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Summary

Host plant defence mechanisms (resistance and tolerance) and plant nutrition are two of the

most widely proposed components for the control of hemiparasitic weeds of the genus Striga in

tropical cereal production systems. Neither of the two components alone is effective enough to

prevent parasitism and concomitant crop losses. This review explores the potential of improved

plant nutrition, being the chemical constituent of soil fertility, to fortify the expression of plant

inherent resistance and tolerance against Striga. Beyond reviewing advances in parasitic plant

research, we assess relevant insights from phytopathology and plant physiology in the broader

sense to identify opportunities and knowledge gaps and to develop the way forward regarding

research and development of combining genetics and plant nutrition for the durable control of

Striga.

Introduction

Obligate hemiparasitic plants of the genus Striga, commonly
known as witchweeds, pose a great threat to cereal production in
sub-Saharan Africa (SSA) (Dugje et al., 2006; Rodenburg et al.,
2010). Resource-poor smallholder farmers are particularly hard hit
by these parasitic weeds, as they often grow cereal crops in Striga-
prone areas characterized by poor soil fertility, and they frequently
lack the knowledge or resources for effective Striga control options
(Emechebe et al., 2004; Tippe et al., 2017).

The genus Striga is diverse, consisting of c. 28 species and six
subspecies (Mohamed et al., 2001). All but one of the weedy Striga
species parasitize on monocotyledon plants. The exception is
S. gesnerioides, which is specific to dicotyledon hosts. The most
economically important species parasitizing cereal crops (e.g.
maize, sorghum, rice, millet) are S. hermonthica, S. asiatica,
S. aspera and S. forbesii (Parker, 2009). Monocotyledon-parasitiz-
ing species (i.e. the focus of this review and henceforward refered to
as ‘Striga’) have a low host specificity and can thus parasitize a broad
range of plant species including native and introduced cultivated

crops such as wheat, sorghum, maize, millet or teff, sugarcane and
also wild grasses (Vasey et al., 2005; Welsh & Mohamed, 2011).
Striga are observed in at least 44 countries in SSA (Rodenburg et al.,
2016). Striga are most widespread in West Africa, covering an
estimated 64% of the arable land under cereals, followed by East
and Central Africa, with 23% of land being infested (Gressel et al.,
2004).

Yield losses due to Striga result in a considerable economic
impact. An estimated 293 000 tonnes of milled rice (worth US
$117 million) are lost annually because of Striga infestation of
rainfed rice (Rodenburg et al., 2016). High losses are also observed
in sorghum and millet with an estimated combined annual loss of
8.6 M tonnes, and maize with an estimated annual loss of 2.1 M
tonnes (Gressel et al., 2004). Factors such as poor soil fertility and
continuous monocropping greatly favour the spread and infesta-
tion by Striga in cereal-growing regions (Emechebe et al., 2004).

A range of Striga management options have been developed in
recent decades, but none of these provides durable control when
deployed as stand-alone practices (Hearne, 2009; B�arberi, 2019).
For effective and durable Striga control, an integrated Striga
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management approach that is affordable, easy to use and adaptable
to smallholder farming systems is recommended. Oswald (2005)
proposed that for an effective integrated approach, soil fertility
management should be the central focus. Nitrogen-fixing legumes
can be grown as covercrops or intercrops as a low-cost technique to
improve soil fertility and reduce Striga infections in cereal crops
(Reda et al., 2005; Khan et al., 2007; Tonitto & Ricker-Gilbert,
2016; Randrianjafizanaka et al., 2018). Mineral fertilizers would
enable more tailored crop nutrition in terms of quantities,
composition, placement and timing. The use of mineral fertilizers
and Striga-resistant or Striga-tolerant cultivars has shown to hold
promise as a suitable combination for integrated Striga manage-
ment (Tippe et al., 2017). However, knowledge of the effects of
macro- and micronutrients on host plant defence against Striga,
required to develop the most effective approach, is limited.

In this review, we take a closer look at the identified host plant
defence mechanisms against Striga. We then examine what is
known about the effect of nutrients on these defence mechanisms,
as this will help to tailor appropriate nutrient combinations
providing an additive or even a synergistic effect. Beyond nutrient
effects on the expression of resistance and tolerance against Striga,
we consider relevant insights from phytopathology, where resis-
tance is widely exploited and investigated, and look at the role of
nutrients in plant physiological processes that are affected after
Striga infection. Finally, we discuss potential nutrient delivery
techniques that are cost-effective, efficient and easily adaptable to
smallholder farming systems in SSA.

Striga biology and host interactions

The success of Striga is based on its life cycle that is intricately
synchronized with the host plant’s cycle (Fig. 1), because of a suite
of underlyingmolecular processes clearly outlined byMutuku et al.
(2020). First, Striga seed dormancy needs to be broken by a period
(c. 10 d) of sufficientlymoist soil conditions, usually achieved at the
onset of a new rainy season. After this preconditioning, the actual
seed germination of Striga (Fig. 1 stage I) depends on germination
stimulants, secreted in the root exudates of both host and nonhost
plants, such as dihydroquinones, ethylene sesquiterpene lactones,
ethylene and strigolactones (Babiker & Hamboun, 1983; Bebawi,
1986; Bouwmeester et al., 2003; Yoneyama et al., 2010). Among
them, strigolactones have been shown to be the most potent,
inducing Striga seed germination at very low concentrations (Kim
et al., 2010; Yoneyama et al., 2010). Once Striga seeds germinate,
the seedlings grow chemotropically towards the host roots (Yoshida
& Shirasu, 2009). Striga depend on the production of cues by the
host root to start the formation of an intrusive structure, called
haustorium (Yoshida et al., 2016; Fig. 1 stage II). These host cues,
called haustorium-inducing factors (HIFs), are diverse, and include
phenolic (syringic and guanycyl) acids, quinones (2,6-dimethoxy-
p-benzoquinone) and flavonoid compounds (Yoshida et al., 2016;
Cui et al., 2018; Goyet et al., 2019). Below ground, seedlings of
Striga recognize these metabolites and subsequently form a
haustorium at the tip of the radicle that enables host root
attachment (Fig. 1 stage III) and penetration (Hood et al., 1997).
Once penetration has occurred, the parasite cells differentiate to

form tracheary elements that establish the vascular connection to
the host plant xylem (Fig. 1 stage IV) within 48–72 h (D€orr, 1997;
Hood et al., 1997). Striga acquire water, carbon and nutrients from
the host plant through this xylem bridge.

Following its successful initial establishment, the parasite forms
secondary attachments to other roots and starts growing upwards
(Fig. 1 stage V), emerging above the soil c. 4 wk later. Following
emergence, the plants produce leaf Chl that enable them to
photosynthesize (Press et al., 1991). The Striga plants then grow
vegetatively (Fig. 1 stage VI), whereby they exhibit a high
transpiration rate due to their near-continuous open leaf stomata
(Shah et al., 1987). Once above ground, Striga plants develop for
another 4 wk and then produce flowers, followed by pollination,
seed capsule formation and seed dispersal (Fig. 1 stage VII) (Webb
& Smith, 1996). A small number of Striga species, including
S. hermonthica, are strictly cross-pollinated (allogamous) but most
others, such as S. asiatica, are self-pollinated (autogamous). To
ensure successful survival, a single Striga plant produces over
50 000 tiny seeds that are easily dispersed bywind and rain. Seeds of
Striga are long-lived in the soil seed bank (Bebawi et al., 1984; Van
Mourik et al., 2005), which contributes to the difficulty of
controlling this weed.

Above ground, plants of Striga photosynthesize but are not self-
sufficient in terms of carbon assimilation (Shah et al., 1987; Press
et al., 1991). Comparison of S. hermonthica to its close nonparasitic
relatitive, snapdragon (Antirrhinum majus), revealed the parasite
has CO2 assimilation rates of < 40% on a Chl basis and 20% on a
whole leaf basis of that of the nonparasitic plant (Shah et al., 1987).
Consequently, an estimated 85% of the carbon needs of mature
Striga plants are fulfilled by the parasitized host plant (Press &
Stewart, 1987; Press et al., 1987; Shah et al., 1987; Graves et al.,
1990). At the same time, Striga parasitismdiminishes the host plant
photosynthesis rate (Press & Stewart, 1987; Press et al., 1987). The
complete mechanistic background of the suppression of host
photosynthesis by the parasite has yet to be elucidated. However,
studies suggest it might be due to the increased secretion of ABA by
Striga to the rhizosphere that suppresses the host growth and
immunity (Fujioka et al., 2019a). Striga-infected host plants also
have elevated ABA levels in their xylem sap resulting in a reduction
of the stomatal conductance rate (Frost et al., 1997).

The siphoning of resources and reduced CO2 fixation following
infection by Striga are accompanied by stunted growth, and an
increased root : shoot ratio of the host plant (Gurney et al., 1995,
1999; D€orr, 1997; Rank et al., 2004). These effects, as well as yet
unelucidated phytotoxic effects manifested by chlorosis, necrosis
anddesiccation, cause negative feedback loops onhost performance
(Spallek et al., 2013). Because of the high transpirational pull of the
attached Striga plants, the infected host plants also experience
drought stress, which further induces host leaf stomatal closure
(Inoue et al., 2013). The transpiration gap between Striga and the
host plant promotes the flow of nutrients and water from the hosts
to the parasite (D€orr, 1997) together with host metabolites.
Similarly, through the host–parasite xylem bridge, Striga transfer
toxic secondary metabolites such as iridoid glycosides to the host
plants but their function as well as the mechanism of their action is
unknown (Rank et al., 2004). In addition, the recently identified
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horizontal transfer of genes and transposons from host plants to
Striga that aid in parasitism might occur through the host xylem
bridge (Yoshida et al., 2019).

The dependence of Striga on host signals, penetrable host tissue,
xylem vessels and the ability to withdraw water, nutrients and
carbon from the host plant provide entry points for genetically
driven defence mechanisms. Host plant defence mechanisms are
based on the production of less active strigolactones and HIFs,
impairment of the parasite attachment and establishment of the
vascular connection, or mitigation of negative parasitism effects
(Yoshida & Shirasu, 2009). These defence mechanisms are
presented in more detail in the next section, after which emphasis
will be on how macro- and micronutrients might fortify the
expression of these defence mechanisms. The combination of
inherent defence and targeted host plant nutrition could potentially
reduce parasite success and increase host plant performance,
providing a solid basis for durable control.

Host plant defence mechanisms against Striga

Host plant defence mechanisms against Striga comprise two broad
categories, resistance and tolerance. Striga resistance mechanisms
lead to relatively reduced Striga infection levels of the host plant
(Fig. 2a) while tolerance refers to the ability of the host plant to
sustain parasitic infection with reduced negative effects (Fig. 2b;
Rodenburg & Bastiaans, 2011). To date, except for nonhost
resistance, complete resistance to Striga has not been documented,
and only partial resistance exists in various hosts (Table 1).

Preattachment resistance

Preattachment resistance includes all mechanisms that affect Striga
life-cycle stages until attachment (i.e. parasite seed germination and
haustorium formation). Two main types of preattachment resis-
tance mechanisms exist. First, some host crop genotypes produce
lower quantities or less active forms of germination stimulants (e.g.
strigolactones); this mechanism is referred to as low germination
stimulant resistance (LGS) (Hess et al., 1992; Jamil et al., 2011a;
Gobena et al., 2017;Mohemed et al., 2018). Anothermechanism is
the production of lower quantities of HIFs (LHIF) (Rich et al.,
2004; Table 1). These mechanisms impair Striga germination or
attachment to host roots and thereby prevent parasitism. Striga
endosperm resources can only support seedling growth for 3–7 d
after germination and failure to attach and establish a parasitic
relation with suitable host plants within that time frame leads to
death of the seedlings (Ramaiah et al., 1991; Berner et al., 1995;
Runo & Kuria, 2018).

Postattachment resistance

All resistance mechanisms that intervene after the first contact
between the haustorium and a host root are categorized as
postattachment resistance. These mechanisms hinder penetration
of the haustorium through the root epidermis or they impair the
necessary formation of the host xylem-bridge to support successful
Striga parasitism (Fig. 3). Hypersensitive responses are expressed as
necrosis of the host cell at the point of Striga attachment (Fig. 3b),

Fig. 1 Life cycle of Striga. Clockwise from the
top: (I) Striga seeds in the soil germinate after a
period of preconditioning and upon reception
of cues of nearby host presence (exudates
derived from the host roots); (II) when the
Striga radicle is in close proximity of a host
root, upon reception of a second type of host
cue, it forms a haustorium that enables the
parasite to (III) attach to a host root and
penetrate root tissue to form a (IV) vascular
connection (xylem bridge); the parasite will
then (V) grow below ground and emerge
above ground after 2–4wk; (VI) once above
ground it produces Chl and turns green; a
period of around 4wk of vegetative growth is
followed by (VII) flowering, pollination and
seed-capsule production; each seed capsule
produces hundreds of small (dust-like) seeds
that are then shattered and returned to the soil
to replenish the seedbank.
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resulting in death of the parasite, as observed in sorghum genotypes
Framida and Dobbs (Mohamed et al., 2003). Mechanical barriers
in the epidermal region (Kavuluko et al., 2020) or the cortex
(Mbuvi et al., 2017) may prevent Striga penetration to the
endodermal region (Mutuku et al., 2019; Fig. 3c). The barriers can
be imposed by deposition of lignin at the interface between Striga
and its host, as observed in resistant sorghum and rice genotypes
(Maiti et al., 1984; Cissoko et al., 2011; Mbuvi et al., 2017;
Mutuku et al., 2019; Kavuluko et al., 2020) (Table 1). The Striga

haustorium is arrested within the host root tissue before it
successfully establishes parasitism due to lignin deposition that
acts as a mechanical barrier. However, even when the parasite
reaches the endodermis, the parasite can fail to recognize the host
xylem and establish a viable vascular connection (Fig. 3d). An
incompatibility response impairs further growth and development
of Striga following attachment as observed in the maize inbred line
ZD05 (Gurney et al., 2006; Amusan et al., 2008). Themechanistic
background of the incompatibility response is not known yet.
Antibiosis involves the transfer of toxic compounds from the host
plant to the Striga resulting in growth impairment (El Hiweris,
1987). However, what these toxic compounds are and how they
impair parasite growth is not yet entirely understood. There is also
no conclusive evidence yet that incompatibility response and
antibiosis are two distinctly different mechanisms.

Tolerance

Resistance is always only partial, implying that the likelihood of
Striga infections can never be entirely excluded. This leads to two
major shortcomings of resistance: resistance can break down in a
few generations resulting from the high genetic variation within
Striga populations allowing the development of a population of
adapted ecotypes (Unachukwu et al., 2017; Joel et al., 2018;
Mutuku et al., 2020); and partially resistant cultivars that become
infected by Striga can still suffer severe grain yield losses. It is
therefore important for a crop genotype to combine resistance with
a sufficient degree of tolerance. As shown in Fig. 2(b), host plant
tolerance is characterized by mitigated crop yield losses caused by
Striga infection, and this is shown to be related to the maintenance
of functional levels of photosynthesis, Chl fluorescence and
stomatal conductance (Gurney et al., 2002; Rodenburg et al.,
2008, 2017). Various studies have identified genotypes of host
plants with relative tolerance, resulting in relatively low Striga-
induced impacts on host plant biomass (Fig. 4) and yields
(Table 1). The occurrence of resistance and tolerance in a given
cultivar is independent, implying that observed resistance in a
cultivar does not provide any clue on its level of tolerance
(Rodenburg et al., 2006). Tolerance as a stand-alone mechanism is
not very useful as it does not reduce Striga infection and
reproduction rates. Tolerance should therefore be backed up by
some level of resistance to reduce the infection level and prevent a
parasitic seed bank from building up in the soil (Rodenburg &
Bastiaans, 2011). Stacking different resistance mechanisms
through breeding could result in cultivars with more durable
forms of resistance, and adding a certain level of tolerance to that
would result in an additional yield ‘safety net’ for farmers
(Rodenburg & Bastiaans, 2011).

The role of nutrition in fortifying resistance and
tolerance against Striga

In the following section, we present the state of the art regarding the
role of nutrients in host plant defence against Striga. Because this is
a rather narrow field of research, we then broaden this overview by
presenting knowledge of plant nutrition effects on plant defence

Fig. 2 Models of Striga control using improved cultivars and plant nutrition.
(a) Using resistant cultivars will reduce Striga infection levels in a crop at any
given infestation level. (b) Using tolerant cultivars will not affect Striga
infection levels butwill reduce Striga-inflicted relative yield losses of a crop at
any given infection level, and fertilizer applicationwill further reduce relative
yield loss. (c) Applied in combination, both genetic defence mechanisms
relax the relationship between Striga soil infestation level and relative crop
yield loss. Fertilization is expected to reinforce the effects of inherited
resistanceand tolerancemechanisms, butmore research is needed toexpand
on preliminary research findings and the translation into an effective and
affordable fertilization strategy.
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responses to other pathogenic infections, resembling Striga infec-
tions, as well as on plant physiological mechanisms that are affected
by Striga infection. A last section discusses advances in fertilizer
delivery methods that may have relevance for Striga control.

Striga resistance

Striga germination and haustorium formation are two steps of the
life cycle that can be disrupted by improved host nutrition (Fig. 5
stages I and II). Strigolactones are secreted to foster a symbiotic
relationship between the host plant and arbuscular mycorrhizal
fungi (AMF) for phosphorus assimilation in poorly fertile soils
(Yoneyama et al., 2010). Striga capitalizes on this symbiotic
relationship by detecting the presence of strigolactones, to induce
seed germination. The extent to which host plants produce these
compounds is a function of the deficiency of macronutrients
(mainly nitrogen (N) and phosphorus (P)) in the soil. Compen-
sating for soil nutrient deficiency by the use of (N and P) fertilizer
application has been shown to limit strigolactone exudation,
leading to lower Striga germination (e.g. Czarnecki et al., 2013;
Yoneyama, 2020; Cechin & Press, 1993; Yoneyama et al., 2007;
Jamil et al., 2012, 2014). To date, there is limited understanding of
the interaction of plant nutrition with other Striga germination
stimulants (dihydroquinones, sesquiterpene lactones, ethylene) as
studies have so far focused on strigolactones. Similarly, there is
limited research on the effects of fertilizers on the production of
HIFs (Fig. 5 stage II). However, following the recent elucidation of
the role of lignin pathway in the synthesis ofHIFs (Cui et al., 2018),
targeting the phenypropanoid pathway by specific nutrients (i.e.N,
P, potassium (K) and calcium (Ca)) (Eppendorfer&Eggum, 1994;

Entry et al., 1998; Fritz et al., 2006; Teixeira et al., 2006; Wang
et al., 2015; Ziegler et al., 2016; Zhang et al., 2017), probably
enhances LHIF resistance. Moreover, upregulating lignin deposi-
tion by improved host nutrition may also benefit mechanical
resistance at the root epi- and endodermis levels (Fig. 5 stages III
and IV). This would involve targeting overexpression of jasmonic
acid (JA), which regulates the lignin biosynthesis pathway (Den-
nese et al., 2011) by improved host nutrition. To date, the
hypersensitive response is the most well understood resistance
mechanism. The salicylic acid (SA) pathway is involved in this type
of response and a few nutrients (i.e. silicon (Si), magnesium (Mg)
and P) that potentially enhance this have been identified (Reuveni
& Reuveni, 1998; Fauteux, et al., 2006; Imada et al., 2016; Wang
et al., 2017). We found only one study that reported a negative
effect of fertilizers on the parasite physiology stages beyond
establishment of the vascular connection (Igbinnosa et al., 1996)
but the actual mechanisms are not yet resolved (Fig. 5 stages V
and VI).

Striga tolerance

Studies have shown that the application of nutrients improves the
physiological performance of an infected host plant and alleviates
detrimental effects of parasitism. A Striga plant siphons nutrients
from the host plant by decreasing the host leaf osmotic pressure and
maintaining high osmotic pressure at its leaf epidermal cells
(Gworgwor & Weber, 1991). Striga maintains higher osmotic
pressure than its host by having a higher transpiration rate that
results in low water potential. This causes the host plant to lower its
transpiration rate and osmotic pressure in order to conserve the

Table 1 Defence mechanisms (resistance and tolerance) against Striga in cereal host species.

Defence
mechanism Host plant species Striga species Genotype Reference(s)

LGS Sorghum S. hermonthica,
S. asiatica

Framida, 555, IS9830, SRN39 El Hiweris (1987), Haussmann
et al. (2000), Gobena et al. (2017)

Rice S. hermonthica Super Basmati, TN-1, Anakila, CG14,
NERICA-1

Jamil et al. (2011b, 2012)

LHIF Wild sorghum S. asiatica PQ-434, IS14313, IS18803 Rich et al. (2004)
Wild maize relative S. hermonthica Tripsacum dactyloides Gurney et al. (2003)

Mechanical
barriers

Rice S. hermonthica Nipponbare Mutuku et al. (2019)
Sorghum S. hermonthica, S. asiatica N-13, Framida, IS9830 Maiti et al. (1984), El Hiweris (1987)
Wild sorghum S. hermonthica WSE-1, WSA-1, WSA-2 Mbuvi et al. (2017)

HR Sorghum S. asiatica Framida, Dobbs Mohamed et al. (2003)
Wild sorghum S. asiatica P47121 Mohamed et al. (2003)

Antibiosis Sorghum S. hermonthica Framida, IS9830 El Hiweris (1987)
IR Maize S. hermonthica ZD05, KSTP Amusan et al. (2008), Mutinda et al. (2018)

Rice S. hermonthica Nipponbare, CG14, NERICA-1,
NERICA-10

Gurney et al. (2006), Cissoko et al. (2011)

Tolerance Sorghum S. hermonthica Framida, Tiemarifing, Ochuti, IS9830 El Hiweris (1987), Gurney et al.
(1995), Van Ast et al. (2000), Rodenburg
et al. (2008)

Maize S. asiatica Staha, SC535, SC527, MQ623 Gurney et al. (2002), Nyakurwa et al. (2018)
S. hermonthica TZEEI 79, 74, Maseno Double

Cobber, H511
Efron (1993), Oswald & Ransom (2004),
Badu-Apraku & Oyekunle (2012)

Rice S. asiatica, S. hermonthica Makassa, CG14, ACC102196 Rodenburg et al. (2017)

LGS, low germination stimulant production; LHIF, low haustorium initiation factor production; HR, hypersensitive response; IR, incompatibility response.
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limited water resources (Ackroyd&Graves, 1997). However, at an
optimum nitrogen rate this siphoning of nutrients is impaired by a
lowering of the osmotic pressure of Striga and a simultaneous
increase of the osmotic pressure of the host to near-equal values
(Gworgwor &Weber, 1991). Another mechanism to facilitate the
flow of water and nutrients used by the parasite is reduction of the
host plant transpiration rate whilemaintaining a high transpiration
itself (Inoue et al., 2013). The high transpiration rate is positively
regulated by an abberant protein phosphatase ShPP2C1 which
enables Striga to loose sensitivity to ABA during water stress
(Fujioka et al., 2019b).However, fertilizer application increases the
transpiration rate of the host plant, resulting in a lower rate of water
and nutrient transfer to the parasite. For example, the application of
nitrogen fertilizer to pearl millet infected with S. hermonthica
revealed an increase of the transpiration rate at different levels of
infections, indicating increased stomatal conductance and CO2

fixation (Fig. 5 stage VII) (Press et al., 1987; Boukar et al., 1996).
Potassium, which is present in high concentrations in Striga leaves,
is anothermacronutrient that potentially plays an important role in
the parasite’s acquisition of solutes from the host plant, by its effect

on stomatal conductance via maintaining a high stomatal aperture
(Smith & Stewart, 1990; Press et al., 1991).

A combination of nitrogen fertilizer and tolerant sorghum
genotypes has been shown to result in higher yield and good
agronomic traits (Showemimo et al., 2002). Photosynthesis and
underlying processes have been shown to be associated with a Striga
tolerance phenotype (Rodenburg et al., 2008, 2017). Moreover,
Striga parasitism depends on the host plant for carbon supply
because its own photosynthesis is insufficient (Press & Stewart,
1987; Press et al., 1987). At high foliar applications of nitrogen to
host plants infected by S. hermonthica, the heterotrophic carbon
dependency of Striga on the host reduces while the autotrophic
carbon fixation of Striga increases (Cechin & Press, 1993). As a
result, the host plant can use more of its assimilated carbon for its
own growth and development.

Defence mechanisms against other pathogens

To gain more insight into the potential effect of nutrition and
fertilizer use on defence against Striga, we gathered evidence from

(a)

(b)

(c)

(d)

Fig. 3 Close-up and transverse sections of
host root (H) – parasite (P) attachments, of the
sorghum – Striga hermonthica association on
day 9 postinfection (photos by SR and IMM)
showing a susceptible (a) and three distinctly
different resistant phenotypes (b–d). The
histological analysis was carried according to
Kavuluko et al. (2020). Sections of host roots
infected with Striga were excised, fixed in
Carnoy’s fixative and stained with 100%
safranin for 5 min. The tissues were then
destained with choral hydrate (2.5 g ml�1) for
12 h. The fixed tissues were infiltrated with
100%Technovit and embedded after 3 d. The
embedded tissues were mounted onto
wooden blocks using a Technovit 3040 kit
according to the manufacturer’s instructions.
The tissues were sectioned using a Leica RM
2145 microtome and the cut sections were
stained with 0.1% toluidine blue O dye in
100mMphosphatebuffer for 120 s and rinsed
thouroughly with distilled water. The dried
slides were covered with coverslips using
DePex (BDH, Poole, UK), observed and
photographed using a Leica DM100
microscope fitted with a Leica MC190 HD
camera.
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defence mechanisms against other pathogens (e.g. broomrape,
nematode, fungal and bacterial infections) that have shown
similarities (Heath, 2000; Vieira Dos Santos et al., 2003;
Glazebrook, 2005; Kusumoto et al., 2007; Letousey et al., 2007;
Hiraoka & Sugimoto, 2008; Swarbrick et al., 2008).

The formation of an haustorium followed by intra- and
intercellular penetration to establish vascular connections with the
host is observed in other parasitic weeds (e.g. broomrapes;
Orobanche spp. and Phelipanche spp.) and biotrophic fungi (Petre
& Kamoun, 2014; Mitsumasu et al., 2015; Kokla & Melnyk,
2018; Goyet et al., 2019). Similar to Striga, parasitic nematodes
and biotrophic fungi utilize cell wall degradation enzymes to
establish successful penetration of the host plants (Mayer, 2006;
Mitsumasu et al., 2015). The beneficial effects of nutrients on
plant defence responses to biotrophic, hemibiotrophic and
necrotrophic pathogens have been demonstrated in both Poaceae
and non-Poaceae species (Table 2; Supporting Information
Table S1). Nutrients enhance similar defence response pathways
in different plant species against a wide array of attacking
pathogens. For example, the application of nutrients significantly
enhances plant immunity against root and foliar bacterial and
fungal pathogens (Ma et al., 2019; Eskandari et al., 2020; Per�ez
et al., 2020). Other studies in plant pathology have shown that

nutrients play important roles in hypersensitive responses and the
formation of mechanical barriers against bacterial and fungal
infections (Reuveni & Reuveni, 1998; Imada et al., 2016; Yang
et al., 2018). This effect can be positive or negative. Hypersen-
sitive responses could be moderated or aggravated by boron,
manganese, copper, nitrogen, phosphorous and potassium (Fig. 5
stage III) (Reuveni & Reuveni, 1998; Reuveni et al., 2000). For
example, potassium induced systemic resistance against powdery
mildew in cucumber and magnesium against bacterial wilt in
tomato (Reuveni et al., 2000; Imada et al., 2016). Similarly,
enhanced lignification or formation of phenolic compounds to
strengthen cell wall resistance at the root endodermis level could
be stimulated by essential nutrients such as zinc, boron and
manganese (Fig. 5 stages II and IV) (Dordas, 2009; Eskandari
et al., 2020). Identification of key nutrients in mechanical and
hypersensitive response pathways holds the potential for devel-
oping fertilizers to enhance postattachment Striga resistance.

Plant physiological responses

Nutrients, such as manganese, copper, zinc, iron, magnesium and
boron, have proven to play an important role in plant photosyn-
thesis pathways (Dordas, 2009;Dimkpa&Bindraban, 2016; Yang

(a) (b) (c)

Fig. 4 Dissected shoots of host plants, and associated parasite (Striga hermonthica) load, of three sorghumgenotypes demonstrating different levels of Striga
tolerance at 89 d after sowing (at Striga infection levels that were similar based on parasite : host biomass ratio): (a) sensitive genotype CK60B showing severe
leaf and stem reductions and no panicle formation due to Striga infection; (b) moderately tolerant genotype Framida showing strongly reduced stem lengths,
slightly reduced leaf biomass andno (or delayed)panicle formationdue to Striga infection; (c) tolerantgenotypeTiemarifing showingonly slightly reduced stem
length and leaf biomass due to Striga infection.
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et al., 2018) and therefore also have the potential to mitigate
negative Striga effects on host plants (Fig. 5 stage VII).

There is a remarkable correspondence between the physiological
symptoms caused by Striga infection and the symptoms following
drought stress (Ghassemi et al., 2018; Hu et al., 2018). In the
absence of an adequate water supply, the leaf stomata close, causing
a decrease in the transpiration rate. The reduced transpiration rate
causes a shortage of water and nutrients in the shoot and, following
the principal of the ‘functional equilibrium’ (Lambers, 1983), the
plant allocates a higher quantity of newly produced assimilates to
the roots. These assimilates are used for the production of
additional root material that might help overcome the relative lack
of water and nutrients in the aboveground parts. Striga infection

creates identical symptoms. In this case the hormonal regulation of
stomatal closure might be regarded as a strategy of the parasite to
generate a flowof assimilates towards the root systemof the plant, of
which the parasite also benefits. Consequently, the nutrients that
alleviate drought stress in plants hold the potential for alleviating
the drought stress-induced symptoms by Striga infection and hence
to confer and enhance Striga tolerance. In particular, they might
help in generating a reduced carbon flow to the roots (Fig. 5 stage
VI). Drought stress symptoms of the host plant following Striga
infection also compromise physiological performances by reducing
leaf Chl (a and b) and Chl content index, and by increasing leaf
temperature (Ghassemi et al., 2018). In addition, drought is known
to impede the plants’ ability to absorb and transfer nutrients,

Fig. 5 The role of host plant genetics and nutrition in the host–Striga interaction. I. Striga seed germination: a host plant growing in a poorly fertile soil secretes
strigolactones to promoteAMF symbiosis for P assimilation but Striga seeds perceive strigolactones as germination stimulants. Genetic resistance based on low
germination stimulant production (LGS) may reduce the parasite germination rate; similarly, improved host plant nutrition (macronutrients: N and P) reduce
strigolactone production and thus germination. II. Haustorium initiation: germinated Striga seedlings grow chemotropically towards host roots and perceive
haustorium induction factors (HIFs) for haustorium formation, enabling attachment to the host plant roots.Host plant genotypesproducing smaller amounts of
HIFs exhibit preattachment resistance (called LHIF). III. Attachment:mechanical barriers at the root epidermis or a hypersensitive response (HR)may provide a
host plant with postattachment resistance, as it discourages parasite penetration and impairs establishment of parasitism. Micronutrients may stimulate both
forms of preattachment resistance. IV. Vascular connection: other forms of postattachment resistance may be exhibited by barriers at the root endodermis,
inhibiting establishment of the vascular connection (xylem bridge), or beyond this point by host incompatibility responses or antibiosis (V. Belowground
growth). Micronutrients play a role in cell wall strengthening, while host plant nitrate concentrations may impair parasite development. Once the vascular
connection is established, in addition to postattachment resistance incompatibility and antibiosis, genetic host plant tolerance becomes an important factor as it
contributes to the maintenance of host plant CO2 assimilation rates. Macro- and micronutrients support healthy host root growth and metabolism. VI.
Aboveground vegetative growth: the Striga plants then emerge above ground, produce Chl and growth vegetatively. In this stage, host plant tolerance
becomes the sole remaining Striga defence mechanism. VII. Striga flowering and seed production: the parasite produces flowers and eventually seeds. Host
plant tolerance and a range ofmacro- andmicronutrients play an important role in host plant performance bymaintaining highwater use efficiency (WUE) and
CO2 assimilation rates at this stage. Striga shoot developmentmay be impaired by nitrogen fertilizer. The Striga seeds are dispersed and deposited back to the
soil where they form an inoculum for a new parasite cycle. Background colours indicate the host plant defence stage, starting with preattachment resistance
(blue),moving topostattachment resistance (yellowandyellow–green)and to tolerance (yellow–greenandgreen).Theoverlapbetween the latter twostages is
indicated by a yellow background overlayed by green dots. LGS, low germination stimulant; LHIF, low haustorium-inducing factors; HR, hypersensitive
response; WUE, water use efficiency.
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impairing nutrient access (Mahdavi et al., 2020). Various nutrients
(i.e. P, N, K,Mg, Zn,Mn, B, Cu, Ca, S and Si) have therefore been
shown to be important in alleviating plant drought stress
(Tables 3, S2).

Nutrient delivery techniques

Fertilizer prices vary greatly across SSA. For urea, for instance,
prices range from US $0.8 kg–1 in Ghana to US $1.5 kg–1 in land-
locked Burundi (Cedrez et al., 2020). High market prices of
fertilizers can render their use unprofitable without subsidies
(Theriault et al., 2018). Even if fertilizers are affordable, due to the
uncertainty of outcomes of fertilizer applications, farmers may still
be reluctant to make such investments (Burke et al., 2019). Indeed,
farmers in Striga-infested areas across Africa often indicate that
fertilizers represent a relatively high cost in their farm budgets that
they are not always willing to bear (Emechebe et al., 2004; Misiko
et al., 2011; Tippe et al., 2017). Because of the smallholder farm
context of the Striga conundrum, it is imperative to assess and
optimitize the efficiency and cost effectiveness of delivery
techniques when focusing on the application of nutrients to
enhance Striga resistance and tolerance. Integrating the ‘4R’
nutrient approach, which involves precise targeting at the Right
place and Right time with the Right nutrient combination at the
Right rate to ensure low costs and high effectiveness of fertilizer
application, is recommended (e.g. Mikkelsen, 2011). Improving
fertilizer efficacy has indeed been suggested recently as a means to
address the persistent low fertilizer use, and concomitant low crop
yields, in Africa (Burke et al., 2019). Determination of an efficient
delivery strategy is also crucial to minimize loss of nutrients to the
environment or unavailability in the soil (Bindraban et al., 2020).
For effective use of nutrients for Striga control, delivery of nutrients
should perhaps be targeted to the (host) plant and not to the soil.

Three techniques (i.e. seed coating, microdosing and foliar
application) stand out in their potential for efficiency and cost-
effectiveness, making them feasible for adaptation by smallholder
farmers for Striga control. Complex interactions between the soil
and nutrients might reduce availability and impair delivery of
nutrients to the host plants, resulting in a limited effect and hence
higher dosage requirements when fertilizers are applied directly to
the soil (Kihara et al., 2016; Rietra et al., 2017). Seed coating of host
plant seeds with nutrients ensures that the emerging radicle has
direct contact with nutrients for use during germination. Similarly,
microdosing (i.e. application of reduced and more affordable
quantities of fertilizer with the seed)may ensure effective delivery of
nutrients to the plant and, therefore, increase fertilizer use efficiency
and productivity at minimum input quantities (Hayashi et al.,
2008; Sebnie et al., 2020). Foliar application of nutrients is another
option. Despite the restricted amounts that can be applied and the
danger of foliar burn, foliar spraying circumvents the complex
antagonistic interactions of soil and nutrients by directly delivering
the nutrients to the plant (Oprica et al., 2014; Bindraban et al.,
2015). Foliar application has the potential additional advantage of
the physical distance between the parasite (at the root level) and the
crop canopy where they are applied. Whether this or other delivery
methods indeed pay off requires further investigation.

Conclusions and perspectives

While the potential for combining host plant resistance and
tolerance with targeted plant nutrition to enhance Striga control is
promising, this review has identified several knowledge gaps. There
is limited information on the effects of nutrients on preattachment
resistance based on a lower production of HIFs, postattachment
resistance and tolerance against Striga.Moreover,most studies have
focused on nitrogen and phosphorus effects on the Striga–host

Table 2 The role of nutrients in plant defence mechanisms against pathogenic infections in cereal crops (Triticum aestivum, Triticum durum, Triticum
turgidum,Oryza sativa, Zea mays).

Element Host species Pathogen Mechanism of action Reference

Nitrogen T. aestivum Gaeumannomyces graminis Reduced infection Brennan (1992)
Z. mays Fusarium graminearum Decreased disease severity and mycotoxin accumulation Reid et al. (2001)

Aspergillus flavus Reduction in aflatoxin Payne (1989)
Potassium T. aestivum Septoria tritici Inhibited spore germination Mann et al. (2004)

Erysiphe graminis f. sp. tritici Induces osmotic effect on spore germination Kettlewell et al. (2000)
Magnesium O. sativa Monographella albescens Alleviated infection and preserved photosynthesis

performance
Tatagiba et al. (2016)

Zinc T. turgidum Drechslera tritici repentis Reduced leaf lesions Simoglou & Dordas (2006)
T. aestivum/

T. durum

Fusarium solani Improved integrity of cell membrane and lowered
oxidative damage

Khoshgoftarmanesh et al.
(2010)

Manganese T. turgidum Drechslera tritici repentis Reduced leaf lesions Simoglou & Dordas (2006)
T. aestivum G. graminis Decreased infection Brennan (1992)

Boron T. turgidum D. tritici-repentis Reduced leaf lesions Simoglou & Dordas (2006)
Iron T. aestivum Blumeria graminis f. sp. tritici Mediated oxidative burst Liu et al. (2007)
Silicon T. aestivum B. graminis Induced active localized cell defences Belanger et al. (2003)

Xanthomonas translucens

pv. undulosa

Increased tissue lignification Silva et al. (2010)

O. sativa Magnaporthe grisea Increased cell silicification, lignification and defence-
related enzymes

Cai et al. (2008)

Rhizoctonia solani Increased activities of defence enzymes Schurt et al. (2014)
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interaction, while overlooking other macro- and micronutrients.
While a few functional nutrients have been identified in the SA
pathway underlying the hypersensitive response, further determi-
nation of the roles of other macro- and micronutrients to enhance
this resistance mechanism would be useful. In addition, the
mechanisms of the incompatibility response and antibiosis resis-
tance in Striga control need to be better understood before
informed suggestions on the role of plant nutrients can bemade and
investigated. This requires the identification of precise physiolog-
ical and biochemical pathways that can form targets for resistance-
enhancing host plant nutrition.

Striga tolerance, expressed by host plants that are able to
maintain a relatively undisturbed functional equilibrium between
shoot and root, can potentially be enhanced by nutrients that
strengthen associated traits such as the maintenance of high
photosynthesis levels by enhanced stomatal conductance, or the
alleviation of drought effects by enhanced water use efficiency or
root growth and functioning.However, all this requiresmuchmore
research.

The combination of some nutrients might also have an
antagonistic effect, and thereby weaken the host plant defence.
Therefore, once effective nutrients for enhanced resistance and

tolerance are identified, interaction effects (i.e. synergies and
antagonisms) and optimal dosages need to be studied to develop
effective compositions of fertilizers.

The next step would then be to identify or develop the most
effective delivery technique. Foliar spraying of fertilizers could
potentially have a more direct effect on leaf photosynthesis and
thereby increase Striga tolerance, but negative effects on the leaves,
such as burning, need to be avoided. Moreover, it is important to
further investigate the effectiveness of foliar spray as failures in
nutrient transport from the leaves to the rest of the plant have been
observed. In addition, the best spraying timings and technique
should be established to prevent concomitant and superfluous
fertilization of aboveground Striga plants. In general, possible
fertilizer delivery solutions need to be determined and their
feasibility and effectiveness need to be carefully tested.
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Table 3 Physiological responses of cereal crops and perennial ryegrass (Triticum aestivum, Zea mays, Sorghum bicolor,Oryza sativa, Lolium perenne) to
nutrients during water stress.

Element Species Mechanism of action Reference

Nitrogen T. aestivum Increased photosynthesis and antioxidant defence system Abid et al. (2016)
Increased accumulation of osmoprotectants and antioxidant enzyme activities Shabbir et al. (2016)
Increased water use efficiency, photosynthetic pigment and antioxidant enzyme activities Agami et al. (2018)

Z. mays Enhanced photosynthetic capacity Song et al. (2019)
Potassium S. bicolor Increased relative water content Abdelhameid (2019)

Z. mays Increased water productivity and reduced susceptibility Ul-Allah et al. (2020)
T. aestivum Increased water potential, Chl content and gas exchange Wei et al. (2013)

Phosphorus S. bicolor Promoted accumulation of proline Al-Karaki et al. (1996)
T. aestivum Promoted water use efficiency and grain yield Kang et al. (2014)

Calcium Z. mays Increased photosynthesis, stomatal conductance, water potential Naeem et al. (2018)
T. aestivum Increased growth, photosynthesis and decreased oxidative stress Sewelam (2017)
O. sativa Inhibited Chl decline and rise of free proline Nayek et al. (1983)

Sulphur Z. mays Increased gas exchange and antioxidant enzyme activities Usmani et al. (2020)
Iron T. aestivum Increased photosynthesis and decreased oxidative stress Adrees et al. (2020)
Boron T. aestivum Increased photosynthesis and water use efficiency Karim et al. (2012)

Reduced oxidative stress and increased Chl pigments Abdel-Motagally &
El-Zohri (2018)

Manganese T. aestivum Increased photosynthesis and water use efficiency Karim et al. (2012)
L. perenne Inhibited lipid peroxidation, maintained membrane integrity and delayed senescence Wang et al. (2010)

Copper T. aestivum Promoted elongation of root hairs and lateral root formation Yang et al. (2018)
Increased antioxidant activities, relative water content and stabilization of photosynthetic
pigments

Taran et al. (2017)

Z. mays Increased antioxidant activities Cetinkaya et al. (2014)
Zinc T. aestivum Increased photosynthesis and water use efficiency Karim et al. (2012)

Promoted elongation of root hairs and lateral root formation Yang et al. (2018)
Increased Chl levels and panicle emergence Dimkpa et al. (2020)
Increased antioxidant activities, relative water content and stabilization of photosynthetic
pigments

Taran et al. (2017)

S. bicolor Fortified grains, promoted yield and increased plant development Dimkpa et al. (2019)
Silicon O. sativa Increased photosynthetic rate, root and shoot biomass and sugar accumulation Yang et al. (2019)

T. aestivum Increased antioxidant enzyme activities Bukhari et al. (2015)
Z. mays Increased germination rate, and maintained higher relative water content Zargar & Agnihotri (2013)
S. bicolor Increased shoot and root dry weight and Chl content Ahmed et al. (2011)
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