

Rothamsted Research Harpenden, Herts, AL5 2JQ

Telephone: +44 (0)1582 763133 Web: http://www.rothamsted.ac.uk/

Rothamsted Repository Download

A - Papers appearing in refereed journals

Ward, J. L., Wu, Y., Harflett, C., Onafuye, H., Corol, D. I., Lomax, C., Macalpine, W. J., Cinatl, J., Wass, M. N., Michaelis, M. and Beale, M. H. 2020. Miyabeacin: A new cyclodimer presents a potential role for willow in cancer therapy. *Scientific Reports.* 10, p. 6477.

The publisher's version can be accessed at:

• https://dx.doi.org/10.1038/s41598-020-63349-1

The output can be accessed at:

https://repository.rothamsted.ac.uk/item/97670/miyabeacin-a-new-cyclodimer-presentsa-potential-role-for-willow-in-cancer-therapy.

© 15 April 2020, Please contact library@rothamsted.ac.uk for copyright queries.

16/04/2020 14:10

repository.rothamsted.ac.uk

library@rothamsted.ac.uk

Supplementary Information

Jane L. Ward, Yanqi Wu, Claudia Harflett, Hannah Onafuye, Delia Corol, Charlotte Lomax, William J. Macalpine, Jindrich Cinatl Jr. Mark N. Wass, Martin Michaelis, Michael H. Beale

Miyabeacin: A new cyclodimer presents a potential role for willow in cancer therapy.

Table of Contents

Supplementary Table 1. 1 & 2D-NMR data for Miyabeacin 3 (D2O:CD₃OD, 80:20 containing d₄-TSP (0.01% w/v))

Supplementary Table 2. 1 & 2D-NMR data for miyabeacin B 6 (D2O:CD₃OD, 80:20 containing d₄-TSP (0.01% w/v))

Supplementary Table 3. 1 & 2D-NMR data for miyabeanol 7

Supplementary Table 4. 1 & 2D-NMR data for miyaquinol 8 (D2O:CD₃OD, 80:20 containing d₄-TSP (0.01% w/v))

Supplementary Table 5. Concentrations of dimeric compounds and key salicinoids in juvenile leaf and stem tissue from 26 Salix species of the RRes NWC.

Supplementary Table 6. Varietal provenance of Terra Nova and Endurance biomass willows.

Supplementary Table 7. 1 & 2D-NMR data for acetylmiyabeacin 9a/9b (D2O:CD₃OD, 80:20 containing d₄-TSP (0.01% w/v))

Supplementary Table 8. ¹H-NMR data for diacetylmiyabeacin 10 (D2O:CD₃OD, 80:20 containing d₄-TSP (0.01% w/v))

Supplementary Table 9. Extraction and HPLC gradient conditions for the isolation of dimeric metabolites.

Supplementary Table 10. General Conditions and typical parameters for NMR and Mass Spectral data collection.

Supplementary Figure 1. Mass spectrum of miyabeacin 3 at m/z 843.2353 with retention time 25.26 min.

Supplementary Figure 2. MSMS data (negative ion mode) of m/z 843 ion of miyabeacin 3

Supplementary Figure 3. MSMS comparison of A: salicortin 2 m/z 423 and B: miyabeacin 3 fragment (m/z 421).

Supplementary Figure 4. Comparison of 600 MHz ¹H-NMR spectra of A: miyabeacin **3** and B: salicortin **2** collected in 80:20 $D_2O:CD_3OD$ containing 0.01 % w/v d₄-TSP.

Supplementary Figure 5. COSY45 spectrum of miyabeacin 3, collected at 600MHz in D₂O:CD₃OD (80:20)

Supplementary Figure 6. ¹³C spectrum of miyabeacin 3 collected at 400 MHz in D₂O:CD₃OD (80:20) containing 0.01% w/v d₄TSP.

Supplementary Figure 7. DEPT135 spectrum of miyabeacin 3, collected at 100.6128 MHz in D₂O:CD₃OD (80:20)

Supplementary Figure 8. HSQC spectrum of miyabeacin 3 collected in D₂O:CD₃OD (80:20)

Supplementary Figure 9. HMBC spectrum of miyabeacin 3 collected in D₂O:CD₃OD (80:20)

Supplementary Figure 10. Chenomx simulated ¹H NMR spectrum of grandifloracin in CDCI3 and ¹H NMR spectrum (δ 6.66 – 5.70) of miyabeacin 3 in D₂O:CD₃OD (8:2).

Supplementary Figure 11. 600 MHz ¹H-NMR spectra of A: miyabeacin B 6 collected in D₂O:CD₃OD containing 0.01 % w/v d₄-TSP as reference standard.

Supplementary Figure 12. HSQC spectrum of miyabeacin B 6 collected in D₂O:CD₃OD containing 0.01 % w/v d₄-TSP as reference standard.

Supplementary Figure 13. HMBC spectrum of miyabeacin B 6 collected in D₂O:CD₃OD containing 0.01 % w/v d₄-TSP as reference standard.

Supplementary Figure 14. COSY spectrum of miyabeacin B 6 collected in D₂O:CD₃OD containing 0.01 % w/v d₄-TSP as reference standard.

Supplementary Figure 15. MS and MSMS data of miyabeanol 7.

Supplementary Figure 16. 600 MHz ¹H-NMR spectra of A: miyabeanol **7** collected in D₂O:CD₃OD containing 0.01 % w/v d₄-TSP as reference standard.

Supplementary Figure 17. COSY45 spectrum of A: miyabeanol **7** collected in D₂O:CD₃OD containing 0.01 % w/v d₄-TSP as reference standard.

Supplementary Figure 18. HSQC spectra of miyabeanol 7. A: D₂O:CD₃OD and B: D₂O

Supplementary Figure 19. HMBC spectra of miyabeanol **7.** A: D₂O:CD₃OD and B: D₂O

Supplementary Figure 20. MSMS data of miyaquinol 8.

Supplementary Figure 21. 600 MHz ¹H-NMR spectra of miyaquinol **8** collected in D₂O:CD₃OD containing 0.01 % w/v d₄-TSP as reference standard.

Supplementary Figure 22. HSQC spectra of miyaquinol 8 collected in D₂O:CD₃OD (80:20)

Supplementary Figure 23. HMBC spectra of miyaquinol **8** collected in D₂O:CD₃OD (80:20)

Supplementary Figure 24. Pearson correlations of compound concentrations 3, 6 and 7.

Supplementary Figure 25. Correlation of uHPLC-MS peak areas for 7 and 8 in S. miyabeana and S. dasyclados accessions.

Supplementary Figure 26. Photographs of S. dasyclados (NWC577) grown in controlled environment conditions.

Supplementary Figure 27. Total ion chromatograms (RT 19.6 – 26.0 min) from uHPLC-MS analyses of polar solvent extracts of Terra Nova (NWC1110).

Supplementary Figure 28. Total ion chromatograms (RT 19.6 – 26.0 min) from uHPLC-MS analyses of polar solvent extracts of juvenile willow tissues. A: Endurance stem; B: Endurance leaf; C: *S. dasyclados* (NWC577) stem; D: *S. dasyclados* (NWC 577) leaf; E: *S. rehderiana* (NWC607) stem; F: *S. rehderiana* (NWC607) leaf.

Supplementary Figure 29. Mass spectra of acetyl miyabeacin, 9a/9b, at m/z 885 with retention time 27.21 min.

Supplementary Figure 30. MSMS comparison of A: acetyl miyabeacin (m/z 885) 9 and B: diacetyl miyabeacin (m/z 927) 10.

Supplementary Figure 31. MS and MSMS data (negative ion mode) for 2'acetyl miyabeanol 11.

Supplementary Figure 32. LC-MS data (negative ion mode) of RR10347 (RR05326 (Resolution × S. rossica) × NWC941 (S. miyabeana Purpurescens)).

Supplementary Figure 33. ¹H-NMR data of 2'-Benzoylmiyabeacin/2"-O-Benzoylmiyabeacin 16a/16b collected at 600 MHz in D₂O:CD₃OD (4:1).

Supplementary Figure 34. ¹H-¹H COSY NMR data of 2'-Benzoylmiyabeacin/2"-O-Benzoylmiyabeacin 16a/16b collected at 600 MHz in D₂O:CD₃OD (4:1).

Supplementary Figure 35. LC-MS data of RR10147 (RR07187 (944 S. glaucophyloides × 577 "77056") × RR07188 (944 S. glaucophyloides × 577 "77056")).

Position	¹ H (ppm)	<i>J</i> _{н-н} (Нz)	¹³ C (ppm)	¹ H- ¹ H correlation to:	¹ H- ¹³ C HMBC correlation to:
1	-		158.0	-	
2	7.19 (1H, d)	8.3	117.9	H-3, H-4 & H-5	126.9 (C-6) & 158.0 (C-1)
3, 26	7.41 (2H, ddd)	8.0, 7.5, 2.0	133.5/133.4	H-2, H-4, H-25 & H-27	158.0 (C-1)/157.7 (C-28) & 133.7 (C-C-5)/133.6 (C-24)
4, 25	7.12 (1H, t)/7.11 (1H, t)	7.5	125.6/125.7	H-3, H-5, H-24 & H-26	117.9 (C-2)/117.7 (C-27) & 126.9 (C-6)/126.6 (C-23)
5.24	7.32 (1H. dd)/ 7.34 (1H.	7.6. 1.5	133.7/133.6	H-3, H-4, H-25 & H-26	158.0 (C-1)/157.7 (C-28), 133.5 (C-3)/133.4 (C-26) & 67.3
- /	dd)	-, -		-, ,	(C-7)/66.7 (C-22)
6	-		126.9	-	
7α	5.40 (1H, d)	11.9	67.3	H-7ß	126.9 (C-6), 133.7 (C-5), 158.0 (C-1), 173.6 (C-8)
7ß	5.19 (1H, d)	11.9	67.3	Η-7α	126.9 (C-6), 133.7 (C-5), 158.0 (C-1), 173.6 (C-8)
8	-		173.6	-	
9	-		82.2	_	
10	3 59-3 63 (1H m)		40.3	H-11 & H-15	43 5 (C-11) 45 1 (C-15) 135 5 (C-16) 152 5 (C-12) 173 6
10	0.00 0.00 (11, 11)		40.0	11 11 4 11 15	(C-8) 198.6 (C-14)
11	3 58-3 55 (1H m)		13 5	H-10 H-12 & H-18	(0 0), 100.0 (0 14)
Τ.	5.50-5.55 (±11, 11)		40.0	11-10, 11-12 & 11-10	NB – also observed in literature data
10	6 EQ (14 dd)	10 2 1 1	1525	Ц 11 9 Ц 1 2	40.2(C, 10), 42.5(C, 11), 54.2(C, 19), 109.6(C, 14)
12	6.02 (11, dd)	10.2, 4.1	120.0		40.3 (C-10), 43.3 (C-11), 34.2 (C-10), 190.0 (C-14)
13	0.02 (IH, UU)	10.2, 1.5	100.9	H-12	43.3 (C-11), 62.2 (C-9)
14	2 = 0.2 = 2.(1 + m)		190.0 AE 1	- L 16	
15	3.50-3.53 (IH, III)		45.1	H-10	43.5 (C-11), 80.0 (C-20), 82.2 (C-9), 132.8 (C-17), 135.5
16	6 10 (111 t)	7.0	10E E		(C-10), 1/3.2 $(C-21)$, 210.0 $(C-19)$
10	0.19 (1H, l)	7.9	135.5	H-15 & H-17	45.1 (C-15), 54.2 (C-18), 80.0 (C-20)
17	5.91 (1H, 000)	7.9, 6.5, 1.4	132.8	H-16 & H-18	45.1 (C-15), 54.2 (C-18), 210.0 (C-19)
18	3.43 (1H, m)		54.2	H-11, H-16 & H-17	40.3 (C-10), 80.0 (C-20), 132.8 (C-17), 135.5 (C-16), 210.0
					(C-19)
19	-		210.0	-	
20	-		80.0	-	
21	-		173.2	-	
22β	5.38 (1H, d)	12.1	66.7	Η-22α	126.6 (C-23), 133.7/133.6 (C-24), 157.7 (C-28), 173.2 (C-
					21)
22α	5.16 (1H, d)	12.1	66.7	Η-22β	126.6 (C-23), 133.7/133.6 (C-24), 157.7 (C-28), 173.2 (C-
					21)
23	-		126.6		
27	7.20 (1H, d)	8.3	117.7	H-24, H-25 & H-26	126.6 (C-23), 157.7 (C-28)
28	-		157.7	-	
1', 1''	5.09 (1H, d)/5.07 (1H, d)	7.5/7.8	103.0/102.9	H-2'/H-2''	158.0/157.7 (C-1)/(C-28)
2', 2''	3.55-3.63 (2H, m)		76.0	H-1' & H-3'/H-1'' & H-3''	103.0/102.9 (C-1')/(C-1''), 78.7/78.8 (C-5')/(C-5'')
3', 3''	3.56-3.62 (2H, m)		79.1	H-2' & H-4'/H-2'' & H-4''	72.5/72.4 (C-4')/(C-4'')
4', 4''	3.47-3.52 (2H, m)		72.5/72.4	H-3' & H-5'/H-3'' & H-5''	63.7 (C-6')/(C-6''), 78.8/78.8 8 (Ć-5')/(C-5'')
5'. 5"	3.56-3.62 (2H, m)		78.7/78.8	H-4' & H-6'/H-4'' & H-6''	63.7 (C-6')/(C-6''), 73.0 (C-4')/(C-4'')
6'B. 6''B	3.77 (1H. dd)/3.73 (1H.	12.4.6.0	63.7	Η-6'α/Η-6''α	78.9 (C-5')/(C-5'')
- 1- , - 1-	(, , , , , , , , , , , , , , , , , , ,	,			

Supplementary Table 1. 1 & 2D-NMR data for Miyabeacin **3** (D2O:CD₃OD, 80:20 containing d₄-TSP (0.01% w/v)) δ in ppm relative to d₄-TSP at 0.00.

Supplementary Table 2. 1 & 2D-NMR data for miyabe	eacin B 6 (D2O:CD ₃ OD, 80:20 c	containing d₄-TSP (0.01% w	(v)) δ in ppm relative to d ₄ .	-TSP at 0.00.
--	---	----------------------------	--	---------------

Position	¹ HNMR(ppm)	<i>J</i> _{н-н} (Hz)	¹ H- ¹ H correlation to:
1 & 28	-	-	-
2 & 27	7.20 (2H, d)	8.2	H-3 & H-26
3 & 26	7.43 (2H, ddd)	8.5, 7.5, 1.5	H-2, H-4, H-27 & H-25
4 & 25	7.12 (2H, ddd)	7.5, 7.4, 0.9	H-3, H-5, H-26 & H-24
5 & 24	7.35 (2H, dd)	7.5, 1.5	H-4 & H-5
6 & 23		-	-
7β & 22β	5.13 (2H, d)	11.7	Η-7α & Η-22α
7α & 22α	5.46 (2H, d)	11.6	Η-7β & Η-22β
9 & 20		-	-
10 & 15	2.76 (2H, dd)	4.4, 2.1	H-11 & H-16
11 & 16	2.99 (2H, m)		H-10, H-12, H-15 & H-17
12 & 17	2.88 (2H, m)		H-11, H-13, H-16 & H-18
13 & 18	3.12 (2H, dd)	7.6, 4.0	H-11, H-12, H-16 & H-17
1' & 1''	5.07 (2H,d)	7.8	H-2'/H-2''
2'& 2''	3.51 (2H, dd)	9.4, 7.8	H-1' & H-3'/H-1'' & H-3''
3' & 3''	3.45 (2H, t)	9.4	H-2' & H-4'/H-2'' & H-4''
4',4'', 5' & 5''	3.58 (4H, m)		H-3' & H-3'' & H-6' & H-6''
6'β & 6''β	3.72 (2H, dd)	12.4, 6.0	H-5' & H-5''
1 I'		,	Η-6'α/Η-6''α
6'α & 6''α	3.99 (2H, dd)	12.5, 2.2	H-5' & H-5''
	. ,		Η-6'β/Η-6''β

D2O:CD₃OD D_2O ¹H-¹H correlation ¹H-¹³C HMBC δ_{H} (ppm) $\delta_{\rm C}$ (ppm) $^{1}H^{-1}H$ ¹H-¹³C HMBC correlation $\delta_{\rm C}$ (ppm) Position $\delta_{\rm H}$ (ppm) correlation to: correlation to: to: to: 157.8 1 158.0 -H-3 2 7.19 (1H, H-3 126.6 (C-6),158.0 (C-1) 126.6 (C-6),157.8 (C-1) 117.7 7.19 (1H, d, 7.9) 117.3 d, 8.0) H-2 & H-4 3 7.40 (1H, 133.7 7.42 (1H, m) 133.2 H-2 & H-4 158.0 (C-1), 133.7 (C-5) 157.8 (C-1), 133.2 (C-5) m) 125.7 H-3 & H-5 7.12 (1H, td, 7.5, 4 7.12 (1H, 117.7 (C-2), 126.6 (C-125.3 H-3 & H-5 117.3 (C-2), 126.6 (C-6), 6), 133.7 (C-3), 158.0 td, 7.5, 0.9) 0.9) 133.2 (C-3), 157.8 (C-1) (C-1) 5 133.7 H-4 158.0 (C-1), 133.7 (C-3) 7.34 (1H. dd. 7.6. 133.2 H-4 7.31 (1H. 157.8 (C-1), 133.2 (C-3) dd, 7.6, , 117.7 (C-2), 67.2 (C-, 117.3 (C-2), 67.0 (C-7) 1.5) 1.5) 7) 126.6 126.6 6 -Η-7β Η-7β 126.6 (C-6), 133.2 (C-5), 7α 5.39 (1H, 67.2 126.6 (C-6), 133.7 (C-5.41 (1H, d, 11.9) 67.0 157.8 (C-1), 173.6 (C-8) d, 11.8) 5), 158.0 (C-1), 173.7 (C-8) 67.2 126.6 (C-6), 133.7 (C-7β 5.18 (1H, H-7α 5.18 (1H, d, 11.9) 67.0 H-7α 126.6 (C-6), 133.2 (C-5), 157.8 (C-1), 173.6 (C-8) 5), 158.0 (C-1), 173.7 d, 11.8) (C-8) 8 173.7 173.6 -82.5 9 82.4 10 3.57-3.61 40.6 H-11 & H- 15 43.9 (C-11), 45.7 (C-3.63 (1H. m) 40.4 H-11 & H-15 43.7 (C-11), 45.5 (C-15), (1H, m) 15), 136.0 (C-16), 152.8 81.4 (C-20), 135.6 (C-(C-12), 173.7 (C-8), 16), 152.7 (C-12), 173.6 (C-8), 199.1 (C-14) 199.0 (C-14) H-10, H-12 & H-152.8 (C-12) 3.55 (m) 11 3.48-3.53 43.9 43.7 H-10, H-12 & 152.7 (C-12) (1H, m) 18 H-18 6.63 (1H, 152.8 H-13 & H-11 40.6 (C-10), 43.9 (C-6.64 (1H. dd. 152.7 H-13 & H-11 12 40.4 (C-10), 43.7 (C-11), 11), 54.6 (C-18), 199.0 10.2, 4.2) 54.5 (C-18), 199.1 (Cdd, 10.2, 4.1) (C-14) 14) 43.7 (C-11), 82.4 (C-9) 6.05 (1H, dd, 13 6.02 (1H, 130.8 H-12 & H-10 43.9 (C-11), 82.5 (C-9) 130.6 H-12 & H-10 10.2, 1.8) dd, 10.1, 1.7) 199.0 199.1 14 -45.5 15 3.28-3.33 45.7 H-16 & H-10 40.6 (C-10), 43.9 (C-3.38 (1H, dt, 6.5, H-16 & H-10 40.4 (C-10), 43.7 (C-11), (1H, m) 11), 82.5 (C-9), 132.2 1.7) 81.4 (C-20), 82.4 (C-9), (C-17), 136.0 (C-16), 132.2 (C-17), 135.6 (C-213.3 (C-19) 16), 213.4 (C-19) 16 6.27 (1H, 136.0 H-17 & H-15 6.29 (1H, ddd, 135.6 H-17 & H-15 45.7 (C-15), 54.6 (C-45.5 (C-15), 54.5 (C-18), 18), 82.5 (C-9), 213.3 81.4 (C-20), 82.4 (C-9), ddd. 7.9. 7.8, 6.4, 1.0) (C-19) 213.4 (C-19) 6.9, 1.0)

Supplementary Table 3. 1 & 2D-NMR data for miyabeanol **7** δ in ppm relative to d₄-TSP at 0.00.

17	5.94 (1H, ddd, 7.9, 6.5, 1.4)	132.2	H-16 & H-18	45.7 (C-15), 54.6 (C- 18), 213.3 (C-19)	5.99 (1H, ddd, 8.0, 6.3, 1.5)	132.2	H-16 & H-18	45.5 (C-15), 54.5 (C-18), 81.4 (C-20), 213.4 (C- 19)
18	3.36 (1H, ddd, 6.0, 2.4, 1.4)	54.6	H-17 & H-11	40.6 (C-1), 82.5 (C-9), 132.2 (C-17), 136.0 (C- 16), 213.3 (C-19)	3.41 (1H, ddd, 6.1, 2.3, 1.3)	54.5	H-17 & H-11	40.4 (C-1), 81.4 (C-20), 82.4 (C-9), 132.2 (C-17), 135.6 (C-16), 213.4 (C- 19)
19	-	213.3	-		-	213.4	-	-
20	missing	missing	-		Absent (d- exchange)	81.4	-	-
1'	5.06 (1H, d, 7.3)	103.0	H-2'	158.0 (C-1)	5.10 (1H, d, 7.7)	102.7	H-2'	157.8 (C-1)
2'	3.49-3.59 (1H, m)	76.0	H-1' & H-3'	103.0 (C-1'), 78.8 (C-5')	3.49-3.59 (1H, m)	75.8	H-1' & H-3'	102.7 (C-1'), 78.5 (C-5')
3'	3.54-3.61 (1H, m)	79.1	H-2'&H-,4'	72.4 (C-4')	3.54-3.61 (1H, m)	78.7	H-2'&H-,4'	72.2 (C-4')
4'	3.45-3.53 (1H, m)	72.4	H-3' & H-5'	63.6 (C-6'), 78.8 (C-5'), 103.0 (C-1')	3.45-3.53 (1H, m)	72.2	H-3' & H-5'	63.5 (C-6'), 78.5 (C-5'), 102.7 (C-1')
5'	3.54-3.61 (1H, m)	78.8	H-4' & H-6'	63.6 (C-6'), 76.0 (C-2')	3.54-3.61 (1H, m)	78.5	H-4' & H-6'	63.5 (C-6'), 75.8 (C-2')
6'β	3.76 (1H, dd, 12.5, 5.9)	63.6	Η-6'α	79.1 (C-3')	3.77 (1H, dd, 12.5, 5.9)	63.5	Η-6'α	78.7 (C-3')
6'α	3.92 (1H, dd, 12.4, 2.2)	63.6	Η-6'β	72.4 (C-4')	3.94 (1H, dd, 12.4, 2.2)	63.5	Η-6'β	72.2 (C-4')

				D2O:CD ₃ OD
Positio	δ _н (ppm)	$\delta_{\rm C}$	¹ H- ¹ H correlation	¹ H- ¹³ C HMBC correlation to:
n		(ppm)	to:	
1	-	157.6	-	
2	7.25 (1H, d, 8.1)	117.7	H-3	125.8 (C-6),157.6 (C-1)
3	7.43 (1H, m)	133.5	H-2 & H-4	157.6 (C-1), 133.5 (C-5)
4	7.17 (1H, t, 7.5)	125.9	H-3 & H-5	117.7 (C-2), 125.8 (C-6)
5	7.43 (1H, m)	133.5	H-4	157.6 (C-1), 133.5 (C-3)
6	-	125.8		
7α	5.45 (1H, d, 12.2)	66.7	Η-7β	125.8 (C-6), 133.5 (C-5), 157.6 (C-1), 173.1 (C-8)
7β	5.26 (1H, d, 12.2)	66.7	Η-7α	125.8 (C-6), 133.5 (C-5), 157.6 (C-1), 173.1 (C-8)
8	-	173.1	-	
9	-	76.9	-	
10	-	203.9	-	
11	4.45 (1H, dd, 5.9, 1.4)	59.2	H-12	76.9 (C-9), 118.0 (C-17), 128.5 (C-15), 131.5 (C-16), 134.8 (C-12), 137.1 (C-13)
12	6.66 (1H, ddd, 7.6, 6.0, 1.8)	134.8	H-13 & H-11	46.8 (C-14), 59.2 (C-11)
13	6.55 (1H, ddd, 7.5, 6.3, 1.4)	137.1	H-12 & H-14	46.8 (C-14), 59.2 (C-11)
14	4.79 (obscured by H ₂ O)	46.8	H-13	76.9 (C-9), 128.5 (C-15), 131.5 (C-16), 134.8 (C-12), 137.1 (C-13)
15	-	128.5	-	-
16	_	131.5	-	-
17	6.81 (1H, d, 8.0)	118.0	H-18	128.5 (C-15), 147.4 (C-19), 59.2 (C-11)
18	6.79 (1H, d, 8.0)	117.9	H-17	131.5 (C-16), 144.5 (C-20)
19	-	147.4	-	
20	-	144.5	-	
1'	5.14 (1H, d, 7.5)	102.8	H-2'	157.7 (C-1)
2'	3.64 (1H, m)	76.0	H-1' & H-3'	n.d.
3'	3.67-3.58 (1H, m)	79.1	H-2'&H-,4'	n.d.
4'	3.52 (1H, m)	72.6	H-3' & H-5'	n.d.
5'	3.62 (1H, m)	79.1	H-4' & H-6'	n.d.
6'β	3.73 (1H, dd, 12.4, 5.7)	63.8	Η-6'α	n.d.
6'α	3.92 (1H, dd, 12.4, 2.2)	63.8	H-6'β	n.d.

Supplementary Table 5. Concentrations of dimeric compounds and key salicinoids in juvenile leaf and stem tissue from 26 *Salix* species of the National Willow Collection held at Rothamsted Research. Concentrations are given in mg/g d.w.

Rres NWC	Tissue	Species	Clonal / Hybrid Name	Miyabeacin	Miyabeano	Miyabeacin B	Salicorti	Salicin
Code					I	В	11	
2	Leaf	<i>S. nigra</i> Marsh.	SN3 Primrose Hill	n.d.	n.d.	n.d.	56.26	45.41
15	Leaf	S. pentandra L.	patent Lumley	n.d.	n.d.	n.d.	5.88	5.07
207	Leaf	S. alba L.	"Portogruaro (Ve)"	n.d.	n.d.	n.d.	1.16	1.00
390	Leaf	S. fragilis	R838	n.d.	n.d.	n.d.	1.33	0.66
415	Leaf	S. magnifica Hemsl.	WB 50 0 578	n.d.	n.d.	n.d.	5.38	13.00
432	Leaf	S. daphnoides Vill.	fastigiate	n.d.	n.d.	n.d.	7.35	n.d.
506	Leaf	S. dasyclados Wimm.	Grandis	2.67	1.46	0.72	n.d.	n.d.
575	Leaf	S. dasyclados Wimm.	(aquatica) Jyvaskyla V768	4.57	2.93	2.26	1.38	3.86
576	Leaf	S. dasyclados Wimm.	(aquatica) Yesipaju Lieto V769	1.85	6.70	1.82	2.41	5.73
577	Leaf	S. dasyclados Wimm.	77056 IEA Trial	45.25	16.20	8.41	19.10	12.20
592	Leaf	S. dasyclados Wimm.	CE78-2 as x dasyclados Siren	40.73	15.94	10.32	12.48	9.34
607	Leaf	S. rehderiana Schneid.		n.d.	n.d.	n.d.	57.58	2.98
608	Leaf	S. rehderiana Schneid.		n.d.	n.d.	n.d.	26.45	8.43
615	Leaf	S. schwerinii Wolf	K3 Hilliers (WB 50 0 354	n.d.	n.d.	n.d.	0.70	n.d.
663	Leaf	S. viminalis L.	Pulchra Ruberrima	n.d.	n.d.	n.d.	1.15	n.d.
837	Leaf	S. <i>miyabeana</i> Seemen	III	79.86	55.01	15.45	1.24	37.29
838	Leaf	S. purpurea L.	Richartii	n.d.	n.d.	n.d.	44.91	68.22
844	Leaf	S. purpurea L.	Uralensis	n.d.	n.d.	n.d.	26.85	51.26
885	Leaf	S. <i>miyabeana</i> Seemen	Shrubby	79.11	37.96	16.09	5.39	41.82
901	Leaf	S. × alberti L. (S. integra Thunb. ×	42/17	n.d.	n.d.	n.d.	6.39	n.d.
		S. suchowensis W.C. Cheng ex						
		G.Zhu)						
941	Leaf	S. <i>miyabeana</i> Seemen	Purpurescens (ex.Tuinzing) (566)	98.30	40.20	26.74	3.82	27.30
1013	Leaf	S.phylicifolia L.	Malham	n.d.	n.d.	n.d.	0.15	n.d.
1059	Leaf	S.repens L.		0.70	1.08	0.54	24.78	3.79
1155	Leaf	S. acutifolia Willd.	174	n.d.	n.d.	n.d.	6.90	165.40
1165	Leaf	S. arbusculoides Anderss.	20397	n.d.	n.d.	n.d.	n.d.	n.d.
1215	Leaf	S. myrsinifolia Salisb.	E-4-1403	n.d.	n.d.	n.d.	8.55	105.85
2	Stem	<i>S. nigra</i> Marsh.	SN3 Primrose Hill	n.d.	n.d.	n.d.	81.11	42.52
15	Stem	S. pentandra L.	patent Lumley	n.d.	n.d.	n.d.	11.46	4.60
207	Stem	S. alba L.	"Portogruaro (Ve)"	n.d.	n.d.	n.d.	0.86	0.51
390	Stem	S. fragilis	R838	n.d.	n.d.	n.d.	1.05	n.d.
415	Stem	S. magnifica Hemsl.	WB 50 0 578	n.d.	n.d.	n.d.	9.90	30.36
432	Stem	S. daphnoides Vill.	fastigiate	n.d.	n.d.	n.d.	94.58	4.08
506	Stem	S. dasyclados Wimm.	Grandis	0.82	1.58	0.79	0.95	n.d.
575	Stem	S. dasyclados Wimm.	(aquatica) Jyvaskyla V768	1.39	n.d.	n.d.	1.02	n.d.
576	Stem	S. dasyclados Wimm.	(aquatica) Yesipaju Lieto V769	1.52	n.d.	0.69	2.07	1.06
577	Stem	S. dasyclados Wimm.	77056 IEA Trial	14.86	3.28	3.73	6.60	5.09
592	Stem	S. dasyclados Wimm.	CE78-2 as x dasyclados Siren	13.14	5.82	4.88	2.81	5.67

607	Stem	S. rehderiana Schneid.		n.d.	n.d.	n.d.	9.84	18.37
608	Stem	S. rehderiana Schneid.		n.d.	n.d.	n.d.	23.38	17.31
608	Stem	S. rehderiana Schneid.		n.d.	n.d.	n.d.	7.44	23.27
615	Stem	S. schwerinii Wolf	K3 Hilliers (WB 50 0 354	n.d.	n.d.	n.d.	n.d.	n.d.
628	Stem	S.viminalis × S.schwerinii	Tora	n.d.	n.d.	n.d.	n.d.	n.d.
663	Stem	S. viminalis L.	Pulchra Ruberrima	n.d.	n.d.	n.d.	1.41	n.d.
837	Stem	S.miyabeana Seemen	III	72.22	n.d.	15.56	53.79	22.28
838	Stem	S. purpurea L.	Richartii	n.d.	n.d.	n.d.	69.39	13.61
844	Stem	S. purpurea L.	Uralensis	n.d.	n.d.	n.d.	45.70	28.29
885	Stem	S.miyabeana Seemen	Shrubby	49.54	n.d.	8.39	55.45	45.98
901	Stem	S. × alberti L. (S. integra Thunb. ×	42/17	n.d.	n.d.	n.d.	80.01	2.63
		S. suchowensis W.C. Cheng ex						
		G.Zhu)						
941	Stem	S.miyabeana Seemen	Purpurescens (ex.Tuinzing) (566)	81.13	1.95	18.79	5.42	26.94
1013	Stem	S.phylicifolia L.	Malham	n.d.	n.d.	n.d.	0.47	1.03
1059	Stem	S.repens L.		n.d.	n.d.	n.d.	36.68	2.26
1155	Stem	S. acutifolia Willd.	174	n.d.	n.d.	n.d.	276.02	19.46
1165	Stem	S. arbusculoides Anderss.	20397	n.d.	n.d.	n.d.	1.58	n.d.
1215	Stem	S. myrsinifolia Salisb.	E-4-1403	n.d.	n.d.	n.d.	60.23	22.19

Supplementary Table 6. Varietal provenance of Terra Nova and Endurance biomass willows.

Variety	Terra Nova	Endurance
Female parent	((S. viminalis 'Bowles Hybrid' × S.	S. rehderiana
	triandra 'Dark Newkind') 'LA940140')	
Male parent	S. miyabeana 'Shrubby'	S. dasyclados '77056'
Breeder	European Willow Breeding Partnership	European Willow Breeding
		Partnership
Sex	Female	Female
Ploidy level (x) ^a	3	5
CPVO registration date	2005	2013
Breeders code	LA9801132	LA980442

- ^a Estimated ploidy level given in: Macalpine WJ, Shield IF, Trybush SO, Hayes C, Karp A (2008) Overcoming barriers to crossing in willow (*Salix* spp.) breeding. Aspects Appl Biol 90:173-180
- ^b Date granted plant breeders rights by the Community Plant Variety Office (CVPO)

Supplementary Table 7. 1 & 2D-NMR data for acetylmiyabeacin **9a/9b** (D2O:CD₃OD, 80:20 containing d₄-TSP (0.01% w/v)) δ in ppm relative to d₄-TSP at 0.00.

	2'-0	D-Acetyl miyabeacin (9a)		2"-O-Acetyl miyabeacin (9b)			
Position	δ	J _{H-H} (Hz)	¹³ C	δ	J _{H-H} (Hz)	¹³ C	
1	-	-	157.96	-	-	157.96	
2	7.19 (d)	9.3	117.86	7.19 (d)	9.3	117.86	
3, 26	7.41 (ddd)	8.0, 7.7, 2.0	133.63	7.41 (ddd)	8.0, 7.7, 2.0	133.63	
4, 25	7.12 (t)/7.10 (t)	7.5	125.89	7.12 (t)/7.10 (t)	7.5	125.89	
5,24	7.36-7.29 (m)	-	133.45	7.36-7.29 (m)	-	133.45	
6	-	-	126.67	-	-	126.67	
7α	5.09 (d)	12.1	66.90	5.39 (d)	12.1	66.90	
7β	5.03 (d)	12.1	66.90	5.17 (d)	12.1	66.90	
8	-		173.79	-		173.79	
9	-		82.57	-		82.57	
10	3.65 (m)	-	40.57	3.62 (m)	-	40.57	
11	3.62 (m)	-	43.89	3.55 (m)	-	43.89	
12	6.59 (dd)	10.2, 4.1	152.57	6.59 (dd)	10.2, 4.1	152.57	
13	6.02 (dd)	10.2, 1.5	130.97	6.02 (dd)	10.2, 1.5	130.97	
14			198.87			198.87	
15	3.53 (m)		45.27	3.53 (m)		45.27	
16	6.19 (t)	7.9, 6.9, 1.0	135.70	6.19 (t)	7.9, 6.9, 1.0	135.70	
17	5.91 (ddd)	7.9, 6.5, 1.4	132.86	5.91 (ddd)	7.9, 6.5, 1.4	132.86	
18	3.43 (m)		54.45	3.43 (m)		54.45	
19	-	-	210.26	-	-	210.26	
20	-	-	80.37	-	-	80.37	
21	-	-	173.64	-	-	173.64	
22β	5.36 (d)	12.2	67.02	5.10 (1H,d)	12.2	67.02	
22α	5.15 (d)	12.2	67.02	5.03 (d)	12.2	67.02	
23	-		126.25	-		126.25	
27	7.19 (d)	9.3	117.86	7.19 (d)	9.3	117.86	
28	-		157.88	-		157.88	
1'	5.23 (d)	8.0	101.37	5.06 (d)	8.0	101.37	
1"	5.08 (d)	7.5	103.02	5.22 (d)	7.5	103.02	
2'	5.00 / 4.97 (dd)	9.6, 8.0	76.67 / 76.69	3.55-3.63 (m)	9.6, 8.0	76.67 / 76.69	
2"	3.55-3.63 (m)	-	76.08	5.00 / 4.97 (dd)	-	76.08	
3'	3.78 (m)	-	76.73	3.58 (m)	-	76.73	
3"	3.58 (m)	-	76.16	3.78 (m)	-	76.16	
4'	3.58-3.64 (m)	-	72.52	3.49(m)	-	72.52	
4"	3.49(m)	-	72.53	3.58-3.64 (m)	-	72.53	
5'	3.66 (m)	-	79.20	3.58 (m)	-	79.20	
5"	3.58 (m)	-	78.99	3.66 (m)	-	78.99	
6'β	3.77 (dd)	12.4, 6.0	63.69	3.73 (dd)	12.4, 6.0	63.69	
6"β	3.73 (dd)	12.4, 6.0	63.69	3.77 (dd)	12.4, 6.0	63.69	

6'α	3.94 (dd)	12.4, 2.1	63.69	3.92 (dd)	12.4, 2.1	63.69
6"α	3.92 (dd)	12.4, 2.1	63.69	3.94 (dd)	12.4, 2.1	63.69
7"	-	-	175.76/ 176.34	-	-	175.76/ 176.34
8"	2.143 (s) / 2.137 (s)	-	23.44	2.143 (s) / 2.137 (s)	-	23.44

	2′, 2″-O-Diacetyl miy	abeacin (10)
Position	δ	
1	-	-
2	7.19 (d) / 7.20 (d)	8.4
3, 26	7.40 (ddd) /7.41 (ddd)	8.0, 7.7, 2.0
4, 25	7.11 (t)/7.13 (t)	7.6
5,24	7.36-7.29 (m)	-
6	-	-
7α, 22α	5.12 (d) / 5.11 (d)	11.7 / 12.1
7 <u>6</u> , 22 <u>6</u>	5.05 (d)	12.0
8	-	
9	-	
10	3.51 – 3.70 (m)	-
11	3.51 – 3.70 (m)	-
12	6.62 (dd)	10.4.4
13	6.03 (dd)	10.1.1.4
14		,
15	3 51 – 3 70 (m)	
16	6 22 (t)	67
17	5 93 (ddd)	796514
18	351 - 370 (m)	1.0, 0.0, 1.4
19	5.51 - 5.70 (m)	_
20	_	_
20		
23		-
23	-719(d)/720(d)	Q /
20	7.19 (u) 7 7.20 (u)	0.4
20	- 2 x 5 24 (d)	7.0
1,1 2'2"	5 01 (dd) / 4 08 (dd)	06.80
2,2	2.70 (m)	9.0, 8.0
3,3	3.79 (III) 2.51 + 2.70 (m)	-
4,4	3.51 - 3.70 (III) 3.51 - 3.70 (m)	-
5,5 6'0 6''0	2 77 (bb) 2 92 (bb) 77 (bb)	-
οb, ο b ε,α	3.77 (UU), 3.82 (UU) 2.09 (dd)	
оц 6"~	3.90 (UU) 2.06 (44)	12.4, 2.1
ο u 	3.90 (uu)	12.4, 2.1
	- 2 x 2 16 (c)	-
ŏ,ŏ	2 X 2.10 (S)	-

Supplementary Table 9. Extraction and HPLC gradient conditions for the isolation of dimeric metabolites.

Compound Number	Compound Name	Amount Extracted	Tissue	Extraction Volume (solvent: H ₂ O:MeOH	Number of 100 µL Injections made into HPLC	HPLC Gradient [mobile phases water (A) and acetonitrile (B), both containing 0.1% formic acid.]	HPLC Retention time of Peak	Amount Isolated
3	Miyabeacin	50 mg	Salix miyabeana Seemen. III leaf tissue. Line: NWC837	1 mL	6	5% B (0-10 min), 22% B (10-50 min) to 37 % B (60-70 min).	57.93 min	1.68 mg
6	Miyabeacin B	200 mg	<i>Salix miyabeana</i> Seemen. "Purpurescens" stem tissue. Line: NWC941	2.5 mL	> 10	5% B (0-10 min), 29% B (10-60 min) to 29 % B (60-70 min)	52.11 min	0.67 mg
7	Miyabeanol	150 mg	Salix miyabeana Seemen. III leaf tissue. Line: NWC837	2 mL	8	5% B (0-10 min), 22% B (10-50 min) to 37 % B (60-70 min)	44.87 min	1.05 mg
8	Miyaquinol	450 mg	<i>Salix miyabeana</i> Seemen. "Purpurescens" leaf tissue. Line: NWC941	4.5 mL	44	20% B (0-20 min), 40% B (20-25 min) to 50 % B (25-35 min)	20.9 min	0.9 mg
9a/9b	2'/2"Acetyl miyabeacin	150 mg (2 x 75 mg)	RRes 710-27, RR09102 hybrid [NWC607 S. rehderiana × RR05337 (Aud × S. rossica)] leaf tissue	2.4 mL (2 1.2 mL)	10	20% B (0 min), 40% B (0 – 45 min) to 100 % B (45.0-50 min)	41.4	0.75 mg
10	2', 2" Diacetyl miyabeacin	150 mg (2 x 75 mg)	RRes 710-27, RR09102 hybrid [NWC607 S. rehderiana × RR05337 (Aud × S. rossica)] leaf tissue	2.4 mL (2 1.2 mL)	10	20% B (0 min), 40% B (0 – 45 min) to 100 % B (45.0-50 min)	45.5	0.25 mg

Supplementary Table 10. General Conditions and typical parameters for NMR and Mass Spectral data collection.

Measurement Conditions		Solvent	D ₂ O:CD ₃ OD (80:20)	Observation width	7182, 33165 Hz
High resolution LC-MS		Concentration	0.6 mg/mL	Data points	4096, 256
LC apparatus	Ultimate 3000 RS uHPLC (Theri	ություն հերանակություն հերանակոր հերանակոր հերանակոր հերանակոր հերանակոր հերանակոր հերանակոր հերանակոր հերանակո	d ₄ -TSP	Temperature	300K
Chromatography Column	C ₁₈ Hypersil gold column (1.9 µn	n, Tem v 212 to the i.d.)	300K	Number of transients	256
Column Temperature	35°C	Probe	5mm Selective Inverse		
Solvents	Water/0.1% formic acid (A) and acetonitrile/0.1% formic acid (B)			¹³ C NMR	
Solvent Gradient	0 min, 0 % B; 27 min, 70 % B; 2	8 Hin Mon Measurement	_	Apparatus	Avance 400 (Bruker)
Flow rate	0.3 mL/min	Pulse sequence	zgpr	Observation Frequency	¹³ C: 100.61
Run time	30 min	Sweep width	7183 Hz	Solvent	D ₂ O:CD ₃ OD (80:20)
Injection volume	10µL	Spectrum offset	2879.40 Hz	Concentration	0.6 mg/mL
		Data points	32,768	Internal Standard	d₄-TSP
MS Apparatus	LTQ-Orbitrap Elite (Thermo)	Pulse angle	90°	Temperature	300K
Source	Heated ESI source	Delay	5 s	Probe	5mm Broadband BBO
Ionisation mode	Negative	Number of scans	64		
Resolution	120,000				
Capillary temperature	350°C			¹³ C NMR Measurement	
Source heater temperature	350°C	2D COSY 45 Measurement	_	Pulse sequence	dept135
Source voltage	2500 V	Pulse program	cosyqf45	Sweep width	23,980 Hz
Source current	100 uA	Observation width	2973, 2973 Hz	Spectrum offset	10363 Hz
Sheath gas flow	35	Data points	1024, 1024	Data points	32768
Auxillary gas	10	Temperature	300K	Pulse angle	30°
R.F. Lens	50%	Number of transients	32	Delay	0.7 s
Scan range	m/z 50-1500			Number of scans	46,191
MS-MS fragmentation	Automatic on top 3 ions	2D HSQC Measurement	_		
Ion isolation width for MSMS	m/z 2	Pulse program	hsqcetgpsi2	DEPT Measurement	
Fragmentation mode	HCD	Observation width	7180, 30150 Hz	Observation width	23980 Hz
Normalised collision energy	65	Data points	2048, 1024	Data points	65536
Activation time	0.1 ms	Temperature	300K	Pulse repetition time	2
		Number of transients	128	Number of scans	4096
NMR	_				
Apparatus	Avance 600 (Bruker)	2D HMBC Measurement	_		
Observation Frequency	¹ H: 600.05, ¹³ C: 150.9	Pulse program	hmbcgpndqf		

Abbreviations

DEPT: Distortionless Enhancement by Polarization Transfer (A method for determining a carbon type (distinguishing among CH3, CH2, CH, and C))

COSY: COrrelation SpectroscopY (A method of ¹H-¹H COSY)

HSQC: Heteronuclear Single Quantum Coherence (A method of ¹H-¹³C COSY)

HMBC: Heteronuclear Multiple Bond Correlation (A method of long-ran

Supplementary Figure 1. Mass spectrum of miyabeacin 3 at m/z 843.2353 with retention time 25.26 min. Dashed lines show in-source fragmentation of the molecule. (F) indicates formate adduct

885-S-2 #3203-3267 RT: 25.14-25.58 AV: 13 NL: 2.30E3 T: FTMS - p ESI d Full ms2 843.23@hcd65.00 [50.00-855.00]

Supplementary Figure 2. MSMS data (negative ion mode) of m/z 843 ion of miyabeacin 3

Supplementary Figure 3. MSMS comparison of A: salicortin **2** m/z 423 and B: miyabeacin **3** fragment (m/z 421). The structures for the ion at m/z 317 is believed to have arisen from a rearrangement following a neutral loss of orthoquinone methide from salicinoid structures.

Supplementary Figure 4. Comparison of 600 MHz ¹H-NMR spectra of A: miyabeacin **3** and B: salicortin **2** collected in 80:20 $D_2O:CD_3OD$ containing 0.01 % w/v d₄-TSP as reference standard. Numbers in red relate to structural assignment of salicortin. Numbers in green relate to peak integral values.

Supplementary Figure 5. COSY45 spectrum of miyabeacin **3**, collected at 600MHz in D₂O:CD₃OD (80:20)

Supplementary Figure 6. ¹³C spectrum of miyabeacin **3** collected at 400 MHz in D₂O:CD₃OD (80:20) containing 0.01% w/v d₄TSP. Spectrum referenced to d₄-TSP at δ0.00

Supplementary Figure 7. DEPT135 spectrum of miyabeacin **3**, collected at 100.6128 MHz in D₂O:CD₃OD (80:20)

Supplementary Figure 8. HSQC spectrum of miyabeacin **3** collected in D₂O:CD₃OD (80:20)

Supplementary Figure 9. HMBC spectrum of miyabeacin **3** collected in D₂O:CD₃OD (80:20)

Supplementary Figure 10. Chenomx simulated ¹H NMR spectrum (500 MHz) of grandifloracin in CDCl3 (δ 6.66 – 5.70) from data provided in Palframan *et al.*, 2011. B: ¹H NMR spectrum (δ 6.66 – 5.70) of miyabeacin **3** in D₂O:CD₃OD (8:2) collected at 600 MHz.

Supplementary Figure 11. 600 MHz ¹H-NMR spectra of A: miyabeacin B **6** collected in $D_2O:CD_3OD$ containing 0.01 % w/v d₄-TSP as reference standard. Numbers in green relate to peak integral values.

Supplementary Figure 12. HSQC spectrum of miyabeacin B **6** collected in D₂O:CD₃OD containing 0.01 % w/v d₄-TSP as reference standard.

Supplementary Figure 13. HMBC spectrum of miyabeacin B **6** collected in D₂O:CD₃OD containing 0.01 % w/v d₄-TSP as reference standard.

Supplementary Figure 14. COSY spectrum of miyabeacin B **6** collected in D₂O:CD₃OD containing 0.01 % w/v d₄-TSP as reference standard.

Supplementary Figure 15. MS and MSMS data of miyabeanol 7. A: MS spectrum of peak at 20.13 min; B: MSMS of m/z 531 [M-H]⁻; C: MSMS of m/z 421 ([M-H]⁻ of retro Diels-Alder product)

Supplementary Figure 16. 600 MHz ¹H-NMR spectra of A: miyabeanol **7** collected in D₂O:CD₃OD containing 0.01 % w/v d₄-TSP as reference standard. Numbers in green relate to peak integral values. and B: expansion of the region between δ 7.50 – 5.0.

Supplementary Figure 17. COSY45 spectrum of A: miyabeanol **7** collected in D₂O:CD₃OD containing 0.01 % w/v d₄-TSP as reference standard.

Supplementary Figure 18. HSQC spectra of miyabeanol **7.** A: $D_2O:CD_3OD$ and B: D_2O

Supplementary Figure 19. HMBC spectra of miyabeanol **7.** A: D₂O:CD₃OD and B: D₂O

Supplementary Figure 20. MSMS data of miyaquinol 8. A: MSMS spectrum of m/z 529 peak at 23.67 min; B: MSMS of m/z 531 [M-H]⁻ for comparison.

Supplementary Figure 21. 600 MHz ¹H-NMR spectra of miyaquinol **8** collected in D₂O:CD₃OD containing 0.01 % w/v d₄-TSP as reference standard.

Supplementary Figure 22. HSQC spectra of miyaquinol **8** collected in D₂O:CD₃OD (80:20)

Supplementary Figure 23. HMBC spectra of miyaquinol **8** collected in D₂O:CD₃OD (80:20)

Supplementary Figure 24. Pearson correlations of compound concentrations 3, 6 and 7. A-C: Leaf concentrations; D: Stem concentrations.

			uHPLC-	uHPLC-MS Peak areas		
NWC Code	Species	Variety	7	8		
941	S.miyabeana Seemen	Purpurescens (ex.Tuinzing) (566)	106,736,382	13,802,140		
885	S.miyabeana Seemen	Shrubby	103,197,646	10,715,048		
837	S.miyabeana Seemen	III	121,088,485	14,165,161		
592	S. dasyclados Wimm.	CE78-2 as x dasyclados Siren	63,407,656	9,061,956		
576	S. dasyclados Wimm.	(aquatica) Yesipaju Lieto V769	6,688,741	790,941		
575	S. dasyclados Wimm.	(aquatica) Jyvaskyla V768	10,851,853	1,498,029		
577	S. dasyclados Wimm.	77056 IEA Trial	52,624,720	7,162,216		

B:

Supplementary Figure 25. Correlation of uHPLC-MS peak areas for 7 and 8 in *S. miyabeana* and *S. dasyclados* accessions.

Т3

T5

Т6

Τ7

Т8

T12 T15 T30 T45 T60

Supplementary Figure 26. Photographs of *S. dasyclados* (NWC577) grown in controlled environment conditions. Photographs show typical sampled plants from 3 days after budburst (T3) to 60 days after bud burst (T60).

Supplementary Figure 27. Total ion chromatograms (RT 19.6 – 26.0 min) from uHPLC-MS analyses of polar solvent extracts of Terra Nova (NWC1110). A: Juvenile stem; B: Juvenile leaf.

Supplementary Figure 28. Total ion chromatograms (RT 19.6 – 26.0 min) from uHPLC-MS analyses of polar solvent extracts of juvenile willow tissues. A: Endurance stem; B: Endurance leaf; C: *S. dasyclados* (NWC577) stem; D: *S. dasyclados* (NWC 577) leaf; E: *S. rehderiana* (NWC607) stem; F: *S. rehderiana* (NWC607) leaf. Peak labelling reflects labelling in the main text: 2:salicortin, 3:miyabeacin, 6:miyabeacin-B, 7:miyabeanol, 8:miyaquinol, 9:acetylmiyabeacin, 10:diacetylmiyabeacin, 11:2'-acetylmiyaquinol, 14: 2'-acetylsalicortin.

Supplementary Figure 29. Mass spectra of acetyl miyabeacin, **9a/9b**, at m/z 885 with retention time 27.21 min. A: MS spectrum of m/z 885 (27.21 min); B: MS-MS fragmentation of m/z 885; C: MS-MS fragmentation of miyabeacin, **3** for comparison.

Supplementary Figure 30. MSMS comparison of A: acetyl miyabeacin (m/z 885) **9** and B: diacetyl miyabeacin (m/z 927) **10**. Data is generated from LC-MS (negative mode) of juvenile leaf tissue from Endurance (NWC1116) and extracted using aqueous methanol.

Supplementary Figure 31. MS and MSMS data (negative ion mode) for 2'acetyl miyabeanol **11**. A: MS spectrum of peak at 23.08 min; B: MSMS of m/z 573 [M-H]⁻; C: MSMS of m/z 531 (miyabeanol **7**, [M-H]⁻) for comparison. Data is generated from LC-MS (neg mode) of juvenile leaf tissue from Endurance and extracted using aqueous methanol.

Supplementary Figure 32. LC-MS data (negative ion mode) of RR10347 (RR05326 (Resolution × *S. rossica*) × NWC941 (*S. miyabeana* Purpurescens)). A: Total ion chromatogram indicating benzoylated miyabeacin **16a/16b** (m/z 947); B: Mass spectrum of peak at 30.95 min. C: MSMS of m/z 947.2561.

Supplementary Figure 33. ¹H-NMR data of 2'-Benzoylmiyabeacin/2"-O-Benzoylmiyabeacin **16a/16b** collected at 600 MHz in D₂O:CD₃OD (4:1). A: ¹H-NMR spectrum. B: ¹H-NMR spectrum of miyabeacin **3** for comparison (expanded region between 6.7 – 5.0 ppm). C: Expanded region of ¹H-NMR spectrum of 2'-Benzoylmiyabeacin/2"-O-Benzoylmiyabeacin/2"-O-Benzoylmiyabeacin/2"-O-Benzoylmiyabeacin/2"-O-Benzoylmiyabeacin/2"-O-Benzoylmiyabeacin/2"-O-Benzoylmiyabeacin **16a/16b** (6.7 – 5.0 ppm) for comparison with **3**. Integral values are given below peaks in red type.

Supplementary Figure 34. ¹H-¹H COSY NMR data of 2'-Benzoylmiyabeacin/2"-O-Benzoylmiyabeacin 16a/16b collected at 600 MHz in D₂O:CD₃OD (4:1).

Supplementary Figure 35. LC-MS data (negative ion mode) of RR10147 (RR07187 (944 *S. glaucophyloides* × 577 "77056") × RR07188 (944 *S. glaucophyloides* × 577 "77056")). A: Total ion chromatogram; B: Extracted ion chromatogram – Mass Range m/z 800 – 1000 with identified compounds indicated