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Accounting for data sparsity when forming spatially
coherent zones
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Abstract

Efficient farm management can be aided by the identification of zones in the

landscape. These zones can be informed from different measured variables by

ensuring a sense of spatial coherence. Forming spatially coherent zones is an

established method in the literature, but has been found to perform poorly when

data are sparse. In this paper, we describe the different types of data sparsity

and investigate how this impacts the performance of established methods. We

introduce a set of methodological advances that address these shortcomings to

provide a method for forming spatially coherent zones under data sparsity.

Keywords: Precision Agriculture, Spatial Coherence, Data Sparsity, Cluster

Analysis, Crop Yields

1. Introduction

It is a well-recognised aim of many on-farm management strategies to divide

fields into zones to ensure efficient and effective management where each zone

may be treated differently. Defining such zones has been a topic of research for

at least 40 years (see e.g. Webster and Burrough [1]). The process of defining

zones depends upon both the variables used to inform the zones, but also the
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approach used to ensure the zones are spatially coherent. It is of limited practical

use to farm management if resulting zones are small and disjointed [2].

Data used to inform zones most commonly include yield data or soil char-

acteristics which can be measured either directly or more recently via remote

sensing [3, 4, 5, 6].

Once data are gathered and processed appropriately, methods for forming

spatially coherent zones generally consist of two steps; clustering and smooth-

ing. However, the literature varies in both the order that these steps are taken

and the specific clustering and smoothing methods used. For instance, Oliver

and Webster [7] and Bourgault et al. [8] induced spatial smoothing through

a modified dissimilarity/similarity matrix based on the variogram/covariance

between points that was then used in the subsequent clustering. In compari-

son, Lark [9] first classified the data through fuzzy c-means clustering and then

smoothed the resulting clusters. This method was shown to outperform Oliver

and Webster [7] and Bourgault et al. [8] in Milne et al. [2]. There are also imple-

mentations where data are first smoothed (e.g. through kriging) and are then

classified [3, 4, 6]. Despite the lack of consensus both in the choice of smooth-

ing method and also in how the smoothing is implemented, there has been a

(somewhat) linear evolution in the approach to classification. Specifically, early

work used hierarchical clustering methods [1], however, since soil is not intrinsi-

cally hierarchically structured [2], and the advancement of computational power,

non-hierarchical methods such as k-means became feasible [7, 8]. Furthermore,

since the late 1990s, non-hierarchical “fuzzy” clustering approaches have been

prevalent in the literature [9, 5, 3, 6, 2]. Fuzzy c-means was first developed by

Bezdek et al. [10] and assigns each point to a cluster with a specified probability.

This then allows one to see which points are well distinguished and which are

“fuzzy”.
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In this work, we return to the approach of Lark [9] and Milne et al. [2], but

look to address the specific issues associated with data sparsity. Data sparsity

can impact a dataset in different ways, through variable sparsity, spatial sparsity

or colocation sparsity.

Variable sparsity refers to a lack of information in the set of measured vari-

ables. Yield data often exhibit a high level of variability across time and space.

Thus, to be able to definitively identify distinct clusters, several years worth of

data need to be collected in order to look for consistently high or consistently

low yielding areas. However, if the yield data are variable sparse and contain

too little information, i.e. that the signal is too weak compared to the variabil-

ity, clusters will be difficult to identify and distinguish regardless of how many

years’ data are available.

Spatial sparsity occurs when data are not collected uniformly across a field,

this is the case for many infield measurements. Such spatial sparsity generates

holes in the coverage of data over a field and as demonstrated in Section 3 of

this paper, can either result in a large loss of resolution in the resulting field

zones or in some cases, a failure in the convergence of the smoothing algorithms.

Measuring multiple variables across the field will rarely result in the same

field locations being measured at each time, which will result in, what we term,

colocation data sparsity. Current zoning methods require each location to have

a complete set of observations. Thus, colocation sparsity can result in a large

loss of data, since any location for which only a subset of measurements were ob-

served are omitted from the analysis, compounding the issue of spatial sparsity.

Previous applications went some way to address this problem by aligning data

to a common grid, however, complete coverage of all variables is rare without a

prohibitive level of aggregation.

In this paper we will provide guidance on the formation of spatially coherent
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Figure 1: A flow diagram describing the process by which spatially coherent zones are calcu-
lated. Boxes highlighted in grey indicate the implementation of our methodological advance-
ments specifically addressing the issues of data sparsity. Boxes highlighted in black indicate
additional options one can iterate through to refine the formation of zones under high levels
of sparsity.

zones under data sparsity as summarised in Figure 1. Specifically, we discuss

the issues each type of sparsity creates and describe solutions to these. These

methodological advancements are demonstrated through an extensive empirical

study of real data collected from multiple fields at different temporal and spatial

resolutions. We finish with recommendations of how to form spatially coherent

zones under data sparsity and discuss at what point data can be considered too

sparse.

2. Materials and methods

In the following we describe the three steps taken in [9]; data pre-processing,

clustering and smoothing and extend these to account for the issues created by

data sparsity.

2.1. Data pre-processing

Each variable is first standardised to have unit variance. Since measurements

from different variables will rarely co-locate within a field, data are aligned to

a regular grid. Where multiple measurements of the same variable align to the

same grid location, these are averaged.

The grid size should be chosen carefully. Previous implementations recom-

mended a grid size of 10m, which produces a reasonable resolution for practical

field management. However, the choice of grid size does not only affect the zone

resolution but also the zone coherence. A grid size too large, compared to the

resolution of the raw data, will result in a high level of spatial averaging and

therefore will smooth the data before clustering, something we wish to avoid as
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detailed in Section 2.3 below. On the other hand, a grid size chosen too small

compared to the resolution of the raw data will increase both the spatial sparsity,

since not all grid points will have data, and the co-location sparsity, as it will

increase the number of grid locations with an incomplete set of measurements.

This latter point was particularly important in the original method of Lark as

any grid location without a complete set of observations was fully removed from

the dataset. As such, choosing too fine a grid, could result in a large loss of

data. Since our revised methods allow for locations with an incomplete set of

measurements, this is no longer a serious issue.

2.2. Clustering

Non-hierarchical methods of clustering have been found to outperform the

hierarchical methods on field based measurements due, perhaps in part, to the

lack of a hierarchical structure in soil [2]. Furthermore, fuzzy clustering methods

enable a good assessment of cluster entropy (see Eq. (3)) and allows one to

identify points that lie between clusters, as well as those that are easily classified.

To aid the exposition, we include a description of the original fuzzy c-means

algorithm of [10] as follows. Let ziv be the standardised observation for variable

v = 1, ..., p at location i = 1, ..., n. The aim of the classification algorithms is

to group the n objects into k classes. Each class q = 1, ..., k is characterised by

a centroid vector z̄q = {z̄1q, ..., z̄pq}. A fuzzy c-means classification is obtained

by minimizing,

k∑
q=1

n∑
i=1

uωiqδ
2
iq, (1)

where uiq is the membership probability of location i to class q such that∑k
q=1 uiq = 1, ω > 1 is the fuzzification parameter with values close to 1 result-

ing in a less fuzzy classification (ω = 1, returns the non-hierarchical k-means
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algorithm). As recommended in [2], we set ω = 1.25. The variable δiq is the

vector norm used to measure how well location i resembles class q. Here, we

use the Euclidean norm,

δ2iq =

p∑
v=1

(ziv − z̄vq)2 .

The fuzzy clustering algorithm to minimise (1) is given in Algorithm 1 fol-

lowing the parametrization of [11].

Algorithm 1 Fuzzy c-means algorithm

For fixed ω, k and ε,
At iteration r = 0,

Initialise cluster centroids z̄
(0)
1 , ..., z̄

(0)
k , where z̄

(0)
q = {z̄(0)1q , ..., z̄

(0)
pq }

While ||z̄(r+1) − z̄(r)|| < ε, (†)

Update cluster memberships for u
(r+1)
1 ,u

(r+1)
2 , ...,u

(r+1)
n , where u

(r+1)
i =

{u(r+1)
i1 , ..., u

(r+1)
ik }

For q = 1, ..., k, i = 1, ..., n,

u
(r+1)
iq =

δ
1/(1−ω)
iq∑k

κ=1 δ
1/(1−ω)
iκ

.

Update cluster centroids

For q = 1, ..., k, v = 1, ..., p,

z̄(r+1)
vq =

∑n
i=1

(
u
(r+1)
iq

)ω
ziv∑n

i=1

(
u
(r+1)
iq

)ω .

(†)||.|| denotes the L1 vector norm.

The original fuzzy c-means algorithm can only be applied to the subset of

locations for which there is a complete set of observations over all variables.
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Rather than removing the set of partially observed grid locations, we consider

two options. The first runs the fuzzy c-means as above, after which the re-

maining set of partially observed locations are allocated to each cluster q with

membership probability,

uiq =
D

1/(1−ω)
iq∑k

κ=1D
1/(1−ω)
iκ

, (2)

where Diq is the partial distance given by,

Diq =
p

Ii

p∑
v=1

(ziv − z̄vq)2 Iiv,

where Iiv is the indicator function for ziv observed and Ii =
∑p
v=1 Iiv.

A second option is to explicitly include the partially observed locations in

the optimisation algorithm so that both the membership probabilities and the

cluster centroids are optimised with respect to all available data. [11] com-

pared three methods of fuzzy c-means with incomplete data. The best perform-

ing algorithm was found to be the optimal completion strategy (OCS) which

optimises over the unobserved data via an EM-type algorithm (Expectation-

Maximization) and is described in Algorithm 2.
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Algorithm 2 Fuzzy c-means algorithm with optimal completion strategy

For fixed ω, k and ε,
At iteration r = 0,

Initialise cluster centroids z̄
(0)
1 , ..., z̄

(0)
k , where z̄

(0)
q = {z̄(0)1q , ..., z̄

(0)
pq }

Initialise missing observations ziv ∈ Zv, v = 1, ..., p, where Zv is the set of
unobserved data for variable v.

While ||z̄(r+1) − z̄(r)|| < ε,

Update cluster memberships for u
(r+1)
1 ,u

(r+1)
2 , ...,u

(r+1)
n , where u

(r+1)
i =

{u(r+1)
i1 , ..., u

(r+1)
ik },

For q = 1, ..., k, i = 1, ..., n,

u
(r+1)
iq =

D
1/(1−ω)
iq∑k

κ=1D
1/(1−ω)
iκ

.

Update cluster centroids,

For q = 1...k, v = 1, ..., p,

z̄(r+1)
vq =

∑n
i=1

(
u
(r+1)
iq

)ω
ziv∑n

i=1

(
u
(r+1)
iq

)ω .

Update estimate of missing observations,

For ziv ∈ Zv,

z
(r+1)
iv =

∑k
κ=1

(
u
(r+1)
iκ

)ω
z̄vκ∑k

κ=1

(
u
(r+1)
iκ

)ω .
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Both methods result in a vector of membership probabilities uiq for each

class, however, choosing the appropriate number of clusters remains a subjective

decision. Here, we used the normalized classification entropy, ξ(k), [12], to

identify the most appropriate number of clusters k,

ξ(k) =
−1

log k

k∑
q=1

n∑
i=1

1
nuiq log uiq. (3)

Following [13], we look for the point, k, that falls below the overall trend, such

as a local minimum, or the point at which the entropy changes gradient. Note,

in the following, we present graphs of 1 − ξ, as this scale typically enabled an

easier identification of the change points in ξ.

2.3. Spatial smoothing

In this work, we maintain the recommendation that smoothing should hap-

pen after the classification or clustering step. Two reasons to do so are, firstly,

classifying after spatial smoothing or kriging does not guarantee the spatial

coherence of the resulting clusters. Specifically, with a view to on-farm man-

agement strategies, we aim to force spatial coherence since the identification

of many disjointed zones would be of little practical use in field. Secondly, to

smooth the data first, would be to interpolate across the field with the potential

effect of artificially increasing the number of completely observed locations. By

smoothing in the final step of the zoning process, we avoid the need to propagate

imputed data (and their associated uncertainty) through the cluster algorithms.

Following [9], spatial coherence is imposed over the clusters by recalculating

the class memberships at each location as a weighted average of the neighbour-

hood of class memberships. Since membership probabilities form a composition

(constrained to sum to 1), this weighted average is calculated after a symmetric
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log-transformation of the membership probabilities [14],

ũ∗iq =
∑
j∈R

w(i, j)ũjq,

where ũiq is the transformed membership probability for location i, class q, R

defines the radius of a circular neighbourhood of location i and w is a weight

defined by the dependence between locations i and j.

The weights w(i, j) are formed so that points close to location i are given

higher weight than locations further away and are derived from the variogram

function [15],

γ(h) = c0 + cf(h),

where γ, termed the semi-variance, is a function of the expected mean squared

difference between random variables at locations separated by a distance h. The

variogram therefore characterises the spatial dependence between points and is

incorporated into the weighted smoothing through the following [9],

w(i, j) =
1− f(hij)∑
l∈R 1− f(hil)

, (4)

where hij is the distance between points i and j.

An example variogram is shown in Figure 2 and illustrates i) the nugget

variance, c0, which is the spatially independent contribution to the variance, ii)

a period of increasing γ, characterising the property that points separated by a

small distance h, are more similar than points separated by a large distance h

and iii) a sill, c0+c1, indicating points separated by large distances are spatially

independent.

The inclusion of the variogram function in the definition of the weights pro-
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vides a rational measure of spatial dependence between points. Specifically, [9]

and [8] considered models to the multivariate variogram, whilst [7] considered

models to the variogram of the first principal component of the data. In these

papers, the empirical variogram gives a description of the general spatial struc-

ture across all variables. However, the former approach is restricted to the set

of complete observations, meaning either all partial observations are removed

(a potentially large loss of data) or data are aggregated which will reduce the

resolution at which the variogram can be calculated. In contrast, the latter ap-

proach, using the first principal component of the data can incorporate partial

observations (through, for example, pairwise deletion or imputation methods

[16]) but although the first principal component will provide an overall sum-

mary of the data, it is not guaranteed to capture spatial variation. Instead,

we propose the variogram is calculated from the transformed class membership

probabilities. Although there will be k possible variograms, one for each class

membership, we find in practice that, with the exception of the nugget, very lit-

tle difference can be seen in the variograms of the different class memberships.

Thus, the empirical variogram is obtained from the transformed membership

probabilities of the most commonly occurring class, to which the model var-

iogram is fitted. Since there will be a class membership for every location,

including those with incomplete measurements (when implementing the revised

cluster algorithms), all locations are included in the calculation of the spatial

dependence and moreover the variogram will explicitly capture the spatial de-

pendence of the classification.

Not only is the choice of weights in (4) important, but also the choice of R,

the radius of smoothing. If R is too small, clusters remain fragmented, whereas

for large R, clusters are oversmoothed. [9], defined a coherence index, Ic, which

when maximised, defines a radius that balances out the need to reduce spatial
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fragmentation and to ensure the resulting smoothed clusters are consistent with

the original variables,

Ic =
ηa∑k
q=1 ψ

2
q

. (5)

Here ηa is the proportion of pairs of points within a distance a = g
√

2,

where g is the underlying grid size, that belong to the same class and ψq is

the proportion of units that belong to class q (Fig. 2). Such a coherence index

maximises the probability that two individuals separated by a distance a are

in the same class, normalized by the probability that two randomly selected

individuals from the dataset belong to the same class. For complete data, the

above coherence index works well, however, when data are spatially sparse, this

function often has discontinuities making it difficult to optimise. This can be un-

derstood through the definition of a coherent neighbourhood. Equation (5) does

this based on the neighbourhood of the underlying grid. However, when data

are spatially sparse, relatively few points will have a complete neighbourhood,

with many points having, potentially, a single neighbour. Thus, at short ranges,

the numerator of (5) quickly saturates. To overcome these discontinuities, we

instead define I∗c = η∗a/
∑k
q=1 ψ

2
q , where η∗a is calculated using a distance of a∗

such that a∗ is the 25th percentile of the square root of the Voronoi cell area,

where the Voronoi grid is defined by the Delaunay triangulation of the locations

within the field. Defining a neighbourhood based on the observed Voronoi grid

ensures a reasonable coverage and a consistent coherence index (Fig. 2).

We also note here, that although in practice the numerator of the coherence

index has the largest influence, the denominator is minimised when clusters are

of equal size. This may not, in itself, be a necessary property of the resulting

clusters and as such, can be downweighted further by raising ψq to a higher

power.
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Figure 2: A) Locations of the set of complete observations for a single field on a grid size of
5m. B) Locations are coloured according to the transformed membership probabilities for the
most commonly occurring class resulting from a fuzzy c-means clustering with 4 clusters and
C) shows the associated variogram. D) An illustration of the neighbourhood under spatial
sparsity. E) The Voronoi grid of observed spatial locations. F) Histogram of the length of
Voronoi cell size, calculated as the square root of the Voronoi cell area. G) The numerator
of the coherence index calculated based on a grid neighbourhood (red) and a Voronoi neigh-
bourhood (black). H) The coherence index calculated based on a grid neighbourhood (red)
and a Voronoi neighbourhood (black).

3. Results

In this section, we describe the results from an extensive empirical study

designed to investigate how the above methods address the issues created by

different types of data sparsity. Specifically, we have three fields with wheat

yield measurements obtained from multiple years at a reasonable spatial density.

We studied the effects of variable sparsity, by restricting data to different subsets

of years, and the effects of spatial sparsity, by considering different grid sizes,

on clustering and smoothing. In combination, these enabled us to investigate

the effect of colocation sparsity. A summary of these scenarios is given in Table

1. To each data scenario we implemented 3 cluster options,

1. Original fuzzy c-means, requiring complete observations

2. Original fuzzy c-means of complete observations with partially observed

locations allocated post-hoc to the most probable cluster (Eq. (2)).

3. Fuzzy c-means with optimal completion strategy

and two smoothing options,

1. Over a neighbourhood defined using the underlying grid alignment

2. Over a neighbourhood defined using the Voronoi tessellation.

For these data, explicit information, such as soil maps, that designate a

definitive clustering are not available. As such, no true validation datasets exist

that can be used to calculate algorithm error. Thus, to assess algorithm perfor-

mance, a subjective assessment of the clustering and smoothing was made for
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Table 1: The number of datasets used for each data scenario
Grid Size (m)
5 10 15 20

Number of variables

2 5 5 5 5 20
3 4 4 4 4 16
4 2 2 2 2 8
5 3 3 3 3 12
7 1 1 1 1 4

15 15 15 15 60

Figure 3: A) - C) The relationship between the cluster entropy, ξ, and number of clusters.
These are illustrative examples of a “bad” (no distinct change point in the gradient of entropy
can be identified), “moderate” and “good” (a distinctive change in gradient can be identified)
cluster assessment, respectively. D) - E) The coherence index plotted as a function of the
smoothing radius. These are illustrative examples of a “bad” (jagged, ill-behaved curve),
“moderate” and “good” (smooth, with clear maximum identifiable) smoothing assessments,
respectively.

each data scenario. The clustering was categorised as “good” if a classification

could be clearly identified from the calculated cluster entropy, “moderate” if a

classification could be identified, albeit with some sceptism or “bad” if no clear

classification could be identified. The smoothing was categorised as “good” if

a clear maximum could be identified from the coherence index, “moderate” if

a maximum existed but was not clearly identified, e.g. through discontinuities

in the coherence index and “bad” if no clear maximum could be identified.

Examples of these categorisations are shown in Figure 3.

The results of this assessment are shown in Figure 4. From here, a tendency

for improved clustering with the inclusion of more variables can be identified

(Fig. 4A)). Furthermore at the smallest grid sizes, cluster identification ap-

pears to worsen as there is a greatly reduced set of locations which are fully

observed (Fig. 4C)). It is interesting to note, that at the smaller grid sizes, the

cluster assessment becomes more dichotomous when using the original fuzzy

c-means algorithm compared to the two alternative clustering methods. This

reflects the fact that the fuzzy c-means relies upon having a sufficient number of

14



Figure 4: Results from an empirical study of three fields through an assessment of clustering (A
and C) and smoothing (B and D). A)-B) The frequency of data scenarios that were considered
to have “bad”, “moderate” or “good” assessment for differing numbers of variables (years of
data) under each of the three clustering options. C)-D) The frequency of data scenarios that
were considered to have “bad”, “moderate” or “good” assessment for data aligned to different
grid sizes under each of the three clustering options. Frequency, refers to the number of data
scenarios of each type see Table 1). Cluster option 1, refers to the original fuzzy c-means,
option 2 includes the post-hoc allocation of partially observed locations and option 3 refers
to the fuzzy c-means with optimal completion strategy.

completely observed locations to make an effective assessment. In comparison,

the alternative approaches incorporate partially observed locations which could

both increase available information but also dilute information if there is little

overlap in the partially observed subset (e.g. many locations for which only a

single variable is observed).

Figure 4D) shows a tendency for improved smoothing with a finer grid size,

particularly when the clustering algorithm allows the inclusion of partially ob-

served locations. In addition, we also find that in scenarios of poorly identified

clusters, this coincides with a poorer performance of the coherence index, where

peaks are difficult to identify and the coherence index exhibits jagged behaviour

(Fig. 6E). This may be due to the relatively little information that distinguishes

one location from another, regardless of its position in the field.
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Figure 5: A)-B) Standardised yield measurements over two years, aligned to a 10m grid. C)
The normalized classification entropy of the fuzzy c-means, indicating a choice of 3 clusters is
appropriate. D) The resulting spatially coherent zones (smoothed via the weights of equation
(4))

Figure 6: A)-C) Standardised yield measurements over three years, aligned to a 10m grid.
D) The normalized classification entropy of the fuzzy c-means with a nominal selection of 3
clusters. E) The associated coherence index.

4. Discussion

Identifying variable sparsity

Results shown in Section 3 indicated that cluster identification often im-

proves with the inclusion of more variables. However, distinct zones and clusters

can still be formed from just two years worth of data as shown in Figure 5. Fur-

thermore, the inclusion of more variables does not guarantee cluster formation

(Fig. 6 ).

Thus, before proceeding with the formation of coherent spatial zones, the

raw clustering output should be evaluated through an assessment of the clus-

ter entropy (Step 4 in Fig. 1). We have found the minimum number of years

required to result in a reasonable clustering (as identified from the entropy) to

depend both on the field and the particular subset of years considered. Thus,

although there exist recommendations in the literature, (see e.g. [5] for assess-

ment of cotton yields), we recommend a case by case evaluation of the clustering

to determine whether resulting zones will be distinct enough to be of use.

Spatial sparsity impacts coherence and smoothing

Figure 7, shows 5 years of yield data for a single field. When these data

are aligned to a 5m grid, there are relatively few locations for which there are

a complete set of observations. Despite so few locations with a complete set

of observations, clusters can be well-identified. However, due to the spatial

sparsity, they cannot be made spatially coherent with the coherence index of
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Figure 7: A)-E) Standardised yield measurements over five years, aligned to a 5m grid. F) The
spatial locations of complete observations on a grid of 5m. G) The normalized classification
entropy of the fuzzy c-means. H) The associated coherence index based on the underlying
grid of 5m (red) and Voronoi cell length (black).

Lark. Moreover, although the revised coherence index based on the Voronoi

cell size is an improvement, it does not identify an optimal smoothing range (at

Step 6 of Fig. 1). In this scenario, data are too sparse to form coherent zones.

Spatial sparsity can be mitigated by retaining the partially observed loca-

tions. This can be done through either of the revised clustering algorithms

outlined in Section 2.2 (Step 3 of Fig. 1). When implementing the revised

clustering algorithms to allow for partially observed locations, a much finer

grid of spatially dense data can be used (Fig. 8). The consequence of such is

to provide a much improved (smooth and well-defined) coherence index. We

find both methods to perform well, although the post-hoc allocation of par-

tial observations will not guarantee clusters to be defined consistently as the

cluster centroids are not optimised over the partially observed locations. In im-

plementing the optimal completion strategy, the clustering algorithms required

more iterations to converge, and it is sometimes the case that for many locations

with partially observed data, may fail to converge. In practice, one may need to

consider a combination of variable-wise and unit-wise deletion of observations

to reduce the colocation sparsity.

An alternative solution, is to increase the grid size (Fig. 9). As the grid

size increases, the spatial sparsity decreases and the coherence index is better

identified. However, for larger grid sizes, the coherence index is less smooth

reflecting the higher level of discretization in the grid alignment. Figure 9 shows

a grid size of 15m to be a reasonable compromise between a reduction of spatial

sparsity without too much discretization.
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Figure 8: A) The spatial locations of both complete (black) and partial (grey) observations
on a grid of 5m. B) The normalized classification entropy of the fuzzy c-means. C) The
associated coherence index based on the underlying grid of 5m (red) and Voronoi cell length
(black) using all locations through a post-hoc allocation of to the nearest cluster. D) The
spatial locations of both complete (black) and partial (grey) observations on a grid of 5m. E)
The normalized classification entropy of the OCS fuzzy c-means. F) The associated coherence
index based on the underlying grid of 5m (red) and Voronoi cell length (black).

Figure 9: A) The spatial locations of complete observations on a grid of 10m. B) The nor-
malized classification entropy of the fuzzy c-means. C) The associated coherence index based
on the underlying grid of 10m (red) and Voronoi cell length (black). D) The spatial locations
of complete observations on a grid of 15m. E) The normalized classification entropy of the
fuzzy c-means. F) The associated coherence index based on the underlying grid of 15m (red)
and Voronoi cell length (black). G) The spatial locations of complete observations on a grid
of 20m. H) The normalized classification entropy of the fuzzy c-means. I) The associated
coherence index based on the underlying grid of 20m (red) and Voronoi cell length (black).

Mitigating data loss from colocation sparsity

Figures 10 and 11, demonstrate one of the key advantages to the method-

ological extensions outlined in Section 2. Specifically, these are two additional

fields for which many data are available. In particular, yield measurements have

been collected for 7 and 8 years respectively. However, with an increase in the

number of years measured, the co-location sparsity increases, resulting in fewer

locations having a complete set of observations. The subsequent zones, obtained

from the original approach of Lark, although identified, are at a relatively low

spatial resolution. It can be seen that allowing for partial observations, increases

the spatial resolution of the resulting zones but not at the cost of zone coherency.

Figure 10: A)-G) Standardised yield measurements over 7 years, aligned to a 10m grid. H)
The spatial locations of both complete (black) and partial (grey) observations on a grid of 10m.
I) The normalized classification entropy of the fuzzy c-means. J) The associated coherence
index based on the underlying grid of 10m (red) and Voronoi cell length (black) and K) the
associated smoothed clusters. L) The normalized classification entropy of the OCS fuzzy c-
means. M) The associated coherence index based on the underlying grid of 10m (red) and
Voronoi cell length (black) and N) the associated smoothed clusters.
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Figure 11: A)-H) Standardised yield measurements over 8 years, aligned to a 10m grid. I) The
spatial locations of both complete (black) and partial (grey) observations on a grid of 10m.
J) The normalized classification entropy of the fuzzy c-means. K) The associated coherence
index based on the underlying grid of 10m (red) and Voronoi cell length (black) and L) the
associated smoothed clusters. M) The normalized classification entropy of the OCS fuzzy
c-means. N) The associated coherence index based on the underlying grid of 10m (red) and
Voronoi cell length (black) and O) the associated smoothed clusters.
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5. Conclusion

The methodological advances described in Section 2 enable a more efficient

use of data by discarding less information in the formation of spatially coherent

zones. In particular, we have shown that by extending the clustering methods

to cope with partially observed locations, more data are available as input to the

coherence index and resulting variogram smoothing. Furthermore, by obtaining

a variogram of the transformed class memberships, a complete set of data is

available to determine any spatial dependence. However, the membership at

each location will not be equally reliable as some will be based on incomplete

data. Although this uncertainty is not accounted for explicitly, to a great extent,

it will be captured through the class membership probabilities. For example, a

location with only a single observation is likely to have a flatter distribution of

membership probabilities as it is less clearly associated with a particular cluster

profile.

However, despite the advancements described in this paper, a certain level of

manual assessment remains a key component. As shown in Fig. 1, an assessment

of cluster entropy is required to identify the presence, and associated number,

of distinct clusters. Clusters may not be identifiable in the presence of high

levels of colocation sparsity (equivalently, in scenarios with a high proportion

of locations with an incomplete set of observations). This may be addressed i)

by removing locations with a high proportion of missingness or ii) by aligning

data to a coarser grid. If neither option enables the identification of clusters,

more variables are needed to inform the clustering. It is a topic of ongoing work

to include alternative data sources, including subjective information, into the

methodology in order to better define zones for farm management.

Once clusters have been identified, a second manual assessment can be made

of the associated neighbourhood coherence index. This coherence index iden-
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tifies the range over which to smooth the cluster zones. We have seen that by

implementing a Voronoi neighbourhood definition, this coherence index can be

more reliably defined under spatial sparsity. However, a manual assessment of

the index may still identify a “jagged” behaviour indicative of data that are

too spatially sparse. To address this issue, we may consider aligning data to a

coarser grid to reducing spatial sparsity at a cost of lower data resolution.

In summary, data sparsity will always be present in one form or another. In

this paper, we have investigated the effects of different types of sparsity; variable,

spatial and colocation sparsity and how these can be mitigated. In addition, we

have provided guidance both on the steps to forming spatially coherent zones

and how the use of manual assessments can be used to identify data scenarios

that are too sparse to reliably form coherent field zones.
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