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Abstract 
Motivation: Where experiments identify sets of grass genes of unknown function, for example under-

lying a QTL or co-expressed in a transcriptome, it is useful to know which of these genes are com-

mon to all grasses (universal) and whether they likely have monocot-/ commelinid-/ grass-specific 

function. 

Results: A pipeline used data on 16 grass full genomes from Ensembl Plants to generate 13,312 

highly conserved, universal groups of grass protein-coding genes. Validation steps showed that 

98.8% of these groups also had gene matches in recently sequenced genomes from two major grass 

clades not used in the pipeline. Comparison with many non-grass genomes identified 4,609 of these 

groups as likely of monocot- / commelinid- / grass-specific function. Both grouping of genes and 

specificity were defined using Hidden Markov Model (HMM) profiles of the groups. The HMM-based 

approach performed better than simple percentage identity in discriminating between test sets of 

known specific and non-specific genes. The results give novel insight into the nature of monocot-/ 

commelinid-/ grass-specific genes.  Researchers can use the universal_grass_peps database to gain 

evidence for their experimentally identified grass genes being involved in monocot- / commelinid- / 

grass-specific traits. 

Availability and implementation: The universal_grass_peps database is available for download at 

https://data.rothamsted.ac.uk/dataset/universal_grass_peps 
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1 Introduction  

Grasses (Poaceae) dominate open habitats in which they played a fun-

damental role in forming due to characteristics of fast growth and resili-

ence (Linder, et al., 2018). These make them suited to adoption in agri-

culture and today, about 70% of the calorie intake and 30% of protein for 

humans comes directly or indirectly from grasses (FAOSTAT, 2019). 

Key grass adaptations to open habitats include: morphology that allows 

meristems to avoid consumption and fire damage allowing regrowth; 

tissues rich in silica to resist herbivory and stress (Mitani-Ueno and Ma, 

2021);  stomata that can respond faster than those of other plants to rap-

idly changing conditions of open habitats (Chen et al., 2017); cell walls 

containing ferulate implicated in lowering digestibility and stress re-

sistance (Chandrakanth, et al., 2023); unique inflorescence and seed 

characteristics for efficient reproduction (Kellogg, 2001). These traits are 

the result of specific protein-coding genes, non-coding genes and regula-

tory genomic elements that arose in the evolution of grasses; the pipeline 

described here is designed to identify the protein-coding genes (hence-

forth referred to as “genes” for brevity) involved in grass-specific traits. 

© The Author(s) 2025. Published by Oxford University Press.  

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 
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Table 1 Categories of monocot- / commelinid- / grass-specific genes and examples of these. 

Relatively few genes involved in these traits have been demonstrated 

experimentally but some key examples are listed in Table 1. It can be 

postulated that these grass genes and others responsible for functions 

specific to monocots / grasses that are key to grass fitness will be (1) 

present in all grasses i.e. universal, (2) highly conserved (3) have no 

close homologs in species outside monocots. The concept of universality 

of genes – matching genes being present in all organisms within a taxo-

nomic unit - is a useful guide to their importance for fitness and implicit-

ly groups genes by function (Kriventseva, et al., 2018). On point (3), it is 

convenient to consider monocot- and grass-specificity together because 

the large number of non-monocot plant genomes and wealth of gene 

knowledge (particularly for Arabidopsis) make for a better reference set 

than the few, less studied non-grass monocot genomes. Also many key 

gene functions may have evolved first in monocots and then been ex-

panded by gene duplication in grasses. Thus the aim is to capture those 

genes with key functional innovations that arose in monocots or grasses 

and have not diverged further within the core grasses. Figure 1 shows a 

phylogenetic tree of monocots and grasses with estimates of divergence 

times from Zhang et al. (2024). From this timescale, these functional 

innovations would have occurred in the period between 230 and 110 

million years ago. 

Figure 1.  Phylogenetic tree of monocots, commelinids and grasses with estimated 

divergence times from Zhang et al. (2024). The core grass species inside the green box 

are those represented in the universal_grass_peps database, with those outside used to test 

specificity. Numbers of fully sequenced genomes from Ensembl Plants release 56 used 

and not used in the pipeline and from NCBI for validation are shown for each taxon.  

 

category gene name(s) description  references 

responsible for commel-

inid/grass specific fea-

ture of cell wall 

OsCslF2; CSLF6 synthesis of (1,3;1,4)-β-glucan Burton, et al., 2006 

FSFT, SFT1-4; 

PMT, FMT,  

AT10 

addition of hydroxycinnamates to precursor for addition to 

xylan, or to monolignols 

Yang, et al., 2024; Chandrakanth, et al., 2023 

XAT2, XAT3; XAX1 addition of arabinofuranose or hydroxycinnamoyl-

arabinofuranose to xylan 

Anders, et al., 2012; Feijao, et al., 2022 

EXPB9  β-expansins mediate expansion in grass primary cell walls Sampedro, et al., 2015 

control of grass-specific 

reproductive morphol-

ogy 

CFO1 regulates floral organ identity  Sang, et al., 2012 

ramosa2 responsible for genetic control of grass-specific inflorescence Bortiri, et al., 2006 

AMD1 regulates tapetum development Zou, et al., 2022 

OsDAF1, OsINP1 regulate pollen aperture Zhang, et al., 2020 

NSG1 regulates spikelet development Zhuang, et al., 2019 

MOF1 regulates spikelet development Ren, et al., 2020 

FZP regulates panicle branching Bai, et al., 2017 

OsETT2 promotes awn development Yamaguchi, et al., 2004 

control of grass-specific 

vegetative morphology 

LG2, LG2L determine leaf lamina joint positioning Wang, et al., 2021 

DL midrib development Yamaguchi, et al., 2004 

transporter for commel-

inid/grass specific Si 

uptake/distribution 

LSi1, LSi6 transporters required for active uptake and distribution of Si  Ma and Yamaji, 2015 

involved in commel-

inid/grass specific 

stomatal opening  

SLAC1 nitrate-sensitive guard cell anion channel Schäfer, et al., 2018 

component of grass-

specific strategy for Fe 

uptake 

DMAS1 synthesis of deoxymugineic Acid Bashir, et al., 2006 

OsYSL18 Fe(III)–deoxymugineic acid transporter Aoyama, et al., 2009 
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To find optimal grouping of grass genes into groups of universal genes 

requires several innovative steps, as major bioinformatic resources (e.g. 

Ensembl, Phytozome) group genes by evolutionary relationships i.e. as 

orthologs or paralogs, making no attempt to identify which have di-

verged in function. Orthologs and paralogs are identified by most likely 

evolutionary path of mutation over whole sequence, whereas what mat-

ters for shared function is those elements in the encoded peptide that 

affect the function, identifiable in peptide sequences by high conserva-

tion (Capra and Singh, 2007). Hidden Markov Models (HMMs) which 

give greater weight to conserved sequence elements important for func-

tion have long been used as a highly effective means of comparing and 

functionally categorising peptide sequences (Yoon, 2009). Therefore 

HMM match scores should be a better criterion for grouping universal 

genes of common function and for comparing other genes to these 

groups.  To account for the greater likelihood of orthologs sharing func-

tion at a given level of sequence similarity (Gabaldón and Koonin, 

2013), orthologs should be selected rather than other genes with same 

HMM score; however paralogs can occasionally displace orthologs to 

perform same function so this possibility should ideally be allowed for in 

a pipeline. 

 Previous studies have identified lineage-specific genes for example in 

Brassicaceae (Donoghue, et al., 2011) or primates (Shao, et al., 2019) 

using cut-off scores from pairwise comparisons (by blastp or whole-

genome alignments). These cut-off values are chosen conservatively so 

that the lineage-specific genes are highly likely to be new function, but 

the pipelines do not explicitly consider whether they have diverged in 

function within the lineage. The aim of the pipeline presented here is 

different as it is only concerned with universal genes of putative com-

mon function within the grasses. This allows a novel approach where a 

HMM profile can be built from all the genes within a universal group 

and used to search the non-grasses to judge specificity.  

Using these principles a novel bioinformatics pipeline was designed 

which aims to: (a) identify a maximal set of groups of highly similar 

genes found in all grasses with each group having putative common 

function (b) assign estimates of how specific these functions are to mon-

ocots / commelinid- / grass species based on closest hits from species 

outside these taxa. 

2 Methods 

  

2.1 Selection of sequenced genomes 

The Ensembl Plants database (Bolser, et al., 2016) release 56 

(https://feb2023-plants.ensembl.org/), which was used as the source 

of sequence and ortholog information, has fully sequenced genomes of 

grasses in 4 of the main taxa of core grasses (Fig. 1).  From these, 16 

grass species of the most important crops (including rice, wheat, barley, 

Lolium, rye, sugar cane, sorghum, millet, maize) and models (Brachypo-

dium distachyon and Setaria viridis) were chosen for input to the pipe-

line with 8 each from the BOP and PACMAD clades that together com-

prise the core grasses. 58 non-grass species genomes were also used for 

specificity steps in pipeline and details of all Ensembl genomes used are 

given in Table S1. Whilst the highest-level BOP and PACMAD clades 

are represented in Ensembl Plants, there are no genomes from some 

major grass clades one level down (Fig. 1) which could lead to bias in 

identification of universal grass genes. To address this, two recently 

sequenced genomes of grasses within Bambusoideae and Arundinoideae 

clades available on NCBI were used in validation steps.  

 

2.2 Pipeline overview 

 

Figure 2.  Pipeline that generates the database of highly conserved universal grass pro-

tein-coding genes and estimates of their monocot- / commelinid- / grass-specificity 

(universal_grass_peps). All the input data is taken from Ensembl Plants release 56 and the 

processing steps are carried out by custom scripts, using the external tools shown in blue 

text, to generate universal_grass_peps database. 

Figure 2 shows a scheme of the pipeline which takes input data down-

loaded from Ensembl Plants, processes these using custom software and 

public packages and generates datasets that populate a novel database 

called universal_grass_peps. The following input data were manually 

downloaded from the Ensembl Plants database:  peptide sequences 

(peps) from gene models for 16 grass species and 58 non-grass species, 

the full genome sequences of the grasses with their gene annotations, and 

the ortholog tables of rice and maize gene models to all other grasses 

(downloaded using the Biomart tool).  Rice and maize were chosen as 

the reference species because they are intensively studied crops with well 

annotated genomes representing respectively the BOP and PACMAD 

clades.  

All operations on these input data were carried out on the Rothamsted 

Linux High Performance Cluster (912 CPU Core, 16TiB memory) using 

custom Perl (with Bioperl routines; (Stajich, et al., 2002)) and bash 
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scripts to run bioinformatics tools and process data. These scripts are 

available at https://github.com/Rowan-ACM/universal_grass_peps. The 

complete pipeline took 11 days of run time on the cluster to complete. 

The methods used in the different components of the pipeline shown in 

Fig. 2 are described below.  

2.3 Identification of highly conserved peptides present 

in all grasses (Find Universal Groups block in Fig. 

2) 

 

Membership of universal groups was determined by iteratively trying 

different peps to get the best HMM score (optimisation) in groups with 1 

pep per grass species as described below. First some preparatory steps 

were needed to find all potential peps to be considered in the optimisa-

tion and these were taken from the ortholog tables for the rice and maize 

reference species. Initially groups were formed with one reference spe-

cies entry and multiple candidate peps for other grass species.  

 Using peps from gene models of the 16 grass species, any identical 

ones were removed but all non-identical peps from splice variants were 

retained. The next step was to populate groups with the closest orthologs 

to each rice and maize pep. To reduce the complexity of this step, very 

similar maize and rice peps were collapsed into “clusters” defined as 

>90% identical in both directions of a pairwise comparison for all com-

parisons within a cluster. [using blastp from BLAST+ package 

(Camacho, et al., 2009) parameters: -evalue 1.e-5 -max_target_seqs 50 -

seg no -max_hsps 1]. An ortholog table from the Ensembl multiple tables 

was then defined where each entry was defined by a primary key (group 

ID) of the rice peptide or peps cluster ID. Where there was no maize 

ortholog, the most similar maize pep was found with blastp and if this 

was not orthologous to another rice gene, added along with all the other 

grass genes orthologs of the maize gene to the group and group ID was 

set to composite of rice and maize seed cluster IDs. Groups from maize 

were also allowed where there was no rice ortholog or similar pep se-

quence (as this could be added by the later genBlastG step). Other grass 

species orthologs to rice and/or maize were assigned exclusively to a 

single group based on highest ranking by Ensembl ortholog confidence 

flag (0 or 1; defined from tree-compliance and, in a small number of 

cases, whole-genome alignment and gene order conservation; 

https://plants.ensembl.org/info/genome/compara/peptide_compara.html) 

then sequence similarity.  Groups which had no entries for more than 4 

of the 16 grasses were deleted and gene members orthologous to remain-

ing groups were reassigned according to this ranking. At this stage (Box 

1 Fig. 2) there were groups of multiple genes per grass all of which were 

classed orthologous to rice and/or maize. Using two reference species in 

this way allows for similar non-orthologous genes of potentially com-

mon function to be grouped together due to descending from two pa-

ralogs. But by using the ortholog information orthologous peps were 

more likely to be assigned to same group than non-orthologs with same 

level of similarity in accordance with the principle that orthologs are 

more likely to share function at a given level of sequence similarity 

(Gabaldón and Koonin, 2013). 

The next step (box 2 Fig. 2) was to optimise membership of groups 

keeping only one peptide sequence per species. This condition is re-

quired to meet the principle that each universal group represents a unique 

function required for fitness; it also makes the profile scores comparable 

across all groups and avoids biasing profile to species with many mem-

bers in a group. HMM profiles of each group were initially generated 

using the top ranked pep sequence for each species. To make HMM 

profiles, all the group member peps were aligned using MUSCLE 

v3.8.1551 with default parameters (Edgar, 2004) then the HMM profile 

was generated from this multiple alignment with hmmbuild (parameters -

-amino --fragthresh 0) and hmmpress commands from HMMER package 

version 3.3.2, Nov 2020 (Eddy, 2022). Similarity scores of the member 

sequences against their own profile were obtained using hmmscan (all 

hmmscan steps in pipeline used parameter E 1.e-7, other parameters 

default). To compare across groups, this score was normalised to a max-

imum possible score obtained with the consensus sequence of the profile 

(generated by hmmemit command) to derive a HMM relative score (R). 

Then group members were each substituted with all the alternative pep-

tide sequences for this group and species; if R was improved by > 0.01 

the substitution was kept as the group member; this requirement means 

that peptide sequences ranked as best orthologs in previous step tended 

to be kept as group members. It was found that groups could be further 

improved by using grass Ensembl gene models hits to the HMM profile 

found with hmmscan that were not members of other groups; these are 

peps not found by previous steps probably because they were not in 

ortholog tables. Again, these peps were assigned as group members if 

they improved R by >0.01 (box 3 Fig. 2). 

In the next step (box 4 in Fig. 2) the genBlastG tool was used (She, et 

al., 2011) which searches for gene models with canonical splice junc-

tions in genomic sequence using a query peptide sequence; here the 

consensus from HMM profile for the group was used as the query. For 

each group, and for each grass where the current member was missing or 

low scoring, the relevant grass genome was searched with genBlastG 

(v138, parameters -p genblastg -v 2 -h 0 -j 3 -r 1  -norepair). Any hits 

discovered by genBlastG were checked that they were novel by compar-

ing exon coordinates with those of all Ensembl gene models using gff 

files. Using criteria as above, if a novel gene model from genBlastG 

improved the profile, it was adopted as the group member for that spe-

cies and the HMM profile was rebuilt. A maximum of 4 genBlastG gene 

models were adopted so every profile has at least 12 Ensembl gene mod-

els. At the completion of this process, the R value was recalculated for 

each member and groups where the lowest scoring member had R < 0.65 

or had missing members were discarded; the cut-off of 0.65 is a criterion 

for high conservation and the value was selected as that for which 90% 

of the expected universal non-specific genes (Table S2; see below) 

groups passed (see “Limitations of approach” section in Discussion for 

more on this parameter).  

HMM profiles from the complete set of groups that pass these were 

compiled into a single HMMER database, the universal_grass_peps 

HMM database. 

2.4 Comparison with use of OrthoFinder 

 

OrthoFinder was assessed as an alternative source of ortholog infor-

mation to input to the pipeline which has reportedly better performance 

in prediction of orthologs than Ensembl method (Emms and Kelly, 

2019).  Using the non-redundant pep fasta files for the 16 grasses, or-

thogroups were generated by OrthoFinder (version 2.5.5, parameters -S 

blast, others default). Membership of universal_grass_peps groups was 

compared with these orthogroups. 

2.5 Validation steps with genomes from outside En-

sembl Plants 
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Independent support for rice genBlastG gene models generated by the 

pipeline was tested by comparison with gene models in the more recent 

IC4R rice annotation curated at https://ngdc.cncb.ac.cn/ic4r/ (Sang, et 

al., 2020). Top IC4R hits for each genBlastG gene model query were 

identified by blastp with E<1.e-5; hits covering >90% of pep on correct 

chromosome were taken as matches. 

Of the major grass clades not represented in Ensembl Plants, two 

(Bambusoideae and Arundinoideae) have genomes recently available on 

NCBI (Fig. 1). One of these is an annotated genome for Phragmites 

australis an Arundinoideae species, assembly accession 

GCF_958298935.1 (Christenhusz and Fay, 2024). There are no annotat-

ed bamboo genomes but there is a high-quality unannotated genome for 

bamboo species Phyllostachys violascens, assembly accession 

GCA_044048585.1. The Phragmites australis gene model peps were 

used as queries against the universal_grass_peps HMM database and 

groups which had hits with R > 0.65 were taken as matches. Groups not 

already matched in Phragmites australis and all groups for Phyllostachys 

violascens were used to search for genBlastG hits in the genome se-

quences of these species as described above for main pipeline; the 

genBlastG gene models found were used to obtain R score for each 

group HMM. 

2.6 Matches of grass genes to universal groups (box 5 

in Fig. 2) 

 

All scores for Ensembl grass peps against the universal_grass_peps 

HMM database for all groups were obtained. All non-members that had 

scores of R > 0.65 to any group were allocated as associate peptides 

allowing many-to-many relationships (this allows a lookup search with 

any peptide ID as query to find all groups to which a peptide is similar). 

To check whether some universal_grass_peps groups can be regarded as 

likely same function, the R of grass group members against other group 

HMMs were obtained. Where all members of a group scored > 0.65 for 

another group and vice versa these groups were allocated to a supergroup 

of potential same function.. 

 

2.7 Monocot- / Commelinid- / Grass- Specificity (Esti-

mate Specificity block in Fig. 2) 

 

To help define specificity and derive a cut-off value for the specificity 

metric in the pipeline, two sets of genes were defined using external 

evidence. For the non-specific test set, a list of proteins of known func-

tion expected to be common across all plants was compiled. This non-

specific set was derived from ribosomal subunit proteins using RPG 

database (Nakao, et al., 2004)  (http://ribosome.med.miyazaki-u.ac.jp) 

and enzymes or enzyme subunits in amino acid synthesis, glycolysis, 

photosynthetic electron transport, CBH cycle and nucleotide synthesis 

from OryzaCyc database which had identical steps in AraCyc database 

within Plant Metabolic Network (Hawkins, et al., 2021) giving a total of 

240 rice peptides (Table S2). For the specific gene set, monocot- 

/commelinid- / grass specific protein-coding genes of known function 

(Table 1) were identified from the literature. The papers were from prior 

knowledge or from a literature search for the terms “monocot-specific” 

or “grass-specific”, or from a search for grass-specific morphology (e.g. 

“awn development”, “ligule”, “panicle branching”) in gene descriptors in 

the RAP-DB database of rice genes (Sakai, et al., 2013). These genes 

were added to the specific set where the publication showed good evi-

dence of direct involvement in control of grass-specific morphology. The 

resulting specific gene set outlined in Table 1 is listed in more detail in 

Table S3 and contains evidence on specificity from 25 publications for 

31 genes. 

Scores were obtained for the best-matching non-monocot peptide se-

quence from all the 55 non-monocot species against univer-

sal_grass_peps HMM database for all groups. A metric of monocot-/ 

commelinid-/ grass- specificity S for each group was evaluated, defined 

as R of the lowest scoring grass member of this group minus R of highest 

scoring non-monocot peptide. This method considers variation in con-

servation between groups so a hit to a highly conserved group will re-

quire a higher HMM score to give the same S score as a hit to a less 

conserved group. By definition a value of S <= 0 means the non-

monocot peptide scores highly enough to be included so the group is 

completely non-specific. Following the same principles, S for commel-

inid-/ grass- and grass-specificity were also calculated using highest 

scoring non-commelinid and non-grass hits respectively.  

Different cut-off values for this threshold were investigated using the 

groups containing the genes from the specific or non-specific test sets. 

For comparison of the S metric with simple pairwise percentage identity, 

this was calculated from global alignment by MUSCLE of the rice mem-

ber of the group to its closest non-monocot hit identified by blastp.   

 

2.8 Functional annotation of universal groups  

 
To characterise the functions of the set of universal groups and those of 

the subsets classified by the pipeline as monocot- / commelinid- / grass-

specific, functional annotations were obtained. General gene descriptors 

and Gene Ontology terms from Ensembl Plants were assigned to groups 

from their member rice and maize peps. Where present, linked publica-

tions, gene descriptors and symbols and trait ontology were assigned to 

groups from database entries for their member peps taken from RAP-DB 

(Sakai, et al., 2013) and KnetMiner-rice for rice and MaizeMine 

(Shamimuzzaman, et al., 2020) for maize and KnetMiner-wheat for 

wheat. Entries were retrieved from web interfaces except for KnetMiner 

where cereals knowledge graph (Hassani-Pak, et al., 2021) with pro-

grammatic access was used to retrieve gene-TO and gene-GO relations 

for wheat and rice genes along with supporting publications.  

 

3 Results 

  

3.1 Identification of highly conserved peptides present 

in all grasses (Find Universal Groups block in Fig. 

2) 

Initial steps (boxes 1-3 in Fig. 2) identified 17,816 groups of similar peps 

that were present in at least 12 of the 16 grass species from their original 

gene models present in Ensembl Plants release 56. Of these, 6,352 

groups passed criteria for universality and high conservation (i.e. had 

members for all 16 species and minimum R > 0.65). However, correct 

gene models are frequently missing from annotated genomes particularly 

where there is no transcript information to support these as is often the 

case for lower expressed genes in less well studied species. Therefore the 
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genomic sequences were searched for gene models for each group and 

for each gene model that was missing or low scoring using the 

genBlastG tool with consensus peptide sequence of the group HMM 

profile as query (box 4 in Fig. 2). By incorporating the new gene models 

identified into groups the number of highly-conserved universal groups 

was more than doubled from 6,352 to 13,312 showing the importance of 

the genBlastG step. The species break-down of the new gene models 

obtained by genBlastG (Table 2) within these groups shows the newer 

genomes from Saccharum spontaneum and Lolium perenne have the 

most whereas the intensively studied wheat with extensive transcript 

resources has the fewest. 

Table 2 Counts of peps or groups for each grass species in univer-

sal_grass_peps database 

grass species 

Group 

mem-

bers* 

Members 

that are 

genBla

stG 

gene 

models 

Groups 

with 

associ-

ate 

peps 

Max 

asso-

ciate 

peps 

in one 

group 

Total 

asso-

ciate 

peps 

Brachypodium 

distachyon 

13,312 347 5,605 25 11,787 

Hordeum vulgare 13,312 988 3,463 33 7,507 

Leersia perrieri 13,312 1,353 4,983 15 9,374 

Lolium perenne 13,312 2,218 3,514 28 7,214 

Oryza rufipogon 13,312 952 4,896 16 9,475 

Oryza sativa 13,312 1,932 3,507 22 5,729 

Secale cereale 13,312 560 3,380 39 9,900 

Triticum aestivum 13,312 216 13,114 120 82,480 

Echinochloa crus-

galli 

13,312 322 12,793 59 46,851 

Eragrostis curvula 13,312 1,407 5,863 32 11,739 

Panicum hallii 13,312 232 4,950 26 9,496 

Saccharum spon-

taneum 

13,312 2,437 8,538 36 19,508 

Setaria italica 13,312 843 4,886 27 9,467 

Setaria viridis 13,312 154 5,831 27 12,308 

Sorghum bicolor 13,312 273 5,291 36 10,947 

Zea mays 13,312 687 9,233 23 26,527 

*by definition, all grass species have same number of group members 

 

The group membership was compared with orthogroups generated by 

OrthoFinder (Emms and Kelly, 2019) from the same set of Ensembl gene 

models from all 16 grasses.  These orthogroups contain peps of divergent 

function and have unlimited numbers of peps per species but could be 

used as an alternative starting point for the pipeline.  The comparison 

showed that 91% of universal_grass_peps groups had all their members 

(excluding genBlastG members) in the same orthogroup (Table S4). This 

finding does suggest that vast majority of group members are all 

orthologs of each other, despite non-orthologs being allowed. It also 

suggests that using OrthoFinder rather than Ensembl ortholog predictions 

in pipeline would have little impact on final group composition; further-

more the Ensembl method considers gene order in a small proportion of 

predictions. It was therefore decided to keep the Ensembl orthologs as 

the input to the pipeline (as in Fig. 2).  

The set of 13,312 highly conserved, universal groups form the basis of 

the universal_grass_peps database. These groups contain sequences that 

all match the profile well but also contain different degrees of diver-

gence. Two example multiple alignments used to generate the HMMs for 

two groups are shown in Figure 3. These show high conservation includ-

ing for the novel genBlastG gene models. The second group 

Os02t0763000-01 illustrates a complication found in many groups - a 

section of sequence found only in one species. 

Figure 3. Two example group multiple alignments from the universal_grass_peps set of 

groups. Sequences are from grass spp 1. Brachypodium distachyon 2. Hordeum vulgare 3. 

Leersia perrieri 4. Lolium perenne 5. Oryza rufipogon 6. Oryza sativa 7. Secale cereale 

8. Triticum aestivum 9. Echinochloa crus-galli 10. Eragrostis curvula 11. Panicum hallii 

HAL2 12. Saccharum spontaneum 13. Setaria italica 14. Setaria viridis 15. Sorghum 

bicolor 16. Zea mays. Sequences predicted by genBlastG have names starting “genblast” 

others are Ensembl gene models. Max score is the score of the consensus against the 

HMM profile generated from the alignment. 

3.2 Validation steps with genomes from outside En-

sembl Plants 
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The novel genBlastG gene models found by the pipeline were not origi-

nally annotated in the genomes so could be pseudogenes. This was tested 

using the new gold standard IC4R annotation of the rice genome which 

has improved gene models developed using multiple RNAseq datasets 

(Sang, et al., 2020). Out of 1932 genBlastG rice gene models, 1477 

(76%) have matches in IC4R gene models with >90% coverage of query 

gene model on correct chromosome; these matches average 93% peptide 

sequence identity (Table S5). This suggests that the great majority of the 

genBlastG predictions are not pseudogenes and will be confirmed by 

future evidence.  

Figure 4. Distributions of R scores of top hits found in newly sequenced grass genomes 

from Bambusoideae and Arundinoideae clades to each of 13,312 universal_grass_peps 

group HMMs.  

 

As universal_grass_peps database is derived from Ensembl Plants 

grass genomes, it could contain groups that do not have corresponding 

genes in the major grass clades absent from Ensembl Plants (Fig. 1). To 

test this, genomes recently available on NCBI from two of these clades, 

Bambusoideae and Arundinoideae, were used to look for matches to the 

universal_grass_peps HMMs and the distributions of the resulting R 

scores are shown in Figure 4. Of the 13,312 universal groups 99.2% and 

99.6% had matches (R > 0.65) in the Bambusoideae and Arundinoideae 

species respectively (Figure 4; Table S6). All but 1.2% of the universal 

groups had matches in both species and are therefore supported as uni-

versal. (The 1.2% which were not supported by these genomes are clear-

ly flagged in the universal_grass_peps database and can be easily filtered 

out if desired). 

3.3 Matches of grass genes to universal groups (box 5 

in Fig. 2) 

All grass gene model peps from the 16 Ensembl genomes were searched 

against the HMM profiles of universal_grass_peps for hits with R above 

the cut-off of 0.65; if these are not the member of any group they are 

classified as associated to the group. The total number of associated peps 

for each species is shown in Table 2 and generally reflects the degree of 

gene duplication. The grass pep hits are also used to define a total of 920 

supergroups of closely related function (Table S7). Supergroups can 

contain groups with same molecular function but differing regulation due 

to sub-functionalisation. 

 

3.4 Monocot- / Commelinid- / Grass- Specificity (Esti-

mate Specificity block in Fig. 2) 

All peps from the 58 non-grass species in Ensembl Plants were scored 

against the HMM profiles of universal_grass_peps. The results were 

used to derive the specificity metric S for each group, where S is mini-

mum R value from group members minus maximum R value for any 

peptide from non-grass to give monocot-/ commelinid-/ grass-specificity. 

Distinguishing between monocot-specificity, commelinid-specificity and 

grass-specificity is dependent on maximum R values from only 3 species 

(two non-grass commelinids and one non-commelinid monocot) so these 

sub-classifications are less secure, and the overall monocot-/ commel-

inid-/ grass-specificity is emphasised here.  

Figure 5. Proportion of groups of genes expected to be of non-specific function (blue line) 

or specific function for commelinid / grass species (red line) that pass varying cut-off 

thresholds for two metrics of specificity. Left panel: percentage identity of closest non-

monocot hit to rice member of group. Right panel: S metric defined as lowest HMM 

relative score of group member minus the top relative score for a non-monocot hit. In 

both panels the selected limit is shown with the corresponding false negative and false 

positive rates.  

 

The S metric is a measure of sequence divergence from the grass pro-

file that can be used as a basis for an initial hypothesis of function diver-

gence in the same way that other sequence-based measures are used. The 

test sets were used to gauge the performance of S as a means of deter-

mining specificity, i.e. the non-specific test set of 215 peps expected to 

have common function in all plants (Table S2) and the specific test set of 

31 peps with commelinid-/ grass-specific functions (Table S3). The S 

metric was compared with simple pairwise percentage identity with the 

best non-monocot hit for these sets (Figure 5). S performs better than 

pairwise identity at discriminating between the two sets as choosing cut-

offs with same false negative rate of 3% (<58% for pairwise identity, and 

>0.25 for S) gives more false positives at 15% for pairwise identity than 

for S at 8%. As only 34 known specific genes were used, the 3% false 

negative represents a single gene, Lsi6. The low S score for Lsi6 is partly 

due to a low minimum R value for the group due to a Saccharum spon-
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taneum pep which is shorter than all others in the profile and could be 

due to an erroneous gene model (Fig. S1).  

Applying the cut-off S of >0.25 which gave 8% false positive and 3% 

false negatives with the test sets (Figure 5) to the complete set of 13,312 

groups gave 4,609 defined as monocot- / commelinid- / grass-specific. 

This set was divided into subsets classified as probably monocot-specific 

(394 profiles), commelinid-specific (1,411 profiles) and grass-specific 

(2,804 profiles) based on values of S calculated from best hits for each 

taxonomic level and is listed in Table S8. 

3.5 Functional annotation of universal groups 

Functional annotations for all universal groups were derived from public 

annotations of their rice, wheat, and maize members in RAP-DB, 

KnetMiner-rice, KnetMiner-wheat and MaizeMine. The retrieved de-

scriptors, GO terms, associated publications and TO terms for each 

group are available in the universal_grass_peps database. The subset of 

4,609 groups classified as monocot- / commelinid- / grass-specific by 

S>0.25 is also available in Table S8. Most of these groups have no 

linked publications and only general descriptors and high-level GO terms 

based on domains. Of all the biological process GO annotations, most 

are assigned to at least one group suggesting there are some monocot- / 

commelinid- / grass-specific aspects of most processes in grasses.  The 

processes that are dominated by these specific genes are shown by the 

terms which are enriched; there is clear enrichment of groups of regula-

tory proteins, especially those involved in control of transcription and of 

protein activity (Table S9). Enriched molecular function GO terms are 

mostly DNA-binding and enzyme activities; the most enriched enzyme 

category is hydroxycinnamoyl transferase activity which may reflect the 

importance of these moities on lignin and xylan polymers in grass cell 

walls (Chandrakanth, et al., 2023). The traits defined by TO terms in 

Table S8 are associated with variants of the member rice, maize and/or 

wheat genes from evidence in the associated publications. Particularly 

common traits affected are grain size (70 groups), flowering time (50 

groups), with numerous morphology traits as might be expected. How-

ever also common are traits for insect / pathogen defence and abiotic 

stress resistance. 

4 Discussion 

  

Genes of common function that occur in all species within a taxonomic 

unit (universality) indicate that the function is likely key to fitness. Alt-

hough sequence similarity is a measure of likelihood of shared function, 

using existing bioinformatic resources it is not straightforward to com-

pare genes in a systematic way, nor to check for criterion of universality 

given variation in completeness of genome annotation. The new ap-

proach described here provides predictions of all universal grass genes 

with putative common function and estimates of their specificity to mon-

ocots / commelinids / grasses.  The requirement for universality led to 

the incorporation of the genBlastG step to find missing genes (box 4 in 

Fig. 2); this step generated 14,921 new gene models. The fact that 76% 

of the rice genBlastG gene models were found in the high quality IC4R 

rice genome (Table S5) suggests most of these new gene models are not 

pseudogenes and that future grass RNAseq studies will validate them. 

The use of a metric based on HMM profile score to estimate how specif-

ic the function of a universal group is to monocot / commelinid / grass 

species is another novel aspect of the pipeline; it provides a systematic 

basis for an assertion of such specificity for genes of unknown function. 

4.1 Importance of monocot- / commelinid- / grass-

specific genes 

Grasses typically have a haploid set of about 40,000 protein-coding 

genes. The analysis here indicates that about 13,000 of these are univer-

sal in grasses and that about a third of universal genes are monocot- / 

commelinid- / grass-specific. All of the known function specific genes 

(Table 1) are in the specific set of 4,609 genes in universal_grass_peps 

(except Lsi6) so the set likely includes other genes involved in these 

known monocot- / commelinid- / grass-specific traits (stomata, cell 

walls, Si deposition etc.) and any linked literature is listed in Table S8. 

An analysis of GO terms (Table S9) suggests many more biological 

processes, in fact almost all GO biological process terms, involve some 

genes which are monocot- / commelinid- / grass-specific. The specific 

genes are particularly enriched for regulatory functions as might be 

expected given the radically different organisation and morphology of 

grasses.  

The importance of variants of the monocot- / commelinid- / grass-

specific genes for crop traits is seen from publications associated to the 

identified sets (Table S8) including numerous variants associated with 

grain yield, abiotic stress and defence. Where a trait is known to be 

commelinid- or grass-specific, the classifications generated here can help 

to identify candidate genes involved in the trait. In our own work on 

dietary fibre QTLs in wheat grain, candidate genes identified as likely 

commelinid- / grass-specific were prioritised as dietary fibre is mostly 

feruloylated arabinoxylan (AX) that only occurs in commelinid species. 

The causal allele was eventually shown to be a variant of one such gene 

– a commelind-specific peroxidase involved in cross-linking AX (Mitch-

ell, et al., 2023). 

 

4.2 Limitations of approach 

All high-throughput predictions of shared function based almost entirely 

on peptide sequence need to be used with caution and cannot substitute 

for detailed knowledge of the particular protein. A major problem for 

any pipeline trying to find universal genes is the large variation in se-

quence conservation of proteins of same function, e.g. different subunits 

of cytochrome c oxidase showed conservation varying from 16% to 64% 

in comparison of yeast and animal sequences (Das, et al., 2004). Use of 

HMMs rather than whole-sequence similarity helps as non-conserved 

regions contribute less to score but even the HMM derived R score 

showed considerable variation in the curated non-specific gene set. The 

cut-off of 0.65 which 90% of this set passed was chosen to be inclusive 

so that nearly all true universal genes will be found but this low thresh-

old does mean that there will also likely be “universal” groups contain-

ing genes with similar but non-identical functions.  

The approach here should therefore be treated as a first best guess of 

shared function similar to comparing percentage identity (as biologists 

often do as a first step) but more likely to be accurate (as evidenced by 

the better discrimination between the specific and non-specific function 

sets; Fig. 5) as the HMM approach weights the conserved parts of se-

quence important for function, exploiting the fact that the identified 

genes are highly conserved and present in all grasses. As stated above, 

the universal gene groups would be expected to include nearly all cases 

of genes which have identical function in all grasses, but they can also 

include cases where there are highly similar functions with divergent 

aspects. Therefore the next step after identifying a group of interest 

should be to inspect the multiple alignment (as in Fig. 3 and Fig. S1) to 

judge the extent of divergence in different grasses; all 13,312 multiple 
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sequence alignment files are available in the universal_grass_peps data-

base.  

Inspection of these multiple alignments can also highlight outlier se-

quences (as in Fig. S1) which may be due to incorrect gene models. The 

criterion of universality does make this pipeline highly dependent on the 

quality of the grass genome assemblies and their annotation. Better ge-

nome quality and annotation will help to check and improve univer-

sal_grass_peps as shown by use of rice IC4R genome (Table S5). 

 

4.3 Uses of universal_grass_peps database 

Where experiments reveal large sets of grass genes or peps such as tran-

scriptomics, proteomics or genes underlying QTLs, they are inevitably 

dominated by genes with little or no information on function. Even for 

rice, the most studied grass, only 13% of genes in RAP-DB database 

(Sakai et al., 2013) have associated publications and only a minority of 

these publications specify function. For such unknown genes it is useful 

to have a systematic approach to identifying those that are of grass- / 

commelinid- / monocot- specific function as this information can point to 

the nature of the process they are likely involved in. For example a net-

work of co-regulated genes identified from transcriptomics enriched for 

grass-specific functions indicates involvement of the network in a grass-

specific trait such as inflorescence development, Si deposition etc. Using 

the look-up tables available in universal_grass_peps, any set of grass 

genes from the grass genomes used here can be used to find all those in, 

or associated to, the universal groups.  For each group identified, the 

values of S metrics as measures of specificity are given along with re-

sulting categorisation as likely non-specific, monocot-, commelinid- or 

grass- specific providing some evidence on role of gene. 

4.4 Future developments 

The pipeline reported here is a first attempt to implement the concept of 

using universal genes to identify groups of putative common function 

and likely specificity but could be improved upon in future. Improve-

ments might be made by using recently released alternative packages for 

finding gene models in genomes such as miniprot (Li, 2023) (to replace 

genBlastG for box 4 in Fig. 2) with reportedly better performance. The 

validation steps here show that future updates with more diverse and 

better-quality grass genomes will improve universal_grass_peps. Further 

in the future, whilst HMMs are a convenient and fast way of obtaining 

profiles for groups, they are actually a proxy for comparison of struc-

tures; potentially a better approach would be direct comparison of pre-

dicted structures such as that generated by AlphaFold although such a 

capability is not currently available.   
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