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Supplementary Information to 
 

Model Ensembles of Ecosystem Services Fill Global Certainty 
and Capacity Gaps 

 
 

 
In this Supplementary Information (SI) we provide further detail on the methodology described in the 
paper and some extra analyses. The SI follows the order of main text and so is not designed to be read 
as a whole, being designed instead to give extra detail on a topic by topic basis. All hyperlinks 
mentioned in the SI were checked and updated on 11/02/2023, unless otherwise stated. 
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SI-1. Input data and post processing for InVEST, TEEB, Scholes, ARIES and Co$ting Nature 
 
Below, the input data used in InVEST, TEEB and the Scholes model are described, adapting descriptions 
from (8) with added global data sources. 
 
S-1-1. InVEST 
InVEST is a suite of stand-alone and free models from the Natural Capital Project (24) that are 
downloaded as one package from the website 
(https://naturalcapitalproject.stanford.edu/software/invest). Extended descriptions of each model 
are provided in the online user guide 
(https://storage.googleapis.com/releases.naturalcapitalproject.org/invest-
userguide/latest/index.html#).  
 
InVEST comprises of independent modules, each module covering one ecosystem service (ES). In this 
study we used three of the more widely used modules; the water yield module (30), the carbon module 
(59) and the recreation module (60) of release v3.8.9, which was the current version at the time of 
conducting this part of our research in 2021. Two of the InVEST modules (water and carbon) do not 
contain autonomously drawn-in data sources. Instead, all data sets need to be provided manually. The 
output generated is at the grain equal of the provided land cover map. In contrast the recreation 
module is based on drawn-in data, defined by entered years, gridcell size (spatial resolution) and area. 
 
InVEST water yield module 
The InVEST water yield model is a process model, built as a hydropower module, identifying 
quantitatively how much water or economic value each part of the landscape contributes to 
hydropower production. This is done by estimating water run-off through a single point. The model 
has three components: water yield, water consumption, and hydropower valuation. We used the first 
component here, using the gridded outputs of water run-off per gridcell, allowing standardising 
extraction per validation polygon among model outputs and ensembles. The required entered 
watersheds were dummies, over which InVEST would sum separately, and are not used for any of our 
outputs.  
 
As input data we used: 
➢ Summed monthly precipitation using WorldClim version 2.1 at a 0.008333° resolution: 

(worldclim.org/worldclim21.html).  
➢ Summed monthly potential global potential Evapotranspiration in mm from CGIAR-CSI Global 

Aridity index v2 on a 0.008333° resolution: (cgiarcsi.community/2019arity).  
➢ Root restricting raster was obtained from the Harmonized World Soil Database v1.2: 

webarchive.iiasa.ac.at/HWSD using the Reference soil depth. Subsequently, this polygon layer 
was converted to an exact 0.008333° grid. 

➢ Plant Available Water Content (PAWC) raster was obtained from the Harmonized World Soil 
Database v1.2: webarchive.iiasa.ac.at/HWSD.  
PAWC was calculated from individuals soil factions (Scontent) of sand, silt and clay for the upper 
layer (0-30 cm) and lower layer (>30 cm), following: 

𝑃𝐴𝑊𝐶 = ∑ (𝑆𝑐𝑜𝑜𝑛𝑡𝑒𝑛𝑡 × (𝐹𝐶𝑐𝑜𝑛𝑡𝑒𝑛𝑡 − 𝑃𝑊𝐷𝑐𝑜𝑛𝑡𝑒𝑛𝑡))
𝑠𝑖𝑙𝑡,𝑐𝑙𝑎𝑦
𝑐𝑜𝑛𝑡𝑒𝑛𝑡=𝑠𝑎𝑛𝑑    Eqn. S1 

With plant available water (PWD) and field capacity (FC) following (61), listed in Table S1.  
The two layers were then averaged, weighted on their depths with 30 cm and [root restricting 
depth – 30 cm]. Subsequently, this polygon layer was converted to an exact 0.008333° grid. 

➢ Land cover followed MODIS MCD12Q1 v 5.1. land cover in 17 classes (53), resampled to a 
0.008333° resolution based on dominant land cover.  

➢ The maximum rooting depth and evapotranspiration coefficient (Kc), as look-up table per land 
cover class, were from (8). 

https://naturalcapitalproject.stanford.edu/software/invest
https://storage.googleapis.com/releases.naturalcapitalproject.org/invest-userguide/latest/index.html
https://storage.googleapis.com/releases.naturalcapitalproject.org/invest-userguide/latest/index.html
https://www.worldclim.org/data/worldclim21.html
https://cgiarcsi.community/2019/01/24/-global-aridity-index-and-potential-evapotranspiration-climate-database-v2/
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/HWSD_Data.html?sb=4
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/HWSD_Data.html?sb=4


SI to Model Ensembles of Ecosystem Services Fill Global Certainty and Capacity Gaps  
 

2 
 

 
The water yield module was run for 10 different seasonality factors (Z; Table S2). In postprocessing, 
each cell was assigned the most appropriate single output for the cell’s number of rain days. Here, the 
Z factor was based on [Z= 0.2 ∗ N], where N is the average number of rain days per year (30). The 
number of rain days was calculated from summing the monthly days with rain per year from the FAO 
Wet Day Frequency per month (data.apps.fao.org/-map/raindays). Using rounded natural breaks on 
the number of rain days, the Z factors per cell were assigned following Table S2. 
 
Table S1. PWD and FC factors for PAWC 
calculation from soil fractions following 
(61)  

 PWD FC 

Sand 0.05 0.1 

Silt 0.14 0.28 

Clay 0.3 0.42 

 
 
 
 
 
 
 

Table S2. Assignment of rain days per year 
ranges to InVEST seasonality (Z) factors. 

 

 
InVEST carbon module 
This InVEST module is a look-up table based model, which uses maps of land cover and data on wood 
harvest rates, harvested product degradation rates, and stocks in four carbon pools (aboveground 
biomass, belowground biomass, soil, dead organic matter) to estimate the amount of carbon currently 
stored in a landscape or the amount of carbon sequestered over time. We did not employ the 
sequestration functions and restricted ourselves to the above ground, standing carbon pool only to 
match our validation sets. The model generates gridded maps of standing carbon per land cover based 
on the carbon pools at the grain equal of the provided land cover map (EU-Copernicus GLC 2000 land 
cover). This land cover map was used for the IPCC standing carbon assessment tables in combination 
with ecofloristic zones (36). 
 
As input data we used: 
➢ Land cover from the EU-Copernicus Global Land Cover 2000 Project (GLC 2000) with 23 classes at 

an original 0.008929° resolution: resampled to an exact 0.008333° grid. 
https://forobs.jrc.ec.europa.eu/products/glc2000/products.php  

➢ Ecofloristic zones from CDIAC (https://cdiac.ess-
dive.lbl.gov/epubs/ndp/global_carbon/carbon_documentation.html) 

➢ Carbon stocks per land cover class per ecofloristic zone via CDIAC [IPCC Tier 1; (36); 
https://cdiac.ess-dive.lbl.gov/epubs/ndp/global_carbon/carbon_tables.pdf]. We only used above 
ground stored carbon values. In the model carbon stocks for the other layers, below ground, soil 
and dead material were set to 0. 

 
This simulated above ground carbon in tonnes hectare-1 fully overlaps with the predictions from ARIES, 
performed with identical input data. To enhance the carbon stock estimate, the predicted values in 
forest ecosystems (IPCC Tier 1 categories 1:10 & 17) were multiplied with MODIS Vegetation 
Continuous Fields percent tree cover [MOD44B v6; (62)] providing a finer scaled map of potential 
carbon within forest ecosystems. 
 

Z used FAO Rain days 

 Minimum Maximum 

3 0 35 
10 >35 65 
15 >65 90 
21 >90 115 
26 >115 140 
30 >140 160 
34 >160 180 
39 >189 205 
44 >205 235 
55 >235 311 

https://data.apps.fao.org/map/catalog/srv/api/records/970b35af-c507-480b-b62b-818ddec19783
https://forobs.jrc.ec.europa.eu/products/glc2000/products.php
https://cdiac.ess-dive.lbl.gov/epubs/ndp/global_carbon/carbon_documentation.html
https://cdiac.ess-dive.lbl.gov/epubs/ndp/global_carbon/carbon_documentation.html
https://cdiac.ess-dive.lbl.gov/epubs/ndp/global_carbon/carbon_tables.pdf
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InVEST Recreation module 
The InVEST recreation model predicts the spread of person-days of recreation. In the absence of 
empirical data on visitation, the model uses a proxy for visitation (geotagged photographs posted to 
the website flickr; see online user guide), which are automatically drawn while running the module. 
The module was run on a global 5° fishnet of land containing cells at a 0.0083333° resolution of square 
cells –  i.e., the areas looped over are 5° squared polygons, rasterised to 0.083333° cells. The period 
chosen was 2016-2017 to keep within a manageable server usage time. The global area included all 
land area up to 60° North, supplemented by all of Iceland and Scandinavia. These approximately 750 
individual 5° outputs were joined into one global map. 
 
SI-1-2. TEEB: benefit transfer following (38)  
 
Costanza et al. (38) provide estimates of the monetary value of global ES based on data from the TEEB 
study using benefits transfer (63). Benefit transfer estimates the value/quantity of ecosystem services 
using an aggregate total by assigning a constant unit value per area of ecosystem type. The assigned 
values are derived at the global-scale in which forest ecosystems are split into tropical and 
temperate/boreal regions.  
 
Following (8), we associated the 23 GlobCover 2009 land cover classes at an original 0.008929° 
resolution (due.esrin.esa.int/files/p68/-GLOBCOVER2009) with benefit values (38) (Table S3). We 
matched the cover categories with the reported ecosystem values from 2011 (measured in 2007 US$ 
ha-1 yr-1) following Table S4. In addition, based on Ecofloristic zones from CDIAC (https://cdiac.ess-
dive.lbl.gov/epubs/ndp/global_carbon/carbon_documentation.html), we split all wooded zones in 
Tropical and Temperate to match the distinction from (38), as well as added an in-between subtropical 
category assumed to be the average among both (not in Table S4 for length reasons, but in all cases 
calculated as [0.5 x Tropical + 0.5 x Temperate]). We resampled resulting grids to an exact 0.0083333° 
resolution. 
 
Table S3. Associations of benefit categories of (38) with ES services used in this study 

Ecosystems in this work Value category of Costanza et al. (38) 

Water supply  Water Supply 

Recreation Recreation 

AG carbon Climate Regulation 

Fuelwood Raw Materials 

Forage production Climate Regulation with a forage production mask (SI-3) 

 
 
.

http://due.esrin.esa.int/files/p68/GLOBCOVER2009_Product_Description_Manual_1.0.pdf
https://cdiac.ess-dive.lbl.gov/epubs/ndp/global_carbon/carbon_documentation.html
https://cdiac.ess-dive.lbl.gov/epubs/ndp/global_carbon/carbon_documentation.html
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Table S4. Translation factors of GlobCover Land cover classes to $-value following (38).  
 

Class 
GlobCover Description 
(shortened) 

Land cover categories from Costanza et al. (38) & calculation Region Climate Regulation Water Supply Raw Materials Recrea- tion 

11 Post-flooding or irrigated croplands  Cropland  410.7 400 219.2 82.2 
14 Rainfed croplands  Cropland  410.7 400 219.2 82.2 
20a 

Cropland grassland & forest mosaic  
(0.65 x Cropland) +  
(0.35 x (Forest + Grassland) /2) 

Tropical 611.1 255.2 155.7 205.6 
20b Temperate 280 283.9 172.6 226.9 
30a 

Grassland, forest & cropland mosaic  
(0.35 x Cropland) +  
(0.65 x (Forest + Grassland)/2) 

Tropical 769 166.1 118 296.7 
30b Temperate 201.4 215.3 147.2 333.3 
40a Closed to open broadleaved evergreen and/or 

semi-deciduous forest 
Tropical Forest Tropical 2044 27 84 867 

40b Temperate Forest Temperate 152 191 181 989 
50a 

Closed broadleaved deciduous forest 
Tropical Forest Tropical 2044 27 84 867 

50b Temperate Forest Temperate 152 191 181 989 
60a 

Open broadleaved deciduous forest 
Tropical Forest Tropical 2044 27 84 867 

60b Temperate Forest Temperate 152 191 181 989 
70a 

Closed needle-leaved evergreen forest  
Tropical Forest Tropical 2044 27 84 867 

70b Temperate Forest Temperate 152 191 181 989 
90a 

Open needle-leaved deciduous or evergreen forest 
Tropical Forest Tropical 2044 27 84 867 

90b Temperate Forest Temperate 152 191 181 989 
100a Closed to open mixed broadleaved and needle-

leaved forest  
Tropical Forest Tropical 2044 27 84 867 

100b Temperate Forest Temperate 152 191 181 989 
110a 

Mosaic forest, shrubland & grassland 0.65 x Forest + 0.35 x Grassland 
Tropical 1240.4 37.2 69.3 529.3 

110b Temperate 105.2 135.6 127.5 602.5 
120a 

Mosaic grassland, forest & shrubland  0.65 x Grassland + 0.35 x Forest 
Tropical 739.4 45.5 61.8 319.1 

120b Temperate 77.2 102.9 95.8 361.8 
130a 

Closed to open shrubland assumed 6% of Tropical value 
Tropical 122.6 1.62 5.04 52.0 

130b Temperate 9.12 11.5 10.9 59.3 
140 Closed to open grassland  Grassland  40 60 54 26 
150 Sparse vegetation n/a  0 0 0 0 

160 
Closed broadleaved forest regularly flooded, fresh 
water 

Swamps/Floodplains 
 

65 1217 358 2193 

170 Closed forest regularly flooded, saline water  Tidal Marsh/Mangroves  488 408 539 2211 

180 
Closed to open grassland or shrubland or woody on 
regularly flooded  

Swamps/Floodplains 
 

65 1217 358 2193 

190 Artificial surfaces and associated areas  Urban  904.7 0 0 5740 
200 Bare areas n/a  0 0 0 0 
210 Water bodies Lakes/Rivers  0 1808 0 2166 
220 Permanent Snow and Ice Ice/Rock  0 0 0 0 
230 No data n/a  0 0 0 0 
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SI-1-3. Photosynthetic capacity extended Scholes model 
 
The Scholes model (8, 39) to estimate grazing density is a carrying capacity model, which calculates the 
service of forage production potential. As an intermediate product, the model calculates a water 
supply layer as number of growth days (GD below), which we use as one of our water supply models. 
Below, we summarise the model and our extension to make it a global model. 
 
This model output is intended to show land areas in terms of their forage production potential and not 
necessarily as a guide to economically viable grazing capacities (8, 39). It is based on the potential of 
the vegetation to feed animals locally and does not include any transport of resources to other areas. 
The model was developed for South Africa by (39) and has been re-interpreted in (8). We refer to the 
full model description of (8). Here, we extend the model by adding photosynthetic possibility by 
including relative monthly solar radiation. 
 
The Scholes model used in this study follows the re-interpretation of (8), necessary due to some lack 
of clarity in the original model description (39). In this interpretation the model is a hierarchical 
correction model per gridcell of the potential Livestock Units (LSU) in a gridcell: 
 

𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐿𝑆𝑈 = 𝛼 {𝐷𝑥 (𝐶𝑥 {(𝐴𝑥 (𝑙𝑜𝑔10 (𝐺𝐷𝑥
𝑬𝒙𝒕𝒆𝒏𝒅𝒆𝒅 ×

1

𝛽
))) − 𝐵𝑥})}  Eqn. S2 

With α a scaling parameter (set to 1), β = 0.24, x = a gridcell, Ax, Bx soil fertility parameters per 
gridcell, Cx slope parameter per cell, Dx land cover parameter per cell, GDx growth days (Eqn. 
S3). Extended denotes the proxy of photosynthetically active radiation. 
 

1. The first innermost level (𝑙𝑜𝑔10 (𝐺𝐷𝑥
𝑬𝒙𝒕𝒆𝒏𝒅𝒆𝒅 ×

1

𝛽
)) describes the intrinsic maximum forage 

potential capacity for a given climate, estimated by the annual number of days that rainfall exceeds 
evapotranspiration. This term is described as ‘Growth Days’ and is the Scholes water supply model 
in this study.  
 
The principal control on rangeland forage production is the soil water balance. The productivity of 
grasses, shrubs and trees is strongly correlated with the quantity of water, which they transpire 
relative to the quantity which they could potentially transpire if the soil moisture supply was 
unlimited. This is calculated as the number of annual days rainfall exceeds evapotranspiration and 
is used as water supply model in this work. 
 
The annual number of days rainfall exceeds evapotranspiration was calculated in monthly bins, this 
calculation is used as Scholes water supply model: 

𝐺𝐷𝑥 =  ∑ (
𝑑𝑚∗𝑃(𝑚,𝑥)

𝐸(𝑚,𝑥)
)12

𝑚=1        Eqn. S3 

With P = precipitation in gridcell x in month m; E = potential evapotranspiration in gridcell x in 
month m; m = month (1 to 12), x = 1 km2 gridcell and d = number of days per month. 

 
We used the follow source data: 
➢ Monthly precipitation using WorldClim version 2.1. on a 0.008333° resolution 

(worldclim.org/worldclim21.html).  
➢ Monthly potential global potential Evapotranspiration in mm from CGIAR-CSI Global Aridity 

index v2 on a 0.008333° resolution (cgiarcsi.community/2019arity).  
 
The original model is focused on South Africa, developed at Stellenbosch (South Africa, at -33.93 
South, 18.86 East), assuming a default photosynthetic period and solar quantity. To extend this 

https://www.worldclim.org/data/worldclim21.html
https://cgiarcsi.community/2019/01/24/-global-aridity-index-and-potential-evapotranspiration-climate-database-v2/
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model to a global scale, this assumption needs to be altered. To do so, we added a further 
correction element to the main equation based on relative solar radiation quantity in monthly 
summed watts hour-1 m-2 as proxy of photosynthetically active radiation.  
 
We used the SRTM 90m Digital Elevation Database v4.1. as source data, resampled to a 0.008333° 
resolution based on the mean elevation. From this DEM, we calculated the monthly solar sum per 
gridcell (Solx) using the ArcGIS area solar radiation tool, which was made relative to the annual solar 
estimate in Stellenbosch.  
 

Following GD was corrected as: 𝐺𝐷(𝑚,𝑥)
𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = (𝐺𝐷𝑥 × (

𝑆𝑜𝑙𝑥

𝑆𝑜𝑙𝑆
)) × 𝜏    Eqn. S4 

With Solx, the monthly solar total for gridcell x, GD(m,x) = (
𝑑𝑚∗𝑃(𝑚,𝑥)

𝐸(𝑚,𝑥)
), see above, SolS equals the 

monthly total at Stellenbosch (i.e., this makes it relative to the original location). τ is the 
Stellenbosch correction factor which is the ratio of annual summed solar radiation at Stellenbosch 
compared to the annual maximum globally: τ equals 1.278. 
 

2. The second level (donated with {} brackets) calculates the intrinsic forage production capacity 
corrected for soil conditions [A & B; see (8) for explanation and tables]. Soil type data used followed 
the FAO references soil groups (RSGs) of the Harmonized World Soil Database v1.2 
(webarchive.iiasa.ac.at/HWSD) with fertility assessment in three categories; high-medium-low) 
following FAO descriptions (fao.org/3/a-a0510e.pdf and fao.org/fileadmin/-
pdf_documents/wrb2007_red.pdf). 
 

3. The third level provides a correction for slope (C). Note that, being a correction model, C equals 1 
in conditions not limited by slope. It is estimated no domesticated grazing animals are present 
above 35° degrees slopes (≈ 70%). The slope correction was calculated as:  

𝐼𝑓 {

𝑆𝑥 ≤ 4°: 𝐶𝑥 = 1           

𝑆𝑥 > 4°& ≤ 35°: 𝐶𝑥 = (−𝛾 × 𝑆𝑥) + 𝜃 
𝑆𝑥 > 35°: 𝐶𝑥 = 0          

      Eqn.S5 

With Sx is slope in degrees, γ = 0.0323 and θ = 1.129. 
The slope was calculated using ArcGIS Surface-slope tool based on the SRTM 90m Digital Elevation 
Database v4.1, resampled to 250 meters (cgiarcsi.community/data/srtm-90m). Subsequently the 
resulting C-factor was averaged to an exact 0.0083333° resolution. 

 
4. The fourth level provides a correction for land cover (D, again with {} brackets). Land cover has a 

large effect on the potential forage production; if covered with other vegetation types 
proportionally less forage production potential is present (39). For this correction layer we used 
MODIS MCD12Q1 v5.1. land cover in 17 classes (53), resampled based on dominance to a 0.008333° 
resolution. Since the original calculation in (39) was done on South African land cover maps, (8) 
made an interpretation for which Scholes class was most applicable per MODIS cover class, which 
we extended to non-binary here (see Table S6). Note that being a correction model, D equals 1 in 
default non-improved grass- and herblands. 
 

5. For the parameters, α equals 1 . β is the transformation coefficient [page 6 in (39)] from number of 
growth days to mean annual precipitation, and is set to 0.24. Note that β was not included in our 
calculation of growth days as water supply model (Eqn. S3). 

  

http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/HWSD_Data.html?sb=4
http://www.fao.org/3/a-a0510e.pdf
http://www.fao.org/fileadmin/templates/nr/images/resources/pdf_documents/wrb2007_red.pdf
http://www.fao.org/fileadmin/templates/nr/images/resources/pdf_documents/wrb2007_red.pdf
https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/
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SI-1-4. Recreation and additional post-processing for ARIES and Co$ting Nature  
Recreation is an ensemble with multiple different modelling methods. Two approaches are based on 
observations (Photo uploads: InVEST and Co$ting Nature), two approaches are based on human 
population movement through gravity functions (ARIES and Chaplin-Kramer), a third approach is the 
benefit transfer approach following TEEB.  
 
All approaches predict recreational pressure, so are comparable, but contain a whole different set of 
assumptions, units and resulting output. Photo approaches are heavily biased to Europe, North 
America, and very localized inbound tourism hotspots, showing observed (proven) recreation 
potential. However, photo approaches largely fail to capture domestic recreation in most of the 
developing world, where photo uploads are less common. In addition, radiating gravity functions 
provide potential values for domestic tourism, assuming equal tourism opportunities and quality of 
infrastructure throughout (although this is partly corrected for in ARIES; see below). Benefit transfer 
approaches (i.e. TEEB) share a similar assumption (i.e. no variation with each land cover). Combining 
models with different assumptions, and therefore biases, likely maximises the portfolio effect (see 
Discussion). For example, the photo approaches strongly complement the population based gravity 
functions of potential recreational value; e.g. tourism in national parks in countries such as Kenya, 
Tanzania and South Africa are visible within the ensemble maps (Figure S7) to a much higher degree 
than would be expected if calculated from population density alone. This is also apparent in Europe, 
where next to cities, mountain ranges highlight as top recreational spots (Figure S8).  
 
Note: The photo approach may be biased in urban areas (i.e. where the number of photos which have 
been taken in those regions may not indicate the number of people that are recreating in the open 
landscape enjoying the nature). We opted not to mask out urban settlements as by making the full 
coverage maps available, we provide the opportunity to the user to mask any area based on the 
research questions asked. 
 
However, we call for the development additional recreation models. Because only five recreation 
models were available, the median ensemble shows sudden spatial transitions – e.g. estimates driven 
by continuous gravity models shifting to being more influenced by photo approaches in areas with low 
population densities (most apparent in South-America at the edge of the Amazon basin, Figure S8). 
 
Co$ting Nature postprocessing 
Co$ting Nature was run in 10°-tiles that are each individually normalised by the framework. This 
implies that each tile contains the maximum value of 1 and all other gridcells are relative to that, 
independent of values in other tiles. Therefore tiles cannot be put together in a simple mosaic, but 
need recalibration to a common source that scales among tiles. For example, a Co$ting Nature carbon 
value of 1 in a certain tile might correspond to 50 tonnes, whereas in the neighbouring tile the value 
of 1 could correspond to 100 tonnes. In this two tile example, the first needs to be rescaled to 0.5 
before the tiles can be combined. 
 
We used normalised global-scale outputs from other models as comparators for rescaling Co$ting 
Nature. Creating a ArcGIS fishnet of 10°-tiles, the single maximum value within the tile location was 
taken from the comparator model output. Subsequently, this single value was multiplied with all 
Co$ting Nature values within the tile. For example, if the maximum of the comparison model for a 
certain 10°-tile was 0.76, all values of Co$ting Nature for that certain tile would be multiplied by 0.76. 
This would not alter the relative rankings of Co$ting Nature within tiles, but rescales all tiles to a 
common global source. By using a single maximum value per tile of the comparator model output, 
some roughness at edges is unavoidable but the additional spatial autocorrelation between these 
model outputs remains as limited as possible. To remove outliers, the comparators were normalised 
with a one-sided 95% winsorising protocol following (20) prior the fishnet procedure. 
 



SI to Model Ensembles of Ecosystem Services Fill Global Certainty and Capacity Gaps  
 

8 
 

In detail per service: 

• Co$ting Nature water supply is not rescaled, as the model output is in physical units (m3) of 
run-off per gridcell (i.e. not accumulated flow). 

• Co$ting Nature carbon was rescaled per 10°-tile against the globally normalised maximum 
value of a mean 4-way ensemble of the outputs of InVEST, ARIES, Global Forest Watch and 
Conservation International (Table 2). These models each provide full coverage of either 
biomass or carbon – which are identical in normalised form – at similar scales and without land 
cover masks applied for non-forest areas. 

• Co$ting Nature recreation was set as the sum of culture-based tourism and nature-based 
tourism photo index values (both ranged 0-1). These two Co$ting Nature outputs are generally 
mutually exclusive per grid cell. The few values above 1 were trimmed. Thereafter, the 
resulting combined output was rescaled per 10°-tile against the globally normalised maximum 
value of the InVEST recreation output, being a similar photo approach. 

• Co$ting nature fuelwood was rescaled per 10°-tile against the globally normalised maximum 
value of a mean 3-way ensemble of the outputs of InVEST, ARIES, and Conservation 
International (Table 2), all after woody mask appliance. These models each provide full 
coverage at similar scales. 

• Co$ting nature fodder production was rescaled per 10°-tile against the globally normalised 
maximum value of Gilbert et al. (43) (Table 2), which is providing Livestock Units. 

Since we use the in-built input data for Co$ting Nature, we minimised the time span of the independent 
model runs to reduce the likelihood of input updates. The majority (190) of Co$ting Nature tiles were 
downloaded between 7th December 2020 and 29th January 2021, with 6 tile replacements of 
compromised zipped files downloaded on 2nd February 2021. As first assessment of feasibility, 10 
European tiles were downloaded on 9th and 10th November 2020. The (paid) license provides access to 
all policysupport.org systems (Co$tingNature, WaterWorld) for application anywhere globally at 1km 
or 1ha spatial resolution. Our approach ensures that practitioners with resources to obtain the same 
license can replicate our methods. 
 
ARIES recreation 
For ARIES recreation, the access to nature predictions were run on a per country basis, with predictions 
indicating numbers of people normalised within countries –i.e., all ranged from 0-1 within countries. 
Assuming that the value of recreation is proportional to the wealth of countries, we multiplied with 
GDP per head per country [GDP per head  x modelled value]. Which, after subsequent global 
normalisation (see below), provides a worldwide scaling of these per country values.  
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SI-2. Converting grazing animals numbers to LSUs 
 
For gridded livestock predictions (43) we combined available livestock classes – buffalos, cattle, 
chickens, ducks, horses, goats, pigs & sheep – by converting their numbers per gridcell to FAO livestock 
units (LSU) following (64), split into tropical and non-tropical categories. This method is based on 
potential grazing biomass per animal compared to a fully-grown cow. Subsequently the LSU’s were 
summed per gridcell. A list of conversion factors per livestock type is provided in Table S5. 
 
Table S5. Livestock numbers to LSU Units 
conversion factors 

Livestock Type Tropical Non-Tropical 

Cattle 0.7† 1‡ 

Horses  0.8† 1‡ 

Sheep 0.1† 0.08‡ 

Buffalos 0.7‡ 

Chickens 0.01† 

Ducks 0.01§ 

Goats 0.1†,‡ 

Pigs 0.2†,¶ 

†FAO (2011;2018); ‡Chesterton (2006); § assumed as 
Chickens; ¶Nix (2009); 
 
 

SI-3. Forage production and fuelwood masks for standing carbon 
 
Models that predict potential fuelwood or forage production are rare; Co$ting Nature being a notable 
exception by independently calculating both. Thus, following and extending (8), we built predictors 
using the outputs from applicable carbon models, with the requirement that they cover all ecosystems 
and not only forest, including mixed vegetation categories (Table S6). The rationale is that the supply 
of these two ES are directly dependent on the amount of biomass present, which is also what 
underpins estimates of stored vegetation carbon. We did so by using MODIS-based land cover 
[MCD12Q1 v 5.1.; (53)] masks for grassland vegetation for seven out of the 12 employed forage 
production models (see Table 2 main text) and woodland vegetation for seven out of nine fuelwood 
models. Due to the subsequent normalisation (see main text), there is no requirement to use any 
transition factors, since any constant will drop out with normalisation [such the 12.7% factor following 
(65)]. 
 

• For forage production, we applied a spatial mask to derive predominantly grassland carbon from 
standing carbon outputs. We excluded areas in which little to no forage production was expected 
(0 values in Table S6) and included areas in which most of the above-ground carbon is assumed to 
be available for forage production (positive values in Table S6). The resulting carbon layer was 
considered as available for forage production, equivalent to the layer of LPJ-GUESS’s C3 and C4 
grasses combined. In contrast to (8) we did not use a binary system but employed the Scholes 
grazing model land cover correction factors, correcting for areas in which less vegetation is present 
[see (8)].  

• For fuelwood we used a spatial mask to derive woody carbon from standing carbon outputs in land 
cover categories that have a substantial amount of woody vegetation (Table S6). Therefore, this 
mask includes forest areas and closed shrublands. In tropical areas, we assumed that open 
shrublands and woody savannas could be used for fuelwood collection but with reduced per area 
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factors compared to forest land cover, correcting for less woody vegetation present. For this we 
split the MODIS raster with the IPCC carbon zones (36), distinguishing between tropical carbon 
versus not tropical category zones. Similarly, we have included the Cropland/Natural Vegetation 
Mosaic with a partial per area ratio. 
 

Table S6. Spatial mask with product factor for land cover MODIS categories [MCD12Q1 v 
5.1.; (53)]. Calculation followed per gridcell as: [cell value x factor], subsequently cells with 
factor 0 below were set to no-data to exclude untrue zeros when averaging across a 
validation polygon. 

 

†Assumed factors; ‡calculated as [1-grazing factor]; §assumed to be generally absent. 

MODIS (v 5.1.) Land cover class Scholes correction 
factor for forage 

Woody vegetation factor 
for fuelwood 

  Tropical Not Tropical 

Water 0 0 0 

Evergreen Needle leaf Forest 0 1 1 

Evergreen Broadleaf Forest 0 1 1 

Deciduous Needle leaf Forest 0 1 1 

Deciduous Broadleaf Forest 0 1 1 

Mixed Forests 0 1 1 

Closed Shrublands 1 1† 1† 

Open Shrublands 1 0.5† 0§ 

Woody Savannas 0.6 0.4‡ 0§ 

Savannas 1 0 0 

Grasslands 1 0 0 

Permanent Wetland 0 0 0 

Croplands 0 0 0 

Urban and Built Up 0 0 0 

Cropland/Natural Vegetation Mosaic 0.5 0.5‡ 0.5‡ 

Snow and Ice 0 0 0 

Barren or Sparsely Vegetated 0.3 0 0 
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SI-4. Maps of validation data 
 

 
Figure S1. The watersheds generated for this study, being characterised by the location of GRDC weirs (N = 3746). The GRDC data (water flow in mean m3 sec-

1) within each watershed provides validation data for water supply models. Partial overlap of watersheds is dealt with both at the point of output extractions 
and statistically through spatial autocorrelation correction. 
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Figure S2. Depiction of which ecosystem service validation data are available per country and are included in the validation analyses (N with at least one 

service = 218). This uses WTCC Country sheets for recreation (2019 data, N = 178) and FAOStat, Fuelwood per country (2019 data, N= 195) and forage 
production per country (2018 data, N = 208). The map includes separate polygons for overseas territories. Countries are based on the GAUL-2 2014 
definition. In cases where an overseas territories is represented separately in one of the validation data sets it was extracted as separate data point. We 
refer to all as ‘countries’, although we are aware not all have that status. 
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Figure S3. Location of the validation plots for pan-tropical biomass in forest plots belonging to the reference data of (28) (N = 14,478) and the centroids from 

carbon estimates in UK forest estates taken from (20) (N = 1,606), which are combined in this paper. Inset enlargements are added to indicate densities. 
Statistical calculations include spatial autocorrelation to remove the effects of the clustered data. 
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SI-5. Extended Results 
 

 
 

Figure S4. Standard error of the mean (SEM) of individual models correlates with deviance of the median ensemble from validation data (P<0.001). This is 
consistent across AG carbon (R2 for single service: 0.28; P <0.001; grey); fuelwood (0.18; P <0.001; yellow), forage production (0.13; P <0.001; green), recreation 
(0.20; ; P <0.001; red), and water (0.06; P <0.05; blue) ecosystem services. 
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Table S7. Two-tailed correlations as F-values with (effect size) and significance of inverse of deviance per validation datapoint – where increasing 
accuracy is represented by increasing inverse of the deviance. This analyses extends Table 2 (main text), testing for potential changed accuracy of 
the ensembles against characteristics indicating the research capability of countries for five services. Accuracy improvement is the mean of pairwise 
comparisons for 1000 bootstraps. We use a standardised maximum DF of 178 among services following a bootstrap convergence model where as 
many bootstrap are taken until mean SS for all factors among runs becomes fixed. Significance of the presented F-values were assessed taking 
account of multiple tests, using Hochberg’s step-up correction with 8 tests per ES, which are interdependent because of sharing the same spatial 
autocorrelation term, all DF = 1.  Characteristics are calculated independently as [Y ~ Spatial Autocorrelation + Characteristic + error], with Spatial 
Autocorrelation to a maximum of 5° between country centroids. An interaction model is added testing for interactions between GDP and income 
equality as [Y ~ Spatial Autocorrelation + GDP per capita + income equality + Interaction + error] with type III Sum of Squares. Water supply is per 
bespoke watershed, recreation, fuelwood and forage production per country.  
 

 
Water Supply Recreation AG Carbon 

Fuelwood 
Production 

Forage 
Production 

Accuracy Improvement (deviance) 
Ensemble vs. a random selected model (median among 
models 

14% 6.1% 6.1% 3.4% 2.7% 

Spatial Autocorrelation 15.3*** 14.6*** 211*** 0.47 0.14 

Development/Equality per country    

 GDP per capita  1.38 (0.01) 34.2 (-0.09)*** 1.21 (≈0) 3.58 (0.05) 0.24 (≈0) 

 Human Development Index 1.51 (0.04) 32.2 (-0.30)*** 1.14 (≈0) 6.43 (0.26)* 0.25 (0.03) 

 Income Equality (Gini index) 1.01 (-0.03) 6.69 (0.26)* 1.37 (0.02) 10.6 (-0.64)* 0.28 (-0.06) 

 % People in R & D 1.44 (0.05) 22.0 (-0.52)*** 1.09 (-0.01) 4.85 (0.49) 1.49 (-0.22) 

 % GDP to R & D 1.54 (-0.04) 9.77 (-0.57)** 1.10 (-0.02) 3.79 (0.72) 0.55 (-0.20) 

Interaction model      

  GDP per capita  1.76 (0.12) 0.96 (-0.16) 1.04 (-0.01) 0.11 (-0.04) 2.71 (-0.40) 

  Income Equality 1.67 (0.69) 0.22 (-0.48) 1.03 (-0.07) 0.42 (-1.06) 2.77 (-2.55) 

  GDP x Income Equality 1.67 0.34 1.04 0.16 2.67 
 * P < 0.05 corrected, ** P <0.01 corrected *** P <0.001 corrected   
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Table S8. One-tailed correlations as F-values with (effect size) and significance of inverse of the relative ranking difference per validation datapoint 

(𝜌(𝑥)
↓ ) ; the input to Spearman ρ). One-tailed tests were applied to test the hypothesis that the accuracy increases with higher values of  each 

development/equality metric (two-tailed is presented in Table S9, including effect sizes). Whereas overall Spearman ρ is calculated using the Matlab 
standard function corr, the per validation point inverse of the ranking difference was calculated manually. This was done as:  

𝜌(𝑥)
↓ = 1 − (

𝜌(𝑥)

𝑚𝑎𝑥(𝜌)
) , 𝑤𝑖𝑡ℎ 𝜌(𝑥) = (

|𝑅𝑎𝑛𝑘𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑜𝑟−𝑅𝑎𝑛𝑘𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒|

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒
) , Rank the sorted ranks of the validator and ensemble of the selected 

data point x. Expected difference under a random correlation equals a 
𝑛

3
 ranking difference.  𝜌(𝑥)

↓ , thus includes normalisation against the maximum 

value among all points. See Table S7 for further statistical details. 
 

 
Water Supply Recreation AG Carbon 

Fuelwood 
Production 

Forage 
Production 

Accuracy Improvement (ρ) 
Ensemble vs. a random selected model (median 
among models 

51% 37% 29% 1.2% 22% 

Spatial Autocorrelation† 11.5*** 1.87 131*** 10.2** 8.17** 

Development/Equality per country     

 GDP per capita  1.06 0.67 0.91 6.08 0.51 

 Human Development Index 1.19 0.62 0.79 11.2** 1.11 

 Income Equality (Gini index) 1.11 <0.01 1.48 <0.01 <0.01 

 % People in R & D 0.14 0.90 1.22 3.67 0.17 

 % GDP to R & D 0.07 1.20 1.24 3.39 0.16 

Interaction model      

  GDP per capita 0.07 0.01 0.64 0.14 <0.01 

  Income Equality 0.08 0.02 0.62 1.20 <0.01 

  GDP x Income Equality 1.52 2.44 0.31 0.08 8.48* (+) 
 †Two sided tested; * P < 0.05 corrected, ** P< 0.01 corrected; *** P <0.001 corrected.  
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Table S9. Two-tailed correlations as F-values with (effect size) and significance of inverse of the relative ranking difference per validation datapoint (𝜌(𝑥)
↓ ), 

testing for potential changed accuracy of the ensembles against characteristics indicating development & equality of countries for five services. See Table S7 
for statistical details and SI-5-2 for ranking difference calculations. 
 

 
Water Supply Recreation AG Carbon 

Fuelwood 
Production 

Forage 
Production 

Accuracy Improvement (ρ) 
Ensemble vs. a random selected model (median 
among models 

51% 37% 29% 1.2% 22% 

Spatial Autocorrelation 11.5*** 1.87 131*** 10.2** 8.17** 

Development/Equality per country     

 GDP per capita 1.06 (≈0) 0.3 (-0.01) 0.91 (0.01) 6.08 (0.08)* 0.51 (0.02) 

 Human Development Index 1.19 (0.01) 0.33 (-0.05) 0.79 (0.02) 11.2 (0.38)** 1.11 (0.1) 

 Income Equality (Gini index) 1.11 (0.06) <0.01 (≈0) 1.48 (0.03) 6.26 (-0.55)* 5.88 (-0.51)* 

 % People in R & D 1.1 (-0.03) 0.2 (-0.08) 1.22 (0.02) 3.67 (0.47) 0.17 (0.01) 

 % GDP to R & D 1.61 (-0.10) 0.12 (-0.10) 1.24 (0.03) 3.39 (0.77) 0.16 (0.03) 

Interaction model      

  GDP per capita 1.55 (-0.06) 0.01 (0.03) 0.64 (0.05) 0.14 (0.08) 8.35 (-0.94)* 

  Income Equality 1.5 (-0.39) 0.02 (0.22) 0.62 (0.30) 0.12 (-0.41) 9.81 (-6.35)* 

  GDP x Income Equality 1.52 0.02 0.65 0.08 8.48* 
 * P < 0.05 corrected, ** P< 0.01 corrected; *** P <0.001 corrected 
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SI-6. Example case study regions 

 
Figure S5. Example case studies for (A) South-Asia (scale 1:18.75M) and (B) Sub-Saharan Africa (1:30M) 
for water. Water is shown as accumulated flow estimate per catchment following the global 
HydroSHEDS catchments definition (54).  True zero values (coloured) are distinguished from no-data 
(white). 
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Figure S6. Example case studies for (A) Latin America (scale 1:30M) and (B) Europe (1:20M) for water. 
Water is shown as accumulated flow estimate per catchment following the global HydroSHEDS 
catchments definition (54). True zero values (coloured) are distinguished from no-data (white). 
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Figure S7. Example case studies for (A) South-Asia (scale 1:12M) and (B) Sub-Saharan Africa (1:25M) 
for recreation. True zero values (coloured) are distinguished from no-data (white). 
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Figure S8. Example case studies for (A) Latin America (scale 1:16M) and (B) Europe (1:13M) for 
recreation. True zero values (coloured) are distinguished from no-data (white). 
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Figure S9. Example case studies for (A) South-Asia (scale 1:12M) and (B) Sub-Saharan Africa (1:25M) 
for above ground carbon. True zero values (coloured) are distinguished from no-data (white). 
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Figure S10. Example case studies for (A) Latin America (scale 1:16M) and (B) Europe (1:13M) for above 
ground carbon. True zero values (coloured) are distinguished from no-data (white). 



SI to Model Ensembles of Ecosystem Services Fill Global Certainty and Capacity Gaps  
 

24 
 

 
Figure S11. Example case studies for (A) South-Asia (scale 1:12M) and (B) Sub-Saharan Africa (1:25M) 
for fuelwood production. True zero values (coloured) are distinguished from no-data (white). 
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Figure S12. Example case studies for (A) Latin America (scale 1:16M) and (B) Europe (1:13M) for 
fuelwood production. True zero values (coloured) are distinguished from no-data (white). 
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Figure S13. Example case studies for (A) South-Asia (scale 1:12M) and (B) Sub-Saharan Africa (1:25M) 
for forage production. True zero values (coloured) are distinguished from no-data (white). 
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Figure S14. Example case studies for (A) Latin America (scale 1:16M) and (B) Europe (1:13M) for forage 
production. True zero values (coloured) are distinguished from no-data (white). 
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SI-7. Results with other ensemble approaches 
 
In the main text we employ the median ensemble, for which the median value per cell or catchment 
polygon was used. Hooftman et al. (20) explored a wider variety of ensemble approaches, simulating 
alternative situations where reliable validation data are either present or lacking. Here we show the 
mean ensemble – i.e., taking the mean value per cell or catchment polygon. Generally the median 
ensemble shows a higher accuracy compared to the mean ensemble, which is more sensitive to outlier 
values (13, 20). Furthermore, we show a selection of weighted approaches in which per cell the 
different models have a different product factor (see below). The weighted ensembles differ in how 
the weights are calculated. Two of the approaches shown are deterministic, which means that the 
result is an inherent property of the data set – i.e. the statistical outcome is identical given the same 
data set. Two approaches are iterative, which means that parameter space is step-wise systematically 
explored improving the maximum log-likelihood until `convergence is reached – i.e. no better solution 
is found. With iterative approaches, theoretically, different outcomes would be possible by redoing 
the calculation, however, the tools used are such that differences would be minimal. Both these 
deterministic and iterative approaches are based on searching for maximum consensus across input 
models. We also included an approach in which in which we penalised model outputs that are 
generated at coarser spatial resolutions (grain). See (20) for discussion of all approaches.  
 
Weighted approaches often generate a good and reliable accuracy, with the disadvantage that they 
are more computationally intensive and are therefore not used in the main text. Weights in all cases 

were normalised to sum to 1 as (
𝜔𝑖

∑ 𝜔𝑖
𝑛
𝑖

), with weights ωi for model i and n the total number of models 

per service. Due to bootstrapping among data-points, the resulting accuracy was different among runs, 
generating means and standard deviations. 
 
Weighted approaches have the general form:  

   𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒(𝑥) = ∑ (
𝜔𝑖

∑ 𝜔𝑖
𝑛
𝑖

× 𝑌𝑖)𝑛
𝑖

(𝑥)
        

with positive weights ωi for model i for cell/polygon x, weights ωi are normalised to sum to 1, Y 
the modelled values for i per cell/polygon, and n the total number of models per service.  

 
Approaches to determine weights that are used here: 

1) PCA as the consensus axis is a deterministic consensus approach. Principal components were 
calculated using the Matlab princomp-tool, the weights per model i outputted to the equation 
above were the loadings to the first – main – PCA axis. So models with the better correlation 
to the consensus axis are assigned higher weights.  

2) The correlation coefficient method is our second deterministic consensus approach. Here we 
calculated the full [model × model] correlation matrix using the corrcoef-tool. The weight per 
model was the mean correlation of that individual model with all other models, not including 
itself. Hence, the higher general correlation to the other models, the more weight a model has. 
This technique was developed to have a second deterministic approach using a consensus axis 
different than the PCA and can be seen as further way to minimise variance among models. 

3) Regression to the median is our first iterative approach using log-likelihood regression (32). 
Using multivariate regression we assess weights such that the summed results maximises the 
explanation of an comparator. The resulting regression coefficients are used as weights and 
entered in the equation above. In this case the comparator is the median ensemble, asking 
which contribution of models would be most closely result to the median. The regression 
contains no constant, hence it can be represented as: [Eii ~ ω1Y1 + ω2Y2 …. + ωnYn]. Multi-variate 
regression to the median was done using the nlmefit-tool, maximising log-likelihood with 200 
iterations: repeating the regression 200 times), an output tolerance of 1.0000e-4 and naïve 
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priors (all 𝜔𝑖  =
1

𝑛
 at the start). 

4) Leave-one-out cross-validation is our second iterative approach in which entire models are 
cross validated one-by-one. As for regression to the median this is done using a no constant 
multi-variation regression with the same nlmefit-tool as above, with the same settings and 
naïve priors. However, in this approach we loop through the model outputs. One-by-one, a 
regression is performed using a single model output as comparator and the remaining model 
outputs as explanatory variables. For model 1 such would be the regression representation [Y1 
~ ω2Y2 + ω3Y3 …. + ωnYn]. The regression coefficients (ωi) are stored as consensus weights. After 
looping through all models, the mean is taken of all regression coefficients per model as 
weights (excluding itself), i.e. this represents the weights that would generate the highest 
mean consensus with all models. These values are entered as weights in the equation above. 

5) Models that are generated on smaller scales (i.e. with smaller gridcells) could be more accurate 
since the information per cell could better represent the local situation whereas larger gridcells 
could be more averaged across larger areas (8, 13). Here, we penalised model outputs that are 
generated at coarser spatial resolutions (14). The grain size was taken from the original model 
outputs as downloaded or generated (see Table 2 main text), so before all post-processing. 

The weights taken were: ωi =
1

log10(graini)
, for which the resulting weights were normalised 

afterwards summing to 1.  
 
Below we present two accuracy metrics:  
1) The inverse of deviance (D↓) – as used in the main text –, ascertaining the absolute difference of 

each modelled value from its validation value using the inverse of the deviance. This is relevant 
where modelled values are important, e.g., when testing where ES levels exceed a minimum 
threshold. We used the inverse of the deviance so that, like ρ, a higher value indicated greater 
accuracy. The calculation follows 

𝐷↓ = 1 − (
1

𝑛
× ∑ |𝑋(𝑥) − 𝑌(𝑥)|𝑛

𝑥 )       

in which, n = the number of spatial data points, x a spatial data point, X(x) the normalised 
validation value for x, and Y(x) the normalised value for the model or ensemble tested. 

2) Comparing the rank order of predicted and validation data using Spearman ρ using the Matlab corr 
tool. This is relevant where modelling is used to discover, for example, the most important locations 
for delivering an ES, or conversely, those areas whose development may have least impact on ES 
delivery.  

To avoid directional confusion, when these metrics are used per point (Table 1 main text, Tables S7-9), 
we include an inverse of the per data point value for both deviance and ρ, i.e., the [1-value] applies to 
the data points; whereas in the full data-set value above it is a post-summation inverse. We note that 
the Spearman ρ as calculated under (2) incorporates an similar internal reverse as the inverse of the 
deviance, after summation of individual data point (high ranking differences providing a low ρ value).  
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Figure S15. Ecosystem service ensembles show an increased inverse of the deviance  as measure of 
accuracy (D↓) when compared to individual models with multiple ensemble methods from (20) for: a) 
water, b) recreation, c) AG carbon, d) fuelwood, e) forage production. Colours: significantly higher than 
mean accuracy of the models (blue), significantly lower than models (red), not significantly different 
from mean of the models (black) and D↓ < 0.7 (dashed), a threshold for a ‘good’ explanation (8). Note 
meaning of black and dashed colouring slightly differ from the main text. 
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Figure S16. Ecosystem service ensembles show an increased Spearman ρ (ranking correlation) as 
measure of accuracy when compared to individual models with multiple ensemble methods from (20) 
for: a) water, b) recreation, c) AG carbon, d) fuelwood, e) forage production. Colours: significantly 
higher than mean accuracy of the models (blue), significantly lower than models (red), not significantly 
different from mean of the models (black) and no significant ranking correlation (dashed black). 
†opposite relationship (negative ρ).  
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