1265

The Construction by Computer of a Diagnostic Key to the Genera of Yeasts and Other Such Groups of Taxa

By R. W. PAYNE,^{1*} D. YARROW² AND J. A. BARNETT³

 ¹ Rothamsted Experimental Station, Harpenden, Hertfordshire AL5 2JQ, U.K.
 ² Centraalbureau voor Schimmelcultures, Yeast Division, Laboratory for Microbiology, Julianalaan 67A, 2628 BC Delft, The Netherlands
 ³ School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, U.K.

(Received 3 February 1982)

Groups of taxa such as genera, or groups derived from some forms of cluster analysis, may have insufficient test results that are constant within the groups to allow diagnostic keys and tables to be constructed in the usual way. This paper describes how the usual methods can be adapted to allow construction based on information about the individual group members, instead of on the overall group information. A new key to the genera of yeasts is constructed by these modified methods.

INTRODUCTION

This paper reports new methods for computing diagnostic keys and tables to identify the group of taxa to which a specimen belongs, rather than the taxon itself. These methods are of general interest for microbial taxonomy and are illustrated below by the construction of a key to the genera of yeasts.

Barnett & Pankhurst (1974) and Barnett *et al.* (1979) devised new keys to yeast species. These keys were constructed by computer programs which required, for data, a species \times test table, each entry indicating the results that can occur when a test is used with a particular species. An entry was coded (i) as positive, if all yeasts of that species always give a positive response to the test, (ii) as negative, if all yeasts of the species always give a negative response, or (iii) as variable (or equivocal), if the response might differ between strains of a species, or be particularly dependent on the precise method of testing, so that sometimes the result might appear positive and sometimes negative.

It might seem that a key to genera could be constructed similarly, by forming a genus \times test table of results, and then using the same methods as those for the keys to the species. However, in such a table of results for the genera of yeasts, 45% of the entries were variable, and 133 pairs of genera could not be distinguished by this overall summary. The results are unsuitable for distinguishing between the genera, although suitable for the species, for two main reasons. First, most of these results are from nutritional tests, whilst the genera are mostly not classified with respect to their nutritional characteristics. Secondly, many characteristics important for classifying species into genera are inconvenient to use for routine identification and, hence, were not used in the battery of features on which the key to the species was based (Barnett *et al.*, 1979). For example, *Debaryomyces* is distinguished from *Pichia* by the former producing ascospores with warty walls and the latter producing ascospores with serve as the serve as the serve as the server as the species of *Pichia* have ascospores with warty walls; but, unlike those of *Debaryomyces*, electron microscopy has revealed that these warts are formed exclusively by the outer layer of the ascospore wall (Kreger-van Rij, 1970*a*, *b*).

Thus, the difficulties in constructing keys to yeast genera arise because of the need to use different characteristics for identifying from those used for classifying the genera. However,

		Tests							
Taxon	Group	1	2	3	4	5	6		
А	I	_	+		-	_	+	٦	
В	I	+	~		-	v	+		
С	I	+	+		+		+	ļ	
D	II	-	+	****	+	+	+		Results for
Ε	II	+	+	+	+	+	v	~	each taxon
F	II	_	v	+	+	+	+		caen taxon
G	111	-			+	-	+		
Н	III	-	~		v	+	_	1	
I	III	_	~	+	+		-	J	
	ł	v	v	_	v	v	+	٦	Summarized
	п	v	v	v	+	+	v	7	results for each
	III	_	_	v	v	v	v	J	group of taxa

Table 1. Results for taxa A to I with tests 1 to 6

problems can occur even when the same characteristics are used for both. For example, many numerical methods of classification obtain a measure of the similarity of each pair of taxa and then form groups, or clusters, by merging similar taxa. Because the similarity measure is a single figure, based on all the characteristics of the pair of taxa concerned, there is no guarantee that any of the characteristics will be other than variable for the groups formed.

Maximal predictive classification (Gower, 1973, 1974; Barnett *et al.*, 1975) is not based on pairwise similarity, but aims to construct groups such that knowing the group to which a taxon belongs enables the maximum number of correct predictions to be made about that taxon. However, even maximal predictive groups may sometimes have few non-variable characteristics. As an example, Table 1 shows a set of hypothetical characteristics for taxa A to I and binary tests 1 to 6; the second column of the table contains the group number of each taxon for a maximal predictive classification into three groups; the group characteristics are summarized in the last three lines of the table.

This paper shows how these two difficulties, namely, (i) the disassociation of identifying and classifying and (ii) the presence of many variable results, may be overcome.

METHODS

Irredundant test sets. To identify yeasts it is usually impracticable to use tests sequentially, that is, to do each test only after interpreting the results of previous tests. Accordingly, Barnett et al. (1979) assumed that all the tests required for a given key would be done simultaneously. As the full set of tests in the key will be done for any identification, that set should be minimal. Hence it should contain no redundant tests: for example, test 5 in Table 1 is redundant, as it can be omitted without making any taxon unidentifiable. However, the set of tests 12346 is termed irredundant (with regard to the identification of individual taxa), since if any further tests are omitted there will be at least one pair of taxa that can no longer be distinguished. For example, if test 1 is also omitted, taxa C and D cannot be distinguished.

Barnett *et al.* (1979) used a method (reviewed by Payne & Preece, 1980) that determined all irredundant test sets available to identify the yeast species in a particular key. Appendix 1 describes how to adapt this method to form sets to identify groups instead of individual taxa, and shows that there are five irredundant sets of tests to identify the groups in Table 1, namely, 12346, 1456, 2456, 1235 and 1256. Each set can distinguish between all pairs of taxa belonging to different groups, but not necessarily between pairs of taxa in the same group. For example, there is no test in set 1456 to distinguish taxon D from taxon F, both of which are in group II.

Diagnostic keys and tables. To enable the specimens to be identified, given their results for the tests in the chosen irredundant set, a diagnostic table may be printed. Table 2 shows a diagnostic table for identifying the groups of taxa in Table 1, based on the second irredundant set, tests 1456.

An alternative means of identification is the diagnostic (or identification) key. This is most commonly used in situations when tests are done sequentially. However, as described above, it is equally possible to use a key with

Table 2. Diagnostic table for the groups of taxa in Table 1, based on tests 1, 4, 5 and 6

	Ch	aracters		
1	4	5	6	Group (Taxon)
+	+	+	+/-	II (E)
+	+	_	+	I (C)
+	-	+/-	+	I (B)
	+	+	+	II (D or F)
_	+	+		III (H)
_	+		+/	III (G or I)
_		+	_	III (H)
_	-	-	+	I (A)

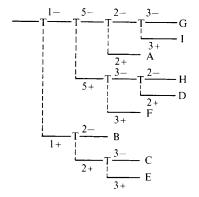


Fig. 1. Key to the individual taxa A to I in Table 1, based on tests (T) 1, 2, 3 and 5.

non-sequential testing and, if many test results are variable, such a key will be more compact than the corresponding diagnostic table (Payne & Preece, 1980).

An example, for identifying the individual taxa in Table 1, is shown diagrammatically in Fig. 1. In this key, test 1 is first, followed by test 5 for a negative result, test 2 for a positive result and so on. Thus, specimens of taxon B would be identified by test 1 +, test 2 -. Such a sequence of test results is termed a *branch* of the key.

Several computer programs have been devised for constructing keys to taxa (e.g. Pankhurst, 1970; Morse, 1971; Dallwitz, 1974; Payne, 1975). These all operate similarly, selecting first the test that best divides the taxa into subsets. For a binary test, there are two subsets: the first containing the taxa not eliminated if a negative result is observed with the test (i.e. the taxa with either negative or variable results), and the second subset containing the taxa not eliminated by a positive result. The programs then select the best test to use with each subset, continuing until the subsets each contain only one taxon. The best test is usually taken as that with minimum value of some selection criterion function, a function involving the following: m_i , the number of possible results to test *i*; p_{ik} , the proportion of taxa in the current subset that always give result *k* to test *i*; and r_i , the proportion of taxa in the taxa in the taxa are expected to occur.

Keys to identify groups of taxa. It is usually wasteful to use a key like that in Fig. 1 and identify the group by first identifying the individual taxon. For example, after test 1 -, test 5 - and test 2 - in Fig. 1, the taxa not eliminated, G and I, both belong to group III; so test 3 is unnecessary. This suggests one modification to the usual method of key construction, namely, that each branch should now terminate when the taxa are all from the same group.

Selection criterion functions, designed to select tests to identify individual taxa, are usually unsuitable for selecting tests to identify groups of taxa. They require modification to take account of the fact that there is no need to separate taxa belonging to the same group. Appendix 2 explains how this can be done and derives two new functions, G_v and G_e .

Table 3. Irredundant test sets to identify yeast genera

These are sets of tests that separate the genera as far as possible, and are minimal in the sense that, if any test is deleted from the set, there will be some pair of species in different genera that can no longer be distinguished. The tests are taken from those listed by Barnett *et al.* (1979).

Six sets are presented below, formed by taking all 43 tests in group A and one test from each of groups B and C.

	Grou	D A			Group B
1	D-Glucose fermentation	39	$D-\delta$ -Gluconolactone growth	23	Cellobiose growth
	Maltose fermentation	40	2-Ketogluconate growth	24	Salicin growth
6	Trehalose fermentation	44	Citrate growth	25	Arbutin growth
12	D-Galactose growth	47	Ethylamine growth		
13	L-Sorbose growth	49	Nitrate growth		
14	D-Ribose growth	54	Growth without biotin		
18	L-Rhamnose growth	55	Growth without thiamin		
19	Sucrose growth	56	Growth without pyridoxine		
20	Maltose growth	57	Growth without niacin		Group C
21	Trehalose growth	60	Growth in 50% D-glucose		DL-Lactate growth
26	Melibiose growth		Growth in 60% D-glucose	43	Succinate growth
27	Lactose growth		Growth with 0.01% cycloheximide		
28	Raffinose growth		Starch formation		
29	Melezitose growth		Pink colonies		
30	Inulin growth		Budding cells		
31	Starch growth		Splitting cells		
32	Glycerol growth		Apical budding		
33	Erythritol growth		Filamentous		
35	Galactitol growth	74	Septate hyphae		
36	D-Mannitol growth		Ascosporogenous		
37		76	Ascospores spherical, oval or reniform		
38	myo-Inositol growth				

RESULTS AND DISCUSSION

The methods described above have been incorporated into the computer program Genkey (Payne, 1975, 1978) and applied to the data of Barnett *et al.* (1979). Table 3 lists the six smallest irredundant test sets for identifying the genera of yeasts, each set containing 45 tests. There were 716 sets in all to choose from, containing up to 52 tests.

A key to the genera based on the irredundant set containing all 43 tests in group A of Table 3, together with tests 23 and 42, was constructed using selection criterion G_e and is printed in Table 4 is one of the compact forms of Payne *et al.* (1974). This key includes the results of physiological tests, some morphological tests and tests for ascospores. If the results of testing for ascospores are omitted there are six irredundant sets, each containing 54 tests, and a key based on one of these sets, constructed similarly to that in Table 4, took 581 lines (compared to the 307 lines in Table 4). Also, the number of pairs of species in different genera that cannot be distinguished rises from 32 to 140.

The key in Table 4 thus provides a compromise between including (i) solely physiological characteristics, as in the key of Barnett & Pankhurst (1974) and some of those of Barnett *et al.* (1979), and (ii) the varied features used by Lodder (1970) in her key to the genera. Lodder (1970) included, amongst others, the formation of ballistospores and their shape, and the presence of clamp connections, as well as some more complex features that are difficult to observe, excessively subjective or awkward to interpret. These are exemplified by the following: (i) 'cells often "ogival"; strong acetic acid production from glucose; characteristic aroma; cells on malt agar short-lived'; (ii) 'ascospores hat- or helmet-shaped, or apparently globose with an indistinct ledge, not conjugating in pairs'.

In order to diagnose a yeast's genus, Lodder's key to the genera uses about the same number of steps as that in Table 4. Although her key involves only about 12 kinds of examination in the laboratory, the scrutiny of asci, ascospores and filaments is in much

Table 4. Key to the genera of yeasts

The genera are those accepted by Barnett et al. (1979).

		Negative	Positive
1 2 3 4 5 6 7 8 9 10 11 12 13	Ascosporogenous Pink colonies Filamentous myo-Inositol growth Budding cells Maltose growth Lactose growth Apical budding L-Sorbose growth D-Glucose fermentation Nitrate growth Cellobiose growth Growth without biotin	2 3 4 5 Sterigmatomyces spp. 7 5 5 5 5 5 7 7 8 7 7 8 7 7 8 7 7 8 7 9 10 10 10 10 10 10 10 11 11 11 11 11 11	140 111 44 34 5 5 5 5 5 5 5 5 5 5 5 5 5
14 15	Sucrose growth D-Mannitol growth	Torulopsis spp.	16 Candida sp. Torulopsis sp.
16	D-Mannitol growth	Candida sp. Torulopsis sp.	Torulopsis sp.
17	D,L-Lactate growth	Torulopsis spp.	Torulopsis spp.
18	D-Glucose fermentation_	Trigonopsis sp. Schizoblastosporion sp.	- $ -$
19	Cellobiose growth	21	Torulopsis sp.
20	Starch formation		
21	Erythritol growth		30
22	Lactose growth	23 Torulopsis spp.	28 28
23	Cellobiose growth	Torulopsis spp.	
24	Melezitose growth	10/ 010 p313 spp. 26	Torulopsis spp.
25	Melibiose growth		Torulopsis spp.
26	Starch growth	Torulopsis	Candida spp.
27	D-Mannitol growth Raffinose growth	Torulopsis sp. 29	Torulopsis spp.
28 29	D-Glucose fermentation	Bullera sp.	Torulopsis sp.
30	Nitrate growth	J1	32 Selenozyma sp.
31	D,L-Lactate growth	31 Candida sp.	Selenozyma sp.
32	D-Galactose growth	Torulopsis spp.	KIIOGOCOLUIA 3P.
33	Raffinose growth	Aessosporon sp.	Cryptococcus sp.
34	Budding cells	Sterigmatomyces spp.	35
35	Maltose growth	Cryptococcus spp.	
36	Melezitose growth	37	
37	Glycerol growth	Cryptococcus spp.	Filobasidium sp.
38	Nitrate growth		<u> </u>
39	Lactose growth	Cryptococcus spp.	40
40	Raffinose growth	Cryptococcus spp.	Bullera sp.
41	Starch formation	Bullera sp.	42
42	Sucrose growth	Cryptococcus sp.	43 Cryptococcus spp.
43	Melibiose growth	Cryptococcus sp. Filobasidium sp.	
44	Splitting cells	45	
45	Apical budding	<u> </u>	
46		47	
47	Budding cells	Sterigmatomyces spp.	
48	• • • • • • • • • • • • • • • • • • • •	49	
49		50	
50		51	Brettanomyces spp. 59
51		52	56
52	Trehalose growth		

Negative

Positive ____Candida spp. 53 Growth without ______ pyridoxine 54 D-Glucose fermentation _____55 55 Cellobiose growth _____ Torulopsis sp. 56 L-Sorbose growth _____ Brettanomyces sp. 57 Cellobiose growth _____ Candida spp. 58 D-Galactose growth _____ Candida spp. 59 D-Galactose growth _____ Candida spp. 60 Lactose growth ______ 61 61 Nitrate growth ______ 62 61 Nitrate growth ______ 62 pyridoxine ____Candida spp. Candida sp. Candida sp. Candida sp. Candida sp. Candida sp. Brettanomyces spp. 80

 61
 Nitrate growth
 _______62

 62
 Cellobiose growth
 _______64

 63
 Sucrose growth
 _______64

 64
 Galactitol growth
 _______65

 65
 Citrate growth
 _______66

 66
 Maltose fermentation
 ________Brettanomyces sp.

 67
 Septate hyphae
 _______68

 ____Candida sp. Candida sp. 75 Candida sp. 75 Candida sp. 74 Candida sp. 74 Candida sp. 74 Candida sp. 72 Candida sp. 74 Candida sp. 78

 66
 Maltose fermentation
 Brettanomyces sp.

 67
 Septate hyphae
 68

 68
 D,L-Lactate growth
 69

 69
 Melibiose growth
 70

 70
 Starch growth
 70

 71
 D-Galactose growth
 73

 73
 Raffinose growth
 73

 74
 L-Sorbose growth
 70

 75
 Maltose fermentation
 70

 76
 Trehalose growth
 77

 _____Candida spp. _____Torulopsis sp. _____Candida spp. ______Candida spp. ______Candida spp. ______Candida spp. _______84 ______Torulopsis sp. 82 Sucrose growth 83 Citrate growth 84 Growth without biotin ____83 Candida spp.

 84
 Growth without biotin
 _____Candida sp.

 85
 Maltose fermentation
 _____Candida spp.

 86
 L-Rhamnose growth
 _____Trichosporon spp.

 ______Torulopsis sp. _______86 ______Candida sp. _______88 _______97 ______Candida spp. ______Candida spp. ______Filobasidium sp. ______Candida spp. _______95

 80
 L-nhammose growth

 87
 Budding cells

 88
 Nitrate growth

 89
 Melezitose growth

 90 Erythritol growth _____ 91 Growth without biotin ____ 92 D-Glucose fermentation_ 93 Melibiose growth ______95 94 Lactose growth 95 Lactose growth____ ____Candida spp. 96 ____Candida sp. _ _ _ _ ____ Candida sp. 96 Erythritol growth _ _ _ ____Candida sp. Cryptococcus sp. ____Filobasidium sp. 97 Starch formation____ 98 ______Candida spp. ______Candida spp. _____ Bullera sp. _____ Bullera sp. _____ Candida sp. _____ 101 _____ Candida sp. _____ 105 _____Sterigmatomyces sp. 103 101 Septate hyphae____ 102 Nitrate growth 102 Nitrate growth_____ Schizoblastosporion sp. 104 104 Sympodiomyces sp. Leucosporidium spp. 104 Erythritol growth _____ Torulopsis sp. _____ Candida sp. _____ Geotrichum spp. 105 Septate hyphae____ 106 Budding cells _____ 107 110 110 110 107 Nitrate growth ____ Trichosporon spp. 108 Lactose growth_____

Negative

Positive

109	Erythritol growth	Trichosporon spp.	Sarcinosporon sp. Trichosporon sp.
110	D-Galactose growth	Sporobolomyces sp.	Trichosporon spp.
111	myo-Inositol growth	112	138
112	Starch formation	113	137
113	Nitrate growth	114	123
114	Trehalose growth		
115	L-Rhamnose growth	115 Torulopsis sp.	Rhodotorula sp.
116	Galactitol growth		Rhodotorula spp.
117	Starch growth		Sporobolomyces sp.
118	Filamentous		122 Rhodotorula spp.
119	2-Ketogluconate growth_	120	Rhodotorula spp.
120	Maltose growth	121	Rhodotorula sp.
.20			Sporobolomyces sp.
121	D-Galactose growth	Rhodotorula sp.	Rhodotorula spp.
		Sporobolomyces sp.	
122	Raffinose growth	Rhodosporidium sp.	Rhodotorula sp.
123	Erythritol growth	124	Rhodotorula sp.
124	2-Ketogluconate growth		134
125	Sucrose growth		127
126	Filamentous	Rhodotorula sp.	Sporobolomyces spp.
127	Melezitose growth	128	
128	Growth without thiamin_	Rhodosporidium spp.	120
129	Galactitol growth		Sporidibolus sp.
130	Maltose growth		Sporobolomyces sp.
131	Septate hyphae	Sporobolomyces sp.	Aessosporon sp.
1,1,1	Septrate Mphate		Sporobolomyces sp.
132	Septate hyphae	133	Sporidibolus sp.
1.52	Septence appare		Sporobolomyces sp.
133	Starch growth	Rhodotorula sp.	Sporobolomyces sp.
134	Melezitose growth	135	Rhodotorula spp.
135	Sucrose growth	135 Rhodotorula sp.	136 Rhodotorula sp.
136	Growth without thiamin_	Rhodosporidium sp.	Rhodotorula sp.
137	L-Sorbose growth	Phaffia sp.	Sporobolomyces sp.
138	Erythritol growth	139	Cryptococcus spp.
139	Nitrate growth	Cryptococcus sp.	Rhodosporidium spp.
140	Ascospores spherical,	141	185
	oval or reniform		
141	Nitrate growth		177
142	Apical budding	143	
143	L-Rhamnose growth	144	168
144	Sucrose growth		149
145	Filamentous	Pichia spp.	146
146	Septate hyphae	Pichia spp.	147
147	D-Glucitol growth	148	Saccharomycopsis spp.
148	Trehalose growth		Nematospora sp.
149	Erythritol growth		164
150	D-Mannitol growth	151	
151	Filamentous	Pichia sp.	152
152	Septate hyphae	Dekkera spp.	
153	D-Glucitol growth	154	Saccharomycopsis spp.
154	Cellobiose growth	Nematospora sp.	Saccharomycopsis sp.
155	Starch growth	150	162
156	Citrate growth		160 Metschnikowia spp.
157	D-Galactose growth	158 Saccharomycopsis sp.	Metschnikowia spp.
158	Melezitose growth	Saccharomycopsis sp.	159
159		Pichia sp.	Metschnikowia spp.
	pyridoxine		161
160		Pichia spp.	Pichia spp.
161	Raffinose growth	meusennikowia spp.	Itenta Spp.

Negative

Positive

		160	Cookererveendig gD
162	Septate hyphae	163 Schwanniomyces sp.	Saccharomycopsis sp.
163	D,L-Lactate growth	Schwanniomyces sp.	Pichia sp.
164	Starch growth		166 Ambrosiozyma spp.
165	Septate hyphae	Pichia spp.	Ambrosiozyma spp.
166	D-Galactose growth	Saccharomycopsis sp.	
167	Raffinose growth	Pichia sp.	Hypnopicnia sp.
168	myo-Inositol growth	169	172
169	Presthad al mouth	Dichia enn	170
170	D-Galactose growth	171	Pichia spp.
171	Sucrose growth	Pichia sp.	Ambrosiozyma sp.
172	L-Sorbose growth	173	174
173	D-Galactose growth	Pichia sp. Pichia sp. Botryoascus sp. Hansenula sp.	Ambroslozyma sp. 174 Pichia sp. Stephanoascus sp.
174	Sucrose growth	Hansenula sp.	Stephanoascus sp.
175	Cellobiose growth	176	nanseniaspora spp.
176	D-Glucose fermentation	Arthroascus sp.	Wickerhamia sp.
177	D-Mannitol growth	178	179 Dekkera spp.
178	Maltose fermentation	Hansenula spp.	Dekkera spp.
179	Sucrose growth	180	102
180	D-Galactose growth	Hansenula spp. Pachysolen sp.	Hansenula sp.
181	L-Rhamnose growth	Pachysolen sp.	Hansenula sp.
182	Erythritol growth	Hansenula spp.	
183	Raffinose growth	184	Hansenula spp.
184	D,L-Lactate growth	Hansenula spp.	Hormoascus sp.
185	Apical budding		
186	Budding cells	186 Schizosaccharomyces spp.	
187	Enuthmitel mouth	188	
188	Erythritol growth	188	252
	Nitrate growth	189	
189	L-Rhamnose growth	190	2.10
190	Raffinose growth	191	227
191	Cellobiose growth		222
192	Growth in 60% D-glucose		211
193	L-Sorbose growth	194	
194	D-Galactose growth		
195	Citrate growth		Pichia spp.
196	Ethylamine growth	197	201 Pichia spp. Pichia spp. 200
197	Growth with 0.01%	198	200
400	cycloheximide		
198	D-Mannitol growth	¹⁹⁹	^{Pichia} sp.
			Saccharomyces sp.
199	Glycerol growth	Pichia sp.	Pichia spp.
		Saccharomyces spp.	Pichia spp. Saccharomyces sp.
200	D,L-Lactate growth	nin heromyces ob.	Pichia spp.
		Pichia sp.	
201	D-Glucose fermentation_	202 Pichia sp.	203
202	Septate hyphae	Pichia sp.	Guilliermondella sp.
203	D.L-Lactate growth	204	213
204	Ethylamine growth	20)	Saccharomyces sp.
205	Growth without niacin _	206	208
206	Growth with 0.01%	207	Saccharomyces_spp.
	cycloheximide		
207		Saccharomyces spp.	Kluyveromyces sp.
			Saccharomyces sp.
208	D-Ribose growth	209	Kluyveromyces sp.
209	Growth without	210	211
	pyridoxine		
210		Pachytichospora sp.	Kluyveromyces sp.
	-	Saccharomyces sp.	Saccharomyces sp.
211	Glycerol growth	Saccharomyces spp.	
212	D-delta-Gluconolactone_	Saccharomyces sp.	212 Kluyveromyces sp.
	growth		

Negative

Positive

213	Septate hyphae	Saccharomyces spp.	Guilliermondella sp.
214	Septate hyphae	215	Zendera sp.
215	Sucrose growth	Pichia spp.	216
216		Pichia spp. Lodderomyces sp.	Pichia sn
	D-Glucose fermentation	Lodderomyces sp.	Pichia sp. 218
217		Pichia spp.	
218	Growth without	Kluyveromyces sp.	219
	pyridoxine	Pichia spp.	
219	D.L-Lactate growth	220	221
		Pichia sp.	Torulaspora sp.
220	D-Glucitol growth		
		Torulaspora sp.	Zygosaccharomyces spp.
		Zygosaccharomyces spp.	
221	Filamentous	Pichia sp.	Pichia spp.
		Torulaspora sp.	
000	0:++		Pichia ann
222	Citrate growth	²²³	Pichia spp.
223	D-Glucose fermentation_	Lipomyces sp.	Kluyveromyces spp.
224	D-Glucose fermentation	225	
225	Starch growth	Debaryomyces spp.	226
226	Growth without thiamin	Pichia sp.	227
227		Lipomyces sp.	Debaryomyces sp.
	D, L-Lactate growth	229	2/13
228	Melibiose growth		
229	Cellobiose growth	230	
230	Growth without niacin	231	233
231	Ethylamine growth	232	Kluyveromyces spp.
232	L- Sorbose growth	Saccharomyces sp.	Kluyveromyces sp.
-		234	240
233	L-Sorbose growth	235	Torulaspora spp.
234	2-Ketogluconate growth_		
235	Growth in 60% D-glucose	236	Torulaspora sp.
236	D-Galactose growth	237	238 Torulaspora sp.
237		Saccharomyces sp.	Torulaspora sp.
201	cycloheximide		
000	•	Saccharomyces spp.	239
238		Saccharomyces spp.	Kluyveromyces spp.
239	_	Saccharomyces sp.	Kiuyveiomyces spp.
	growth		
240	Filamentous	Torulaspora sp.	Kluyveromyces sp.
241	Growth without niacin	Kluyveromyces spp.	242
242		Zygosaccharomyces sp.	242 Debaryomyces sp.
_		244	2//8
243			Torulaspora sp.
244			Zygosaccharomyces spp.
245		246	_zygosaccharomyces spp.
	cycloheximide		0.11.17
246		Saccharomyces spp.	2
	growth		
0117	•	Saccharomyces sp.	Zygosaccharomyces sp.
247			Debaryomyces spp.
248			Debaryomyces sp.
249			
		249 Saccharomyces sp.	Debai youiyees sp.
250			Debarvomvces spp.
-			Debaryomyces spp. Citeromyces sp.
251	Sucrose growth D-Glucose fermentation_	Pichia sp. Wickerhamiella sp.	Debaryomyces spp. Citeromyces sp.
251 252	Sucrose growth D-Glucose fermentation_ Starch formation	Pichia sp. Wickerhamiella sp. 253	Debaryomyces spp. Citeromyces sp. Lipomyces spp.
251 252 253	Sucrose growth D-Glucose fermentation_ Starch formation Maltose growth	Pichia sp. Wickerhamiella sp. 253 Pichia sp.	Debaryomyces spp. Citeromyces sp. Lipomyces spp. 254
251 252 253 254	Sucrose growth D-Glucose fermentation_ Starch formation Maltose growth Inulin growth	Pichia sp. Wickerhamiella sp. 253 Pichia sp. 255	Debaryomyces spp. Citeromyces sp. Lipomyces spp. 254
251 252 253 254 255	Sucrose growth D-Glucose fermentation Starch formation Maltose growth Inulin growth L-Rhamnose growth	Pichia sp. Wickerhamiella sp. 253 Pichia sp. Debaryomyces spp.	Debaryomyces spp. Citeromyces sp. Lipomyces spp. 254 259 256
251 252 253 254	Sucrose growth D-Glucose fermentation Starch formation Maltose growth Inulin growth L-Rhamnose growth Melibiose growth	Pichia sp. Wickerhamiella sp. 253 Pichia sp. 255 Debaryomyces spp. 257	Debaryomyces spp. Citeromyces sp. Lipomyces spp. 254 259 256 258
251 252 253 254 255	Sucrose growth D-Glucose fermentation Starch formation Maltose growth Inulin growth L-Rhamnose growth Melibiose growth	Pichia sp. Wickerhamiella sp. 253 Pichia sp. 255 Debaryomyces sp. 257 Debaryomyces sp.	Debaryomyces spp. Citeromyces sp. Lipomyces spp. Lipomyces spp. 254 254 259 256 258 258 258 258 258
251 252 253 254 255 256 257	Sucrose growth D-Glucose fermentation Starch formation Maltose growth Inulin growth L-Rhamnose growth Melibiose growth Trehalose fermentation_	Pichia sp. Wickerhamiella sp. 253 Pichia sp. 255 Debaryomyces spp. 257	Debaryomyces spp. Citeromyces spp. Lipomyces spp. 254 259 256 258 Wingea sp. Debaryomyces sp.
251 252 253 254 255 256	Sucrose growth D-Glucose fermentation Starch formation Maltose growth Inulin growth L-Rhamnose growth Melibiose growth Trehalose fermentation	Pichia sp. Wickerhamiella sp. 253 Pichia sp. 255 Debaryomyces sp. 257 Debaryomyces sp.	Debaryomyces spp. Citeromyces sp. Lipomyces spp. Lipomyces spp. 254 254 259 256 258 258 258 258 258
251 252 253 254 255 256 257 258	Sucrose growth D-Glucose fermentation Starch formation Maltose growth L-Rhamnose growth Melibiose growth Trehalose fermentation Lactose growth	Pichia sp. Wickerhamiella sp. 253 Pichia sp. 255 Debaryomyces spp. 257 Debaryomyces sp. Debaryomyces sp.	Debaryomyces spp. Citeromyces spp. Lipomyces spp. 254 259 256 258 Wingea sp. Debaryomyces sp.
251 252 253 254 255 256 257	Sucrose growth D-Glucose fermentation Starch formation Maltose growth L-Rhamnose growth Melibiose growth Trehalose fermentation Lactose growth	Pichia sp. Wickerhamiella sp. 253 Pichia sp. 255 Debaryomyces spp. 257 Debaryomyces sp. Debaryomyces sp. Debaryomyces spp.	Debaryomyces spp. Citeromyces sp. Lipomyces spp. Lipomyces spp. 254 259 256 258 Debaryomyces sp. Debaryomyces sp. Performance Debaryomyces sp. Debaryomyces sp. Pichia sp.
251 252 253 254 255 256 257 258 259	Sucrose growth D-Glucose fermentation Starch formation Maltose growth L-Rhamnose growth Trehalose fermentation Lactose growth Growth in 50% D-glucose	Pichia sp. Wickerhamiella sp. 253 Pichia sp. 255 Debaryomyces spp. Debaryomyces sp. Debaryomyces spp. Debaryomyces spp. Debaryomyces spp. Debaryomyces spp. Lipomyces sp.	<pre>Debaryomyces spp. Citeromyces sp. Lipomyces spp. Debaryomyces spp. Debaryomyces spp. Debaryomyces spp. Debaryomyces spp.</pre>
251 252 253 254 255 256 257 258	Sucrose growth D-Glucose fermentation Starch formation Maltose growth L-Rhamnose growth Trehalose fermentation Lactose growth Growth in 50% D-glucose Cellobiose growth	Pichia sp. Wickerhamiella sp. 253 Pichia sp. 255 Debaryomyces spp. Debaryomyces sp. Debaryomyces sp. Debaryomyces sp. Debaryomyces sp. Debaryomyces sp. Lipomyces sp. Nadsonia spp.	Debaryomyces spp. Citeromyces sp. Lipomyces spp. 254 254 259 258 258 Wingea sp. Debaryomyces spp. Debaryomyces spp. 261
251 252 253 254 255 256 257 258 259	Sucrose growth D-Glucose fermentation Starch formation Maltose growth L-Rhamnose growth Trehalose fermentation Lactose growth Growth in 50% D-glucose Cellobiose growth	Pichia sp. Wickerhamiella sp. 253 Pichia sp. 255 Debaryomyces spp. Debaryomyces sp. Debaryomyces spp. Debaryomyces spp. Debaryomyces spp. Debaryomyces spp. Lipomyces sp.	<pre>Debaryomyces spp. Citeromyces sp. Lipomyces spp. Debaryomyces spp. Debaryomyces spp. Debaryomyces spp. Debaryomyces spp.</pre>

greater detail than that required for the key in Table 4, needing more expert knowledge and experience. The physiological tests which constitute the greatest part of our key are also less time-consuming than microscopical examinations and can be carried out by a less experienced operator. Moreover, the key in Table 4 does not require examination of the sexual cycle of the basidiomycetous species.

However, in the same way that a key for identifying species cannot identify new species not in the key, the key in Table 4 cannot be applied to species other than those listed by Barnett *et al.* (1979). Any new species will be assigned to the genus of a species whose test results in the key are identical to those of the new species, but this may not give the correct genus as the genera are not classified in terms of the characteristics used in the key. However, the key is still only marginally less useful than that of Lodder (1970), in view of the many recent changes in generic characteristics and the newly invented genera, to which Lodder's key also cannot apply.

APPENDIX1

Irredundant test sets to identify groups of taxa

Barnett *et al.* (1979) used a method (reviewed by Payne & Preece, 1980) that determined all irredundant test sets available to identify the yeast species in a particular key. This method can be adapted to form sets to identify groups instead of individual taxa. In the first stage a triangular array is formed and in the (i,j)th position (i < j) are listed the tests that can distinguish the pair of taxa, *i* and *j*. To identify groups instead of individual taxa, array entries are omitted where each member of the pair of taxa is from the same group. Table 5 contains the appropriate array for the groups in Table 1; taxa C and D have different results with tests 1 and 5, thus the (3,4)th entry is '1,5'. Any entries that contain other entries are deleted. For example, as '4,5' is an entry in Table 5, '1,3,4,5', '3,4,5' etc. are deleted. [Such entries can be omitted since, in order to distinguish between the pair of taxa A and D, corresponding to entry '4,5' in Table 5, either test 4 or test 5 must be in the irredundant set. These tests (4 and 5) will also distinguish between the pairs of taxa corresponding to entries '1,3,4,5' etc.] The deleted entries in Table 5 are enclosed in brackets.

The surviving entries are then expressed as a sum and are multiplied together according to the Boolean rules ii = i and, for example, ij + ijk = ij.

For example, from Table 5,

(4+5) (2+4) (1+4) (1+6) (1+5) (3+5) (1+2) (2+5) (2+6) (3+6) (5+6) $= (24+44+25+45) (1+4) (1+6) \dots$ $= (4+25) (1+4) (1+6) \dots$

Each term in the first bracket is a set of tests that can distinguish between taxa A and D and taxa A and G. (This indicates the rationale of the rules. '44' becomes '4' because there is no need to record a test more than once in a set. The fact that '4' is a set in its own right implies that '24' and '45' contain redundant tests 2 and 5, respectively; if these are deleted two more instances of set '4' would be obtained; there is no need to record a set more than once so '24' and '45' can be deleted.) Once all the brackets have been multiplied together the sets each contain tests to distinguish all the pairs of taxa belonging to different groups, and if any test in one of the sets is deleted there will be some pair of taxa in different groups that can no longer be distinguished.

Continuing the multiplication from Table 5,

 $\begin{array}{l} (4+25) \left(1+4\right) \left(1+6\right) \left(1+5\right) \left(3+5\right) \left(1+2\right) \left(2+5\right) \left(2+6\right) \left(3+6\right) \left(5+6\right) \\ = \left(4+125\right) \left(1+6\right) \dots \\ = \left(14+46+125\right) \left(1+5\right) \dots \\ = \left(14+456+125\right) \left(3+5\right) \dots \\ = \left(134+145+456+125\right) \left(1+2\right) \dots \\ = \left(134+145+2456+125\right) \left(2+5\right) \dots \\ = \left(1234+145+2456+125\right) \left(2+6\right) \dots \\ = \left(1234+1456+2456+125\right) \left(3+6\right) \dots \\ = \left(1234+1456+2456+125\right) \left(3+6\right) \dots \\ = \left(1234+1456+2456+1235+1256\right) \left(5+6\right) \\ = \left(12346+1456+2456+1235+1256\right) \end{array}$

There are five possible irredundant sets of tests, namely, 12346, 1456, 2456, 1235 and 1256. These sets cannot be obtained from the group data in Table 1 as there is no single test that can distinguish any of the pairs of groups.

Taxon		Taxon								
	Group	΄A	В	С	D	Е	F	G	Н	
Α	I	_		_	4,5	(1,3,4,5)	(3,4,5)	2,4	(2,5,6)	(2,3,4,6)
В	1		-	-	(1,2,4)	(2,3,4)	(1,3,4)	1,4	1,6	(1,3,4,6)
С	I			-	1,5	3,5	(1,3,5)	1,2	(1,2,5,6)	(1,2,3,6)
D	11				_	-	-	2,5	2,6	(2,3,5,6)
E	П					_	-	(1,2,3,5)	(1,2,3)	(1,2,5)
F	11							(3,5)	3,6	5,6
G	III							_	_	-
н	III								-	_
I	III									~

Table 5. Lists of tests that can distinguish the taxa of Table 1 that are in different groups

See Appendix 1 for meaning of entries in parentheses.

When only a single irredundant set is required, it may be formed sequentially by choosing tests one at a time. Payne & Preece (1980) reviewed criteria for deciding which test to include at each stage. Many of these criteria involve the separation coefficient of Gyllenberg (1964). This is the number of pairs of taxa (i_y) that are distinguished either by the current test, or by some test already in the set. To select tests to distinguish groups instead of individual taxa, only pairs of taxa belonging to different groups need to be considered.

APPENDIX 2

Criterion functions for selecting tests to identify groups of taxa

Selection criterion functions, designed to select tests to identify individual taxa, require modification to select tests to identify groups of taxa. An exception is the function of Dallwitz (1974), whose program allows intra-taxon variability to be expressed by specifying more than one 'item' for a taxon. Thus, each taxon may itself be a group of several 'items'. Most taxa will, however, consist of a single 'item' so, at any point in the key, there will be few (if any) tests that are variable for all the groups of 'items' which occur there; Dallwitz's function does not satisfactorily distinguish between tests with this much variability. For yeast genera, however, so many results are variable that such tests can be expected to occur at many points of the key. The two functions derived below can cope with such tests.

The first function is obtained by modifying the function M_{y} of Payne (1981):

$$(M_{v})_{i} = -\sum_{k=1}^{m_{i}} \{(p_{ik} + r_{i}/m_{i}) (1 - r_{i} - p_{ik})\}$$

where m_i is the number of possible results to test *i*, p_{ik} is the proportion of taxa in the current subset that always give result *k* to test *i*, and r_i is the proportion of taxa in the current subset with variable results to test *i*. This is an extension, to tests with more than two possible results, of the function DV derived by Morse (1971) from Gyllenberg's Separation Coefficient. The term in the first bracket is the proportion of specimens that give result *k* to test *i* assuming that, for each variable taxon, there is an equal probability $(1/m_i)$ of obtaining results, 1, 2, ..., m_i . The second term is the proportion of specimens belonging to taxa that cannot give result *k*. Thus $(M_v)_i$ is minus the proportion of pairs of taxa separated (either wholly or partially) by test *i*. For identifying groups, this function should become minus the proportion of pairs of taxa in different groups separated by the test; that is

$$(G_{v})_{i} = -\sum_{k=1}^{m_{i}} \sum_{j=1}^{n} \left[(q_{ijk} + s_{ij}/m_{i}) \times \sum_{1 \neq j} \left\{ \left(\sum_{h=1}^{m_{i}} q_{iih} \right) - q_{iik} \right\} \right]$$
$$= -\sum_{k=1}^{m_{i}} \sum_{j=1}^{n} q_{ijk}^{2} + \sum_{k=1}^{m_{i}} \left(\sum_{j=1}^{n} q_{ijk} \right)^{2} + \sum_{j=1}^{n} \left(\sum_{k=1}^{m_{i}} q_{ijk} \right)^{2} - \left(\sum_{k=1}^{m_{i}} \sum_{j=1}^{n} q_{ijk} \right)^{2} + (1 - 1/m_{i}) \left\{ \sum_{j=1}^{n} \left(s_{ij} \times \sum_{k=1}^{m_{i}} q_{ijk} \right) - \left(\sum_{j=1}^{n} s_{ij} \right) \times \left(\sum_{k=1}^{m_{i}} q_{ijk} \right) \right\}$$

where *n* is the number of groups, q_{ijk} the proportion of taxa in the current subset that are from group *j* and that always give result *k* to test *i*, and s_{ij} is the proportion of taxa from group *j* that have variable results.

The second function, which was used to construct the key to yeast genera in Table 4, is derived from the function M_e of Brown (1977). This selects the test for which the expected entropy of the posterior probabilities of the taxa, given the result of the test, is minimum. Thus, the aim when selecting each test is to make the probabilities that the specimen belongs to each taxon as different as possible. This will be achieved when, for each result, all the probabilities except one are zero; that is, when the subsets formed by the test all contain only one taxon. The derivation, like that of M_v , assumes that equal proportions of variable taxa give each result.

$$(M_{e})_{i} = \sum_{k=1}^{m_{i}} \{(p_{ik} + r_{i}/m_{i}) \log (p_{ik} + r_{i}/m_{i})\} + r_{i} \log m_{i}$$

[This is the negative of the function of Brown (1977), who defined the best test to be that with maximum function value.] Under the same assumptions, the expected entropy of the posterior probabilities of the groups is given by

$$(G_{e})_{i} = -\sum_{k=1}^{m_{i}} \left[t_{ik} \times \sum_{j=1}^{n} \left[\{ (q_{ijk} + s_{ij}/m_{i})/t_{ik} \} \log \{ (q_{ijk} + s_{ij}/m_{i})/t_{ik} \} \right] \right]$$

where $t_{ik} = \sum_{j=1}^{n} (q_{ijk} + s_{ij}/m_i)$. Thus,

$$(G_{e})_{i} = \sum_{k=1}^{m_{i}} \left\{ \sum_{j=1}^{n} (q_{ijk} + s_{ij}/m_{i}) \right\} \log \left\{ \sum_{j=1}^{n} (q_{ijk} + s_{ij}/m_{i}) \right\} - \sum_{k=1}^{m_{i}} \sum_{j=1}^{n} \left\{ (q_{ijk} + s_{ij}/m_{i}) \log (q_{ijk} + s_{ij}/m_{i}) \right\}$$

An alternative justification for M_e (Payne & Preece, 1980; Payne, 1981) uses the noiseless coding theorem of Shannon (1948) to relate $(M_e)_i$ to the expected number of tests required to complete the key after test *i*, assuming that this is done optimally. This enables M_e to be extended to tests with different costs. However, this would be less convincing for G_e because to complete a key to the groups in an optimal way requires tests to be available that have constant results within each group.

The assumption that equal proportions of variable taxa give each result, which greatly simplifies the algebraic form of M_v , G_v , M_e and G_e , is not crucial. If it were badly wrong, the test selected might not be the best available and the resulting key might be less efficient; however, the identifications obtained would still be correct. In most situations the assumption will be reasonable – either because the probabilities are known to be nearly equal, or because (as with the yeasts) there is not sufficient information to contradict it. However, if estimates of the probabilities are available, the functions can easily be modified. For example, the full form of M_e is given in equations (4) and (5) of Payne (1981).

Use of the expected entropy of the posterior probabilities of the taxa to select test for probabilistic identification, has been discussed by, for example, Good (1970), Moiseeva & Usov (1969), Taylor (1970), Knill-Jones *et al.* (1973) and Payne (1975). Other functions used for this purpose can be adapted similarly.

REFERENCES

- BARNETT, J. A. & PANKHURST, R. J. (1974). A New Key to the Yeasts. Amsterdam: North-Holland Publishing Co.
- BARNETT, J. A., BASCOMB, S. & GOWER, J. C. (1975). A maximal predictive classification of Klebsielleae and of the yeasts. *Journal of General Microbiology* 86, 93–102.
- BARNETT, J. A., PAYNE, R. W. & YARROW, D. (1979). A Guide to Identifying and Classifying Yeasts. Cambridge: Cambridge University Press.
- BROWN, P. J. (1977). Functions for selecting tests in diagnostic key construction. *Biometrika* 64, 589– 596.
- DALLWITZ, M. J. (1974). A flexible computer program for generating identification keys. *Systematic Zoology* 27, 50–57.
- GOOD, I. J. (1970). Some statistical methods in machine-intelligence research. *Mathematical Bio-sciences* 6, 185–208.
- GOWER, J. C. (1973). Classification problems. Bulletin of the International Statistical Institute 44, 296– 301.
- GOWER, J. C. (1974). Maximal predictive classification. *Biometrics* 30, 643-654.
- GYLLENBERG, H. A. (1964). An approach to numerical description of biological populations. *Annales*

Academiae scientiarum fennicae, Series A IV, Biological Part 81, 1–23.

- KNILL-JONES, R. P., STERN, R. B., GIRMES, D. H., MAXWELL, J. D., THOMPSON, R. P. H. & WILLIAMS, R. (1973). Use of sequential Bayesian model in diagnosis of jaundice by computer. *British Medical Journal* 1, 530-534.
- KREGER-VAN RJ, N. J. W. (1970a). Debaryomyces Lodder et Kreger-van Rij nom. conserv. In The Yeasts. A Taxonomic Study, pp. 129–156. Edited by J. Lodder. Amsterdam: North-Holland Publishing Co.
- KREGER-VAN RIJ, N. J. W. (1970b). Pichia Hansen. In The Yeasts. A Taxonomic Study, pp. 455–554. Edited by J. Lodder. Amsterdam: North-Holland Publishing Co.
- LODDER, J. (1970). Introduction to the chapters IV, V, VI and VII, and key to the genera. In *The Yeasts. A Taxonomic Study*, pp. 114–120. Edited by J. Lodder. Amsterdam: North-Holland Publishing Co.
- MOISEEVA, N. I. & USOV, V. V. (1969). Some medical and mathematical aspects of computer diagnosis. *Proceedings of the Institution of Electrical and Electronics Engineers* 57, 1919–1925.
- MORSE, L. E. (1971). Specimen identification and key construction with time-sharing computers. *Taxon* 20, 269–282.

- PANKHURST, R. J. (1970). A computer program for generating diagnostic keys. Computer Journal 13, 145-151.
- PAYNE, R. W. (1975). Genkey: a program for constructing diagnostic keys. In *Biological Identification with Computers*, pp. 65–72. Edited by R. J. Pankhurst. London: Academic Press.
- PAYNE, R. W. (1978). Genkey: a Program for Constructing and Printing Identification Keys and Diagnostic Tables. Harpenden: Rothamsted Experimental Station.
- PAYNE, R. W. (1981). Selection criteria for the construction of efficient diagnostic keys. Journal of Statistical Planning and Inference 5, 27–36.
- PAYNE, R. W. & PREECE, D. A. (1980). Identification keys and diagnostic tables: a review (with discussion). Journal of the Royal Statistical Society, Series A 143, 253-292.
- PAYNE, R. W., WALTON, E. & BARNETT, J. A. (1974). A new way of representing diagnostic keys. Journal of General Microbiology 83, 413–414.
- SHANNON, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal 27, 379-423, 623-656.
- TAYLOR, T. R. (1970). Computer-guided diagnosis. Journal of the Royal College of Physicians of London 4, 188–194.