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1.  Introduction
Agricultural practices such as synthetic fertilizer and manure use and livestock farming release large 
quantities of ammonia (NH3) to the atmosphere. Once emitted, NH3 partitions to acidic aerosols to form 
ammonium that contributes to mass concentrations of fine particles (PM2.5) hazardous to health (Cohen 
et al., 2017; Dockery et al., 1993; Vohra, Vodonos, et al., 2021). NH3 and ammonium also deposit to the 
Earth's surface and drastically alter the natural nitrogen balance of terrestrial and aquatic ecosystems (Gal-
loway, 1998; Johnson & Carpenter, 2010; Vitousek et al., 1997).

Abstract Agricultural emissions of ammonia (NH3) impact air quality, human health, and the vitality 
of aquatic and terrestrial ecosystems. In the UK, there are few direct policies regulating anthropogenic 
NH3 emissions and development of sustainable mitigation measures necessitates reliable emissions 
estimates. Here, we use observations of column densities of NH3 from two space-based sensors (IASI and 
CrIS) with the GEOS-Chem model to derive top-down NH3 emissions for the UK at fine spatial (∼10 km) 
and time (monthly) scales. We focus on March-September when there is adequate spectral signal to 
reliably retrieve NH3. We estimate total emissions of 272 Gg from IASI and 389 Gg from CrIS. Bottom-up 
emissions are 27% less than IASI and 49% less than CrIS. There are also differences in seasonality. Top-
down and bottom-up emissions agree on a spring April peak due to fertilizer and manure application, 
but there is also a comparable summer July peak in the top-down emissions that is not in the bottom-up 
emissions and appears to be associated with dairy cattle farming. We estimate relative errors in the top-
down emissions of 11%–36% for IASI and 9%–27% for CrIS, dominated by column density retrieval errors. 
The bottom-up versus top-down emissions discrepancies estimated in this work impact model predictions 
of the environmental damage caused by NH3 emissions and warrant further investigation.

Plain Language Summary Emissions of ammonia, mostly from agriculture, are often a 
dominant contributor to fine particles in countries with well-established policies that have led to large 
reductions in other precursors of such pollutants detrimental to our health. Here, we use a model and 
observations of ammonia from two space-based sensors to estimate emissions in the UK where there are 
no direct policies regulating agricultural sources of ammonia. The satellite-derived emissions, limited 
to March-September when conditions are ideal for viewing ammonia from space, total 272 kilotonnes 
from an instrument that passes overhead in the morning and 389 kilotonnes from an instrument with a 
midday overpass. Though the emissions estimates differ for the two instruments, both exhibit a spring 
(April) peak due to fertilizer and manure use and summer (July) peak likely associated with dairy cattle 
farming. The summer peak is missing in bottom-up emissions and total March-September emissions from 
these inventories are also 27%–49% less than those derived with satellites. Further research is needed to 
address these discrepancies, as such inventories are widely used for developing policies and assessing 
environmental damage caused by ammonia.
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In the UK, agriculture is the dominant (>80%) source of NH3 emissions (Ricardo,  2018b), mostly from 
nitrogen fertilizer use, manure management, and farming of dairy and beef cattle (DEFRA, 2019). Mod-
eling studies suggest that the largest and most extensive decline in PM2.5 in the UK would be achieved by 
targeting NH3 sources (Vieno et al., 2016), but only large pig and poultry farms are required to adopt best 
practices and technologies that reduce NH3 emissions (DEFRA, 2019). There are additional policy options 
under consideration, such as limiting the use of solid urea fertilizer, a large source of NH3 in the UK (DE-
FRA, 2020a). The UK is a signatory of the United Nations Economic Commission for Europe (UNECE) 
Gothenburg protocol, legislated through the UK National Emission Ceilings Regulations adopted in 2018 
(UK, 2018). This commits the UK to an anthropogenic NH3 emission ceiling of 297 Gg, informed by an-
nual emissions estimates from the UK National Atmospheric Emissions Inventory (NAEI). The UK is also 
required as part of the protocol to reduce NH3 emissions by 8% in 2020 and beyond relative to emissions in 
2005 (UNECE, 2019). The estimated decline in NH3 emissions from 1980 to 2017 is 0.2% a−1 due to a steep 
decline in vehicular emissions of NH3 in 1998–2007 and a recent increase in agricultural emissions since 
2013 mostly due to increased use of urea-based fertilizers (Ricardo, 2020). Any future policies targeting NH3 
emissions would also need to consider increases in emissions as the atmosphere warms (Sutton et al., 2013).

Estimates of the contribution of NH3 emissions to PM2.5 and mobilization of nitrogen in aquatic and terres-
trial ecosystems, assessment of attainment of emissions ceilings commitments and targets, and decisions 
on effective mitigation measures demand accurate estimates of NH3 emissions. The NAEI of annual total 
and mapped UK NH3 emissions is published each year. These are obtained at high spatial resolution (1 km) 
with a model that uses climatological environmental factors and incorporates detailed information about 
farming activities that contribute to NH3 emissions. The ability to validate the inventory is challenging, as 
there are no long-term measurements of NH3 fluxes. There is a network of very reliable measurements of 
rural 24-h mean surface concentrations of NH3 that cover the full latitudinal extent of the UK from Corn-
wall in the south to Shetland in the north (Tang et al., 2018), but there are large monitoring gaps in-between. 
Individual sites are also unlikely to be representative of inventory grid cells for an emission source with 
large spatial variability. Satellite observations of NH3 retrieved from infrared spectral measurements offer 
complete coverage of the UK and routine daily measurements in the absence of clouds and under good re-
trieval conditions. Satellites observe NH3 molecules throughout the atmospheric column, but the majority 
are within the planetary boundary layer and most of the variability in the column is typically due to NH3 at 
or near the surface (Clarisse et al., 2010; Nowak et al., 2010; Schiferl et al., 2016; Vohra, Marais, et al., 2021).

Retrieval of NH3 from space-based instruments was first described by Beer et al. (2008) for the Tropospheric 
Emission Spectrometer (TES) instrument. Satellite NH3 retrieval products have since undergone substantial 
retrieval development (Clarisse et al., 2009; Shephard & Cady-Pereira, 2015; Shephard et al., 2011, 2020; Van 
Damme, Clarisse, et al., 2014, 2017, 2021; Whitburn, Van Damme, et al., 2016), intercomparisons (Dam-
mers et al., 2019), and validation against ground-based observations of total atmospheric column densities 
and surface concentrations of NH3 (Dammers et al., 2016, 2017; Van Damme, Clarisse, et al., 2015; Vohra, 
Marais, et al., 2021). These products have also seen extensive use in characterizing NH3 emissions. This in-
cludes detecting global and regional NH3 emission hotspots (Cady-Pereira et al., 2017; Clarisse et al., 2019; 
Dammers et al., 2019; Shephard et al., 2020; Van Damme et al., 2018), constraining NH3 emissions from 
biomass burning (Adams et al., 2019; Whitburn, Van Damme, et al., 2016), evaluating regional emission 
inventories (Chen et al., 2021; Fortems-Cheiney et al., 2020), identifying underestimated or missing NH3 
sources in widely used global and regional emission inventories and models (Heald et al., 2012; Hickman 
et al., 2018; Van Damme, Kruit, et al., 2014), and determining long-term local and regional trends and var-
iability in NH3 (Hickman et al., 2020; Van Damme, Eriman, et al., 2015; 2021; Vohra, Marais, et al., 2021).

Here, we use satellite observations of NH3 and the GEOS-Chem chemical transport model (CTM) to de-
rive top-down NH3 emissions for the UK and evaluate the NAEI inventory and current understanding of 
seasonality in emissions as represented in GEOS-Chem. This includes the use of surface observations from 
the UK monitoring network to evaluate the model driven with the NAEI to corroborate findings from the 
satellite observations.
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2.  Space-Based Observations of Column Densities of NH3

Satellite observations of NH3 retrieved in the infrared portion of the light spectrum rely on the spectral 
signal that depends on the atmospheric state, such as abundance and vertical distribution of NH3 and ther-
mal contrast between the surface of the Earth and the overlying atmosphere (Clarisse et al., 2010; Shep-
hard et al., 2011). Two prominent products are available from contemporary space-based instruments that 
pass overhead in the morning (the Infrared Atmospheric Sounding Interferometer or IASI) and midday 
(the Cross-track Infrared Sounder or CrIS). These products use distinct retrieval approaches, offering two 
independent data sets to assess the potential to use satellite observations to constrain the magnitude and 
seasonality of UK NH3 emissions.

2.1.  Infrared Atmospheric Sounding Interferometer NH3

The IASI instrument onboard the Metop-A satellite was launched into low-Earth polar sun synchronous 
orbit in October 2006. The instrument has two overpass times in the morning (09h30 local solar time or 
LST) and at night (21h30 LST), providing global coverage twice a day. The elliptical IASI pixels range in 
ground pixel resolution from 12 × 12 km at nadir (directly below the instrument) to about 20 × 39 km at the 
edges of the 2,200-km-wide swath (Clarisse et al., 2011). The data product we use is the Level 2 cloud-free 
reanalysis product of total column NH3 (version 3R-ERA5) (Van Damme et al., 2021). The retrieval uses 
machine learning, specifically a neural network trained relationship between column NH3 and a so-called 
hyperspectral range index or HRI, where the HRI is a measure of the relative enhancement in the spectral 
signature due to NH3 (Van Damme, Clarisse, et al., 2014, 2017; Whitburn, Van Damme, et al., 2016). The 
data product includes reported retrieval errors estimated by perturbing individual input parameters in the 
neural network framework (Whitburn, Van Damme, et al., 2016). Products resulting from the neural net-
work retrieval approach have been validated against global and regional networks of ground-based NH3 
observations of surface concentrations and column densities (Dammers et al., 2016; Guo et al., 2021; Vohra, 
Marais, et al., 2021; Whitburn, Van Damme, et al., 2016). In general, IASI NH3 reproduces the temporal 
variability in surface concentrations of NH3, but exhibits a low bias (Dammers et al., 2017; Whitburn, Van 
Damme, et al., 2016).

We use daytime (09h30 LST) IASI NH3 for 2008–2018 to obtain multiyear monthly means. This dampens 
influence of interannual variability and ensures consistency with NAEI NH3 emissions that are estimated 
with 30-years mean meteorology (Ricardo, 2019a). We grid the data to finer spatial resolution (0.1° × 0.1°; 
∼10 km) than the native resolution of the instrument using the tessellation oversampling technique de-
scribed in Zhu et al. (2017) and Sun et al. (2018). This takes advantage of the spatial variability in coverage 
of individual orbits and the long data record from IASI to reduce noise and smooth out spatial gradients in 
the gridded product (Sun et al., 2018). Briefly, tessellation involves weighting individual IASI pixels by the 
area of overlap with the target grid and also includes error weighting using the reported retrieval error. In 
our application of the tessellation gridding technique, we approximate the area of IASI pixels as a quadrilat-
eral polygon, where the corners of each polygon are estimated as the distance midway between the centers 
of neighboring IASI pixels.

Retrieval of NH3 over the UK is challenging, due to persistent clouds and relatively cool conditions. Extreme 
retrievals, identified as absolute columns >5 × 1017 molecules cm−2, are removed. We also exclude IASI NH3 
columns retrieved on July 26–27, 2018, coincident with the summer 2018 heat wave (McCarthy et al., 2019). 
Record high temperatures (>30°C) lead to UK IASI NH3 column densities 4-times greater (∼4 × 1016 mol-
ecules cm−2) than the UK July multiyear mean (∼1 × 1016 molecules cm−2). Including these days increases 
the July multiyear mean by 11% and reduces its representativeness as a climatological mean for comparison 
to the NAEI. A similarly large influence of heat waves on IASI NH3 columns was reported for the summer 
2010 heat wave over mainland Europe (Van Damme, Clarisse, et al., 2014). After using oversampling to grid 
the data to 0.1° × 0.1°, gridded multiyear means with large relative error (>50%) are removed. This leads to 
loss of the majority of IASI NH3 columns in October-February, so only March-September multiyear means 
are considered. Additional filtering is applied to the gridded multiyear monthly means to remove extreme 
values identified as columns <−1 × 1016 and >1 × 1017 molecules cm−2. These only account for <0.1% of the 
March-September data, but affect spatial consistency between IASI and CrIS.
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Figure 1 shows the gridded March-September multiyear monthly mean IASI NH3 columns. The number of 
observations in each grid ranges from 11 to 128. Values over Scotland are very low (typically <2 × 1015 mol-
ecules cm−2) due to weak signal, lower agricultural activity than the rest of the UK, and greater distance 
from sources in mainland Europe. The range in IASI NH3 over the rest of the country of 4–8 × 1015 mole-
cules cm−2 is much less than the NH3 hotspots in other parts of the world. Columns over global hotspots such 
as North China, West Africa, the Po Valley (Italy), and the Indo-Gangetic Plain (India) exceed 2 × 1016 mol-
ecules cm−2 (Cady-Pereira et al., 2017; Dammers et al., 2019; Van Damme, Clarisse, et al., 2014b, 2018). 
These are associated with industrial and agricultural activity in India and China, and intense seasonal open 
burning of biomass and relatively low abundance of acidic aerosols in West Africa and northern India. 
Warm temperatures in these regions also increase NH3 emissions, suppress partitioning of NH3 to aerosols, 
and enhance the spectral signal.

2.2.  Cross-Track Infrared Sounder NH3

The first CrIS sensor launched into low-Earth polar sun synchronous orbit in October 2011 is onboard the 
NOAA Suomi-NPP satellite. Like IASI, CrIS observes the Earth twice daily, though in the early afternoon 
(13h30 LST) and after midnight (01h30 LST) (Goldberg et al., 2013). It has the same swath width as IASI and 
similar ground pixel resolution (14 km circular pixels at nadir). The fast physical retrieval (CFPR) approach 
used to retrieve NH3 columns is described in detail in Shephard and Cady-Pereira  (2015) and Shephard 
et al.  (2020). Briefly, it is based on conventional optimal estimation that involves minimizing the differ-
ence between observed and calculated outgoing spectral radiances with a priori vertical profiles of NH3 
(Rodgers, 2000). CFPR uses three prior NH3 profiles representing polluted, moderately polluted, and remote 
conditions (Shephard et al., 2020) that are selected based on the ammonia spectral signal. This is different 
to standard optimal estimation that uses prior information that is independent of the observations and 
imposes spatial and temporal information. The CFPR retrieval generates averaging kernels that quantify 
the vertical sensitivity of the retrieval. These typically peak between 900 and 750 hPa (∼1–2.5 km altitude) 
(Dammers et al., 2017; Shephard & Cady-Pereira, 2015).

We use the Level 2 CrIS NH3 CFPR version 1.6 product for 2013–2018. The predecessor product (version 
1.5) exhibited a positive bias for NH3 < 1 × 1016 molecules cm−2, as values were only retrieved over scenes 
exceeding the instrument detection limit of ∼2 × 1015 molecules cm−2 (Dammers et al., 2017; Shephard & 

Figure 1.  Monthly multiyear (2008–2018) mean Infrared Atmospheric Sounding Interferometer (IASI) NH3. Data are 
gridded to 0.1° × 0.1° using oversampling (see text for details). Gray grids, limited to Scotland, have <10 observations.
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Cady-Pereira, 2015). This approach filtered out cloud-free scenes below the instrument detection limit and 
indirectly removed cloudy scenes when the NH3 signal below clouds could not be detected. In version 1.6, 
clouds are explicitly identified with information from the space-based Visible Infrared Imaging Radiometer 
Suite (VIIRS) (White et al., 2021). We use daytime cloud-free CrIS observations with quality flag ≥4 (Shep-
hard et al., 2020) and thermal contrast >0 K, where thermal contrast is the difference between the reported 
temperatures at the surface and the lowest atmospheric layer. We identify and correct for a positive trend 
in the CrIS baseline that appears to be erroneous, as it is not apparent in the IASI data. We do this by esti-
mating a statistically significant (P-value = 0.03) increase in monthly mean background NH3 columns over 
Scotland (Figure S1) of 2.21 × 1013 molecules cm−2 per month (amounting to 1.6 × 1015 molecules cm−2 
over the whole record) and subtract this from individual CrIS NH3 column retrievals. We grid the corrected 
data to 0.1° × 0.1° using the same tessellation code used for IASI, but without error weighting. The individ-
ual total column errors include measurement and representative errors and cover a much narrower range 
(5%–55%; Shephard et al., 2020) than those for IASI (5% to >100%). As a result, higher relative weighting 
would be applied to low column densities, leading to anomalously low gridded values in the CrIS multiyear 
means. For consistency with IASI, and because of weak spectral signal in autumn and winter, we only con-
sider CrIS retrievals in March-September.

Figure 2 shows the gridded March-September CrIS NH3 multiyear monthly mean columns. As with IASI, 
we filter for extreme values in the multiyear means (column densities <−1  ×  1016  molecules  cm−2 and 
>1 × 1017 molecules cm−2), removing <0.1% of the gridded data. Observations during the July 2018 heat-
wave only increase the July multiyear mean by 1.6%, but for consistency with IASI these days are also 
removed. The number of CrIS retrievals in each grid ranges from 11 to 96. The CrIS multiyear means are 
roughly double those for IASI (Figures 1 and S2), in part because CrIS passes overhead at midday when 
higher ambient temperatures lead to greater volatilization of NH3. Differences in vertical sensitivity and 
distinct retrieval approaches likely also contribute. The difference is particularly large in September when 
background NH3 is 5.3 × 1015 molecules cm−2 more in CrIS than IASI, obtained as the intercept from re-
gressing CrIS against IASI. The spatial correlation between CrIS and IASI multiyear means is R < 0.5 in 
most months (March, June-September), R = 0.53 in May, and R = 0.55 in April. If extreme values in the 
gridded products are retained, the spatial correlation degrades to R = 0.42 in April and R = 0.29 in May.

Figure 2.  Monthly multiyear (2013–2018) mean Cross-track Infrared Sounder (CrIS) NH3. Data are gridded to 
0.1° × 0.1° with oversampling (see text for details). Gray grids, limited to Scotland, have <10 observations.
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3.  The GEOS-Chem Chemical Transport Model
We use the GEOS-Chem CTM version 12.1.0 (https://doi.org/10.5281/zenodo.1553349) to derive UK NH3 
emissions from IASI and CrIS. The model is driven with NASA GEOS-FP assimilated meteorology from 
the Global Modeling and Assimilation Office (GMAO). Model simulations are conducted on a horizontal 
grid at 0.25° × 0.3125° (∼25 km latitude × ∼31 km longitude) nested over western Europe (32.75°–61.25°N, 
15°W–40°E). The model extends over 47 vertical layers from the Earth's surface to 0.01  hPa. Dynamic 
(3-hourly) boundary conditions are from a global GEOS-Chem simulation at 4° × 5°.

Anthropogenic emissions over the UK, including from agriculture, are updated in GEOS-Chem to include 
gridded emissions from the NAEI for 2016 (Ricardo, 2018a). These are annual totals on a 1 × 1 km grid 
available at https://naei.beis.gov.uk/data/map-uk-das (last accessed August 2019). The agricultural NH3 
emissions incorporated in the NAEI are calculated at coarser resolution (5 km) than the NAEI with the ni-
trogen balance models of Webb and Misselbrook (2004) for livestock sources and Misselbrook et al. (2006) 
for fertilizer sources. These models are driven with 30-years mean meteorology for 1981–2010, so the NH3 
emissions represent a climatological mean (Ricardo, 2019a). Other anthropogenic NH3 emissions in the 
NAEI are typically calculated as the product of emission and activity factors representative of the year of 
interest and mapped to the 1 km NAEI emissions grid (Ricardo, 2018b). Mainland Europe anthropogenic 
emissions for 2016 are updated with the gridded (0.1° × 0.1°) product provided by the European Monitoring 
and Evaluation Programme (EMEP) (http://www.ceip.at/new_emep-grid/01_grid_data; last accessed Sep-
tember 2019. Now at https://www.ceip.at/the-emep-grid/gridded-emissions).

Temporal variability of annual NAEI and EMEP NH3 emissions is represented in GEOS-Chem with gridded 
monthly scaling factors and spatially uniform diurnal scaling factors. Monthly scaling factors are from the 
Generation of European Emission Data for Episodes (GENEMIS) project detailed in Friedrich (2000). These 
lead to peak NH3 emissions in April. Hourly scaling factors are from Zhu et al. (2015) calculated using infor-
mation about the dependence of NH3 on aerodynamic resistance, surface temperature, and Henry's law. As 
a result of these, 30% of NH3 is emitted at midday (noon-2pm LST) coincident with the CrIS overpass and 
20% in the morning (9am-noon LST) coincident with the IASI overpass. Natural NH3 sources are from in-
ventories already in GEOS-Chem. These include natural emissions from soils and the ocean from the Global 
Emissions InitiAtive (GEIA) inventory (Bouwman et al., 1997) and inland and coastal seabird emissions 
from the Riddick et al. (2012) inventory. We halve the GEIA inventory emissions, as in Paulot et al. (2014), 
informed by a 50% overestimate identified by Simpson et al. (1999).

NH3 is a semivolatile acid buffer that neutralizes acidic sulfate and nitrate aerosols, so its abundance de-
pends on the abundance of these acidic aerosols. Sulfate forms from oxidation of SO2 and nitrates from aer-
osol uptake of nitric acid formed from oxidation of NOx. The version of the NAEI we use includes outdated 
mapping of the location of ships and no vertical or temporal information for aircraft emissions. To address 
these issues, we separate ship and aircraft emissions from other sources in the lumped “Other Transport 
and Mobile Machinery” category of the NAEI emissions inventory and replace ship emissions with updated 
estimates that use geospatial information from the automatic identification system (Ricardo,  2017). We 
convert the NAEI aircraft emissions to monthly estimates and distribute these vertically up to 1 km (the 
altitude limit of the NAEI emissions) by deriving vertical and temporal scaling factors from the global Avi-
ation Emissions Inventory version 2.0 (AEIv2) used in GEOS-Chem (Stettler et al., 2011). Above 1 km, the 
AEIv2 emissions are used. The existing temporal scaling factors in GEOS-Chem that are applied to NAEI 
SO2 and NOx emissions lead to peak emissions in winter, due to an increase in energy demand. SO2 is emit-
ted in the model as 95% SO2 and 5% sulfate, using sulfate-to-SO2 emission ratios for Europe reported by Chin 
et al. (2000). NAEI emissions are gridded to a uniform 0.1° × 0.1° grid for input to the Harmonized Emis-
sions Component (HEMCO) processing package version 2.1.010 (Keller et al., 2014) that maps all emissions 
to the model grid and applies relevant scaling factors.

The model includes detailed coupled gas-phase and aerosol-phase chemistry. Sulfate aerosols are formed in 
the model from oxidation of SO2 in the gas phase by OH and in the aqueous phase in clouds by ozone and 
hydrogen peroxide (Park et al., 2004). Partitioning of NH3 between the gas and acidic aerosol phase is deter-
mined dynamically with the thermodynamic equilibrium model ISORROPIA-II (Fountoukis & Nenes, 2007). 
Wet and dry deposition, terminal sinks of NH3, are represented with a standard resistances-in-series scheme 

https://doi.org/10.5281/zenodo.1553349
https://naei.beis.gov.uk/data/map%2Duk%2Ddas
http://www.ceip.at/new%5Femep%2Dgrid/01%5Fgrid%5Fdata
https://www.ceip.at/the%2Demep%2Dgrid/gridded%2Demissions
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for dry deposition (Wesely, 1989) and, for wet deposition, includes scav-
enging in and below clouds (Amos et al., 2012).

We use network site measurements of trace gases and aerosols to evalu-
ate model accuracy at reproducing surface concentrations of NH3, SO2, 
and sulfate. These include two rural sites (Auchencorth Moss in Scot-
land, Chilbolton Observatory in southern England) that form part of 
the EMEP network and the mostly rural UK Eutrophying and Acidify-
ing Atmospheric Pollutants (UKEAP) network. The two EMEP sites in-
clude hourly measurements from Monitor for AeRosols and Gases in Air 
(MARGA) instruments (Stieger et al., 2017; ten Brink et al., 2007; Twigg 
et al., 2015; Walker et al., 2019). The UKEAP network includes monthly 
mean measurements from low-cost denuder filter sampling packs (Tang 
et al., 2018). In 2016, there were 30 sites for SO2 and sulfate and 51 for 
NH3. The MARGA data are from the EMEP Chemical Coordinating Cen-
tre EBAS database (http://ebas.nilu.no/; last accessed February 2020) 
(Tørseth et  al.,  2012) and the UKEAP data are from the UK-AIR data 
archive (https://uk-air.defra.gov.uk/data/data-availability; last accessed 
November 2020).

To ensure consistency between the model and observations, the model 
is sampled from the lowest to the top model layer during the satellite 
overpass times of 08–11 LST for use with IASI and 12–15 LST for use with 
CrIS, and as monthly 24-h means in the lowest model layer for compari-
son to the surface observations. The model is sampled in March-Septem-
ber 2016 following a 2-months spin-up for chemical initialization.

4.  UK Bottom-Up Emissions of NH3

Figure 3 shows the spatial distribution of annual UK NH3 emissions for 2016 from the NAEI. Table 1 gives 
the breakdown by sector. Annual emissions for 2016 total 298 Gg, mostly (84%) from agriculture. Natural 
emissions of 21.6 Gg (7% of the total) are consistent with annual total natural emissions in GEOS-Chem of 
21.8 Gg. According to GEOS-Chem, these include soils, vegetation and the ocean (together 18.7 Gg), and 
seabirds (3.10 Gg). NAEI anthropogenic NH3 emissions total 276 Gg, 21 Gg less than the UNECE Gothen-
burg protocol emissions ceiling of 297 Gg (UNECE, 2019). The NAEI version we implement in GEOS-Chem 
and evaluate against top-down estimates was released in 2018. Two NAEI versions have been released since. 

Reported differences in NH3 emissions across these versions for consist-
ent years is minor, just 1–3% (Ricardo, 2019b, 2020).

The spatial patterns in Figure  3 coincide with farming activities that 
dominate NH3 emissions according to the modeling study by Hellsten 
et al. (2008). They used the same Webb and Misselbrook (2004) nitrogen 
balance model as the NAEI to identify regionally dominant farming ac-
tivities. The agricultural sources that dominate NH3 emissions include 
sheep farming along the Welsh border where emissions are low, and large 
sources like pig and poultry farming and fertilizer use in east England 
and dairy and beef cattle farming in west England and Northern Ireland. 
Hellsten et  al.  (2008) used agricultural activity data for 2000. Detailed 
geospatial farming activity data are confidential and publicly available 
data are limited to decadal maps of farming activities in England for 2000 
and 2010 and annual regional and national statistics. The decadal maps 
suggest that locations of intensive crop and livestock farming in England 
are relatively unchanged (DEFRA, 2016a, 2016b). The regional statistics 
document large changes in the number of livestock and the amount of 
nitrogen fertilizer used from 2000 to 2016 that would affect trends in 

Figure 3.  Annual UK NH3 emissions for 2016. Data are in tonnes per year 
per 0.1° × 0.1° grid from the National Atmospheric Emissions Inventory 
(NAEI). Inset value is the UK annual total. Boxes demarcate regions with 
broadly similar NH3 source types: Northern Ireland (N. Ireland), Northern 
England and a portion of southern Scotland (N. England), southwest UK 
(SW UK), and southeast UK (SE UK).

Sources NH3 (Gg a−1)

Agriculture 248.9

Naturalb 21.6

Waste 14.2

Point sources 4.4

Road transport 4.4

Otherc 4.2

Total 297.7
aSpatial distribution of UK NAEI NH3 emissions is in Figure  3. 
bContributors to natural emissions, according to GEOS-Chem, are soils, 
vegetation and the ocean (together 18.7 Gg), and seabirds (3.1 Gg). cOther 
is industrial and domestic combustion (2.9 Gg) and solvent use (1.3 Gg).

Table 1 
UK Sector Emissions of NH3 According to the NAEIa

http://ebas.nilu.no/
https://uk-air.defra.gov.uk/data/data-availability
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emissions. In general, livestock numbers in the UK have declined by 20% for sheep, 11% for dairy and beef 
cattle, and 25% for pigs (DEFRA, 2020b). Poultry, specifically table chickens, have increased by 10% in the 
UK, with the largest increase of 42% in Northern Ireland (DEFRA, 2020b). Nitrogen-based fertilizer usage, 
a dominant NH3 source in east England (Hellsten et al., 2008), declined by 19% in the UK, though the rel-
ative proportion of urea-based fertilizer has increased (Ricardo, 2020). Regional changes in nitrogen-based 
fertilizers range from a 3% increase in Scotland to a 37% decrease in Northern Ireland (AIC, 2020).

Inversion of column densities of NH3 to estimate top-down surface emissions can be complicated by de-
pendence of NH3 abundance on acidic sulfate aerosols formed from oxidation of SO2 and acidic nitrate 
formed from uptake of nitric acid from NOx sources. UK SO2 emissions are dominated by large industrial 
and energy sector point sources, ships, domestic and industrial combustion, and traffic (Ricardo, 2018b). 
UK NOx emissions are dominated by transport, energy generation, and manufacturing (Ricardo, 2018b). 
We find particularly large discrepancies between monthly mean March-September 2016 observed (EMEP 
and UKEAP) SO2 concentrations and those from the model driven with the NAEI (Figure S3). The model 
normalized mean bias (NMB) is >600% for modeled SO2 > 2 μg m−3 at sites influenced by point sources 
in Yorkshire and 205% for modeled SO2 < 2 μg m−3. Modeled sulfate is also greater than the observations 
(NMB of 17%) (Figure S3). This would enhance partitioning of NH3 to acidic aerosols to form ammonium, 
leading to a positive bias in the relative amount of NHx (NH3 + ammonium) present as ammonium.

Positive model biases in both SO2 and sulfate (Figure S3) suggest an overestimate in NAEI SO2 emissions 
that have implications for UK compliance with commitments to emissions ceilings and reductions. There 
are many factors other than emissions that could contribute to model biases. These include, but are not 
limited to, misrepresentation of the height at which SO2 is emitted from tall stacks, a reported positive bias 
in mainland Europe SO2 emissions (Luo et al., 2020), and uncertainties in dry (Fowler et al., 2001, 2007) and 
wet (Luo et al., 2019) deposition. We conducted sensitivity simulations to assess the contribution of these 
uncertainties to modeled SO2 and sulfate. Details of these simulations and the effect on SO2 and sulfate 
concentrations are in the accompanying Supporting Information S1. The factor we find to have the largest 
influence relative to the model bias is wet deposition. The more efficient wet deposition scheme of Luo 
et al. (2019) leads to an 11% decrease in sulfate concentrations.

Errors in NAEI SO2 emissions could be due to uncertainties in emissions from domestic and industrial 
biomass combustion. The third of six generating units at the 3.9 GW generating capacity Drax power sta-
tion in Yorkshire transitioned from burning coal to biomass in 2016 (Simet,  2017). SO2 emissions from 
biomass combustion depend on fuel sulfur content and combustion efficiency. Reported emission factors 
range widely from 1 to 110 mg SO2 MJ−1 (Boersma et al., 2008; Paulrud et al., 2006; EMEP, 2019) and so offer 
limited constraints. To reduce the influence of a possible bias in SO2 emissions on GEOS-Chem simulation 
of abundance of sulfate and NH3, we decrease land-based gridded (0.1° × 0.1°) NAEI SO2 emissions by a 
factor of 3 for grids dominated by point sources (identified as grids with SO2 emissions >10 g m−2 a−1) and 
by a factor of 1.3 for all other land-based grids. This reduces the original NAEI SO2 emissions over land by 
49% from 164 Gg to 84.1 Gg. With shipping, the updated annual NAEI SO2 emissions for the domain shown 
in Figure 3 total 94.5 Gg. The March-September modeled sulfate NMB changes from +17% (Figure S3) to 
−8.8%. We use the scaled SO2 emissions in all subsequent simulations.

4.1.  Top-Down NH3 Emissions and Comparison to Bottom-Up Estimates

We calculate gridded satellite-derived 24-h monthly mean top-down NH3 emissions (Esat) as follows:

sat sat
model

EE
 

     
 (1)

where Ωsat is satellite observations of NH3 multiyear monthly mean columns from IASI (Figure 1) or CrIS 
(Figure 2), and (E/Ω)model is the GEOS-Chem ratio of 24-h monthly mean NH3 emissions (E) to 3-h monthly 
mean columns (Ω) during the satellite overpass. Model ratios ((E/Ω)model) are interpolated to 0.1° × 0.1°. 
Regression of midday versus morning values of Ωmodel result in slopes that exceed unity (1.6–2.2), indicative 
of midday enhancements in NH3 due to warmer temperatures and greater NH3 emissions. Intercepts are 
small and slightly negative (−0.1 to −0.7 × 1015 molecules cm−2). Regression of CrIS versus IASI Ωsat yields a 
similar range in slopes (1.3–2.2) to the model, but large positive intercepts (0.2–5.4 × 1015 molecules cm−2). 
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This suggests that larger Ωsat for CrIS than IASI is not just due to differences in midday and morning envi-
ronmental conditions.

The mass-balance approach that we use in Equation 1 to infer emissions can be susceptible to spatial mi-
sattribution of emissions due to displacement of NH3 from the source. The global mean lifetime of NH3 is 
∼15 h (Hauglustaine et al., 2014), ranging from ∼2 h near large sources (Dammers et al., 2019) to ∼36 h far 
from emission sources (Van Damme et al., 2018). The displacement length, the horizontal distance for the 
target compound to decay to ∼63% of the original concentration at the emission source, provides a measure 
of the spatial smearing or localization error of the satellite-derived emissions (Marais et al., 2012; Palmer 
et al., 2003). We estimate a smearing length for satellite-derived NH3 emissions over the UK of 10–12 km 
for calm conditions (wind speeds of 5–6 km h−1) typical of the UK in summer (Figure A1f.3 of BEIS (2016)) 
and a short NH3 lifetime typical of large sources (2 h). At slightly windier conditions (7 km h−1) and over 
regions with lower emissions and a longer NH3 lifetime (15 h), the displacement length increases to 105 km.

Maps of the resultant top-down monthly NH3 emissions are shown in Figure 4 for IASI and Figure 5 for 
CrIS. Qualitatively, both estimates exhibit spatial patterns similar to the NAEI (Figure 3). This includes 
relatively low emissions along the Welsh border, and peak emissions in Northern Ireland, the northern 
portion of the English side of the Welsh border, and in Norfolk in the east. Emissions for retained grid 
squares total 271.5 Gg for IASI, whereas these are 43% more from CrIS (389.4 Gg). CrIS monthly emissions 
are 20%–38% more than IASI for March-July. This is similar in magnitude to the 25%–50% low bias in IASI 
columns, though for an earlier IASI product (Dammers et al., 2017; Whitburn et al., 2016a). The percentage 
difference increases to 57% for August and >100% for September. The large difference in September is due to 
5.4 × 1015 molecules cm−2 greater background NH3 in CrIS, even after correcting for the baseline trend (Sec-
tion 2.2, Figure S1). CrIS emissions excluding September are 33% more than IASI. Differences in sampling 
periods (2008–2018 for IASI, 2013–2018 for CrIS) only have a small effect on satellite-derived emissions, but 
lead to data gaps over Scotland and Northern England. IASI-derived emissions obtained for 2013–2018 are 
only 6% more (288.3 Gg) than those in Figure 4.

For comparison of monthly top-down and bottom-up emissions, we estimate monthly bottom-up emis-
sions as the product of the annual NAEI emissions in Figure 3 and GEOS-Chem seasonality. The latter we 
obtain as ratios of GEOS-Chem monthly to annual 24-h NH3 emissions interpolated onto the 0.1° × 0.1° 
grid. Figure 6 shows the resultant monthly bottom-up NH3 emissions for April and July. The other months 

Figure 4.  Infrared Atmospheric Sounding Interferometer (IASI)-derived NH3 emissions for March-September. Maps 
are 24-h total emissions at 0.1° × 0.1°. Inset values are monthly emissions that sum to 271.5 Gg.
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Figure 5.  Cross-track Infrared Sounder (CrIS)-derived NH3 emissions for March-September. Maps are 24-h total 
emissions at 0.1° × 0.1°. Inset values are monthly emissions that sum to 389.4 Gg.

Figure 6.  Comparison of bottom-up and top-down NH3 emissions for April and July. Panels are bottom-up 
emissions (left), and the difference between top-down and bottom-up emissions for Infrared Atmospheric Sounding 
Interferometer (IASI; middle) and Cross-track Infrared Sounder (CrIS; right) in April (top row) and July (bottom row). 
Grids are blue for bottom-up < top-down and red for bottom-up > top-down. Values inset are bottom-up total (left) and 
differences in (middle and right) monthly emissions and the Pearson's spatial correlation (R) between top-down and 
bottom-up emissions.
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are in the supplementary (Figure S4). The bottom-up emissions peak in April (∼14% of the annual total) 
coincident with fertilizer application (Hellsten et al., 2007; Paulot et al., 2014). The gridded difference be-
tween top-down and bottom-up emissions is also shown in Figure 6 for April and July and in Figure S4 for 
the other months. Locations where bottom-up emissions exceed those from the top-down approach (red 
grids) mostly occur where emissions are low. The largest difference is in July when top-down emissions are 
30 Gg more (IASI) and 46 Gg more (CrIS) than the bottom-up emissions. Pronounced regional differences 
include lower bottom-up values in eastern England, particularly in April, where fertilizer use and pigs and 
poultry farming are dominant sources, as well as in western England and Northern Ireland, particularly in 
July, where dairy cattle farming dominates (Hellsten et al., 2008). The spatial correlation between top-down 
and bottom-up gridded emissions in general ranges from R = 0.5 to R = 0.7, except for IASI in September 
(R = 0.34) when dynamic range in emissions is low.

The bottom-up emissions for March-September total 198.7 Gg. This is 27% less than IASI and 49% less than 
CrIS. It is unlikely that the relatively low bottom-up emissions are due to the time period (1981–2020) of 
the 30-years meteorology used to determine agricultural NH3 emissions for the NAEI. We find that 2-m 
temperature from the NASA long-term consistent relanalysis product, Modern-Era Retrospective analysis 
for Research and Applications Version 2 (MERRA-2), is similar over the UK for 1981–2010 (282.750 K) and 
1991–2020 (282.957 K). Bottom-up emissions in March-September are 67% of the annual total, similar to 
∼60% for the monthly bottom-up NH3 emissions estimated by Hellsten et al. (2007). If we use this relative 
contribution (60–67%) to scale IASI and CrIS to annual totals, this suggests annual NH3 emissions of 405–
453 Gg according to IASI and 581–664 Gg according to CrIS. Subtracting the UK annual natural NH3 emis-
sions of ∼22 Gg (Section 3) yields top-down annual anthropogenic NH3 emissions of 383–431 Gg according 
to IASI and 559–642 Gg according to CrIS. Both top-down estimates exceed annual total anthropogenic 
emissions from the NAEI of 276 Gg (Section 3) and the Gothenburg protocol emissions ceiling of 297 Gg.

Figure 7 compares regional seasonality in UK NH3 emissions from bottom-up and top-down estimates as the 
percent change in emissions in each month relative to those in June. Regional seasonality in the top-down 
emissions is very similar in March-August in all regions except Northern Ireland. The mismatch between 
IASI and CrIS in September is due to the at least 2-times greater CrIS than IASI columns in that month 
(Section 2). The July peak in emissions in Northern Ireland is more pronounced in IASI than CrIS. This 
is also apparent in the seasonality in the column densities (Figure S5). Northern Ireland has experienced 

Figure 7.  Regional seasonality in March-September NH3 emissions. Points are the percentage change in emissions 
in each month relative to those in June for top-down emissions from Infrared Atmospheric Sounding Interferometer 
(IASI; black) and Cross-track Infrared Sounder (CrIS; blue), and from the bottom-up emissions (red). Regions sampled 
are in Figure 3. Inset values are March-September totals for each region from each estimate.
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dramatic changes in agricultural activity that includes increases in live-
stock numbers of 45% for pigs and 42% for table chickens and a decline in 
nitrogen fertilizer use of 37% from 2000 to 2016 (DEFRA, 2020b). We find 
though that the top-down emissions estimates are relatively insensitive to 
differences in temporal coverage of the two sensors (2008–2018 for IASI, 
2013–2018 for CrIS). All emission estimates exhibit a spring peak in April 
due to intensive fertilizer and manure application in March-April (Hell-
sten et al.,  2007). Paulot et al.  (2014) also identified this April peak in 
NH3 emissions inferred from ammonium wet deposition measurements, 
though a recent study questions the utility of these measurements for 
constraining NH3 emissions (Tan et al., 2020). A second summer peak 
in the top-down emissions in July that is not present in the bottom-up 
emissions could be due to the timing of manure spreading, dairy farming 
practices, or enhanced volatilization and suppressed dry deposition due 
to warm summer temperatures (Hellsten et al., 2007; Sutton et al., 1994). 
Spatial consistency between the July top-down emissions (Figures  4 
and 5) and locations dominated by emissions from dairy cattle (Hellsten 
et al., 2008) suggests that it is due to dairy farming, but this requires fur-
ther investigation.

In Figure 8, we compare March-September 2016 mean modeled and ob-
served surface concentrations of NH3 to determine if the model driven 
with NAEI NH3 emissions and prior assumptions of NH3 seasonality 
and diurnal variability corroborates the results obtained with the satel-
lite observations. Monthly means from model grids coincident with the 
surface sites are reasonably spatially consistent with the surface observa-
tions (R = 0.54) and the model is 38.3% less than the observations. This is 

midway between the NAEI comparison to the top-down emissions of 27% less than IASI and 49% less than 
CrIS. There are also low-cost passive sampler measurements of NH3 concentrations at 39 rural sites, but 
these have relatively low precision, are not as extensively distributed as the observations in Figure 8, and 
are only reliable (within ±10% of reference measurements) at NH3 ≥ 2 μg m−3 (Martin et al., 2019; Sutton 
et al., 2001). Even so, the model is similarly biased low (by 41.5%) compared to these measurements (not 
shown).

5.  Error Analysis of the Top-Down Emissions
The reported relative error for NAEI NH3 emissions is 31% (Ricardo, 2018b). Quantifiable random errors 
that contribute to total March-September satellite-derived emissions include uncertainties in retrieval of 
NH3, and in the modeled relationship between NH3 emissions and column densities (Equation 1). For the 
latter, we test sensitivity to modeled sulfate aerosol and nitric acid abundances and prior assumptions of 
the spatial and temporal variability of NH3 emissions. IASI NH3 retrieval errors for columns ≥2 × 1015 mol-
ecules cm−2 range from 0.7% to 34%. Retrieval errors larger than 34% do occur, but are in locations with very 
low emissions. The CrIS NH3 column errors across all grids range from 0.2% to 25%. Errors due to uncertain-
ties in the magnitude and variability in SO2 and NOx emissions that affect abundance of sulfate and nitrate 
aerosols and hence the abundance and vertical distribution of NH3 are small compared to column density 
retrieval errors. We estimate the error contribution of these as the change in top-down emissions due to a 
perturbation in SO2 emissions for sulfate and NOx emissions for nitric acid. The percent change in top-down 
emissions from a 50% decrease in SO2 emissions is 4–5%. A 50% increase in NOx emissions increases nitric 
acid by 14%, aerosol nitrate by 11%, and satellite-derived NH3 emissions by 8–9%. The limited sensitivity to 
sulfate and nitrate in the UK is because NH3 is in excess due to the success of emission controls targeting 
SO2 and NOx sources and absence of these for NH3 sources. This would not occur in regions and times with 
large unregulated SO2 and NOx sources. We find that (E/Ω)model used to convert satellite observations of 
column densities to emissions (Equation 1) is relatively insensitive to perturbations in NH3 emissions, so 
is relatively unaffected by errors in the spatial and temporal variability of NH3 emissions in GEOS-Chem. 

Figure 8.  Comparison of observed and modeled surface concentrations of 
NH3. Data are European Monitoring and Evaluation Programme (EMEP) 
and UK Eutrophying and Acidifying Atmospheric Pollutants (UKEAP) site 
measurements (points) and the model (background) for March-September 
2016. Inset values are the Pearson's spatiotemporal correlation coefficient 
(R) and the model normalized mean bias (NMB) for coincident monthly 
means.
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A 50% increase in NH3 emissions only causes a small (3–4%) decrease in satellite-derived NH3 emissions. 
The total relative error from adding these individual errors in quadrature is 11%–36% for IASI and 9%–27% 
for CrIS and is dominated by errors in retrieval of the columns. Total emissions for March-September are 
198.7 ± 61.6 Gg for the bottom-up emissions and up to 271.5 ± 97.7 Gg for IASI and 389.4 ± 105.1 Gg for 
CrIS.

There are also known systematic biases in the satellite observations. Some studies reported that IASI 
NH3 column densities are biased low by 25%–50% compared to ground-based measurements (Dammers 
et al., 2017; Whitburn, Van Damme, et al., 2016). However, these comparisons were for earlier versions of 
the IASI NH3 product. The version used here is consistent with columns derived with aircraft observations 
(Guo et al., 2021), though Guo et al. (2021) caution that their comparison is limited in time (summer) and 
location (Colorado, USA) and sensitive to errors in column estimates from integrating aircraft measure-
ments. There are no observations of the vertical distribution of NH3 over the UK. The CrIS column amounts 
display a gradual increase with time (Figure S1) that we correct for in this work, though further work is 
required to determine the cause. Biases in the satellite-derived emissions due to differences in overpass 
times of the two instruments is mitigated by sampling modeled columns (Ωmodel in Equation 1) during the 
satellite overpass.

Both satellite products preferentially sample clear-sky conditions. The bias that this imparts on the top-
down emissions estimates is challenging to quantify. The modeled emissions and columns used to derive 
top-down emissions ((E/Ω)model in Equation 1) are sampled under all-sky conditions, though there would 
likely be compensating effects of sampling clear-sky conditions on (E/Ω)model. Warmer temperatures and 
absence of clouds increase Ω by suppressing the amount of NH3 that partitions to the aqueous phase (Stel-
son & Seinfeld, 1982; Walters et al., 2018), but E also increases in response to warmer temperatures (Sutton 
et al., 2013). Preferentially sampling clear-sky conditions likely has the largest impact on Ωsat. We find that 
the effect is greatest in July when boundary-layer clear-sky air temperatures, according to GEOS-Chem, are 
warmer than all-sky scenes by 5.6°C during the morning overpass and 5.3°C during the afternoon overpass. 
According to Sutton et al. (2013), 5°C warmer temperatures increase NH3 emissions by 42%. Clear-sky tem-
peratures are only 1.6°C–1.7°C warmer in the preceding month (June), so the greater clear-sky temperature 
in July may in part account for the discrepancies between observed and modeled NH3 emissions in that 
month (Figure 6) and the steep increase in July columns and emissions relative to June (Figures 7 and S5). 
A challenge though of using GEOS-Chem to diagnose sensitivity of air temperature to cloud cover is that 
the model is inferior to the satellite observations at resolving clouds, due to its coarser spatial resolution 
(25–31 km), and only 3%–12% of daily overpass model data are retained in each month after filtering for 
cloudy scenes (GEOS-FP cloud fractions >0.1). NH3 emissions in GEOS-Chem also do not include changes 
in farming practices in response to shifts in meteorology.

6.  Conclusions
Emissions of ammonia (NH3) in the UK are mostly (>80%) from agriculture and are challenging to estimate 
with bottom-up approaches and validate exclusively with current ground-based networks. Here, we used 
satellite observations of NH3 in March-September for multiple years from the Infrared Atmospheric Sound-
ing Interferometer (IASI) (2008–2018) and the Cross-track Infrared Sounder (CrIS) (2013–2018) with the 
GEOS-Chem chemical transport model to derive top-down monthly emissions across the UK at high spatial 
resolution (∼10 km).

Total top-down March-September emissions are 272 Gg from IASI and 389 Gg from CrIS. Bottom-up emis-
sions estimated with the UK National Atmospheric Emission Inventory (NAEI) annual emissions and GE-
OS-Chem monthly scaling factors are 27% less than IASI-derived emissions and 49% less than CrIS-derived 
emissions. This is supported by a 38%–42% underestimate in surface NH3 concentrations from GEOS-Chem 
driven with the NAEI. We infer UK top-down annual anthropogenic NH3 emissions of 383–431 Gg from 
IASI and 559–642 Gg from CrIS compared to 276 Gg from the NAEI. Seasonality in the top-down emissions 
confirms the well-known spring April peak from fertilizer and manure use, but there is also a summer July 
peak coincident with intensive dairy farming that is absent in the bottom-up emissions.
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The relative error in the top-down emissions, mostly due to NH3 column retrieval errors, is 11–36% for IASI 
and 9–27% for CrIS and is similar to the error reported for the NAEI (31%). The top-down emission esti-
mates are relatively insensitive to model uncertainties in SO2, NOx, and NH3 emissions, as NH3 is in excess 
and the relationship between modeled NH3 columns and emissions is near-linear.

Our study demonstrates the tremendous potential to use satellite observations to derive NH3 emissions and 
assess bottom-up emissions under particularly challenging observing conditions (cloudy, cool) in the UK. 
This is critical for assessing reliability of inventories used to inform policies and mitigation strategies. The 
discrepancy between bottom-up and top-down emissions identified here warrants further investigation of 
both approaches.

Data Availability Statement
The top-down and bottom-up emissions estimated in this work are publicly available from the UCL Data 
Repository (https://doi.org/10.5522/04/14566635). The CrIS CFPR NH3 data are created by Environment 
and Climate Change Canada and hosted by the Meteorological Service of Canada (MSC) Datamart at 
https://hpfx.collab.science.gc.ca/∼mas001/satellite_ext/cris/snpp/nh3/v1_6_1/. Login is required and can 
be requested from data developer MWS (mark.shephard@canada.ca). The IASI NH3 data are publicly avail-
able from the IASI data catalogue (https://iasi.aeris-data.fr/nh3/).
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