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20 Abstract

21 In agriculture, variation in a soil’s nutrients and water are driven by soil properties, 

22 topography and agronomic practice; factors that typically interact and change over 

23 space and time. Agroecosystem models need to capture these sources in variation, 

24 where this study’s first objective was to assess the potential of using measured 

25 saturated soil hydraulic conductivity (ksat) to improve the simulation accuracy of 

26 water and soil mineral nitrogen content from the SPACSYS model for a lowland UK 

27 grazed field (6.34 ha). As a second objective, SPACSYS was run at the field level and 

28 at the within-field level to provide a further comparison of simulation accuracy. For 

29 model calibration, ksat was measured at 27 points at 0 – 10, 10 – 20 and 20 – 30 cm 

30 soil depths on a 50 × 50 m grid. For model validation, moisture and mineral nitrogen 

31 content in the same three soil layers, at 10 adjacent points on a 25 × 25 m grid, were 

32 measured monthly from May 2018 to April 2019, together with in situ field level 

33 water flux measurement. Measured ksat coupled with the within-field setting allowed a 

34 novel spatial investigation of SPACSYS performance. Measured ksat (as opposed to 

35 unmeasured, default values) was found to improve water flux simulation, but only 

36 slightly so, which was considered in part due to a high positive skew in the measured 

37 ksat coupled with no clear spatial structure. Field level and within-field specifications 

38 simulated soil moisture with equal accuracy, while simulation accuracy of soil 

39 ammonium and nitrate improved via the within-field setting; for water flux 

40 simulation, the field level setting should be preferred. Results provide further 
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41 evidence for when a field level setting should be preferred to a within-field setting and 

42 vice-versa.

43

44 Keywords: SPACSYS; Ksat; process-based modelling; soil nutrients; grid-to-grid

45
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46 1 Introduction

47 In agriculture, the spatiotemporal variation of soil nutrients and soil water is 

48 influenced by interacting factors such as soil properties, terrain characteristics and 

49 agronomic practice (Mohanty et al., 2000). The water potential gradient drives water 

50 fluxes, and thus affects soil nutrient cycling, and plant growth and development 

51 (Alletto and Coquet, 2009; Herbst et al., 2021; Kreiselmeier et al., 2020). Similarly, 

52 biological dynamics in the land management system can induce fluctuations of soil 

53 water content (Liu et al., 2018). Because of the complexity of the interactions between 

54 soil water, nutrient, plant and hydrology, understanding and accurately quantifying 

55 processes for water redistribution and nutrient cycling in the soil, plant and 

56 atmospheric domains is an on-going challenge. Furthermore, characterization of these 

57 processes at an appropriate spatial and temporal scale is essential to accurately 

58 quantify the effects on ecosystem management (Centeno et al., 2020; Rathjens and 

59 Oppelt, 2012; Rienzner and Gandolfi, 2014). However, difficulties arise in measuring 

60 such dynamic processes, as measurement, particularly at the required spatial 

61 resolution, is often costly and time consuming (West et al., 2010; Zhang et al., 2014; 

62 2015). As an alternative, process-based models can be applied that have a spatial 

63 component, where a ‘grid-to-grid’ methodology is employed that divides an object 

64 area into a finite number of cells to form a grid structure on which all of the 

65 operations are implemented individually (Rathjens et al., 2015; Zhang et al., 2014; 

66 2017).
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67 The SPACSYS (Soil-Plant-Atmosphere Continuum SYStem) model (Wu et al., 2007) 

68 has been widely adopted to simulate plant growth, soil carbon (C), nitrogen (N) and 

69 phosphorus (P) cycling, water redistribution at the field scale - either for arable land 

70 (Bingham and Wu, 2011; Han et al., 2019; Liu et al., 2020; Zhang et al., 2016) or for 

71 grassland (Li et al., 2017; Wu et al., 2015; 2016), with a daily time step. SPACSYS 

72 has been recently spatially-adapted to capture within-field processes with the ‘grid-to-

73 grid’ approach where the field was overlaid with a representative grid to consider 

74 lateral nutrient and water exchange between adjacent grid cells, and where it was 

75 shown to improve simulation accuracy over the default field scale (‘single-point’) 

76 version (Liu et al., 2018). However, in Liu et al., (2018), the soil hydro-physical 

77 properties were naively taken at the field level only, i.e., treated uniformly across the 

78 study field with default, unmeasured information.

79 Soil hydro-physical properties are essential in understanding key processes of the 

80 hydrological cycle and in turn, can ensure an efficient management of water resources 

81 (Beskow et al., 2016; Lim et al., 2020; Wösten et al., 2001). Saturated soil hydraulic 

82 conductivity (ksat) is one such measure (Alletto and Coquet, 2009; Li et al., 2017; 

83 Nikodem et al., 2021). However spatially, ksat typically exhibits high variability 

84 (Baiamonte et al., 2017; She et al., 2017), driven by variation in soil texture and pore 

85 space geometry, topography and geology (Baiamonte et al., 2017; Centeno et al., 

86 2020; Ming et al., 2020; Papanicolaou et al., 2015), which in turn, influences land-

87 atmosphere interaction, plant growth and development, surface runoff and nutrient 
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88 movement.

89 Thus, directly building upon the previous implementation of the ‘grid-to-grid’ method 

90 with SPACSYS (Liu et al., 2018), this study focused on simulations for soil moisture, 

91 water fluxes and soil mineral N at the same grid resolution of 25 × 25 m but now 

92 across a much larger grazed field of the same research farm in southwest England, 

93 UK. This new study was also for a different grass variety, had a richer model 

94 validation dataset with different processes, and had measured ksat (rather than a 

95 default value) for model calibration. In summary, the key objective was to simulate 

96 nutrient cycling more accurately than that found using defaults at field level by 

97 considering: 1) within-field measurements of ksat and 2) within-field water pathways 

98 via the ‘grid-to-grid’ model formulation.

99 2 Materials and methods

100 2.1 The SPACSYS model

101 Detailed descriptions of SPACSYS are given elsewhere (Wu et al., 2007; 2015; 

102 2019). Briefly, the model includes a plant growth and development component, N, C 

103 and P cycling components, a soil water component, together with a heat transfer 

104 component. Core processes concerning the plant are plant development, assimilation, 

105 respiration, nutrient and water uptake, and the partition of photosynthate and 

106 nutrients, plus N fixation for legume plants, and root growth and development. N 

107 cycling coupled with C cycling covers the transformation processes for organic matter 
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108 and inorganic N including mineralization, nitrification and denitrification. The 

109 Richards equation for water potential and Fourier’s equation for temperature are used 

110 to simulate water and heat fluxes. In this study, we only focus on water redistribution 

111 and N cycling.

112 Commonly, SPACSYS is applied at the field scale (single-point setting) where 

113 processes are assumed to be uniformly distributed across the whole field, and where 

114 the means of observed data represent the field. To account for spatial variation of soil 

115 water and nutrients within a field, SPACSYS provides a sub-field (grid-to-grid or 

116 ‘multiple-point’) setting that divides a field into grid cells (or square pixels) with 

117 flexible length that consider the topographical inter-connections of the field’s water 

118 flow pathways. At each time step, the model runs simulations that traverse all grid 

119 cells starting from those that have no upstream linkage. Water and nutrient flows out 

120 of a grid cell via runoff and drainage are passed to its recipient grid cell as inputs 

121 before the simulation for the grid cell starts. Apart from exchanges in water and 

122 nutrients with the linked grid cells, each grid cell is treated as an independent entity 

123 with assigned soil physical and chemical properties, including ksat and management. 

124 Such detailed within-field characterisation has the potential to improve model 

125 performance over the default (single-point) version provided data are available at the 

126 grid cell resolution.
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127 2.2 Study site

128 The study field is located on the North Wyke Farm Platform (NWFP) which is a 

129 farm-scale experiment situated at the North Wyke campus of Rothamsted Research in 

130 southwest England (50°46'12"N, 3°54'05"W). The soils belong predominantly to two 

131 similar series: Hallsworth (Dystric Gleysol) and Halstow (Gleyic Cambisol), which 

132 comprise a slightly stony clay loam topsoil (ca. 36% clay) that overlies a mottled 

133 stony clay (ca. 60% clay), derived from underlying Carboniferous culm rocks (Harrod 

134 and Hogan, 2008). From 1982 to 2019, the average annual precipitation at North 

135 Wyke was 1031 mm (minimum and maximum values of 705 and 1361 mm, 

136 respectively) together with average minimum and maximum daily temperatures of 6.8 

137 and 13.5 ºC, respectively. The average annual potential evapotranspiration from 2015 

138 to 2019 was 575 mm (Stanley et al., 2021). 

139 The 63 ha site was established in 2010 and consists of 15 hydrologically isolated sub-

140 catchments across three 21 ha small farms (farmlets) with five sub-catchments in each 

141 (Orr et al., 2016). The platform routinely monitors livestock and silage performance 

142 together with records of farm management events. These data are coupled with 

143 primary collections for weather elements, soil moisture, water flux and chemistry, and 

144 greenhouse gases. To calibrate and validate SPACSYS, measurements for soil water 

145 and soil mineral N content were conducted in Great Field of the re-seeded 

146 monoculture farmlet in 2018/19 (re-seeded from permanent pasture in 2013). This 

147 sub-catchment (6.34 ha) slopes downwards from an east to west direction, to a water 
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148 flume in its west corner, where water flux from the sub-catchment is measured at a 15 

149 min interval. For this study, the sub-catchment was virtually divided into 107 grid 

150 cells resulting from a 25 × 25 m grid where grid cell linkages were based on water 

151 potential moving direction, so the grid-to-grid approach could be applied. It was 

152 assumed that each 25 × 25 m grid cell has eight possible drainage flow directions and 

153 where each grid cell only has up to one downstream grid cell. This resulted in eleven 

154 hydrological flow lines as depicted in Fig. Figure 1.

155 2.3 Model calibration: soil hydraulic conductivity measurements

156 For model calibration, ksat was measured by the falling head technique. Twenty-seven 

157 points at 0 – 10, 10 – 20 and 20 – 30 cm soil depths were measured on a 50 × 50 m 

158 grid across the whole of Great Field over the period between March to July 2019 (Fig. 

159 Figure 1). Undisturbed soil samples were taken using a 250 ml volume steel cylinder 

160 with 8 cm inner diameter and 5 cm height (cores were taken in the middle of each soil 

161 layer). The ksat measurement was performed using a KSAT® device (METER Group 

162 AG, Munich, Germany). Measured ksat for the three soil depths are shown in Fig. 

163 Figure 2. For all depths, the ksat measurements were highly positively skewed and 

164 with no clear spatial structure. At each of the three soil depths, the measured ksat data 

165 were subsequently interpolated to the 25 × 25 m simulation grids (Fig. Figure 1) using 

166 inverse distance weighting (IDW) (via functionality in ArcGIS version 10.2, 

167 www.esri.com). Thus, for the grid-to-grid method, ksat datasets are found for each soil 

168 layer, each consisting of 107 interpolated ksat values covering all 25 m grid cells.

http://www.esri.com
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169 2.4 Model validation: soil moisture and nitrogen measurements

170 Soil water (soil weight fraction), soil ammonium (NH4
+-N) and nitrate (NO3

--N) 

171 contents at depths of 0 – 10, 10 – 20 and 20 – 30 cm at ten grid cell locations (25 × 25 

172 m grid, highlighted by red grid cells in Fig. Figure 1) along three downstream lines 

173 (highlighted by green lines in Fig. Figure 1) were measured monthly from May 2018 

174 to April 2019. For the soil measurements, roughly 100 g of soil from each soil layer 

175 was taken and then sieved over a 2 mm mesh to remove roots and stones. A quarter of 

176 the sample was put into a wide-mouth 500 ml plastic bottle and 50 ml KCL extracts 

177 were added. The sealed bottle was then shaken on a reciprocating shaker for 1 hour at 

178 a nominal 150 strokes per minute. The filtered solution from the bottle was used to 

179 measure N contents. The rest of the sampled soil was weighted and dried for over 8 

180 hours at 105 °C, and then weighed again to calculate soil moisture.

181 2.5 Simulation design and SPACSYS parameterisation

182 For calibrating SPACSYS, input parameters on soil physical properties of the three 

183 soil types in Great Field (Fig. 1), including the default ksat value, were estimated by 

184 the pedo-transfer function based on soil texture and soil organic matter content 

185 (Cosby et al., 1984). For validating SPACSYS, measured soil moisture, NH4
+-N and 

186 NO3
--N contents at the ten grid cells were used for May 2018 to April 2019, together 

187 with water flux measurements for January 2011 to December 2019. Four model 

188 simulation scenarios were defined as follows:

189 1) a single simulation for the field (single-point) with a single ksat value in a soil 
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190 layer taken as the mean of the estimated ksat values in the layer for the three soil 

191 types. This is unmeasured ksat and referred to as the default ksat value thereafter;

192 2) a single simulation using the single-point method with a single ksat value in a soil 

193 layer taken as the mean of the measured ksat in the layer;

194 3) multiple simulations (at 107 grid cells) using the grid-to-grid method with the 

195 default ksat value as used in scenario 1 for all grid cells;

196 4) multiple simulations using the grid-to-grid method with ksat values for each of the 

197 107 grid cells. For brevity, this scenario was still referred to as using the measured 

198 ksat values given that 27 of the 107 ksat interpolations were still the same as those 

199 measured, as IDW was used in an exact interpolator form (i.e., IDW honoured 

200 existing measurements).

201 Scenarios 1 and 3 relate to the typical situation when no measurements of ksat exist. 

202 When the simulations using the single-point method are compared with the measured 

203 data, it was assumed that mean soil moisture, and NH4
+-N and NO3

--N contents 

204 measured over the ten grid cells at a time are representative of the entire field, at any 

205 given time. For the grid-to-grid method, simulated water fluxes from each flow line 

206 are summed to represent the water fluxes from the field. To compare with the single 

207 measured water flow at the flume, at each time step, soil water and soil nutrients out 

208 of a grid cell through surface runoff and drainage flow are passed to its recipient grid 

209 cell as inputs. All other aspects of model parameterisation and initial conditions were 

210 the same as that used in previous SPACSYS studies on the NWFP (Li et al., 2017; 
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211 Liu et al., 2018).

212 2.6 Statistical analysis for model performance

213 The following statistical indices were used to assess SPACSYS performance (Smith 

214 et al., 1997): (a) the root mean squared error (RMSE) that reflects the average size of 

215 the error between measured and simulated data (for an accurate simulation this should 

216 tend to zero); (b) modelling efficiency (EF, the closer to unity, the better) that 

217 quantifies the accuracy and confidence of the simulation; (c) the coefficient of 

218 determination (CD, the closer to unity, the better) that describes the goodness of fit 

219 between measured and simulated data; (d) the correlation coefficient (r) between 

220 measured and simulated data which should tend to unity; (e) the relative error (RE); 

221 and (f) the mean error (ME). Here RE and ME are used to assess bias (tendencies for 

222 over- and under-prediction) in the simulations as they reflect differences between 

223 measured and simulated data.

224 3 Results

225 3.1 Soil moisture

226 The spatiotemporal variation in the measured soil moisture in the three soil layers is 

227 shown in Fig. Figure 3. The data exhibited moderate levels of positive skew at all 

228 three depths. As expected, soil moisture varied across months and by depth. In 

229 summer (June – August), the soil was dry in each measured layer. From November to 

230 May, soil moisture in the topsoil was relatively high, while throughout the year, the 
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231 bottom layer showed persistent lower water content. There were no apparent spatial 

232 patterns along the three downstream lines that traverse the 10 measured grid cells.

233 Comparisons between simulated and measured soil moisture are shown in Fig. Figure 

234 4 and the corresponding performance indices are presented in Table 1. Temporal 

235 trends of the measured data were broadly reproduced by the simulations for all four 

236 scenarios, especially when the soil was getting drier. However, large discrepancies 

237 between measured and simulated soil moisture occurred in winter, commonly the 

238 wettest period. Visually, the grid-to-grid simulations appear to better capture the 

239 fluctuations of measured soil moisture at each soil depth compared with the single-

240 point simulation although the peaks of the measured soil moisture were somewhat 

241 under-predicted by the simulations. 

242 The performance indices, however, suggested little difference in soil moisture 

243 simulations between single-point and grid-to-grid modes and regardless of whether 

244 default ksat (scenarios 1 and 3) or measured ksat (scenarios 2 and 4) were used. On 

245 average for each soil depth, the single-point simulations performed similarly to that 

246 from grid cells H6, J5 and K7 (Fig. Figure 1) in the grid-to-grid simulations, where 

247 these cells were closest to the locations in the last third grid cell of each water flux 

248 direction (Fig. Figure 1). SPACSYS tended to under-predict soil moisture for all four 

249 simulation scenarios across all periods and depths, as RE and ME were always 

250 positive, where scenario 1 consistently resulted in the smallest prediction bias. As all r 

251 values > 0.73, simulation under any scenario showed reasonably accurate prediction 
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252 in soil moisture, with the weakest performance in the lower layer (the smallest r 

253 coupled with CD values > 4).

254 3.2 Soil ammonium content

255 Spatiotemporal variation in soil NH4
+-N content across the ten sampled grid cells at 

256 different depths in the logarithmic form are shown in Fig. Figure 5. Relatively high 

257 NH4
+-N content was often found in the upper grid cells (K6, K7) in each soil layer. 

258 Relatively high NH4
+-N was also found in June, July and March, especially in the top 

259 layer, likely coinciding with recent fertilizations (see Fig. Figure 6, below). Overall, 

260 there was no clear change in soil NH4
+-N along the downstream water flux direction 

261 lines. The raw NH4
+-N data ranged from a minimum of 0.01 mg N kg-1 soil in 

262 October and November 2018 to a maximum of 129.5 mg N kg-1 soil in March 2019 

263 (Fig. A. 1).

264 Comparisons between simulated and measured soil NH4
+-N are shown in Fig. Figure 

265 6 and the corresponding performance indices are presented in Table 2. As with soil 

266 moisture, the temporal trends in measured soil NH4
+-N were broadly reproduced with 

267 the simulations, often picking up key step changes over time, especially in the topsoil 

268 layer. Performance indices clearly indicate the grid-to-grid simulations to better 

269 represent the measured soil NH4
+-N than the single-point simulations, but in the 

270 topsoil only (for example, r values of 0.74 to 0.76 for grid-to-grid rather than 0.23 to 

271 0.28 for single point). However, simulated NH4
+-N in the grid cells of the middle 
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272 downstream water flux direction line (H5, I6 and J6 from Fig. Figure 1) poorly 

273 matched the measured values (Fig. Figure 6). On viewing the performance indices, all 

274 simulation scenarios performed poorly at the middle and bottom soil layers as 

275 highlighted with negative r values, but where grid-to-grid simulations reduced bias 

276 over single-point simulations (as they lowered ME and RE). The use of measured 

277 (scenarios 2 and 4) rather than default ksat values (scenarios 1 and 3) did not provide 

278 an improvement in the simulations for any scenario.

279 3.3 Soil nitrate content

280 Spatiotemporal variation in soil NO3
--N content over the ten sample grid cells for the 

281 three depths in the logarithmic form are shown in Fig. Figure 7. Clearly, soil NO3
--N 

282 was relatively high in the topsoil throughout the year, but where differences were 

283 weaker in September, October and November (as for these months, soil NO3
--N was 

284 broadly similar through the layers). The raw NO3
--N data ranged from a minimum of 

285 0.05 mg N kg-1 soil in May and June 2018 to a maximum of 106.9 mg N kg-1 soil in 

286 March 2019 (Fig. A.2).

287 Comparisons between simulated and measured soil NO3
--N are shown in Fig. Figure 8 

288 and the corresponding performance indices are presented in Table 3. Again, the 

289 measured temporal trends were broadly reproduced with the simulations. It appears 

290 that grid-to-grid simulations capture seasonal fluctuations much better than those from 

291 the single-point method, although the peak between September and October 2018 was 
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292 only captured with the single-point method.

293 Similar to soil NH4
+-N, the performance indices indicate the grid-to-grid simulations 

294 better represent measured soil NO3
--N than the single-point simulations, especially in 

295 the topsoil layer (for example, r values of 0.81 to 0.84 for grid-to-grid rather than 0.22 

296 to 0.26 for the single point). For the middle and bottom soil layers, there was little to 

297 choose between any of the four modelling scenarios with respect to simulation 

298 accuracy. Again, the use of measured rather than default ksat values did not improve 

299 simulation accuracy.

300 3.4 Water fluxes

301 Simulated water fluxes were visually compared with measured fluxes over the nine-

302 year period between 2011 to 2019, as shown in Fig. Figure 9. As indicted by the 

303 performance indices (Table 4), the single-point simulation using the measured ksat 

304 value was the most accurate (lowest RMSE and strongest r values) with relatively 

305 small bias (smallest RE and ME values), then that using the default ksat value. Unlike 

306 the results above, the grid-to-grid simulations performed poorly in comparison to the 

307 single-point simulations.

308 4 Discussion

309 4.1 Characteristics of measured ksat

310 Clearly, ksat is a key input parameter for any process-based hydrological model. 

311 However, this study’s largely null results tend to reflect its highly variable nature with 
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312 ksat values changing markedly over space. High positively skewed distributions of 

313 measured ksat had no clear spatial structure, where their empirical variograms tended 

314 to random variation (not shown) for each soil layer. This is in agreement with existing 

315 work regardless of the measurement methodology, geographical location, land use, 

316 soil type and scale (Centeno et al., 2020; Papanicolaou et al., 2015; She et al., 2017). 

317 As a soil hydro-physical variable, ksat typically responds to changes in topography 

318 (e.g., elevation and slope) and small-scale changes in soil macroporosity (Centeno et 

319 al., 2020; She et al., 2017), which is reflected in its highly localised nature. Given 

320 such localised properties of ksat, it was unsurprising that only for the simulation of 

321 water flux, a field scale process, did the use of measured ksat hold any promise 

322 (scenario 2).

323 Further, for scenario 4 which was never considered as the best scenario, the IDW 

324 interpolation of ksat to the 25 m grid would have been somewhat compromised by the 

325 underlying localised properties of measured ksat in the first place. In hindsight, 

326 measuring ksat, at the same scale of the simulations (i.e., the 25 m grid) may have been 

327 a better approach, where uncertainties due to the IDW interpolation would not arise. 

328 In addition, using only three depths could have been limiting given the differences 

329 observed across depths in Fig. Figure 2; and this study did not consider temporal 

330 changes in measured ksat (i.e., ksat was assumed time invariant).

331 Thus, characteristics of the ksat distributions are dictated by the sample resolution (in 

332 space, time and depth), where this study’s 50 m grid was likely to be too coarse to 
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333 robustly detect true spatial structure in ksat. The ideal spatial resolution is likely to be a 

334 trade-off between inherent practical considerations in ksat measurement and the scale 

335 at which the core components of the water cycle are expected to operate at. 

336 Difficulties then arise, in that different components can operate at their own spatial 

337 scale, and / or operate at a range of spatial scales (i.e., multi-scale in nature).

338 For this study, the 25 m and 50 m grids were simply chosen to match the previous 

339 (unrelated soil) study at these resolutions (Peukert et al., 2016) and available 

340 resources for sampling. However, the resources (costs and labour) required for 

341 sampling at a higher resolution may not have provided sufficient increase in model 

342 accuracy, for it to be worthwhile. Further, sampling at a finer resolution would not 

343 guarantee that the required spatial structure is adequately captured. It may be that ksat 

344 is always effectively a random process, as to detect usable spatial structure would be 

345 too costly. In this respect, if it is taken as impractical to measure ksat, the pedo-transfer 

346 function used for the default ksat value, appears to provide a robust ksat estimate. 

347 However, this function is highly site dependent, and as such, alternatives to estimate 

348 ksat could be trialled (e.g., hierarchical functions for different soils (Schaap et al., 

349 2001)).

350 4.2 Characteristics of measured soil water and N contents

351 The measured spatio-temporal soil moisture and soil mineral N at the three soil layers 

352 all exhibited moderate to high levels of positive skew (and were thus presented in 

353 logarithmic form for soil mineral N in Figs 5 and 7). Distributions of soil moisture 
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354 largely behaved as expected, they varied across months and by depth, with low 

355 moisture values in the summer months and at the lower depth throughout the year. 

356 These relatively interpretable characteristics were carried forward to relatively 

357 accurate SPACSYS simulations of soil moisture for all four scenarios. Distributions 

358 of soil N were more challenging with no clear trends. These more challenging 

359 characteristics (including the strong levels of skew) in the measured data were 

360 similarly carried forward to the SPACSYS simulations, but where now the simulation 

361 accuracy was often much poorer in relation to that found for soil moisture, especially 

362 at the lower soil depths (Fig. 4).

363 Water movement and soil water content can affect the pathways of soil NH4
+-N and 

364 NO3
--N. A high surface water flux and quick redistribution downward could 

365 accelerate the movement of mineral N, especially NO3
--N in soil, and speed up N 

366 losses (Dou et al., 2022; Song et al., 2022; Whitson, 2020). In our study, the vertical 

367 distribution of soil NO3
--N and NH4

+-N contents decreased with soil depth (Figs 

368 Figure 6 and Figure 8), which follows the distribution of soil water content (Fig. 

369 Figure 4). However, there is no spatial pattern with a water flux direction, which 

370 might be caused by heterogeneity in grass growth, grazing, excreta deposition and 

371 fertiliser spreading. Additionally, the measured soil moisture at some locations in time 

372 were higher than the estimated porosity. Such high measurements may be in error, as 

373 they did not correspond to heavy or persistent rainfall before the measurement dates 

374 or readings from an in situ soil moisture sensor located in the centre of the study field 
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375 (grid cell G5 in Fig. Figure 1).

376 4.3 SPACSYS model performance

377 Taking all four scenarios as one, SPACSYS performed reasonably and accurately for 

378 simulating soil moisture and water flux, but not so well for simulating soil N. For soil 

379 N, the grid-to-grid method provided clear improvements in simulation accuracy, 

380 especially for the top layer. Results complement and extend those of Liu et al. (2018), 

381 who focused on water flux, soil moisture, N2O fluxes and biomass in a different, 

382 smaller field of the NWFP. Liu et al. showed that the single-point method is adequate 

383 for accurate water flux and soil moisture simulations, while the grid-to-grid 

384 formulation was considered of value in terms of accurate grass biomass. This study 

385 also complements that of Liu et al. (2018), in the evaluation of ksat measurements for 

386 model calibration, where a still valid and reportable, null outcome has resulted.

387 Inevitably, discrepancies between simulated and measured values exist, which might 

388 in part be due to a likely spatial heterogeneity of the canopy as a result of uneven 

389 grazing and also root systems that affect water uptake and infiltration, which in turn 

390 impact water redistribution (Logsdon, 2013). Management simplifications used in the 

391 model could also cause discrepancies. For example, it was assumed that animals 

392 grazed evenly in the study field and their excreta were assumed similarly uniform and 

393 that fertiliser/manure was uniformly applied. This uniformity is unlikely to be the 

394 case, and in turn, the measurements of soil N could be compromised by a likely 

395 spatial unevenness in grazing or fertiliser/manure application.
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396 The model also over-predicted NH4
+-N and under-predicted NO3

--N content in the 

397 lower soil layers (Figs Figure 6 and Figure 8), where inherent complexities in the 

398 processes of N cycling and the connectivity between linked grid cells would be 

399 influential. Errors in the model estimation of nitrification/denitrification, organic 

400 matter decomposition, plant uptake and movement with water could exaggerate poor 

401 soil N simulations. The chosen interlinks among the grid cells based on the water 

402 potential moving direction could be too simplistic to reflect the actual water moving 

403 direction. Here, little change in the measured soil NH4
+-N and NO3

--N contents along 

404 the downstream water flux direction lines (Figs Figure 5 and Figure 7) suggested an 

405 over-simplicity.

406 Model performance should be taken in context of inherent complexities, where an 

407 agroecological system at the within field level is multiscale in nature, characterized by 

408 strong heterogeneities and geometrical complexity. The grid-to-grid setting, as a kind 

409 of the asymptotic homogenization, should be able to exploit the sharp length scale 

410 separation that exits in such multiscale systems. As a power series representation of 

411 the field, the grid-to-grid setting can provide macroscale systems of partial differential 

412 equations, where derived models encode the role of the microstructure in their 

413 coefficients (hydraulic conductivities, diffusivities, elastic stiffness, etc.) (Penta and 

414 Gerisch, 2017).
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415 4.4 Limitations and implications

416 4.4.1 Limitations

417 In summary, we can identify the following (linked) limitations to our simulation 

418 results: (a) the (arbitrary) determination of the grid sizes, (b) the highly localised 

419 nature of ksat and (c) the assumption of the exchange of water and soil N between 

420 grids. We hypothesized that measuring ksat at a spatial resolution of a 50 × 50 m grid 

421 would be acceptable for determining spatial patterns of soil water and mineral N 

422 content. However, measured ksat displayed a highly localised nature – meaning the 

423 chosen resolution was likely too coarse. Previous studies have suggested that the 

424 complex water exchanges generally exhibit substantial spatial variability in the soil 

425 hydraulic properties (Jaffri et al., 2019; Schaap et al., 2001). Therefore, accuracy in 

426 simulating the spatial distribution of soil water and mineral N can be hampered by the 

427 measurement resolution of ksat. With the grid-to-grid setting, we assumed that soil 

428 water and mineral N fluxes in a layer from a grid are added to the pools in the same 

429 layer of its adjacent lower grid. Further, vertical and lateral fluxes in a soil layer could 

430 be affected by grid resolution, field steepness, and the thickness of the soil layer. 

431 Further research is needed to investigate the implications of these factors for 

432 downward and lateral water and N movement at the field scale.

433 4.4.2 Implications

434 Our results have demonstrated that modified process-based models that are applied at 

435 the field scale can simulate the spatial dynamics of water and soil N content at a sub-
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436 field scale. In arable and grassland settings, soil hydraulic properties and agronomic 

437 inputs (e.g., fertilisers) are not always evenly distributed in a field. Thus, using simple 

438 field-scale averages of these variables in a (single-point) simulation can generate 

439 inaccurate simulations. If a field can be divided into cells, each of which has common 

440 properties and inputs, the aggregation of simulated outputs from individual cells (grid-

441 to-grid simulation) can more accurately represent the outputs from the entire field. In 

442 this context, our results have implication for precision agriculture, which can 

443 recommend inputs at the right place and at the right time based on local 

444 environmental conditions and plant growth status. The modified model could also be 

445 extended to any scale, moving beyond the field to the farm, and above. For example, 

446 at the farm scale, each farm field with its own characteristics in soil properties and 

447 management practices can be treated as a cell. All fields of the farm can be connected 

448 by exchanging water and nutrients, enabling farm-level forecasts for water and 

449 nutrient budgets. Finally, the modified model could be usefully implemented within a 

450 digital twin of the agricultural system (Pylianidis et al., 2021), at a given scale (field, 

451 farm and above), dynamically updated by in situ or remotely sensed data.

452 5 Conclusions

453 This study investigated if key nutrient cycling components could be simulated more 

454 accurately than that found using defaults of the SPACSYS model, by considering 

455 within-field measurements of ksat, together with a model specification that captures 
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456 within-field water pathways. Using measured rather than estimated default values of 

457 ksat was found to be of marginal value, where measured ksat was only worthwhile for 

458 improving water flux simulation accuracy. For soil moisture and water flux 

459 simulations, the default field level setting was either sufficient or appropriate, 

460 respectively. For soil N simulations, the within-field setting was appropriate. Given 

461 the highly localised and skewed nature of the measured ksat, it is unclear whether 

462 further work, with measured ksat at some finer spatial resolution would revise 

463 (improve accuracy) or collaborate this study’s findings. The former could indicate 

464 value in directing resources to measure ksat for improving model performance, while 

465 the latter would not.
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477 Figure captions

478 Figure 1.  Elevation, soil type and water runoff collection point (flume) in Great Field 

479 with 27 measurement points for ksat (on a 50 × 50 m grid); 10 measurement points 

480 for soil moisture, ammonium and nitrate (all on a 25 × 25 m grid); and 107 grid-

481 cell SPACSYS simulation points (also on the 25 × 25 m grid) with grid cells 

482 labelled by row moving in a southward manner (A1 to L8). Water potential 

483 moving direction shown by green lines, three of which traverse the soil moisture 

484 and nutrient measurements.

485 Figure 2. Measured soil saturated hydraulic conductivity (ksat, cm d-1) sampled on a 50 

486 m grid at (a) 0 – 10 cm, (b) 10 – 20 cm (b) and (c) 20 – 30 cm soil depths in Great 

487 Field. Maps are shown with the soil series.

488 Figure 3. Spatiotemporal variation in soil moisture at depths of 0 – 10 cm (top row, 

489 ‘T’), 10 – 20 cm (middle row, ‘M’) and 20 – 30 cm (bottom row, ‘B’) across the 

490 ten grid cells highlighted in Fig. Figure 1 (labelled H5, H6, I5, I6, I7, J5, J6, J7, 

491 K6 and K7). Data measured monthly from May 2018 to April 2019.

492 Figure 4. Temporal comparison of measured (points) and simulated (lines) soil 

493 moisture for the single-point simulation (scenarios 1 and 2 with default and 

494 measured ksat, respectively) and grid-to-grid simulations (scenarios 3 and 4 with 

495 default and measured ksat, respectively) at depths of 0 – 10 cm (Top), 10 – 20 cm 

496 (Middle), 20 – 30 cm (Bottom) for May 2018 to April 2019.  The x-axes are the 

497 same for all the grids as the single-point. Scenarios with the default ksat are given 
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498 with a red unbroken line, while those with measured ksat are given with a blue 

499 dashed line. Grid-to-grid simulations are given at each of the ten grid cells 

500 highlighted in Fig. Figure 1 (labelled H5, H6, I5, I6, I7, J5, J6, J7, K6 and K7).

501 Figure 5. Spatiotemporal variations in soil NH4
+-N content (mg N kg-1 soil) at 0 – 10 

502 cm (top row, ‘T’), 10 – 20 cm (middle row, ‘M’) and 20 – 30 cm (bottom row, 

503 ‘B’) across the ten grid cells highlighted in Fig. Figure 1 (labelled H5, H6, I5, I6, 

504 I7, J5, J6, J7, K6 and K7). Data measured monthly from May 2018 to April 2019 

505 and presented in logarithmic (base 10) form.

506 Figure 6. Temporal comparison of measured (points) and simulated (lines) soil NH4
+-

507 N content for the single-point simulations (scenarios 1 and 2 with default and 

508 measured ksat, respectively) and grid-to-grid simulations (scenarios 3 and 4 with 

509 default and measured ksat, respectively) at depths of 0 – 10 cm (Top), 10 – 20 cm 

510 (Middle), 20 – 30 cm (Bottom) for May 2018 to April 2019. The x-axes are the 

511 same for all the grids as the single-point. Scenarios 1 and 3 are given with a red 

512 unbroken line, while the others are given with a blue dashed line. Grid-to-grid 

513 simulations are given at each of the ten grid cells highlighted in Fig. Figure 1 

514 (labelled H5, H6, I5, I6, I7, J5, J6, J7, K6 and K7). Times of fertilization are also 

515 shown.

516 Figure 7. Spatiotemporal variations in soil NO3
--N content (mg N kg-1) at 0 – 10 cm 

517 (top row, ‘T’), 10 – 20 cm (middle row, ‘M’) and 20 – 30 cm (bottom row, ‘B’) 

518 across the ten grid cells highlighted in Fig. Figure 1 (labelled H5, H6, I5, I6, I7, 
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519 J5, J6, J7, K6 and K7). Data measured monthly from May 2018 to April 2019 and 

520 presented in logarithmic (base 10) form.

521 Figure 8. Temporal comparison of measured (points) and simulated (lines) soil NO3
--

522 N content for the single-point simulation (scenarios 1 and 2 with default and 

523 measured ksat, respectively) and grid-to-grid simulations (scenarios 3 and 4 with 

524 default and measured ksat, respectively) at depths of 0 – 10 cm (Top), 10 – 20 cm 

525 (Middle), 20 – 30 cm (Bottom) for May 2018 to April 2019. The x-axes are the 

526 same for all the grids as the single-point. Scenarios with the default ksat are given 

527 with a red unbroken line, while those with measured ksat are given with a blue 

528 dashed line. Grid-to-grid simulations are given at each of the ten grid cells 

529 highlighted in Fig. Figure 1 (labelled H5, H6, I5, I6, I7, J5, J6, J7, K6 and K7). 

530 Times of fertilization are also shown.

531 Figure 9. Comparison of measured and simulated water fluxes from 2011 to 2019 for: 

532 (a) single-point (scenarios 1 and 2) and (b) grid-to-grid simulations (scenarios 3 

533 and 4) between default and measured ksat. Precipitation data are given for context 

534 (c).
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697 Table 1. Statistical performance indices for soil moisture at soil depths of 0 – 10 

698 (Top), 10 –20 (Middle) and 20 – 30 cm (Bottom) for the single-point and grid-to-

699 grid simulation scenarios with default and measured ksat.

700 Note: RMSE: the root mean squared error; EF: modelling efficiency; CD: the 

701 coefficient of determination; r: the correlation coefficient; RE: the relative error and 

702 ME: the mean error.

Single-point (n = 12) Grid-to-grid (n = 120)

Soil layer Index Scenario 1 

default ksat

Scenario 2 

measured ksat

Scenario 3 

default ksat

Scenario 4 

measured ksat

RMSE 0.25 0.30 0.27 0.27

EF 0.54 0.35 0.46 0.46

CD 1.03 1.29 1.20 1.20

r 0.78 0.75 0.78 0.78

ME 0.02 0.06 0.05 0.05

Top

RE 6.95 16.03 13.59 13.36

RMSE 0.20 0.23 0.20 0.20

EF 0.62 0.50 0.61 0.61

CD 1.51 2.22 1.81 1.81

r 0.79 0.77 0.79 0.79

ME 0.00 0.03 0.01 0.01

Middle

RE 0.65 9.23 4.04 3.94

RMSE 0.23 0.26 0.23 0.23

EF 0.46 0.35 0.47 0.47

CD 5.10 8.91 4.19 4.18

r 0.74 0.73 0.73 0.73

ME 0.00 0.01 0.00 0.00

Bottom

RE 0.07 5.17 1.62 1.59



38

703 Table 2. Statistical performance indices for soil NH4
+-N content at soil depths of 0 – 

704 10 (Top), 10 –20 (Middle) and 20 – 30 cm (Bottom) for the single-point and grid-to-

705 grid simulation scenarios with default and measured ksat.

Single-point (n = 12) Grid-to-grid (n = 120)

Soil layer Index Scenario 1 

default ksat

Scenario 2 

measured ksat

Scenario 3 

default ksat

Scenario 4 

measured ksat

RMSE 2.17 2.22 1.42 1.44

EF -0.10 -0.15 0.53 0.51

CD 6.24 3.82 2.45 2.38

r 0.28 0.23 0.76 0.74

ME -0.71 -0.60 -0.30 -0.31

Top

RE -85.16 -71.64 -35.64 -36.72

RMSE 2.08 2.10 1.93 1.92

EF -0.79 -0.83 -0.55 -0.53

CD 6.25 3.37 4.55 4.80

r -0.58 -0.45 -0.35 -0.35

ME -0.17 -0.08 -0.01 0.00

Middle

RE -63.80 -31.25 -4.40 -1.45

RMSE 1.70 1.93 1.44 1.44

EF -2.31 -3.29 -1.40 -1.39

CD 0.86 0.65 0.95 0.94

r -0.25 -0.28 -0.05 -0.05

ME -0.08 -0.10 -0.05 -0.05

Bottom

RE -73.50 -95.85 -45.82 -44.44

706 Note: RMSE: the root mean squared error; EF: modelling efficiency; CD: the 

707 coefficient of determination; r: the correlation coefficient; RE: the relative error and 

708 ME: the mean error.
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709 Table 3. Statistical indices for soil NO3
--N content at soil depths of 0 – 10 (Top), 10 – 

710 20 (Middle), 20 – 30 cm (Bottom) for the single-point and grid-to-grid simulation 

711 scenarios with default and measured ksat.

Single-point (n = 12) Grid-to-grid (n = 120)

Soil layer Index Scenario 1 

default ksat

Scenario 2 

measured ksat

Scenario 3 

default ksat

Scenario 4 

measured ksat

RMSE 1.38 1.53 0.71 0.74

EF -0.23 -0.51 0.68 0.64

CD 2.31 1.43 2.01 1.92

r 0.26 0.22 0.84 0.81

ME -0.68 -0.78 -0.18 -0.19

Top 

RE -46.86 -53.51 -12.48 -13.29

RMSE 1.09 1.09 1.13 1.12

EF -0.06 -0.06 -0.14 -0.12

CD 8.35 5.36 4.00 4.14

r 0.14 0.32 0.29 0.31

ME 0.19 0.39 0.43 0.43

Middle 

RE 20.28 41.14 44.49 45.40

RMSE 1.13 1.13 1.20 1.21

EF 0.10 0.10 -0.01 -0.03

CD 3.20 2.62 2.05 1.99

r 0.38 0.39 0.34 0.33

ME 0.04 0.01 0.00 0.01

Bottom 

RE 12.47 4.34 1.40 2.95

712 Note: RMSE: the root mean squared error; EF: modelling efficiency; CD: the 

713 coefficient of determination; r: the correlation coefficient; RE: the relative error and 

714 ME: the mean error.
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715 Table 4. Statistical performance indices for water fluxes (n = 2126) for the single-

716 point and grid-to-grid simulations at the sub-catchment scale, for the four scenarios.

Single-point Grid-to-grid

Index Scenario 1 

default ksat

Scenario 2 

measured ksat

Scenario 3 

default ksat

Scenario 4 

measured ksat

RMSE 1.99 1.85 2.13 2.16

EF 0.37 0.46 0.28 0.26

CD 1.05 2.48 5.28 5.76

r 0.68 0.72 0.59 0.57

ME -0.13 0.65 0.60 0.61

RE -11.58 56.13 51.80 52.33

717 Note: RMSE: the root mean squared error; EF: modelling efficiency; CD: the 

718 coefficient of determination; r: the correlation coefficient; RE: the relative error and 

719 ME: the mean error.


