
Patron:		Her	Majesty	The	Queen	 	 Rothamsted	Research	
Harpenden,	Herts,	AL5	2JQ	
	
Telephone:	+44	(0)1582	763133	
Web:	http://www.rothamsted.ac.uk/	

	
	 	

	
	

Rothamsted Research is a Company Limited by Guarantee 
Registered Office: as above.  Registered in England No. 2393175. 
Registered Charity No. 802038.  VAT No. 197 4201 51. 
Founded in 1843 by John Bennet Lawes.	

	

Rothamsted Repository Download
A - Papers appearing in refereed journals

Wallach, D., Martre, P., Liu, B., Asseng, S., Ewert, F., Thorburn, P. J., 

Van Ittersum, M., Aggarwal, P. K., Ahmed, M., Basso, B., Biernath, C., 

Cammarano, D., Challinor, A. J., De Sanctis, G., Dumont, B., Eyshi 

Rezaei, E., Fereres, E., Fitzgerald, G. J., Gao, Y., Garcia-Vila, M., 

Galyer, S., Girousse, C., Hoogenboom, G., Horan, H., Izaurralde, R. C., 

Jones, C. D., Kassie, B. T., Kersebaum, K. C., Klein, C., Koehler, A.-K., 

Maiorano, A., Minoli, S., Muller,C., Kumar, S. N., Nendel, C., O'Leary, G., 

Palosuo, T., Priesack, E., Ripoche, D., Rotter, R. P., Semenov, M. A., 

Stockle, C., Stratonovitch, P., Streck, T., Supit, I., Wolf, J. and Zhang, Z 

2018. Multi-model ensembles improve predictions of crop-environment-

management interactions. Global Change Biology. 24 (11), pp. 5072-

5083. 

The publisher's version can be accessed at:

• https://dx.doi.org/10.1111/gcb.14411

The output can be accessed at: https://repository.rothamsted.ac.uk/item/8wqx7.

© 28 July 2018, Please contact library@rothamsted.ac.uk for copyright queries.

09/05/2019 12:29 repository.rothamsted.ac.uk library@rothamsted.ac.uk

https://dx.doi.org/10.1111/gcb.14411
https://repository.rothamsted.ac.uk/item/8wqx7
repository.rothamsted.ac.uk
mailto:library@rothamsted.ac.uk


P R IMA R Y R E S E A R CH A R T I C L E

Multimodel ensembles improve predictions of
crop–environment–management interactions

Daniel Wallach1 | Pierre Martre2 | Bing Liu3,4 | Senthold Asseng4 |

Frank Ewert5,6 | Peter J. Thorburn7 | Martin van Ittersum8 | Pramod K. Aggarwal9 |

Mukhtar Ahmed10,11 | Bruno Basso12,13 | Christian Biernath14 |

Davide Cammarano15 | Andrew J. Challinor16,17 | Giacomo De Sanctis18* |

Benjamin Dumont19 | Ehsan Eyshi Rezaei5,20 | Elias Fereres21 |

Glenn J. Fitzgerald22,23 | Y. Gao4 | Margarita Garcia‐Vila21 | Sebastian Gayler24 |

Christine Girousse25 | Gerrit Hoogenboom4,26 | Heidi Horan7 |

Roberto C. Izaurralde27,28 | Curtis D. Jones28 | Belay T. Kassie4 |

Kurt C. Kersebaum29 | Christian Klein30 | Ann‐Kristin Koehler16 | Andrea Maiorano2 |

Sara Minoli31 | Christoph Müller31 | Soora Naresh Kumar32 | Claas Nendel29 |

Garry J. O'Leary33 | Taru Palosuo34 | Eckart Priesack30 | Dominique Ripoche35 |

Reimund P. Rötter36,37 | Mikhail A. Semenov38 | Claudio Stöckle10 |

Pierre Stratonovitch38 | Thilo Streck24 | Iwan Supit39 |

Fulu Tao34,40 | Joost Wolf41 | Zhao Zhang42

1UMR AGIR, INRA, 31326, Castanet‐Tolosan, France
2UMR LEPSE, INRA, Montpellier SupAgro, Montpellier, France

3National Engineering and Technology Center for Information Agriculture, Key Laboratory for Crop System Analysis and Decision Making, Ministry of

Agriculture, Jiangsu Key Laboratory for Information Agriculture, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural

University, Nanjing, Jiangsu, China

4Agricultural and Biological Engineering Department, University of Florida, Gainesville, Florida

5Institute of Crop Science and Resource Conservation INRES, University of, Bonn, Germany

6Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany

7CSIRO Agriculture and Food Brisbane, St Lucia, Queensland, Australia

8Plant Production Systems Group, Wageningen University, Wageningen, The Netherlands

9CGIAR Research Program on Climate Change, Agriculture and Food Security, BISA‐CIMMYT, New Delhi, India

10Biological Systems Engineering, Washington State University, Pullman, Washington

11Department of Agronomy, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan

12Department of Earth and Environmental Sciences, Michigan State University, East Lansing, Michigan

13W.K. Kellogg Biological Station, Michigan State University, East Lansing, Michigan

14Institute of Biochemical Plant Pathology, Helmholtz Zentrum München‐German Research Center for Environmental Health, Neuherberg, Germany

15James Hutton Institute Invergowrie, Dundee, Scotland, UK

16Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK

Authors after P.K.A. contributed equally to this work and are listed in alphabetical order.

*The views expressed in this paper are the views of the author and do not necessarily represent the views of the organization or institution to which he is currently affiliated.

Received: 31 January 2018 | Revised: 1 July 2018 | Accepted: 5 July 2018

DOI: 10.1111/gcb.14411

5072 | © 2018 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/gcb Glob Change Biol. 2018;24:5072–5083.

http://orcid.org/0000-0003-3500-8179
http://orcid.org/0000-0003-3500-8179
http://orcid.org/0000-0003-3500-8179
http://orcid.org/0000-0002-7583-3811
http://orcid.org/0000-0002-7583-3811
http://orcid.org/0000-0002-7583-3811
http://orcid.org/0000-0002-7223-5541
http://orcid.org/0000-0002-7223-5541
http://orcid.org/0000-0002-7223-5541
http://orcid.org/0000-0003-0918-550X
http://orcid.org/0000-0003-0918-550X
http://orcid.org/0000-0003-0918-550X
http://orcid.org/0000-0002-4008-5964
http://orcid.org/0000-0002-4008-5964
http://orcid.org/0000-0002-4008-5964
http://orcid.org/0000-0001-8342-077X
http://orcid.org/0000-0001-8342-077X
http://orcid.org/0000-0001-8342-077X
http://www.wileyonlinelibrary.com/journal/GCB


17CGIAR‐ESSP Program on Climate Change, Agriculture and Food Security, International Centre for Tropical Agriculture (CIAT), Cali, Colombia

18European Food Safety Authority, GMO Unit, Parma, Italy

19Department Terra & AgroBioChem, Gembloux Agro‐Bio Tech, University of Liege, Liege, Belgium

20Center for Development Research (ZEF), Bonn, Germany

21IAS‐CSIC and University of Cordoba, Cordoba, Spain

22Agriculture Victoria Research, Department of Economic Development, Jobs, Transport and Resources, Ballarat, Victoria, Australia

23Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Creswick, Victoria, Australia

24Institute of Soil Science and Land Evaluation, University of Hohenheim, Stuttgart, Germany

25UMR GDEC, INRA, Université Clermont Auvergne, Clermont‐Ferrand, France
26Institute for Sustainable Food Systems, University of Florida, Gainesville, Florida

27Department of Geographical Sciences, University of Maryland, College Park, Maryland

28Texas A&M AgriLife Research and Extension Center, Texas A&M University, Temple, Texas

29Institute of Landscape Systems Analysis, Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany

30Institute of Biochemical Plant Pathology, Helmholtz Zentrum München‐German Research Center for Environmental Health, Neuherberg, Germany

31Potsdam Institute for Climate Impact Research, Potsdam, Germany

32Centre for Environment Science and Climate Resilient Agriculture, Indian Agricultural Research Institute, IARI PUSA, New Delhi, India

33Grains Innovation Park, Department of Economic Development, Jobs, Transport and Resources, Agriculture Victoria Research, Horsham, Victoria, Australia

34Natural Resources Institute Finland (Luke), Helsinki, Finland

35US AgroClim, INRA, Avignon, France

36Tropical Plant Production and Agricultural Systems Modelling (TROPAGS), University of Göttingen, Göttingen, Germany

37Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Göttingen, Germany

38Computational and Systems Biology Department, Rothamsted Research, Harpenden, Herts, UK

39Water & Food and Water Systems & Global Change Group, Wageningen University, Wageningen, The Netherlands

40Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Science, Beijing, China

41Plant Production Systems, Wageningen University, Wageningen, The Netherlands

42State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China

Correspondence

Daniel Wallach, INRA Occitanie‐Toulouse,
UMR AGIR, Chemin de Borde Rouge,

CS52627, 31326 Castanet‐Tolosan Cedex,

France.

Email: daniel.wallach@inra.fr

Present address

Andrea Maiorano, European Food Safety

Authority—EFSA, Parma, Italy.

Abstract

A recent innovation in assessment of climate change impact on agricultural produc-

tion has been to use crop multimodel ensembles (MMEs). These studies usually find

large variability between individual models but that the ensemble mean (e‐mean)

and median (e‐median) often seem to predict quite well. However, few studies have

specifically been concerned with the predictive quality of those ensemble predictors.

We ask what is the predictive quality of e‐mean and e‐median, and how does that

depend on the ensemble characteristics. Our empirical results are based on five

MME studies applied to wheat, using different data sets but the same 25 crop mod-

els. We show that the ensemble predictors have quite high skill and are better than

most and sometimes all individual models for most groups of environments and

most response variables. Mean squared error of e‐mean decreases monotonically

with the size of the ensemble if models are added at random, but has a minimum at

usually 2–6 models if best‐fit models are added first. Our theoretical results describe

the ensemble using four parameters: average bias, model effect variance, environ-

ment effect variance, and interaction variance. We show analytically that mean

squared error of prediction (MSEP) of e‐mean will always be smaller than MSEP

averaged over models and will be less than MSEP of the best model if squared bias

is less than the interaction variance. If models are added to the ensemble at random,

MSEP of e‐mean will decrease as the inverse of ensemble size, with a minimum

equal to squared bias plus interaction variance. This minimum value is not
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necessarily small, and so it is important to evaluate the predictive quality of e‐mean

for each target population of environments. These results provide new information

on the advantages of ensemble predictors, but also show their limitations.

K E YWORD S

climate change impact, crop models, ensemble mean, ensemble median, multimodel ensemble,

prediction

1 | INTRODUCTION

Climate change is expected to have an important impact on crop

production and its geographic variability, with most results to date

showing a negative influence of climate change on crop yields (IPCC,

2014). Crop simulation models are important tools for impact assess-

ment that allow one to generalize to environmental conditions and

management options beyond those observed experimentally (Ewert

et al., 2015; Porter et al., 2014). This makes possible for example a

detailed spatial analysis of the impact of climate change (Rosenzweig

et al., 2014) (Rosenzweig et al., 2014) and evaluation of adaptation

strategies for climate change (Chenu et al., 2017).

A recent innovation in the use of crop models for impact assess-

ment is the use of crop multimodel ensembles (MMEs), largely as a

result of recent international cooperative programs (Ewert et al.,

2015; Rosenzweig et al., 2013), although the first studies go back to

2011 (Palosuo et al., 2011). In these studies, different modeling groups

running different models are given the same input information and

requested to provide simulated values for the same output variables.

An initial objective of these studies was to evaluate the uncertainty in

crop model predictions. These studies found that there is large vari-

ability in predictions between models, implying large uncertainty in

predictions when a single model is used (Asseng et al., 2013; Bassu et

al., 2014; Hasegawa et al., 2017; Rötter, Carter, Olesen, & Porter,

2011). We use here the term “prediction” in the sense of calculating

an output based on known inputs, rather than forecasting the future.

Crop MME studies have often noted that the ensemble mean (e‐
mean) and ensemble median (e‐median) of simulated values give good

agreement with observations (Bassu et al., 2014; Palosuo et al., 2011;

Rötter et al., 2012). This suggests that in practice, it might be better

to create a MME and then use the predictions of e‐mean or e‐median

rather than use the predictions of an individual model. Several recent

impact assessment studies have based conclusions on ensemble pre-

dictors (Asseng, Ewert, Martre, Rötter, et al., 2015; Liu et al., 2016).

Only a few studies have examined the properties of crop MME pre-

dictors in more detail, in each case for one set of environmental condi-

tions. One study, based on prediction of multiple response variables in

four environments, found that e‐mean and e‐median were both better

than the best model, for a composite criterion including all outputs and

environments (Pierre Martre et al., 2015). Yin et al. (2017) found that e‐
mean predicted grain N better than a randomly chosen model. Of par-

ticular, practical interest is the behavior of e‐mean and e‐median as a

function of the number of models in the ensemble. This has been

studied by treating the ensemble as the full population of models and

drawing subsamples from that population. The conclusions have been

that prediction error decreases systematically as the number of models

increases. Li et al. (2015) suggested that eight models would be suffi-

cient to obtain errors of e‐mean below 10% of observed yield. All of

these studies have been empirical, based on a single MME study. The

general behavior of crop ensemble predictors has not been addressed.

Studies in other fields, including group intelligence (Surowiecki, 2005),

hydrologic modeling (Duan, Ajami, Gao, & Sorooshian, 2007), air quality

modeling (Solazzo & Galmarini, 2015), and climate modeling (Tebaldi &

Knutti, 2007), have also found that averaging over multiple opinions or

solutions can give good predictions, often better than any individual

model. The basis for using MME predictors has received particular

attention in the field of climate modeling (Hagedorn, Doblas‐Reyes, &
Palmer, 2005; Weigel, Liniger, & Appenzeller, 2008). However, the con-

text there is quite different than for crop models; for example, in climate

modeling each MME member is often itself an ensemble based on a sin-

gle model with different initial conditions (DelSole, Nattala, & Tippett,

2014) whereas in crop modeling, each model normally provides a single

simulation, a major interest in climate modeling is in probabilistic predic-

tions rather than the deterministic predictions of crop models (DelSole

et al., 2013; Wang et al., 2009) and in climate modeling spatial patterns

of prediction play an important role (DelSole et al., 2013).

One can easily imagine situations where e‐mean and e‐median

for crop models do not predict well. For example, if all models have

large positive bias, then e‐mean and e‐median will also have large

positive bias, and e‐median will be worse than half the models. Thus,

one cannot automatically assume that one will obtain reliable predic-

tions using MME predictors. The question we ask then is what is the

predictive quality of e‐mean and e‐median, and how does that

depend on the ensemble characteristics? We break this down into

specific subquestions. First, how does the predictive quality of MME

predictors compare to predictive quality of a model chosen at ran-

dom from the models in the ensemble or to that of the best individ-

ual model in the ensemble, and how does that depend on the

ensemble characteristics? The answer to this question affects the

choice between using an individual model and a MME predictor.

Second, what is the level of error of the MME predictors? This is a

major determinant of the potential usefulness of these predictors. At

last, how does the level of error of the MME predictors depend on

the number of models in the ensemble? This affects the very practi-

cal decision as to the number of models to include in a MME.
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2 | MATERIALS AND METHODS

2.1 | Data

The data sets simulated in the five wheat MME studies considered

here are described in Table 1. Details are available in the cited refer-

ences. Each data set concerns a different range of environmental con-

ditions, where an environment is to be understood as a combination

of physical environment and management. We consider each data set

as representative of some infinite range of environments, the target

population. The target population corresponding to the AgMIP wheat

pilot data set is worldwide wheat environments. The data set is a sam-

ple from that population, and the prediction problem is prediction for a

randomly chosen individual environment from that population. In the

case of the HSC data set, the target population of environments is

considered to be all possible weather sequences for wheat in Mari-

copa, Arizona, generated by different years and planting dates. The

data set can be considered a sample from that distribution of environ-

ments, where the heat treatments are meant to increase artificially the

diversity of the sampled conditions. In the case of the HSGE data set,

the target population of environments is taken to be worldwide hot

environments for wheat, including all possible weather sequences and

all locations. The target population for the C3‐GEM data set is taken

to be all possible weather sequences at the location of the study, with

or without heat shocks during grain filling. At last, the target popula-

tion corresponding to the AGFACE data set is considered to be wheat

crops under different weather sequences at the location of the study,

with or without irrigation and with either current or enhanced CO2

levels. We consider here four output variables that were measured in

most or all of these studies: grain yield (yield), grain protein concentra-

tion (protein), final aboveground biomass (biomass), and maximum leaf

area index during the course of growth (maximum LAI).

2.2 | Models and calibration

We consider only the 25 crop models that provided simulation

results for all of the data sets for at least yield and biomass (Sup-

porting information Table S1). All of these models have been

described in detail in separate publications (see references in Sup-

porting information Table S1). All are dynamic system models; they

describe crop development, crop growth, and soil processes of a

homogeneous field over a single growing season, using differential

or difference equations, often with a time step of 1 day. The

explanatory variables include daily weather over the growing season,

management (sowing date and cultivar, irrigation and fertilization,

etc.) and soil characteristics and initial conditions. While there are

certainly similarities between some of the crop models, it seems rea-

sonable to consider them as independent since each has undergone

at least some development independently of other models. Each

model produces a single prediction of a specific output (e.g., yield)

for each environment. In addition to the individual models in the

MME, we consider the two most common MME predictors, namely

e‐mean and e‐median.

In all of these studies, some of the data were provided to the mod-

eling groups for calibration (Table 1). The calibration data consisted of

TABLE 1 Data sets

Environments Data furnished for Calibration References

AgMIP Wheat

Pilot (4)

Four global sites, corresponding to four different

mega‐environments. 3 spring cultivars (Gamenya, HD

2009, and Oasis), 1 winter cultivar (Arminda) Yields

2.5–7.5 t/ha

Anthesis and maturity date, all environments Asseng, Ewert, Martre,

Rosenzweig, et al.

(2015), Martre et al.

(2015)

HSC (15) Maricopa, Arizona. Gradient of mean growing season

temperature from 15.0°C to 33.4°C created by

varying sowing date and artificial heating. 1 spring

cultivar (Yecora Rojo) Yields 0–8 t/ha

Detailed crop measurements for one

environment (average temperature of

15.4°C).

Phenology parameters used previously in one

model.

Asseng, Ewert, Martre,

Rötter, et al. (2015)

HSGE (34) 6 high temperature global sites, two years, one or

two planting dates. Number of days with

Tmax>31°C ranged from 28 to 74.

2 spring cultivars (Bacanora 88 and Nesser)

Yields 1.9–8.0 t/ha

Detailed crop measurements for four

environments at one location (Obregan,

Mexico). Anthesis and maturity dates for all

other environments.

Asseng, Ewert, Martre,

Rötter, et al. (2015),

Martre et al. (2017)

C3‐GEM (10) Control and heat shock environments in outdoor

controlled environment chambers. Heat shock of

Tmax = 38°C for 4 hours for 2 or 4 days during the

lag or linear grain filling period or both.

1 winter cultivar (Récital)

Yields 5.6–8.4 t/ha

Detailed crop measurements for the 3 control

environments.

Majoul‐Haddad, Bancel,

Martre, Triboi, and

Branlard (2013)

AGFACE (18) Elevated free air CO2 concentration experiment, over

three years, early or late sowing, CO2 concentrations

of 385 or 550 ppm, rain‐fed or irrigated.

1 spring cultivar (Yitpi)

Yields 1.1–4.6 t/ha

Detailed crop measurements for one

environment (385 ppm CO2, early sowing,

irrigated).

Parameters used previously in 6 models.

O'Leary et al. (2015)

Notes. The five wheat data sets that provided the empirical evidence. *The number of environments in the data set is given in parentheses.
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detailed crop data, including yield, from one environment for the HSC

and AGFACE data sets, from the three control environments for the

C3‐GEM data set and from four environments for the HSGE data set,

plus some peripheral information related to, but not the same as, the

variables to be simulated (crop phenology information, parameter val-

ues of some models that had previously seen the data).

2.3 | Evaluation metrics

Our basic criterion of simulation accuracy is mean squared error

(MSE), that is squared error averaged over environments of a data set:

MSE ¼ 1=N∑N
i¼1 yi � ŷið Þ2

where yi is the observed value for the ith environment of the data

set, ŷi is the corresponding simulated value, and N is the number of

environments in the data set. MSE is calculated separately for each

output variable and each model. Often it is more convenient to look

at root mean squared error; RMSE ¼ ffiffiffiffiffiffiffiffiffiffi
MSE

p
.

MSE is an important measure of model error, but skill measures

are better at conveying the usefulness of model simulations, as they

compare model errors to errors of some alternative, simple predictor.

The skill measure commonly used for crop models is modeling effi-

ciency (EF), defined as

EF ¼ 1�MSEmodel=MSE�y

where MSEmodel is MSE for the model in question and MSE�y is MSE

when all predictions use the average of observed values for that

data set (�y). As �y is a constant, it explains none of the variability in

the data set. A perfect model has EF=1. A model that does worse

than �y has EF<0 and can be considered to have no skill in explaining

variability between environments.

The above criteria refer to the data in the data set. As a criterion

of prediction accuracy for the target population, we use mean

squared error of prediction (MSEP), defined as the expectation of

squared error over the target population. It is well known that if the

same data are used for calibration and for evaluation, MSE tends to

underestimate MSEP. To examine how important this is, we calcu-

lated MSE for yield, using either all environments or leaving out all

those environments which provided yield for calibration. The result-

ing MSE values for e‐mean and e‐median, and their ranks among all

models, were very similar (Supporting information Table S2). We

therefore use MSE based on all environments of a data set as an

estimate of MSEP for the corresponding target population.

2.4 | Statistical description of multimodel ensemble

We propose a random effects statistical model for describing model

errors:

eij ¼ μþ αi þ βj þ γij (1)

where eij is error (observed value for environment j minus value simu-

lated by model i), μ is the overall bias (error averaged over models and

environments), αi is a random model effect with mean 0 and variance

σ2α , βj is a random environment effect with mean 0 and variance σ2β ,

and γij is the random interaction term, with mean 0 and variance σ2γ

(Scheffé, 1959). Thus, the random effects model characterizes a MME

and target population using four parameters: μ, σ2α , σ
2
β , andσ

2
γ .

If there is bias, this implies that predictions, averaged over mod-

els and environments, are too small or too large. For example, if

models tended to underestimate potential yield for the cultivars of

the HSGE data set, this could lead on the average to systematic

underprediction of yield and therefore to a positive bias. The bias

term contributes equally to all individual models and therefore also

to e‐mean, for all environments of the target population. The model

effect indicates to what extent a specific model over‐ or underpre-

dicts, on the average over environments. The larger σ2α , the larger

the variability between errors of different models. The environment

effect indicates to what extent there is over‐ or underprediction for

individual environments, averaged over models. For example, if all

models tended to overpredict specifically for the highest tempera-

tures of the HSC target population, this would lead to an environ-

ment effect. The larger σ2β , the larger the variability between errors

for different environments. At last, the interaction effect measures

the effect of interaction between a specific model and a specific

environment on model error.

If it is assumed that models are drawn at random from some under-

lying distribution of models and that environments are drawn at random

from the target population of environments, then all the random effects

are mutually uncorrelated (Scheffé, 1959). If there is random measure-

ment error, it affects the observations of each environment and thus is

included in the environment effect. The bias and variance components

were estimated for each data set using the R package lme4 (Bates,

Mächler, Bolker, & Walker, 2015; R Core Team, 2012) with the REML

option. The variance components for yield, calculated with or without

the environments that provided yield data for calibration, were quite

similar (Supporting information Table S5).

3 | RESULTS

3.1 | Empirical results

Figure 1 shows RMSE relative to e‐median (RMSEmodel‐RMSEe‐median)

for yield for each model and each data set. Models with negative values

have smaller RMSE than e‐median. It is seen that e‐median is better

than all individual models (all individual models have positive values of

RMSE relative to e‐median) except for the HSGE and AGFACE studies,

where there are respectively four and two individual models of 25 that

are better than e‐median. E‐mean is slightly worse than e‐median

(slightly positive RMSE relative to e‐median) except for the HSGE data

set. Its worst ranking for yield is seventh (among the 25 individual mod-

els, e‐mean and e‐median). For protein, biomass, and maximum LAI, the

rankings of e‐median and e‐mean are more variable. At worst, e‐median

is ranked sixth and e‐mean tenth. E‐median is better than e‐mean in 13

of the 17 combinations of data set and output variable (Supporting

information Figures S1–S3). Figure 2 shows as an example the fit of

e‐mean, e‐median, and the individual models to the HSC yield data.
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The ranking of e‐mean improves more or less systematically as one

considers more environments, up to the actual number of environ-

ments for each data set (Supporting information Figure S4). A final

step in this progression of averaging over more situations is to average

over data sets. When RMSE values are averaged across data sets, e‐
mean is ranked 2, 6, 2, and 3 for the output variables yield, protein,

biomass, and maximum LAI, respectively (Supporting information

Table S3). The corresponding ranks for e‐median are 1, 1, 1, and 2.

Among the individual models, the average rankings are more variable.

The model SQ is systematically quite well ranked (3, 3, 3, and 8 for

yield, protein, biomass, and maximum LAI, respectively) but the best

individual model for protein has rankings of 13, 2, 18, and 23 for the

four output variables and the best individual model for maximum LAI

has rankings 12, 11, 21, and 1. In all cases, both e‐mean and e‐median

are better than the average over individual models (bar labeled “ave”
in Figure 1 and Supporting information Figures S1–S3).

Figure 1 shows that RMSE using the average of observed values

(bar labeled “ybar”) is appreciably larger than RMSE for e‐mean or e‐
median for yield for four of the studies, implying that the ensemble

predictors have substantial skill values for those studies. However, no

model, including e‐mean and e‐median, has skill for the HSGE data set

(i.e., “ybar” has the smallest RMSE value). Over all combinations of

study and output variable, e‐mean and e‐median have no skill in a little

over one‐third of the situations (Supplementary Table S4).

Figure 3 shows empirical results for the effect of number of

models on MSE of e‐mean, for predicting yield. These results are

averages over multiple choices of models and correspond to choos-

ing the models to add to the ensemble at random. There is an almost

monotonic decrease in MSE as more models are added to the

ensemble. Similar behavior is exhibited for the other output variables

(Supporting information Figure S5).

Rather than building the MME by adding models chosen at ran-

dom, suppose that one starts from the model with smallest RMSE

and then adds models in the order of increasing RMSE. The general

result of doing so is an initial decrease in RMSE and then a trend of

increasing RMSE as the number of models in the ensemble increases.

In 12 of 17 combinations of data set and output, minimum RMSE is

reached with 2‐6 models in the ensemble (Figure 3 and Supporting

information Figure S5).

3.2 | Theoretical results

In the following, we focus only on e‐mean, which is more amenable to

theoretical treatment than e‐median. The analysis is based on Equa-

tion 3, which separates model error into a bias component and model,

environment and model × environment interaction effects. The esti-

mated values of μ, σ2α , σ
2
β , and σ2γ for each data set and output variable

are shown in Supporting information Tables S5–S8. The results are

that squared bias μ2 is usually much smaller than any of the variance

components. That is, model error averaged over models and environ-

ments for each data set is small. The contributions of the other vari-

ance components are quite variable. Depending on the data set and

the variable that is predicted, the major variability can arise from the

variability in errors between models (e.g., maximum LAI prediction for

the C3‐GEM data set), the variability in errors between environments

(e.g., biomass prediction for the AGFACE data set) or from the interac-

tion (e.g., prediction of protein for the HSC data set).

MSEP of e‐mean based on a MME of size n is

MSEPe�meanðnÞ ¼ E μþ ð1=nÞ∑n
i¼1αi þ βj þ ð1=nÞ∑n

i¼1γij
� �2n o

(2)

Using the properties of the random effects model, this leads directly

to

MSEPe�meanðnÞ ¼ μ2 þ σ2α=nþ σ2β þ σ2γ =n (3)

Letting n tend toward infinity, it is seen that in the limit of a very

large MME

MSEPe�mean ¼ μ2 þ σ2β (4)

On the other hand, the expectation of MSEP over individual models

(MSEP) is

MSEP ¼ E μþ αi þ βj þ γij
� �2n o

¼ μ2 þ σ2α þ σ2β þ σ2γ (5)

Thus MSEP is always as large as or larger than MSEPe�mean. This is a

generalization of the empirical results in Figure 1 and Supporting

information Figures S1–S3, which show that e‐mean has smaller

RMSE than the average over models (the bar labeled “ave”) in all the

cases considered.

Assuming the ai values have a normal distribution, we can also

obtain results for the probability that e‐mean is better than any indi-

vidual model. A model with random effect αi ¼ a has an MSEP value

of

E ðμþ αi þ βj þ γijjαi ¼ aÞ2
h i

¼ μþ að Þ2 þ σ2β þ σ2γ (6)

If the ai have a normal distribution, then in the limit of a very large

MME, the probability that an individual model will have MSEP less

than or equal to MSEPemean is

P ðμþ aÞ2 þ σ2β þ σ2γ ≤ μ2 þ σ2β

h i
¼ P a0 ≤ μ2 � σ2γ

� �
=σ2α

h i
(7)

where a0ð Þ2 is distributed as a noncentral chi‐squared variable with

1 degree of freedom and noncentrality parameter μ2=σ2α (Supporting

information Figure S6). If σ2γ ≥ μ2 (interaction variance greater than

squared bias), then in the limit of a very large MME, this probabil-

ity is 0. The result just depends on the relative values of squared

bias and interaction variance and not on how good the individual

models are. The inequality is satisfied for every data set and output

variable here, implying that in the limit of many models and aver-

aged over environments, e‐mean should be better than every

model in the ensemble. This is an extension of the empirical

results, which concern a finite number of models and environ-

ments. Those results show that there are relatively few models that

are better than e‐mean.

Equation 6 shows that MSEPemean is not necessarily small,

even in the limit of a very large MME. It will only be small if

both μ2 and σ2β are small. In the limit of large MME, the model
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effect and the interaction effect cancel out between models and

thus do not contribute toMSEPe�mean. In an empirical manner, it is

found that μ2 is always relatively small, but this is not the case for

σ2β . As a result, there are several cases where e‐mean has no skill.

Consider now the effect of the size of the MME. Equation 5

shows that MSEPe�meanðnÞ decreases as 1/n, going from

μ2 þ σ2α þ σ2β þ σ2γ when there is a single model to μ2 þ σ2β when

there are infinitely many models. This assumes that models in the

ensemble are chosen at random from the distribution of models. Fig-

ure 3 and Supporting information Figure S5 show how

MSEPe�meanðnÞ decreases with the size of the MME, based on the

estimated variance components and Equation 5. The results general-

ize the empirical results to prediction for the target population.

Equation 5 also helps understand the empirical behavior of MSE

of e‐mean when the ensemble is built from successively worse mod-

els. Suppose that one starts from a sample of size n from some pop-

ulation P1 of models, for which MSEP of e‐mean is

MSEPe�meanðP1Þ ¼ μ2ðP1Þ þ σ2βðP1Þ þ ð1=nÞ σ2αðP1Þ þ σ2γðP1Þ
� �

(8)

To obtain an MME of size n + 1, one must enlarge the sampled pop-

ulation to P2, with say

MSEPe�meanðP2Þ ¼ μ2ðP2Þ þ σ2βðP2Þ þ ð1=ðnþ 1ÞÞ σ2αðP2Þ þ σ2γðP2Þ
� �

(9)

As models are added in order of increasing MSEP, μ2 þ σ2α þ σ2β þ σ2γ

is larger for P2 than for P1. However, the contribution of the term

σ2α þ σ2γ is divided by n for P1 and by n + 1 for P2, which can offset

the increase in μ2 þ σ2α þ σ2β þ σ2γ , especially for small n. The empirical

result is a minimum in MSE of e‐mean for some value of n almost

always larger than 1.
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Environment

Y
ie

ld
t/h

a

1C 1H 2C 3C 4C 7C 7H 8C 9C 9H 10
C

11
C

14
C

14
H

15
C

0
2

4
6

8
10

12

e−mean

emedian

F IGURE 2 Fit of models to HSC yield data. Each environment
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or with (“H”) supplementary heating. Solid diamonds are observed
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median. Values simulated by the 25 individual models are connected
by thin dotted lines
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F IGURE 3 Effect of ensemble size on root mean squared error
(RMSE) of e‐mean for yield. Left panel. Effect of ensemble size on
RMSE of e‐mean for yield when models are chosen at random.
Each point is the RMSE of e‐mean averaged over 100 samples of
n (n = 1,…,25) models drawn at random, without replacement,
from the models of the original MME. The lines are based on
Equation 6, using the variance components estimated for each
data set. Right panel. Effect of ensemble size on RMSE of e‐mean
for yield when models are added from best (smallest RMSE) to
worst

F IGURE 1 RMSE relative to RMSE of e‐median (RMSEmodel‐RMSEe‐median) for each data set. A negative value means that the model has
smaller RMSE than e‐median. The two‐letter codes represent different crop models, see Supporting information Table S1 for model
identification information. “ybar” refers to the predictor that uses the same predicted value, equal to the average of observed values for the
data set, for all environments. Models with relative RMSE values larger than “ybar” have no skill. Relative RMSE for “ave” is obtained by
averaging MSE over all individual models, taking the square root and subtracting RMSEe‐median
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4 | DISCUSSION

There have been several publications that have documented the

good performance of e‐mean and e‐median for crop models, includ-

ing for the same data sets considered here (Asseng, Ewert, Martre,

Rötter, et al., 2015; Martre et al., 2015) and also for other crops

than wheat (Bassu et al., 2014; Fleisher et al., 2017; Li et al., 2015;

Rötter et al., 2012). However, here for the first time we analyze the

results using MMEs for five different data sets, each representing a

different range of environmental variability, in a common framework.

Empirical evidence is essential, but necessarily limited. It is

important to complement the empirical evidence with theoretical

results. The theoretical framework that we propose helps explain

and generalize the empirical results. The framework assumes that

there is some essentially infinite underlying distribution of crop mod-

els, from which the models in the MME are sampled at random. This

assumption could be questioned, on the basis that there are in fact a

limited number of existing crop models. However, it has been found

that even crop models derived from the same underlying model but

differing in parameterization can give quite different results (Folberth

et al., 2016), implying that the number of effectively different crop

models is in fact essentially infinite.

The theoretical results are based on variance components, which

are simple to calculate. It may be worthwhile doing so systematically

for MME studies, because the random effects model then provides a

diagnostic tool for relating results to the characteristics of the MME

and also a tool for extrapolating to the target population of environ-

ments and to different numbers of models.

The theoretical results all concern the simple mean of the values

simulated by the individual models. It might be possible to improve

the performance of e‐mean by weighting different models depending

on agreement with observations, using for example Bayesian model

averaging (Raftery, Balabdaoui, Gneiting, & Polakowski, 2003). This is

however difficult for crop models, because each environment

involves growing a crop for a full season and as a consequence there

are in general relatively few data available for estimating the weight-

ing coefficients. Simple averaging is also often used for climate

model ensembles (for example Wang et al., 2009).

The empirical results show that MSE of e‐median and e‐mean is

always smaller than the average MSE of the individual models in the

MME. This has also been observed with respect to climate models

(Wang et al., 2009). The theoretical results show that this will always

be true for MSEP of e‐mean compared to MSEP averaged over mod-

els, for any size of the MME. The advantage of e‐mean will increase

as the ensemble size increases. Thus, theory and empirical results

agree that it is better (less prediction error) to use e‐mean than a

model chosen at random from the population of models, on average

over the chosen model. The statistical basis for the superiority of e‐
mean is that the model and interaction effects cancel out between

models. One possible modeling explanation could be that different

models have different errors in the parameters, and averaging over

models averages out the parameter errors. A similar mechanism has

been suggested for climate models (Wang et al., 2009).

The empirical results show that e‐median often has smaller

MSE values than even the best individual model, and if not, it has

an MSE value quite close to that of the best model. E‐mean is not

as highly ranked, but also is always close to the best MSE value.

The theoretical results show that in the limit of a very large MME,

MSEP of e‐mean will be smaller than MSEP of the best model

when squared bias is smaller than the variance of the interaction

effect. The bias refers to error averaged over models, and thus bias

contributes to MSEP of e‐mean. An individual model however may

have a model effect that is the negative of the bias, which is simply

to say that the best individual model may have very small or zero

error averaged over environments. Thus, the existence of bias

tends to make e‐mean a worse predictor than the best model. A

large interaction variance implies that model error is sometimes

small, sometimes large for different environments. The average

over models of the interaction term however tends to zero for

large MMEs, for each environment. Thus, the existence of interac-

tion tends to make e‐mean a better predictor than any model.

Overall then, the relative values of squared bias and interaction

variance determine whether there will be individual models better

than e‐mean.

Based on the estimated variance components, squared bias is

smaller than the variance of the interaction effect for all the data

sets and outputs considered here. Together, the empirical and theo-

retical results suggest that in a wide variety of cases, e‐mean or e‐
median will be a better choice as predictor than any individual

model, with e‐median seeming to be empirically somewhat better

than e‐mean. The fact that the ensemble predictors out‐perform
most or all models not only for yield but also for protein, biomass,

and maximum LAI suggests that they are useful not only for predict-

ing final yield but also for prediction of the growth trajectory and

quality of the crop.

The value of MSEPe�mean is not necessarily small; it is equal to

the sum of squared bias and the variance of the environment effect.

As MSEPe�mean can be large, the skill of e‐mean can be poor. It is

thus essential to verify, for each application of crop models, that e‐
mean is indeed sufficiently skillful for the application intended.

Model improvement, to the extent that it reduces bias and/or leads

to models which track the effects of environment more closely (i.e.,

reduces the variance of the environment effect), will reduce

MSEPe�mean. Thus, model improvement is not only important in its

own right, but can also be a path to improved prediction by e‐mean,

as shown in (Maiorano et al., 2016) where improving wheat models

by calibration and/or taking better account of heat stress improved

prediction accuracy of e‐median. Simply making models more simi-

lar, in the absence of improvement, reduces the variance of the

model effect, but this does not reduce MSEPe�mean. It is easy to

show that according to the mixed model, the covariance between

errors of two different models for a given environment is equal to

σ2β , the variance of the environment effect. Thus, everything else

being equal, the smaller the covariance (the less the model outputs

are related), the smaller MSEPe�mean will be. The fact that bias is

small for all the data sets here might be partially a consequence of
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calibration. The calibration data allow modelers to verify that their

simulated values are close to reality for at least some environ-

ments.

The effect of number of models in a MME is of practical impor-

tance and has received attention in several studies. For example, Li

et al. (2015) suggested that eight models would be sufficient to

obtain errors of e‐mean below 10% of observed yield. The results

here shed further light on this question. Our results indicate that the

behavior of MSEe�mean as a function of ensemble size depends on

how the MME is created. If models are added at random, then

MSEPe�meanðnÞ depends on n, the number of models, through the

term ðσ2α þ σ2γ Þ=n, which decreases monotonically with n. In this case,

a larger ensemble size always leads in expectation to a smaller value

of MSEe�meanðnÞ. Even going from 1 to 2 models is of interest, as it

reduces that term by half. With five models, one obtains 80% of the

potential improvement from adding more models. Note that the the-

oretical reduction in MSEe�meanðnÞ with n is in expectation, not for

each sample of models. Wang et al. (2009) similarly found that

improvement of a MME of climate models was very slight beyond

5–6 models.

If, instead of choosing models at random, one is capable of iden-

tifying the best models and builds the MME by successively adding

models with larger prediction error, then the empirical results show

that MSEe�meanðnÞ has a minimum at some small number of models,

almost always greater than 1. That is, even if the best model is

assumed to be known, it is almost always found to be advantageous

to create at least a small MME by including less well‐performing

models. The theoretical results show that this is due to cancelation

of errors between models which reduces the model effect and inter-

action contributions to MSEPe�meanðnÞ. In this case, it is not advanta-

geous to make the MME as large as possible. Adding increasingly

poorly performing models eventually increases MSEe�meanðnÞ. To

take advantage of this behavior, one would need to identify the best

models (to be included in the MME) and/or the worst models (to be

excluded). However, the empirical results show that identifying the

best models can be very difficult, as all models had a wide range of

rankings for fit to the observations. Thus, actually creating an MME

which contains only the best models or at least avoids the worst

models is a challenge. We examined here the rather simple strategy

of adding models in inverse order of MSE. For climate models, it has

been suggested that the optimal choice of models should take into

account both the skill of the individual models (high skill better) and

their degree of dependency (less dependency better; Yoo & Kang,

2005).

The practical conclusion of this study is that predicting with e‐
mean or e‐median of a fairly small MME of around five models

which have been shown to be well‐suited to the predictions of inter-

est will often be a good strategy. If the models are chosen in a way

that is equivalent to choosing models at random, then this ensemble

size captures, in expectation, most of the cancelation of errors that

arises from having multiple models. If this includes only the best

models, then this size is consistent with the number of models that

empirically gives smallest error for e‐mean.

While the emphasis here has been on ensemble predictors, it

should be noted that there are other objectives of ensemble studies

(Wallach, Mearns, Ruane, Rötter, & Asseng, 2016). A major objective

is to obtain information on model uncertainty, based on the spread

between models. Another important objective is to foster collabora-

tion between modeling groups. Those objectives could lead to differ-

ent considerations concerning ensemble size. Also, it is important to

emphasize that using ensemble predictors is not a substitute for

model improvement. Both model improvement and use of ensemble

predictors, either singly or in combination, could contribute to

extending the usefulness of crop models.
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