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Data integration for plant genomicsç
exemplars from the integration of
Arabidopsis thaliana databases
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Abstract
The development of a systems based approach to problems in plant sciences requires integration of existing informa-
tion resources. However, the available information is currently often incomplete and dispersed across many sources
and the syntactic and semantic heterogeneity of the data is a challenge for integration. In this article, we discuss
strategies for data integration and we use a graph based integration method (Ondex) to illustrate some of these
challenges with reference to two example problems concerning integration of (i) metabolic pathway and (ii) protein
interaction data for Arabidopsis thaliana.We quantify the degree of overlap for three commonly used pathway and
protein interaction information sources. For pathways, we find that the AraCyc database contains the widest cover-
age of enzyme reactions and for protein interactions we find that the IntAct database provides the largest unique
contribution to the integrated dataset. For both examples, however, we observe a relatively small amount of data
common to all three sources. Analysis and visual exploration of the integrated networks was used to identify a
number of practical issues relating to the interpretation of these datasets. We demonstrate the utility of these
approaches to the analysis of groups of coexpressed genes from an individual microarray experiment, in the context
of pathway information and for the combination of coexpression data with an integrated protein interaction
network.

Keywords: database comparison; data integration; graph based analysis; metabolic networks; Ondex; plant genomics; protein
interaction networks; systems biology

INTRODUCTION
High-throughput experimental techniques are now

generating large quantities of data relevant to studies

of plant and crop genomes. Although much of these

data are being captured in publically available data-

bases and distributed using recognised data exchange

standards, investigators often need to access multiple

data sources to find all the information they need to

complete a data analysis task. This challenge is shared

by many life scientists, but the problem is more

serious for plant scientists because data resources

are generally more dispersed than is the case in the

biomedical science community where significant

investment has taken place to create linked data col-

lections such as those which can be accessed at

the National Center for Biotechnology Information

ArtemLysenko is a pre-doctoral researcher with previous industry experience in data integration. His research interests are qualitative

modelling of regulatory networks and development of integrative analysis methods for plant systems biology.

Matthew Hindle has a background in data integration and visualisation in industry and is currently a pre-doctoral researcher

developing Ondex to enrich plant microarray data with integrated pathway resources.

JanTaubert is a senior bioinformatician with research interests in data integration and machine learning for systems biology. He is the

chief software engineer for the Ondex system.

Mansoor Saqi is a Principal Investigator in the Biomathematics and Bioinformatics Department at Rothamsted Research and has

worked in bioinformatics in both industry and academia.

Chris Rawlings is head of the Biomathematics and Bioinformatics Department at Rothamsted Research. He has worked in

bioinformatics for over 20 years in both industry and academia.

�These authors contributed equally to this work.

Corresponding author. C.J. Rawlings, Centre for Mathematical and Computational Biology, Rothamsted Research, Harpenden AL5

2JQ, UK. E-mail: Chris.rawlings@bbsrc.ac.uk

BRIEFINGS IN BIOINFORMATICS. VOL 10. NO 6. 676^693 doi:10.1093/bib/bbp047

� The Author 2009. Published by Oxford University Press. For Permissions, please email: journals.permissions@oxfordjournals.org

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/article-abstract/10/6/676/259993 by Periodicals Assistant - Library user on 06 D

ecem
ber 2019



(http://www.ncbi.nlm.nih.gov) [1] or the European

Bioinformatics Institute (http://www.ebi.ac.uk).

The relative scarcity of completed plant and crop

genome sequences and associated data also drives

the need to exploit comparative genomic datasets

from disparate sources and potentially from organ-

isms that are relatively distant in evolutionary terms.

While it might be expected that plant genomes at the

sequence level would be interlinked because of

shared genome annotation resources (e.g. through

prediction of gene function by sequence orthology

with Arabidopsis thaliana), once the information

needed moves away from sequence information to

biochemical function, the methods for linking

equivalent features become more challenging.

In this article we use case studies from ongoing

projects to demonstrate some of the benefits of using

data integration techniques in the analysis of plant

genomics data and to explore some practical difficul-

ties that are encountered when developing inte-

grated plant data resources. All of our examples

come from Arabidopsis thaliana datasets because the

scale and range of genomics and higher-order func-

tional information resources are greater than for any

other plant species. We can therefore explore a wider

range of issues than in other plant species. We have

used the data integration platform Ondex (http://

www.ondex.org) to present our case studies because

we are most familiar with this software, and because

its development has been largely motivated by

problems from plant genomics. The problems we

wish to address, however, will be generic to other

data integration approaches, which we will introduce

briefly before presenting the case studies.

Data integration
The development of general solutions to the prob-

lem of data integration remains a significant unsolved

problem in bioinformatics [2]. To be successful, it is

necessary to find technical solutions to two different

problems found in biological data sources: syntactic

heterogeneity and semantic heterogeneity.

Syntactic heterogeneity arises because data are distrib-

uted in a wide variety of file formats. Generally, the

format used by a database site is determined by

the type of information held in the database and

the needs of the primary users of that data. In

recent years, the emergence of international stan-

dards has gone some way towards controlling the

plethora of data formats — for example in the

areas of primary sequence information, quantitative

transcriptome datasets, proteome and protein inter-

action data. Most new data standards make use of the

eXtensible Markup Language (XML) to create well-

structured data that is easy to verify and process by

software developers. Good examples of such stan-

dards have come from the Proteomics Standards

Initiative (PSI) [3] and include the PSI-MI XML

standard for reporting protein interactions data that

is used in the second case study described in this

article.

Initiatives are also underway to develop interna-

tional standards for the way that data are captured in

databases that will do much to control the diversity

in data in the future and the most important of these

is the Minimum Information for Biological and

Biomedical Investigations (MIBBI) [4]. MIBBI is a

community approach to developing standards for

use at the point when data are collected and for

reaching agreement on how much detail in the

information describing the experiment (the meta-

data) is needed, so that the data can be interpreted

correctly with a controlled vocabulary that can be

used to describe it. The MIBBI website [5] lists 30

different projects and many will be relevant to geno-

mics data for plant sciences. The most well-known

standards are MIAME and MIAPE for defining the

minimal information about a microarray and proteo-

mics experiment (respectively) but others exist for

metabolomics (CIMR), genetic linkage and associa-

tion studies (MIQAS) and interaction experiments

(MIMIx).

Nevertheless, there remains a large diversity of

data formats in use within the life science community

(even for the same types of information) and the

ability to process data accurately from a range of

file formats is a technical problem that all users of

data have to address.

Semantic integration deals with differences in the

way that things are named and structured in biolog-

ical databases. This becomes problematic when there

is a need to integrate data from different organisms,

where it is common for separate naming conventions

to have evolved. The development that has been

most important in tackling this issue is the open

biomedical ontologies (OBO) movement (http://

www.obofoundry.org) whose aim is to create a

suite of reference ontologies for the biomedical

domains (including plant science) to improve the

interoperability of datasets. Ontologies that have

relevance to plant science go beyond gene func-

tion; into plant morphology, anatomy, plant traits
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and phenotype. These have been developed by the

Plant Ontology Consortium (http://www.planton

tology.org) [6] and are available from the Gramene

website (http://www.gramene.org/plant_ontology).

The problems of different nomenclature are well

known in biology, but it is illustrative to consider

an example of the flowering parts of a plant. The

term ‘inflorescence’ has 16 different synonyms in the

Plant Ontology (http://www.plantontology.org,

PO:0009049) and many different terms defining

the sub-parts and more specialist names in different

species. In a database (or research article) a gene

function might be described with reference to any

of these terms and so an ontology is essential for

relating specific terms back to general concepts.

Different names given to similar biological entities

and concepts (synonymy) is one of the sources of

the semantic heterogeneity that makes biological

data integration difficult. Homonymy is another;

for example the term ‘ear’ is used to describe very

different structures in wheat and mammals.

Ontologies, do not however, solve all of the

problems in data integration. Many challenges arise

where reference ontologies, which are constructed

manually, are not complete, or where a resource

does not provide a cross reference to an ontology

term. There are also problems with the use of ontol-

ogies themselves as reviewed in Rubin et al. [7].

Approaches to data integration
Different approaches have been developed to tackle

both syntactic and semantic aspects of data integra-

tion. These can be broadly classified as:

� Link integration and hypertext navigation, using

cross references or indexing schemes between

sources to navigate through data presented in a

common interface (SRS [8], Entrez [9]).

� Vieworschema integration, including data warehouses,

where a consensus schema is designed and an

integrated view over diverse data sources is built

and populated with data (e.g. String [10], Biomart

[11]). In the case of the Biozon [12], PathSys [13],

BNþþ [14] and the Ondex systems [15, 16]

the core schema has been built around the need

to efficiently represent biological network and

pathway data.

� Workflow or federated integration, where data is

gathered on-demand from data access services

on the Internet (web services) or from local data-

bases and data adapters, which are used to match

data together (Taverna [17], BioMoby [18],

Pipeline Pilot from Accelrys [19]). Database feder-

ation using mediators to access multiple databases

dynamically such as Kleisli [20] and DiscoveryLink

[21] could also be included in this class.

� Mashups, which use Internet sources to overlay

information from multiple providers using agreed

access points to present a single overview (e.g. the

use of DAS [22] to supply annotation tracks in the

Ensembl genome browser interface). Mashups

are more properly considered as providing aggre-

gation of information rather than integration

but are emerging alongside methods for workflow

integration as mechanisms for exploiting Semantic

Web technologies [23] and the increasing amount

of data now available using the Resource

Description Framework (RDF) [24] (http://

www.bio2rdf.org).

Data integration using graph based
methods
It is a generally accepted view in computer science

that graphs and networks provide an intuitive repre-

sentation for information [25]. Network representa-

tions capture data objects or concepts as nodes

(vertices) and the relationships between them as

edges. For example a metabolic pathway can be

represented by a set of nodes identifying the meta-

bolites linked by edges representing enzyme reac-

tions. A number of data integration systems for life

science information recognise the importance of

graph representations and the intuitive way that

they can be used to capture and combine pathways,

ontologies, gene and protein interaction and other

data. These system include Biozon [12], PathSys

[13], BNþþ [14] and the Ondex system [15, 16].

It is not possible within the scope of this article to

compare data integration in all of these platforms.

Our aim is to concentrate on some general and prac-

tical issues that affect data integration for plant geno-

mics and we therefore concentrate on the Ondex

system as a working example of a data integration

platform that addresses issues of both syntactic and

semantic data integration.

Data integration in Ondex
Data integration in Ondex consists of the following

three steps [26]:

(1) Parsing: Information from the source databases

is parsed into a graph-based representation.
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The nodes in the graph correspond to concep-

tually distinct entities and the edges are created

when it is necessary to represent the relationships

between these entities. Both nodes and edges

have a type and can have attributes that hold

additional information. For example an entry

from a database describing a particular protein

can be represented as a node that has its acces-

sions and sequence as attributes. It may then

be connected to another protein by an edge

indicating that there is an interaction between

them and a confidence value for that interaction

stored as an attribute on the edge. A wide variety

of data formats can be parsed by Ondex and a

list of the databases and data exchange formats

for which parsers are available can be found on

the Ondex web site at http://www.ondex.org/

formats.html.

(2) Mapping and data alignment: The semantic integra-

tion process in Ondex is driven by mapping

methods. These are analysis methods that find

relationships between data entities and create

edges that represent them in the graph. For

example, an equivalence edge can be created

between two entries if they have the same data-

base accession or name. Synonym mapping

generalises name-based mapping and is based

on the use of shared synonym sets to create

equivalence relationships [27]. Sequence similar-

ity (e.g. using the BLAST algorithm [28]) and

other methods can also be used to create edges

in the graph to capture relationships inferred

from sequence information.

(3) Visualisation and interactive analysis: Integrated net-

works produced using Ondex can be visualised

in the Ondex Visualisation Tool Kit (OVTK).

This software provides a number of data reduc-

tion methods, annotators and statistical analysis

methods that can be used to effectively mine

the integrated dataset for information relevant

to particular application cases.

Combining different types of data from multiple

sources helps provide a biological context in which

to interpret experimental data from gene expression,

metabolite concentrations and protein interactions.

Integrative approaches to the construction of evi-

dence networks [29] can also improve the reliability

of functional network prediction [30] and enhance

our understanding of how gene networks influence

biological responses.

However, given that there are multiple data

sources for the same classes of biological information

(e.g. pathways) an important first step in developing

an integrated data resource is to capture and integrate

similar data from all relevant sources. In the follow-

ing two case studies we illustrate some of the chal-

lenges inherent to data integration. In the first case

study we create an integrated database of biochem-

ical pathways. We assess the degree of overlap

between data sources containing pathway and pro-

tein interaction information for Arabidopsis and

explore the pathway annotation for a microarray

probe set using the combined and component data

resources. In the second case study we present the

construction of an integrated dataset from three

protein–protein interaction data sources and then

explore the resulting integrated dataset for evidence

of coexpression within protein interaction networks

by linking to coexpression information from

Arabidopsis [31, 32].

CASE STUDY1çTHE
INTEGRATIONOF BIOCHEMICAL
PATHWAYDATA
Pathways provide a level of representation that

relates molecular function with biochemical and

physiological function. Here we consider the set of

Arabidopsis pathways in the KEGG database, the

AraCyc database (a resource specific to Arabidopsis),
and Arabidopsis entries in the Reactome database.

Table 1 provides an overview of the relevant path-

way content in these databases. Most of the path-

ways in KEGG contain metabolic information with

some describing other biological processes such as

circadian rhythm and signal transduction. AraCyc is

a metabolic pathway database that is part of the

Table 1: An overview of Arabidopsis pathway entries in
Aracyc, KEGG and Reactome databases as they have
been captured in the Ondex system.

AraCyc KEGG Reactome

Enzymatic proteins and complexes 3630 1367 1481
Enzymes as a proportion of proteins

in Arabidopsis thaliana (TAIR 8) (%)
10.82 4.08 4.42

Pathways with reactions 347 113 320

Thosepathways that only exist at the higher levels of the abstraction in
the pathway databases and contain only references to other pathways
have been excluded from the statistics. For this reason, these figures
cannot be compared directly with the summary information provided
in the original release notes for the source databases.
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BioCyc family of pathway databases [33]. AraCyc

contains 347 pathways (with 87% of them experi-

mentally confirmed [34]). Reactome is a curated

knowledge base of biological pathways initially

established with a focus on human biology [35] but

which has been extended to include pathway infor-

mation for a number of organisms [36]. For

Arabidopsis the pathway annotation is predicted by

finding sequence orthologues using OrthoMCL

[37, 38] from the curated human data set. Another

Arabidopsis specific pathway database is Arabidopsis

Reactome [39] which uses the Reactome software

framework to present manually curated pathway

information for the model plant Arabidopsis. This

resource was not included in the comparison because

at the time of writing the database was based on an

integration of KEGG release 38 (April 2006) and

AraCyc v3.5 (February 2007), and so could not be

used in a fair and meaningful comparison with the

current database releases used here (Table 2).

Comparing the content of pathway
data sources
There is no easy way to compare the contents of

these three pathway resources and it is likely that

many users would pick the most familiar and use

it without considering whether they have chosen

the best for their particular analysis. With the three

pathway resources transformed into a common data

representation in the Ondex system, it becomes

possible to compare the pathway coverage from

the different databases at the level of proteins and

enzyme categories defined by Enzyme Commission

(EC) numbers. EC numbers classify enzyme reac-

tions based on four levels of a hierarchy. The roots

of the hierarchy are six broad enzyme classes, each

subdivided into subclasses, and sub-subclasses. The

fourth digit of an EC term is the serial number of

the enzyme, the specificity and nature of which is

set out in the guidelines of the EC [40, 41]. The

Enzyme [42], UniProt [43] and TAIR databases

[44] were also integrated to provide additional refer-

ence information such as protein sequence and

EC classification and a dictionary of identifiers to

improve the quality of the integration

Not all reactions in pathway databases have the

full four digit EC assignment. It could be that the full

details of the reaction have not been confirmed or

because curators have yet to assign the appropriate

term. Figure 1 compares the relative abundance of

reaction classification at all four levels of the EC

hierarchy in each pathway database.

Figure 1 shows that four digit EC terms predom-

inate in all databases and are therefore indicative

of the coverage of the known pathways within each

database. It is also apparent that KEGG and Reac-

tome enzymes have a higher proportion of three and

four digit EC term annotations than AraCyc.

A more detailed analysis of reactions in the

integrated pathway dataset using only those

Figure 1: The relative abundance of Enzyme Commis-
sion (EC) terms in the AraCyc (left column ^ diagonal
lines), KEGG (middle column ^ crossed lines) and
Reactome databases (right column ^ grey bar). The
bar heights represent the abundance of proteins with
EC annotation at the four different levels of specificity
in the EC terms indicated, as a percentage of all enzy-
matic proteins in the respective database. Percentages
across EC levels, within a given database will not sum
to 100 as proteins often have multiple EC assignments
at different levels of specificity.

Table 2: Versions of the data sources used in this
article.

Data source Version Format Downloaded

KEGG 50.0 KGML and
flatfile

4 April 2009

AraCyc 5.0 Flatfile 4 April 2009
Reactome n/a BioPAX

Level 2
4 April 2009

ENZYME n/a Flatfile 7 April 2009
TAIR 9 Flatfiles 14 July2009
Uniprot 15.0 XML 8 April 2009
TAIR

Interactome
2 October 2007 Flatfile 30 November 2008

ATTED-II 5.2 Flatfile 02 October 2008
BioGrid 2.0.46 PSI-M 2.5 30 November 2008
IntAct 07 November 2008 PSI-M 2.5 30 November 2008

n/a, not applicable.
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reactions with the full four digit classification is

presented in Figure 2 which shows the contributions

from the different databases and highlights the over-

lap and unique contributions that they make.

From Figure 2 it is clear that the AraCyc database

contains the widest coverage of pathway reactions

and contributes the greatest number of unique

entries to the integrated dataset. It is interesting to

note the relatively small number of enzyme functions

that are shared between all three pathway databases

(154 out of 997).

Another way of evaluating the content of the

pathway databases is by comparing the number of

proteins from the Arabidopsis genome that have

been annotated with EC terms. These data are

shown in Figure 3 and show that AraCyc contains

the highest number of proteins that can be mapped

to reactions. Taken together with the analysis pres-

ented in Figure 2, it would be tempting to conclude

that as Reactome contributes no new enzymes or

EC categories it adds no new information to the

dataset. However, it is important to recognise that

these purely numerical comparisons take no account

of the different approaches to database construction,

nor the fact that each database, to an extent, builds

on the content of earlier projects and may have

originated as a resource for species other than

plants. This is probably why KEGG appears not to

contribute as much content specific to Arabidopsis as

might be expected. Another consideration, when

assessing the value of the integrated dataset, is that

by combining AraCyc with Reactome and KEGG,

51% of the genes in AraCyc gain additional pathway

annotation from at least one other database. For

example, some AraCyc genes without an EC anno-

tation have annotations in KEGG or Reactome or

both. For example, the genes AT2G20860 and

AT5G08415 encoding Lipoate synthase enzymes

have no EC annotation in AraCyc; however,

KEGG correctly assigns them to EC 2.8.1.8. Closer

inspection reveals that this enzyme was first charac-

terised in Escherichia coli, and an EC term omission in

EcoCyc has propagated to AraCyc.

Annotating the ATH1 GeneChip with
pathway information
To evaluate the practical impact of using our inte-

grated Arabidopsis pathway resource, we used it to

assign pathway information to the 22 591 unique

probe sets on the Affymetrix ATH1 GeneChip

[45]. We considered only probe sets that referenced

an Arabidopsis Genome Initiative (AGI) locus iden-

tifier as the ‘Source Transcript ID’ and used all the

proteins found in the pathway databases. An evalu-

ation of which database contributes reaction annota-

tions to the probe sets reveals the contribution of the

separate pathway resources to the integrated annota-

tion. These data are presented in Figure 4, which

shows a very modest benefit from combining all

Figure 3: Comparing the content of enzymatic
proteins in the AraCyc, KEGG and Reactome pathway
databases (for Arabidopsis). Enzymatic proteins in
the pathway databases are only included if they are
annotated as catalyzing a metabolic reaction. These
Arabidopsis pathway proteins amount for 10% of TAIR
protein coding genes (3505/33535). The distribution of
these enzymatic proteins within the databases is
shown inTable 1.

Figure 2: Comparing the content of Enzyme Com-
mission classifications in the AraCyc, KEGG and Reac-
tome pathway databases (for Arabidopsis). The Venn
diagram shows the overlap of EC classifications across
the three databases. Reaction classifications that are
not specified with the full four digit EC number have
been excluded.
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three pathway resources; less than might have been

expected given the earlier analysis of database con-

tents. With the integrated pathway databases,

17.45% of the proteins could be mapped to path-

ways, which is a small increase over the impressively

comprehensive coverage that can be achieved with

AraCyc alone. Although this percentage increase

(0.5%) is small it does however, represent an addi-

tional 113 annotated probe sets. It is perhaps inter-

esting to note that while KEGG provides a relatively

small proportion of annotations overall, it is the only

other source of unique pathway information in the

integrated analysis.

Integration of pathway and
coexpression data
Although our earlier analysis showed that AraCyc

was by far the most comprehensive pathway

resource, the majority (82.5%) of probe sets on the

Affymetrix ATH1 GeneChip remain without a

direct link to any pathway. It is possible that gene

coexpression analysis could improve this by indi-

rectly linking more probe sets with pathways and

provide useful information about gene regulatory

modules. It has been suggested that coexpressed pro-

teins may be members of the same metabolic path-

way [46] and coexpression cliques may be helpful in

understanding regulatory mechanisms and in the

identification of relevant transcription factors.

To explore the use of an integrated source of

pathway information for microarray data analyses

we selected the exemplar microarray data set from

Gutierrez [47]. This study used the Affymetrix

ATH1 GeneChip to test the effects of nitrate and

sucrose availability and showed that multiple meta-

bolic pathways were affected by the different growth

regimes. To construct the coexpression measures, the

raw expression values taken from ArrayExpress

(ID: E-MEXP-828), were processed using RMA

(from the Affymetrix microarray analysis package

available as part of BioConductor [48]) and normal-

ised by subtracting the mean expression for particular

genes across all chips from individual expression

values. Pearson’s correlation coefficient was then

calculated for all possible pairs of genes. A coexpres-

sion network was created in Ondex by adding an

edge between two nodes representing proteins if

their expression profiles had an absolute correlation

value40.9. The resulting coexpression network had

1802 proteins with 5590 edges and was integrated

with the previously described combined pathway

resource. 1683 complete subgraphs (cliques) were

identified using a standard clique detection algorithm

[49]. The relationship between the proteins in

metabolic pathways and the coexpression of their

genes was tested using one-tailed Fisher’s Exact

Test to identify significant associations between

coexpression cliques and metabolic pathways as

designated by the three pathway databases.

The scope of this article is not appropriate to

present this analysis in depth, but working with

these data highlighted several important issues rele-

vant to the interpretation and integration of pathway

information. Each database has a different approach

to dividing complex and interacting pathways

into smaller themed units of linked reactions. The

level of dissection of these units (KEGG calls

them maps) in terms of the assignment of reactions

to individual groupings is somewhat subjective.

This heterogeneity can lead to relevant information

being missed if only one of the possible sources

is considered. In Figure 5, we use the OVTK to

illustrate this using an example from the flavonoid

biosynthesis pathway from AraCyc and KEGG,

integrated with coexpression data from Gutierrez

[47]. The starting point is a coexpression

clique, which has been highlighted with a thick

border (red) that maps to four proteins in the

Figure 4: Metabolic pathway annotation of the
Affymetrix ATH1 GeneChip. The lower part of each
bar (red) shows the annotation from the databases
that are common to two or more sources. The upper
part of the bar (blue) the percentage of annotations
unique to each database. The combined height of the
bar indicates the proportion of the ATH1 GeneChip
that can be annotated using that database alone. The
‘All’ bar (right) indicates the proportion of genes on
the ATH1 GeneChip that can be annotated using the
integrated databases.
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KEGG database. In AraCyc, however, which over-

all has more proteins assigned to this pathway,

we observe only three of the four proteins in the

clique. This difference is due to one of the proteins

(flavonol synthase) being assigned to a different path-

way (flavonol biosynthesis). The grouping of bio-

chemical reactions into pathways is useful for a

high level overview of the processes occurring in

a complex system, and they are frequently used

to aid with interpretation of microarray results.

It is important to allow for the fact that pathway

definitions are a convenient simplification and

a model of cellular biochemistry and should not

be considered as biological truth. This is part of

the rationale behind the network-centred approach

taken in Ondex, where pathway assignments are

just another type of information that annotates an

enzyme or metabolite.

This case study has illustrated how data integra-

tion methods such as those available in the Ondex

system can be used to improve the coverage of the

data available when using pathway data sources. The

process of integration and analysis of the combined

datasets provides a useful overview of the differences

between the content of the databases and in some

cases (not discussed here) can be useful in quality

control and identifying conflicting or missing data

[50]. The real impact of using a well-integrated

data resource comes from the additional information

available when using it for data analysis. In our case

study, mapping gene expression probe sets to bio-

chemical pathways shows that the integration of

pathway data can provide a more comprehensive

annotation and highlights the differences in the

definition of pathways between the individual

databases.

Figure 5: Visualisation of enzymes in the flavonoid biosynthesis pathway in Ondex as defined by AraCyc (A) and
KEGG (B) databases. This data was also integrated with the coexpression network from an analysis of the micro-
array dataset of Gutierrez [35]. The nodes are gene loci that code for enzymes and metabolites and the edges
show the possible routes of conversion of metabolites via the catalyzing enzymes. Proteins that were found to be
coexpressed with Pearson’s coefficient40.9 are highlighted with a thick border.
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CASE STUDY 2çINTEGRATING
PROTEIN INTERACTION DATA
SOURCES
Protein–protein interactions (PPI) are the founda-

tion of many essential regulatory processes and

define higher levels of organisation of individual

proteins into complete functional units. PPI data

are provided by a number of sources, but only one

of them (curated TAIR interactome) specialises in

Arabidopsis. There is a great deal of interest in finding

methods for understanding the relationship between

protein interactions and coexpression among genes

as the basis for making more accurate predictions of

biological function from high throughput experi-

ments and for easier identification of metabolic and

regulatory networks that underlie biological

responses (e.g. to disease, environmental stress, etc.).

In the first part of our second case study, we have

concentrated on the three most relevant PPI data-

bases and have assessed the coverage they provide in

terms of both individual interactions and protein

content. Interactions from the following data sources

were integrated using methods supported in the

Ondex system: IntAct [51], The Arabidopsis Informa-

tion Resource (TAIR) [44] and BioGrid [52].

Overlap of protein interaction
data sources
The intersection between the data from these three

data sources is shown in Figure 6. The number of

proteins (nodes) in the integrated network was 2741,

but only 503 out of 5480 interactions in the

integrated PPI network are common to all three

sources, with the IntAct database contributing

many more proteins than either TAIR interactome

or BioGrid.

It is apparent from Figure 6 that each of these

sources makes a significant unique contribution to

the complete network. The presence of a non-

redundant component of protein interactions in

each of the sources indicates that data from different

subsets of PPI publications has been curated by each

of the resources and highlights the value of develop-

ing an integrated dataset for maximum coverage of

a data domain.

An important consideration when analysing PPI

data is the range of experimental methods that have

been used to identify a protein interaction. In the

integrated dataset each experimental method used

in the source database is represented as a type of

evidence, which is stored as a property on the

edges (relationships) of the graph. Figure 7 shows

the frequency distribution of the number of evidence

types in the integrated database. It is evident that

most interactions have been confirmed by just one

experimental method. In the upper panel of Figure 7

is an example of how this type of data can be

visualised as a network using the Ondex network

visualisation tool (OVTK). The largest connected

component of the integrated network has been

selected to show how the experimental method

used to establish the interaction can be represented

in OVTK. In the original screen image, the edge

colour indicates which method was used and

Figure 6: The number of protein identities (A) and interactions (B) found in three major protein^protein inter-
action resources for Arabidopsis (IntAct, Biogrid and TAIR Interactome). The individual networks were merged
using TAIR accessions. Additional filtering ensured the consistency of the dataset. The following elements were
removed: interactions between Arabidopsis and non-Arabidopsis proteins (present in IntAct and BioGrid) and proteins
with inconsistent accessions. After this, all protein nodes that were no longer connected to the network were
also removed.
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multiple colours in the same edge show where data

comes from more than one method. It is possible to

see that one prominent network cluster (bottom

right corner) is supported by the same evidence

type. This pattern is indicative of data from a targeted

(or fishing) study devoted to finding all possible

interactors for a limited number of bait proteins.

The frequency of the various evidence types

found in the Ondex database is shown in Figure 8

and illustrates how integration reveals inconsis-

tent use of controlled vocabularies. For example,

although the vast majority of the interactions

among all three sources were established using the

yeast two-hybrid method, these are not named

Figure 8: The number of protein interactions with a particular evidence type as indicated in the source database
calculated for the whole integrated PPI network. Only the 12 most frequent evidence types are shown but in total
there are 66 distinct controlled vocabulary terms. This may under-represent the true variety of methods as there
are no naming conventions adopted for the interaction detection method and this is the reason why three different
variants of ‘yeast two hybrid’ method are present in the chart.

Figure 7: The frequency distribution of protein interactions associated with named experimental methods
taken from the integrated data from IntAct, Biogrid and TAIR Interactome databases. The upper panel shows the
largest connected component of the integrated network displayed in the Ondex network visualisation tool
(OVTK). In the screen image, each experimental method used to establish an interaction is denoted by a different
edge colour. Multiple colours in the same edge show where data comes from more than one method.
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consistently among the databases. For example, it is

recorded as ‘2 hybrid’ in IntAct and ‘yeast two

hybrid assay’ in the TAIR curated interactome.

The term ‘2 hybrid’ used in the IntAct controlled

vocabulary is formally defined in PSI-MI ontology

(MI:0018) whereas the term ‘yeast two hybrid assay’

in TAIR interactome is not defined and appears to

be used in a broader sense to specify both classical

two-hybrid system and a wider range of related tech-

niques and is therefore not an exact match to the

definition in IntAct.

An important aspect of the different experimental

methods is their reliability at detecting a protein

interaction. There is insufficient space to address

this issue further here, but others have developed

network analysis methods that take this into account

(see e.g. [53]).

In addition to the issue of reliability, the experi-

mental methods for detection of PPI can have an

impact on the number of relations and overall

network structure. The interpretation of integrated

datasets is further complicated because some experi-

mental techniques do not establish the actual inter-

actions between individual proteins, but rather their

membership in a particular protein complex. This

poses problems for how to interpret such informa-

tion in terms of binary PPI, as the true interaction

pairs are unknown. In some cases, where all of the

proteins in the complex form a long-term stable

interaction, a fully connected cluster of interactions

may be an appropriate representation. In addition

to the usual challenges of technical or semantic

heterogeneity between the data sources, different

export file formats from the same database can lead

to different interpretations and can potentially result

in the incorrect representation of the experimental

interactions. Figure 9 illustrates how this situation

can arise because of the different data formats

used to extract the data about a particular PPI

experiment. The figure shows information from

Figure 9: An example network derived from data from the same experiment represented in two different
formats exported from the IntAct database (A) tab delimited and (B) PSI-MI v2.5 (XML) version 2.5. It illustrates
that different formats can sometimes lead to different interpretations of the same information. If the tab delimited
representation is used A the network consists of only five binary interactions with one hub node, whereas in B
all six proteins are grouped in the same interaction element, so interactions between all of the members are
inferred.
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Eubel et al. [54] downloaded from IntAct in both

PSI-MI and tab-delimited file formats. The PSI-MI

representation groups all of the proteins in the same

interaction element, which according to the relevant

documentation is interpreted as a clique. In tab-

delimited format, the same information is repre-

sented as a set of five binary interactions where

O82663 interacts with all of the other proteins.

Both of the representations are actually misleading,

as the original paper only identified these proteins as

a complex, but did not measure any interactions

between them. In general the clique representation

may well be acceptable, if the definition of interac-

tion is expanded to include the indirect interactions.

Combining protein interaction and
coexpression information
Bringing together multiple types of biological data

can aid in the construction of functional networks

[29], since proteins involved in the same functional

role should be linked by evidence from more than

one class of biological information. However,

the utility of these approaches is dependent on the

information available. For Arabidopsis there are large

collections of data from gene expression studies, and

resources such as the ATTED-II database [31, 32]

provide information on coexpressed Arabidopsis
genes from some 58 microarray experiments (see

http://atted.jp/top_help.shtml). There is, however,

much less information available on PPI from

Arabidopsis and our integrated dataset included only

2741 proteins, with 5480 interaction pairs in total.

We have integrated this PPI dataset with coexpres-

sion information to explore the extent to which

interacting proteins also display similar expression

profiles.

We have achieved this by using the coexpression

of proteins that are part of the integrated Arabidopsis
PPI network that we constructed using Ondex.

ATTED-II provides pre-calculated coexpression

data for Arabidopsis, using either Pearson’s correlation

(weighted to reduce effects of sample redundancy)

or mutual rank as a measure of similarity between

different expression profiles [32]. The statistics are

calculated from 1388 Affymetrix arrays available

from TAIR. Prior to the combined analysis all the

genes that showed no change in expression were

removed from the dataset using a comparison with

160 reference invariant genes [55]. The remaining

genes were then mapped to the Arabidopsis interac-

tion network (described above) and two nodes were

labelled as being coexpressed if the magnitude (pos-

itive or negative) of the Pearson correlation coeffi-

cient was 40.6. From a total of 5157 edges in the

integrated PPI network that were considered coex-

pressed only 253 (4.9%) edges in the integrated data-

set were both coexpressed and involved in a PPI.

This number is unexpectedly low, considering that

coexpression has been shown to be a strong predictor

of PPI [56, 57]. It may also, however, reflect a high

number of transient interactions recorded in the

dataset. In Jansen et al. [58] it was found that no

transiently interacting proteins had an average corre-

lation coefficient higher than 0.4; which is below the

threshold of 0.6 that we used for constructing the

coexpression network. Evaluating the influence of

different thresholds on the structure of the integrated

data set is deferred to future work.

Figure 10 shows a fragment of the integrated

network involving seven proteins for which the

data supports both protein interaction and gene

coexpression, together with the types of experimen-

tal evidence that suggests a PPI. The experimental

evidence comes from four different procedures,

namely ubiquitin-reconstruction, yeast two hybrid

assay, in vitro binding assay and affinity chromatog-

raphy. This example illustrates how incorporating

additional evidence from other methods for measur-

ing PPI or from coexpression can be used to provide

Figure 10: A small part of the integrated coexpres-
sion and protein^protein interaction network. The
nodes representing proteins and edges show links that
are supported by both coexpression and an experimen-
tal method for establishing interaction. The edges are
drawn in different line styles to indicate the different
methods used. More than one line style in an edge indi-
cates evidence is available from more than one method
(i.e. between PGRL1A and ATFD2). The numbers
beside the legends refer to the number of instances of
PPI interactions.
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additional support and increase the confidence in the

interactions.

Constructing functional networks in plants is

currently limited by the lack of data for some classes

of biological information such as PPI where few

experiments have been conducted. Such approaches,

however, do have the potential to provide additional

insight by suggesting new relationships between

proteins, especially when complemented by visuali-

sation tools that facilitate manual inspection of the

resulting networks and dissection of the sources of

evidence that contribute to suggesting putative func-

tional modules. Visualisation capability has recently

been included in the ATTED-II website [31], which

provides enhanced tools for inspecting networks

in the context of PPI and KEGG pathway

information.

DISCUSSION
High throughput techniques are generating large

volumes of data in the areas of proteomics, genomics

and metabolomics. In view of this abundance and

emergent complexity, it is becoming increasingly

clear that methods to combine the information and

identify patterns in the data are needed in order to

advance our understanding of complex biological

systems. Data, however, are spread over many

resources that are maintained largely independently

from each other and this has led to the many differ-

ences in the way data are organised, and the formats

that have evolved for data distribution.

Defined standards, controlled vocabularies and

ontologies are therefore the cornerstones of data

integration but they need to be adopted and imple-

mented by community and the database curators.

This is an ongoing challenge because there are

costs for database providers associated with managing

the already significant volumes of legacy data and

there are costs for data submitters who are being

asked to provide more content and more structure

to their experimental data for use in public databases.

These costs can be significant for scientists managing

databases from short term grants, although mecha-

nisms for providing infrastructure funding from the

European Union through the ELIXIR project

(http://www.elixir-europe.org) may help commu-

nity databases in the future. Nevertheless, data sub-

mitters will also need to play a role and journals

(such as the BMC family) have already begun to

request, for example, that authors refer to MIBBI

standards for reporting experimental metadata.

For many reasons, it is going to be some time

before there is sufficient consistency among all the

databases that plant scientists use to make data inte-

gration a trivial task. The role of data integration

tools are therefore going to remain important for

some time to come. The purpose of this article has

not been to review all the available technologies for

data integration but to illustrate, using examples from

our ongoing research, why this task is not trivial and

to raise awareness of some of the challenges.

When considering alternative approaches to

data integration there are a number of key factors

to consider which come from the classification of

technologies summarised in the Introduction section.

The most important is probably whether to choose

between a solution that generates a local copy of the

integrated dataset in a data warehouse or one which

uses dynamic database queries over the Internet to

locate and integrate data on request (federated inte-

gration). There are strong arguments in favour of

both approaches and the decision either way will

require a trade-off between difficult technical factors

which include:

Timeliness/updating: Federated systems are likely

to use the most recent source of data on the

Internet and there is therefore no cost for updat-

ing. Each new query, however, has to integrate

the desired data afresh, so multiple queries over

the same dataset are costly, although the costs

could be reduced with query processing and

caching of results. Warehouse systems offer the

opposite—the costs of integration are borne at

the time of creating (or updating) the warehouse

but each query is going to be cheaper.

Remote/localservices: Federated systems rely exten-

sively on data access services running on remote

computers, potentially from all around the

globe. This has a low cost in terms of local

infrastructure, but the quality of service from

the servers and their networks is not going to

be predictable. Local warehouse solutions offer

more predictable quality of service, but the local

infrastructure can be costly.

Provenance: The traceability of information and

management of inferences or decisions leading

from any data is recognised as one of the major

challenges in data integration. For scientific

applications, the primary concern is to be able
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to trace back from interesting or problematic

results and to reproduce the result of a query.

Users of dynamic federated resources have little

control over the content or behaviour of the

remote services and would have almost no guar-

antee that the same query will return the same

results from one moment to the next. For many

scientific studies, repeatability of the query

response and the ability to compare results

from different analysis methods over the same

dataset are vital. Having a local copy of the

integrated dataset that is consistent for the life-

time of a project, with updates happening in

a controlled fashion, is often the preferred

solution.

Confidentiality: The execution of queries and use

of services on remote computer systems can be

less secure than on a local system. This could be

an important consideration when confidential or

commercially sensitive data is being analysed

using an open federated approach. Of course,

a closed federated system could be implemented

within an organisation to address this issue

but then some of the infrastructure benefits

from sharing resources over the Internet

would be lost.

This analysis is a necessary simplification of the

issues that affect the choice over whether a federated

or warehoused solution is the best for a particular

application. Often, local expertise and bioinformatics

practises will dominate the decision whatever the

theoretical options are. It should also be recognised

that those with research interests in both approaches

recognise where the limitations are and are looking

for solutions that narrow the gap between them.

Ondex for data integration
The approach we have taken to data integration

in the Ondex system has been to create a general

purpose environment for the integration and visual-

isation of complex datasets, based on a warehousing

model. The main motivations that we had for choos-

ing a warehousing approach were: that we required

control over the data sources and the integration

process to have reliable data provenance; the nature

of our queries were to support data mining and

visualisation for detailed analysis of the same datasets.

We also recognised that there were relatively few

Internet resources for plant data hosted in well-

resourced international centres hosted in well-

resourced international centres (e.g. EBI, NCBI)

offering reliable web services.

An important feature of the Ondex suite is the

graphical visualisation and analysis methods that are

supported in the OVTK user interface. There are

some similarities between the well known Cytos-

cape software for interacting with biological net-

works [59] and Ondex which also shares features

found in other software that use graphical networks

visualisation and have been reviewed recently in

refs. [60, 61]. The strengths of the Ondex system

lie in its adaptability to a wide range of data

sources, the methods that have been developed to

map different sources into one consistent graph

structure and the flexible graph based user

interface(s).

The systems that come closest to Ondex in terms

of technical approach are BNþþ and BIOZON

[12]. Both use a warehousing approach and adopt a

graph-based approach to their data representation.

BNþþ is similar to Ondex to the extent that data

visualisation is considered an important component

for the end user. BIOZON has focussed on generat-

ing a data warehouse that end-users can browse and

extract data from. A similar approach is provided by

the STRING database [62] which integrates PPI and

gene coexpression data.

Ondex is most appropriately considered as a

toolkit for a modestly experienced bioinformatician

to develop their own integrated applications and use

the network visualisation and analysis tools for data

mining of their own datasets.

The two case studies that we selected from ongo-

ing research highlight challenges that emerge when

developing integrated datasets for Arabidopsis. We

chose two contrasting examples to illustrate the

nature of the integration problem and to look in

more detail at some of the data resources that are

in widespread use in the Arabidopsis research

community.

Integrating pathway databasesçcase
study 1
This case study was chosen to demonstrate the

integration of multiple data sources maintaining the

same information as an example of generating a

comprehensive database that would be used in

other applications such as the annotation of the

probe sets from the Affymetrix ATH1 GeneChip.

The analysis focussed on the contents of the

KEGG, Reactome and AraCyc pathway databases
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and to what degree they overlapped or were

complementary. The integration clearly showed

AraCyc to be the best of the three databases in

terms of the coverage of known or predicted

Arabidopsis proteins and their involvement in bio-

chemical pathway reactions. It was perhaps surprising

that the KEGG database did not make more of

a unique contribution to the combined resource,

but perhaps this is explicable when considering the

origins of KEGG in microbial metabolism and

that the development of the other pathway databases

are not truly independent, but build on each others’

progress.

The comprehensive coverage in AraCyc makes

the addition of new pathway information of rela-

tively small benefit when applied to the annotation

of the ATH1 GeneChip. Again, this is perhaps

unsurprising considering that the ATH1 GeneChip

was designed in collaboration with the TAIR team

who also manage and curate AraCyc. Nevertheless,

a small, but potentially useful additional 113 probe

sets could be annotated with pathway information

using the combined dataset.

Extending the data in the integrated database with

coexpression data revealed some aspects of the orga-

nisation of pathway data in the different databases

that has a bearing on integration. Each database

chooses to make decisions about how to split the

biochemical reaction network into pathways and

this can have an effect on pathway computations

[63]. This process is inevitably somewhat subjective

and our example shows the impact of this when a

gene coexpression clique occurs at a pathway bound-

ary in AraCyc but not in KEGG. The integrated

nature of our Ondex pathway resource enabled us

to recognise the most extensive network of the two

resources. A second example of this is the definition

of the important plant hormone ABA biosynthesis

pathway which has a dedicated pathway in AraCyc

composed of five reactions, whereas in KEGG it is

subsumed into the much larger Carotenoid biosyn-

thesis pathway.

These mixed results from the data integration

of Arabidopsis pathway information illustrate the

benefits and pitfalls of evaluating methods in a

model organism. The range of resources makes

it possible to explore datasets not yet available in

other plant species. On the other hand, the invest-

ment in integration that has already taken place

by centres such as TAIR makes the potential benefits

of integration less easy to realise.

Integrating PPI dataçcase study 2
In our second case study, we chose protein inter-

action datasets. These were expected to be more

typical of independently developed databases and

this was indeed the case. In our analysis we dis-

covered the most obvious of semantic integration

problems—that of inconsistent use of terminology

to describe the experimental methods by BioGrid,

IntAct and TAIR Interactome. This type of hetero-

geneity is difficult to deal with automatically. While

it would be easy to resolve inconsistent naming such

as ‘2 hybrid’ and ‘yeast two hybrid assay’, some of the

other methods can have multiple variants and differ-

ent names and will require someone with expert

knowledge to identify these correctly. This is there-

fore an excellent example of how MIBBI projects

are making an important contribution by develop-

ing ontologies for the experimental methods from

which the data derives. Had, for example, the

three protein interaction databases that we used fol-

lowed the MIMIx ontology for describing the

experimental methods, we would have not seen

the diversity of terms used to name the yeast two

hybrid method in Figure 8.

All three databases considered here hold informa-

tion about PPI experiments gathered or supported

by the scientific literature. The selection of the liter-

ature and curation methods inevitably creates differ-

ences between the databases. Furthermore, there is

a difference between what has been established in an

interaction experiment and what is considered as an

established fact. For example, out of 12 proteins

listed as members of the Arabidopsis RNA polymerase

II complex by KEGG only 5 were found in our

integrated PPI database from all three sources.

Given the differences between the data collection

methods used in the three interaction databases, it

was notable that the data integration process gener-

ated a more complete resource with the number of

proteins catalogued as involved in interactions

increasing by 27% over the single most comprehen-

sive database, which was IntAct. The number of

interactions was also increased by a similar amount

relative to IntAct (25%). This clearly demonstrates

the potential advantage of integration in this data

domain.

It was interesting to note that a relatively small

number of proteins were present in all three data-

bases (20%) and an even smaller number of interac-

tions were found in common (11%). This may reflect

differences between the data collection and curation
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strategies of the three databases but there may be

other systematic differences and we are currently

investigating these further.

Another potential benefit of integration of data

across multiple datasets is to increase confidence in

noisy data by combining multiple ‘hints’ from inde-

pendent sources. This is especially relevant for PPI,

as many of the currently used detection methods

have limited accuracy. Our analysis showed that rel-

atively small numbers of interactions are supported

by multiple sources of evidence. We showed how

we can represent this in our visualisation environ-

ment OVTK for an easy overview of interaction

relationships and how specific patterns emerge from

the data using particular approaches such as targeted

interaction fishing.

There is an active research interest in Bioinfor-

matics for using indirect evidence that could be used

to indicate interactions, including gene coexpression

[58, 64] and inference of interactions from sequence

homology [65, 66]. The problem of introducing

such indirect evidence is that some numerical mea-

sure of confidence, like accuracy of particular inter-

action detection methods, is required and it is often

not provided by the source databases. Another diffi-

culty lies in resolving the provenance of data in

order to avoid counting the same piece of evidence

captured by multiple sources several times. We

believe these are fruitful areas of study and there-

fore maximising the set of protein interactions sup-

ported by multiple direct measurement methods is

a useful resource for calibrating the methods for

combining computationally predicted and measured

interaction data.

FUTUREDIRECTIONS
Here we have considered data describing PPI,

the coexpression of gene transcripts and biological

pathways as examples to illustrate some of the chal-

lenges associated with integrating plant genomics

resources. High throughput technologies are being

developed that will generate other sources of biolog-

ical information which will become increasingly

valuable for providing insight into plant systems:

these include metabolomics profiles which will be

important for pathway discovery, data generated

from high throughput phenotyping systems [67]

and image data associated with gene and protein

localisation. Additionally, long time series data sets

require dynamic views of the integrated networks;

whereas most of the current approaches to data inte-

gration involve developing essentially a static view

of the system. The development of data standards

and ontologies will further help the integration

process but the synthesis of all relevant information

in a manner to facilitate knowledge discovery will

involve continued development of data mining and

visualisation software.

Key Points

� Data integration is a challenge in plant science, but even partial
integration can reveal novel insights from the data.

� Ambiguities in data and missing information are obstacles to
complete integration. This highlights the need to develop more
standards for recording data.

� The further development of data mining and visualisation soft-
ware is important for knowledge discovery from integratedbio-
logical networks.

� Applications of data integration software such asOndexcanhelp
address issues associated with syntactic and semantic heterog-
eneity in data frommultiple sources.
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