencies, colorectal cancer, networks.

1European Institute for Systems Biology and Medicine (EISBM), CIRI UMR CNRS 5308, CNRS-ENS-UCBL-
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1. INTRODUCTION

According to statistical studies, colorectal cancer (CRC) is the third most common cancer type, after

lung and breast cancers, accounting for around 8% and 13% of all new cancer cases in the United States

(2015) (Cancer of the Colon and Rectum—SEER Stat Fact Sheets, n.d.) and Europe (2012) (Bowel Cancer

Incidence Statistics, n.d.), respectively. Over the last two decades, it has been shown that both genetic and

epigenetic events (e.g., mutation, deletion, insertion of DNA sequences, and molecular interactions that

affect gene expression without changing DNA sequence) induce abnormal micromolecular modifications,

leading to cancer development (further details are given in the Brief Biological Background section).

A major characteristic of cancers, which affects both investigation and interpretation, is heterogeneity of

the biological information that characterizes malignant systems. The representation of these systems in-

volves relationships linking multiple interdependencies between genetic and epigenetic modifications that

lead to cancer development. Relational databases that focus on various features of cancer pathways have

appeared with increasing frequency [e.g., MethyCancer (He et al., 2008), Catalogue of Somatic Mutations

in Cancer (COSMIC) (Forbes et al., 2015)]. While the relational data approach has proved useful for

management of structured data, issues remain in moving forward. For example, (i) integration of multiple

data types in relational databases is nontrivial as it involves redefinition of data schema where new

information follows a different structure; (ii) in exploration of cancer-related hypotheses, different concepts

may need to be linked. Using highly connected information (specific to malignant systems) can be inef-

ficient for queries, which associate (join) data stored in a number of different tables with correspondingly

slow response times. The graph database approach has demonstrated capability in facilitating not only both

(i) and (ii) but also in (iii) exploration of context, characterized by wide diversity.

In a graph database, concepts are represented by nodes and their associations by edges. Thus, the

approach provides a more natural way of representing highly interconnected data, with exploration of

stored content benefitting additionally from the use of different graph algorithms. A key feature of graph

databases is that traversal exploration is permitted [i.e., nodes can be accessed from neighbor nodes by

means of edge connections (relationships)]. This gives a major advantage in terms of performance in

comparison to relational databases, where such associations require loops on multiple table indexes. Ex-

amples of graph database frameworks include AllegroGraph (AllegroGraph url, n.d.), Sparksee (Sparksee

url, n.d.), FlockDB (FlockDB url, n.d.), InfiniteGraph (InfiniteGraph url, n.d.), OrientDB (OrientDB url,

n.d.), and Neo4j (Neo4j url, n.d.).

Neo4j is a well-established framework for ‘‘property graphs,’’ fundamental to graph databases spe-

cialized for directional relationships (directed edges) and ‘‘multirelational graphs’’ (with nodes linked by

multiple different edges). Additional information on concept and relationships can be stored as properties

(or attributes) of the nodes and edges. The Neo4j framework uses Cypher, a declarative query language

(similar to SQL), to perform data interrogation. In Life Sciences, the Neo4j framework has been used to

develop ecosystems that facilitate management (integration, visualization, and exploration) of various

biological and medical data types. For example, HitWalker2 is an interactive framework that integrates

different data types (such as gene expression, DNA methylation, and drug sensitivity) and can be used to

investigate gene context in human diseases (Bottomly et al., 2015). HRGRN is a Neo4j-based framework

developed for management of genome-scale data related to Arabidopsis systems (including information on

metabolic and signaling pathways, gene regulation), which facilitates investigation of relationships (as-

sociations, interactions) among these data (HRGRN url, n.d.).

Neo4j-based models have been developed also to capture and explore semantic relationships among

computational and mathematical models related to cancer and to other biological systems [e.g., Johnson

et al. (2014) and Henkel et al. (2015)]. In Henkel et al. (2015), authors describe a Neo4j-based framework

that facilitates identification, comparison, and ranking of in-silico models (encoded in SBML and CELL-

ML standard formats and stored in major specialized resources such as BioModels Database) that corre-

spond to specific categories.

In this study, we present a Neo4j graph database developed for the management of genetic–epigenetic

interdependencies in CRC development. We provide Cypher query examples on the way in which the graph

database can be applied to CRC initiation to identify (i) genetic–epigenetic modifications and (ii) molecular

phenomena observed and reported in the specialized literature. In addition, we explore path connections asso-

ciated with the highest ‘‘incidence score’’; the score is computed as a product of the conditional probabilities of

relationships between molecular events, with the highest scores associated with the most plausible pathways.
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2. BRIEF BIOLOGICAL BACKGROUND

CRC initiation is associated with aberrant cell growth rate in the colon epithelium leading to polyps

(considered benign). If not removed, the colon adenomatous polyps may increase in size and become

malignant over time. Thus, while the colon adenoma is a phenotype, characterized by benign modifications,

malignant characteristics are already present at adenocarcinoma or carcinoma stages. As the tumor pro-

gresses, cancer cells feature the accumulative aberrant changes within polyps that facilitate cell prolifer-

ation and eventually migration. Finally, CRC can extend to other organs, including the liver and lungs,

leading to metastasis.

Cancer initiation and progression have been linked, in recent years, to aberrant genetic and epigenetic

changes. Epigenetic events are molecular phenomena that influence gene expression without modifying the

DNA sequence [e.g., Allis et al. (2007)]. Epigenetic modifications have been observed to occur as part of

the aging process and in the earliest stages of human diseases, including cancers and neurodegenerative

disorders. Signatures include changes in DNA methylation, proteins known as histones (that contribute to

nucleosome arrangement of the DNA sequence), and small noncoding RNAs (which contribute to cell

protection) (Allis et al., 2007; Baylin and Jones, 2011). DNA methylation (DNAm) (or the addition of a

methyl group to a cytosine ring) is a major epigenetic event with an important role in gene regulation (Allis

et al., 2007). Two aberrant forms of DNA methylation, hyper- and hypomethylation (increased and de-

creased methylation relative to normal, respectively), have been detected in cancer development. Speci-

fically, hypermethylation of the CpG islands1 in the promoter of the tumor suppressor genes leads, in many

cases, to gene silencing, while global hypomethylation influences proto-oncogene activation and chro-

mosomal instability (Bjornsson et al., 2004; Allis et al., 2007; Baylin and Jones, 2011). Modification of

histones is another major epigenetic event influencing chromatin dynamics (where chromatin is the

combination of DNA and proteins that comprise the cell nucleus). Acetylation2 and methylation of histones

H3 and H4 (known as core3 histones) are the most studied forms of modification to date.

Interdependency between DNAm and histone modifications also has been recently reported (Cedar and

Bergman, 2009). Specifically, findings indicate that unmethylated DNA and histone acetylation determine

an open chromatin form, while nonacetylated histones and DNAm induce a more compact chromatin

structure. In addition, histone methylation can increase DNAm level. In terms of the dynamics, DNAm is

known to change more slowly than histone proteins (Cedar and Bergman, 2009). In addition, small

noncoding RNAs play a major role in cellular developmental phases, being involved in cell protection

against viral infections and also in determining DNA methylation patterns (Carthew and Sontheimer, 2009;

Ghildiyal and Zamore, 2009; Mattick et al., 2009).

Epigenetic modifications are notable, both for their reversibility potential and for faster dynamics

compared to genetic alterations (Dworkin et al., 2009; Alegrı́a-Torres et al., 2011). Over the last decade,

development of drugs targeting different epigenetic changes has become a major area of interest for

pharmaceutical companies. In epigenetic therapy, the focus is thus to identify molecular mechanisms,

which can inhibit epigenetic alteration occurring or succeed in reversing that which has taken place, while

minimizing side effects of dosage (Azad et al., 2013; Stein, 2014).

3. METHODS

3.1. Data collection

The EpiGeNet framework has been developed using a graph database approach by integrating statistical data

on molecular interdependencies observed in CRC development, mined from a manually curated and annotated

database, StatEpigen (Barat and Ruskin, 2010; StatEpigen url, n.d.) (note: reference date for data integration

from StatEpigen into EpiGeNet is November 30, 2015). In StatEpigen, information is structured by simple and

conditional relationships between genetic and epigenetic events. Data on hyper/hypomethylation, mutation,

histone modifications, loss of heterozygosity, and gene expression are included (for healthy phenotype) with

1CpG islands are genomic regions (of length ‡ 200 bp) with the percentage of CG dinucleotides > 50%.
2Histone acetylation and methylation refer to addition of acetyl and methyl compounds, respectively, to histones.
3Two groups of histones are known: the core set (including H2A, H2B, H3, H4) and the linker set (H1 and H5) (Ito,

2007).
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additional detail on polyps, adenoma, carcinoma, or metastasis (for CRC development in aberrant cases). Note:

the baseline data extracted from StatEpigen use the gene symbols (HUGO notation); full gene names used in this

article are provided in Supplementary Table S1, where the gene symbol-full name mapping was resolved using

the ‘‘Retrieve/ID mapping’’ tool from the UniProt database (Consortium, 2015). The simple relationships

represent the probability of single molecular event occurrence at a specific oncogenesis stage; for example, from

StatEpigen (Barat and Ruskin, 2010),

P APC hyperMeth CpGð Þ; adenomað Þ = 0:459; (1)

is the probability of hypermethylation at CpG islands in APC promoter = 0.459 in colon adenoma for the

available data set. Simple relationships have general form giving values (val1)

P Geð Þ; sð Þ = val1; (2)

where G = gene symbol, e = molecular event for gene G, s = oncogenesis stage. Thus, in Equation 1,

G = APC gene, e = hypermethylation at promoter CpG islands, and s = adenoma. The conditional rela-

tionships are given by the Bayesian expression for the dependence of two molecular events, described by:

P G2 e2ð Þj G1 e1ð Þ; sð Þ = val2; (3)

where G1, G2 = gene symbols, e1, e2 = molecular events for genes G1 and G2, respectively, s = oncogenesis

stage, as before. For example, from StatEpigen (Barat and Ruskin, 2010),

P KRAS mutationð Þj APC hyperMeth CpGð Þ; adenomað Þ = 0:269; (4)

is the conditional probability of KRAS mutation (based on empirical evidence from the literature), given

APC hypermethylation at CpG islands in adenoma stage. Terms are defined similarly as above. In addition,

conditional relationships between various events observed in the context for the same gene can be obtained

from the curated literature and are available also in StatEpigen. For example, the relationship

P KRAS mutationjKRAS mutation; polypsð Þ = 0:330 (5)

indicates the empirical conditional probability (relative frequency) between two different mutation types of

the KRAS gene, in polyps phenotype = 0.330. In this article, such conditional relationships are denoted as

‘‘self-relationships’’ (where G1 = G2 and e1 = e2). For both simple and conditional relationships, the mo-

lecular event is denoted by the pairwise list gene symbol (G) and event type (e).

3.2. Data model

In EpiGeNet, molecular events of conditional relationships are represented by the MolecularEvent nodes.

The node identifier (key) is given by a pairwise (Gi ei) list; the relationship between molecular events is

represented by an edge connecting the two MolecularEvent nodes. The edge type is determined by phe-

notype information (healthy phenotype or aberrant stages, including polyps, adenoma, carcinoma, metas-

tasis) and edge direction by the conditionality of the relationship. Information on gene symbol and event

type is stored as attributes of the MolecularEvent node, and the probability value is stored as a property

of the edge (denoted as ‘‘CondProbValue’’). Details on the experiments, providing information on the

conditional relationship, are also stored as edge properties (attributes); specifically, these include the

‘‘TestedSampleNo’’ attribute (number of samples of the experimental analysis) and the ‘‘Pmid’’ attribute

(the PubMed identifier of the publications describing the experiments). For example, the conditional

relationship shown in Equation 4 is represented by two MolecularEvents nodes, connected by an ADE-

NOMA edge with direction APC hypermethylation -> KRAS mutation, where CondProbValue = 0.269

(Fig. 1). The relationship (Equation 4) was reported in article with PubMed identifier (Pmid) = 16902913

( Judson et al., 2006), where APC hypermethylation was measured in 52 tumor samples. Thus, edge

attribute: Pmid = 16902913 and TestedSampleNo = 52. The ‘‘self-relationships’’ (e.g., Equation 5) are re-

presented similarly, with the edge linked in this case to the same node (Fig. 1).

The StartEvent node label was introduced for representation of simple relationships [such as expres-

sion (Equation 1)] to facilitate distinction between these and self-relationship terms. Thus, a simple rela-

tionship is represented by an edge from a StartEvent node to a MolecularEvent node, where both nodes

contain the same information on gene symbol and event type. Information on phenotype levels indicates edge
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type, with simple probability value stored as an attribute of the edge (denoted as the ‘‘SimpleProbValue’’).

Similar to conditional relationship, details on the publication identifier and sample number of the experi-

mental analysis are stored as ‘‘Pmid’’ and ‘‘TestedSampleNo’’ edge attributes, respectively. Hence, the

simple relationship shown in Equation 1 (which indicates the probability of gene APC being hypermethylated

when phenotype is adenoma) is represented by an ADENOMA edge connecting a StartEvent node (with

key = APC hypermethylation) to a MolecularEvent node with the same key (Fig. 1); this edge has attributes,

Pmid = 18716850 (Dhir et al., 2008) and TestedSampleNo = 25.

Data from StatEpigen were filtered to include only results where both molecular events are present in the

conditional relationships and information on the tested sample number is given. In cases where different

studies have reported the same conditional/simple relationships, but with different probability values, these

data were combined to give a single conditional/simple relationship with probability value calculated from

a weighted arithmetic mean (expectation) based on the initial probability values and tested sample numbers.

The data model is represented in Figure 1, and details on the number of edges corresponding to the

phenotypes are given in Table 1.

3.3. Availability of the database

The framework described above was developed predominantly in JAVA (eclipse) using the Neo4j 2.3.1

functionality. It is available for noncommercial purposes, and the code files developed to populate the

Neo4j graph database using the StatEpigen data are freely available (see the first Reference). The queries

described further can be explored (see first Reference for url).

FIG. 1. The data model representation. Schematic representation of genetic–epigenetic interdependencies in healthy

phenotype and aberrant phenotype, indicating different stages of colon oncogenesis. The conditional relationships are

represented by edges connecting two MolecularEvents nodes (blue circles); the simple relationships are represented by edges

connecting a StartEvent node (violet circle) and a MolecularEvent node (blue circle). The edge type is given by the phenotype

[i.e., healthy, aberrant (polyps, adenoma, carcinoma, or metastasis)], and the edge direction is indicated by the conditionality

of the event relationship. Relationship probability value is stored as an edge attribute. Information on gene name and event

type is stored as node attributes. Event types are genetic or epigenetic signals, including hyper/hypomethylation, mutation,

histone modifications, gene expression, and loss of heterozygosity. In addition, details on experimental analysis (including

publication identifier in the PubMed database and the sample number considered) are stored as edge attributes.
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4. RESULTS AND DISCUSSION

4.1. Identification of molecular conditional relationships observed in adenoma,
but not reported for polyps phenotype (according to StatEpigen data)

Identification of abnormal molecular modifications, specific to adenoma (from empirical StatEpigen

sources) together with corresponding polyps phenotype, may facilitate understanding of mechanisms

leading to CRC initiation. In Listing 1, we use the Cypher language to address this question and to query

events that are exclusively related to adenoma with no polyps phenotype information (based on StatEpigen

curation).

Listing 1. Cypher query to identify molecular conditional relationships, observed in adenoma, but not

matched with the polyps phenotype (integrated data basis—StatEpigen curation):

The results, for Listing 1, include a set of 43 conditional relationships between genetic–epigenetic events

in adenoma, with multiple interdependencies between signals affecting MGMT, APC, TP53, KRAS, and CDKN2A

(P14 and P16) genes. The query can be modified to explore differences between different colorectal phenotypes

Table 1. Information on Types and Occurrences of Relationships

in the EpiGeNet Framework

Edge type

in EpiGeNet

Simple relationship

frequency of occurrence

Conditional relationship

frequency of occurrence

Healthy 53 0

Polyps 40 10

Adenoma 116 45

Carcinoma 240 287

FIG. 2. Subnetwork containing molecular conditional relationships observed in adenoma but unreported for the

polyps phenotype; only the conditional relationships with probability T >0.60 (Listing 2) are displayed. Legend: nodes:

epigenetic and genetic events (e.g., APC hypermethylation, KRAS mutation); edges: colon adenoma (i.e., the phe-

notype where the molecular signals were observed). Information on probability value of the conditional relationships is

stored and displayed as edge’s attribute.
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(e.g., adenoma and carcinoma, carcinoma and metastasis) or to include filters on probability values [e.g., all

conditional relationships for which the probability is above a given threshold, T = 0.60 (Listing 2)]. With this

probability threshold, results from Listing 2 include a set of 26 conditional relationships only, where the subset of

the multiply-connected molecular events affects APC, MGMT, and CDKN2A (P14 and P16) genes (Fig. 2).

Listing 2. Cypher query to identify molecular conditional relationships, observed in adenoma, but not

matched with polyps phenotype, and with probability value = T > 0.60 (based on StatEpigen curation):

4.2. Identification of molecular event neighborhood (in terms of connected nodes)
in colon carcinoma

Over the last two decades, several key molecular events in CRC development have been identified. For

example, mutation/deletion of TP53 (a cell cycle controlling gene) has been observed in more than 50% of

human cancers (Knudson, 2001), and high mutation rates and increased methylation levels have been

detected for RASSF1A, KRAS, BRAF, and MGMT genes in CRC (Grady and Markowitz, 2002; Suehiro

et al., 2008; Dworkin et al., 2009). Abnormal modifications of the APC gene have been associated with

very early CRC stages (Suehiro et al., 2008) and aberrant alterations of MLH1 and MCC genes found in

hereditary and sporadic forms of CRC, respectively (Fukuyama et al., 2008). In Listing 3, we are interested

in querying the EpiGeNet database for the highest interdependency between molecular events in carci-

noma, based on conditional relationship data from StatEpigen. The objective is to explore potential

hub events in CRC initiation. Results from this query (Table 2) indicate that MLH1 hypermethylation,

JCVT gene expression, and CDKN2A:P16 hypermethylation are the three most frequently observed

Table 2. Epigenetic and Genetic Events (Top Three Results) Observed to be Interdependent

with Other Molecular Events in Colon Carcinoma

Molecular event

Neighbor

no. Neighbor set

MLH1 HYPER-METH_CPG 52 Mutation: KRAS, MSH2, BRAF, APC, MLH1

Hypermethylation: MLH1, PLEKHC1, SOX7, C13ORF21,

FLJ41549, PAPLN, ADAMTS19, FLJ37464, LRRC4, NPHS2,

BMP3, MED12L, SLC30A10, EVL, DPYSL3, LYPD1,

KCNK13, NELL2, SLC30A3, GDF7, NRG2, CLGN, CBS, KIT,

FBXL7, ST3GAL1, TCF7L1, LOC283887, IMAGE5728979,

CHFR, CDKN2A:P14, CDKN2A:P16, CRABP1, MGMT, APC,

PTPRO, HLTF, SFRP1, RUNX3, TIMP3, DKK1

Gene expression: CDKN1A, MGMT, MLH1, JCVT; LOH: MLH1,

TP53.

JCVT GENE_EXPRESSION 28 Mutation: KRAS, BRAF, PIK3CA

Hypermethylation: MLH1, CHFR, CDKN2A:P14, CDKN2A:P16,

CACNA1G, CRABP1, NEUROG1, MGMT, APC, HIC1,

RUNX3, TIMP3, RARB, PTEN, WRN, IGF2, SOCS1, IGFBP3,

APBA1, APBA3

Gene expression: TP53, CDKN1A, PTGS2, CTNNBIP1; LOH:

RUNX1.

CDKN2A:P16 HYPER-METH_CPG 28 Mutation: KRAS, BRAF, PIK3CA

Hypermethylation: RASSF1A, MLH1, CDKN2A:P14, CRABP1,

MGMT, APC, MCC, HLTF, SLIT2, RUNX3, TIMP3, DAPK1

Gene expression: CDKN2A:P16, TP53, CDKN1A, CDKN1B,

CCND1, PTGS2, MARCO, JCVT, FPGS

Activation: CTNNB1

Polymorphism: MTHFR, MTR, MTRR.

LOH, loss of heterozygosity.
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interdependent events (based on the genetic–epigenetic phenomena in carcinoma, curated from the liter-

ature, and stored in the StatEpigen database).

Listing 3. Cypher query to identify molecular event neighborhood (in terms of connected nodes)

in colon carcinoma:

4.3. The most plausible paths (with highest incidence) connecting specific key
molecular events (e.g., KRAS mutation and APC hypermethylation) in e.g., adenoma

We are interested in querying for occurrence of the most plausible paths (in terms of the connected

graph of conditional relationships between molecular events implicated in CRC) that connect KRAS

mutation and APC hypermethylation events [known to be important in CRC development (Grady and

Markowitz, 2002; Suehiro et al., 2008)]. The Cypher query is given in Listing 4, and results are shown in

Figure 3.

FIG. 3. Subnetwork with the most plausible paths between KRAS mutation and APC hypermethylation (blue con-

tour), two molecular modifications known to be important in CRC. Legend: nodes: epigenetic and genetic events (e.g.,

APC hypermethylation, KRAS mutation); edges: colon carcinoma (i.e., the phenotype where the molecular signals have

been observed). Information on conditional relationship probabilities of the molecular events is stored and displayed as

edge attribute. Two examples of plausible pathways are highlighted in figure: Path1: KRAS mutation -> MLH1

hypermethylation -> APC hypermethylation (brown arrows) and Path2: KRAS mutation -> MLH1 hypermethylation ->
CDKN2A:p16 hypermethylation -> APC hypermethylation (black arrows).

976 BALAUR ET AL.



Specifically, the query returns the top 10 most plausible pathways (based on a pathway overall score),

composed of a maximum of five conditional molecular relationships connecting the two molecular signals

of interest, KRAS mutation, and APC hypermethylation—highlighted by the blue contour in Fig. 3. For

example, one such plausible pathway is

Path1: KRAS mutation -> MLH1 hypermethylation -> APC hypermethylation (marked with brown

arrows in Fig. 3). The overall score of Path1 indicates the probability of APC hypermethylation given

MLH1 hypermethylation and KRAS mutation, that is,

ScorePath1 = P APC HYPERMETH CPGj MLH1 HYPERMETH CPG and KRAS MUTATIONð Þ (6)

Given that the conditional probabilities were measured independently, expression (Equation 6) can be

written as a product of conditional probabilities as follows:

ScorePath1 = P APC HYPERMETH CPGj MLH1 HYPERMETH CPGð Þ�
P MLH1 HYPERMETH CPGj KRAS MUTATIONð Þ = 0:25 � 1 = 0:25 based on Fig: 3ð Þ:

(7)

Similarly, an another pathway example (black arrows in Fig. 3) is

Path2: KRAS mutation -> MLH1 hypermethylation -> CDKN2A:p16 hypermethylation -> APC hy-

permethylation, with the overall score

ScorePath2 = P(APC HYPERMETH CPGj CDKN2A :p16 HYPERMETH CPG and MLH1

HYPERMETH CPG and KRAS MUTATION)

= P(APC HYPERMETH CPGj CDKN2A :p16 HYPERMETH CPG)

� P(CDKN2A :p16 HYPERMETH CPGj MLH1 HYPERMETH CPG)

� P(MLH1 HYPERMETH CPGj KRAS MUTATION) = 0:24 � 0:75 � 1 = 0:18

(8)

(based on Fig. 3).

Thus, the pathway overall score is computed as a product of the constituent conditional relationship

probabilities. The ‘‘reduce’’ command in Listing 4 (below) computes automatically the scores of plausible

pathways and returns the top 10 plausible pathways according to their score values. The maximum number

of steps to be included in the plausible pathway ( = 5 in the current case) and the ranked list (LIMIT = 10 in

the current example) can be changed to other values if required.

Listing 4. Cypher query to identify the first 10 most plausible pathways for a maximum of 5 conditional

relationships between KRAS mutation and APC hypermethylation in carcinoma.

5. CONCLUSIONS AND FUTURE WORK

In comparison with relational databases, the graph database approach facilitates integration of hetero-

geneous and highly connected biodata and offers a natural representation of relationships among various

concepts specific to biological systems (Have and Jensen, 2013). In addition, inspection of the diversity of

the biological context, including traversal exploration in networks, identification of key elements (hubs)
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within systems, and creation of modules to integrate concepts with high degree of similarity (e.g., based on

common features, functions, and associations), can benefit from the use of graph-based algorithms. Con-

sequently, results from this type of analysis can help generation of new hypotheses (linking diverse and

differently structured concepts) that would be more difficult to formulate without the use of graph-based

approaches. In this article, we have described EpiGeNet, a graph database that integrates data on genetic–

epigenetic interdependencies observed at different pathological levels in CRC development. First, we used

the Cypher language to query differences between polyps and adenoma phenotypes with respect to mo-

lecular modifications. Results indicate a set of 43 genetic–epigenetic conditional relationships, with 26 such

relationships having probability of occurrence = T > 0.60. These events can be explored further to facilitate

interpretation and identification of the mechanisms that differentiate between healthy phenotypes and

those specific to CRC initiation. In Listings 3 and 4, details were queried on highly connected conditional

molecular changes in carcinoma and on the most plausible paths connecting two major events.

Probabilistic computational models, reliant on available StatEpigen data (StatEpigen url, n.d.), were de-

veloped to investigate the most plausible pathways for cancer progression, based on genetic–epigenetic mod-

ifications at different stages of colorectal tumor. Variants of these models have also been used previously for

exploration of DNA methylation dynamics during CRC initiation and progression [e.g., Roznovătx and Ruskin

(2013) and Barat and Ruskin (2015)]. The results from the EpiGeNet model adaptation can be incorporated into

future computational and mathematical models of CRC development, with the added benefits of the combined

probability basis for different event types (including those classified as self-aware or consecutive for same node)

and graph algorithms for investigation of the gene connections and events involvement.

We have presented also a complementary graph database framework for integration of multiple het-

erogeneous biological types (Lysenko et al., 2016). This framework, which integrates data from major

public resources [including DisGeNet (Bauer-Mehren et al., 2011), DrugBank (Knox et al., 2011), UniProt

(Consortium, 2015)] and creates associations between different concepts (e.g., drugs-proteins-diseases), can

be complemented by the EpiGeNet database for exploration in the context of human colonic disease.

While EpiGeNet has been developed initially using data available from the publicly accessible

StatEpigen database (Barat and Ruskin, 2010), which indicates conditionality for epigenetic–genetic

events in CRC, the future aim is integration of data on causality in molecular signals in CRC (i.e., the

order in which these events occur). To achieve these further steps, text mining approaches will be utilized

together with the Biological Expression Language (BEL) (BEL url, n.d.) to extend EpiGeNet with

contextual information on CRC development (extracted from peer-reviewed publications) and enhance

current available information.
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