The effect of agriculture on methane oxidation in soil

BY K. W. T. Goulding¹, B. W. HütscH², C. P. Webster¹, T. W. Willison¹ and D. S. Powlson¹

¹Soil Science Department, Institute of Arable Crops Research, Rothamsted Experimental Station, Harpenden, Herts AL5 2JQ, U.K.
²Institute for Plant Nutrition, Justus-Liebig-University, Südanlage 6, 35390 Giessen, Germany

Aerobic soils are an important sink for methane (CH₄), contributing up to 15% of global CH₄ destruction. However, the sink strength is significantly affected by land management, nitrogen (N) fertilizers and acidity. We tested these effects on samples taken from the Broadbalk Continuous Wheat, Park Grass permanent grassland and Broadbalk and Geescroft Wilderness Experiments at Rothamsted. The rates of uptake from the atmosphere of both enhanced (10 ppmv) and ambient (2 ppmv) concentrations of CH₄ were measured in laboratory incubations of soil cores under controlled conditions.

The most rapid rates of uptake were measured in soil from deciduous woodland at pH 7 (measured in water); acidic (pH 4) woodland soil showed no net CH₄ oxidation. While disturbance of the cores used in the experiments did not affect the rate of CH₄ uptake, extended (150 years) cultivation of land for arable crops reduced uptake rate by 85% compared to that in the soil under calcareous woodland. The long-term application of ammonium (NH₄)-based fertilizer, but not nitrate (NO₃)-based fertilizer, completely inhibited CH₄ uptake, but the application for the same period of farmyard manure that contained more N than the fertilizer had no inhibitory effect.

Autoclaving showed that the uptake of CH₄ was microbially mediated. The most likely causes of the inhibitory effects seen are (i) insufficient concentrations of CH₄ in situ to activate methane monooxygenase; (ii) the direct inhibition of CH₄ oxidation by NH₄⁺ ions as the methanotrophs become adapted to oxidizing NH₃ ions; (iii) the suppression of methanotrophs by NH₄-based fertilizers and acidity; (iv) the requirement of methanotrophs for a stable soil architecture which is incompatible with the disturbance caused by regular arable cultivation. These explanations are not mutually exclusive; several may operate concurrently.

1. Introduction

Methane (CH₄) is a radiatively active (greenhouse) gas. The WMO/UNEP (1990) estimated that CH₄ contributed 15% of the change in radiative forcing that occurred between 1980 and 1990. Its current global average atmospheric concentration is 1.72 ppmv (parts per million by volume). For several decades the concentration was increasing rapidly by ca. 20 ppbv a⁻¹ (about 1% per year),
but the rate of increase has declined markedly in the last few years to about 10 ppbv a\(^{-1}\) (Dlugokencky et al. 1994) for reasons that are not yet clear. The causes of the increase are not well identified either, but are thought to include increased production from ruminants and paddy rice cultivation and the exploitation of natural CH\(_4\) deposits. There are also suggestions that the natural sinks may have decreased in strength.

The soil is an important source of CH\(_4\) when under anaerobic conditions, such as in natural wetlands or flooded rice but aerobic soil is an important sink where CH\(_4\) is oxidized to CO\(_2\) or assimilated into the microbial biomass. Oxidation is environmentally beneficial because each molecule of CH\(_4\) is 21 times more radiatively active than one of CO\(_2\) (WMO/UNEP 1990). Estimates of the total sink strength of the soil vary between 10\% (Duxbury & Mosier 1993) and 15\% (Born et al. 1990) of global CH\(_4\) destruction. Methane uptake has been observed in tropical soils (Seiler et al. 1984), peat soils (Yavitt et al. 1990), temperate forest soils (Steudler et al. 1989; Born et al. 1990), grasslands (Mosier et al. 1991) and desert soils (Striegl et al. 1992).

Net CH\(_4\) flux is determined by the balance between production and consumption. Both may occur in some units of soil, e.g. production in an anaerobic zone below the water table or in a microsite, and consumption in an aerobic (surface) layer. Much of the CH\(_4\) generated in soil is oxidized before it reaches the atmosphere. Galchenko et al. (1989) estimated that 39–92\%, 78–95\% and 60–90\% of the CH\(_4\) produced in rice paddy, swamps and lakes, and seas, respectively, was oxidized in aerobic layers before the CH\(_4\) could escape to the atmosphere.

Recent measurements of CH\(_4\) uptake by predominantly aerobic soil have shown significant variations that appear to be caused by land management and nitrogen (N) deposition from the atmosphere (for the latter see Melillo et al. 1989). Nesbit & Breitenbeck (1992) found that cultivated soils took up CH\(_4\) when exposed to large concentrations (greater than 1000 ppmv), but not when exposed to ambient concentrations. Dobbie & Smith (1994) found that forest soils took up CH\(_4\), on average, at three to four times the rate at which it was taken up by agricultural soils. Mosier & Schimel (1991) and Mosier et al. (1991) reported that arable soil absorbed less CH\(_4\) than pasture, and that the application of N fertilizer and irrigation reduced the rate of uptake further. An annual application of fertilizer equivalent to only 22 kg N ha\(^{-1}\) a\(^{-1}\) for 15 years as ammonium nitrate (NH\(_4\)NO\(_3\)) reduced CH\(_4\) uptake by 41\% compared with adjoining unfertilized pasture; table 1 summarizes the results. Bronsen & Mosier (1994) found that ammonium chloride, and also the nitrification inhibitor nitrapyrin and the urease inhibitor N-(n-butyl) thiophosphoric triamide (NBPT), had similar inhibitory effects. In addition Steudler et al. (1989) measured a reduction of CH\(_4\) uptake by temperate forest soil when a total of 37 or 120 kg N ha\(^{-1}\) was applied in six equal monthly doses; the effect increased between the fourth and sixth doses, indicating a cumulative effect of N. These changes are significant because, without the soil sink for CH\(_4\), the atmospheric concentration would be increasing at 1.5 times the current rate (Duxbury & Mosier 1993; Ojima et al. 1993).

Research to date has found it difficult to separate the effects on CH\(_4\) uptake of land use (arable, pasture, woodland), N rate and form, and soil acidity (which results from the application of NH\(_4\)-based fertilizers unless soil is limed). The Classical Experiments at Rothamsted Experimental Station, begun in the 1840s and 1850s, compare the effects of NH\(_4\)- and NO\(_3\)-based fertilizers on the growth

of permanent grassland and arable crops, and examine the natural regeneration of woodland over 100 years on neutral soil buffered with lime or unbuffered soil that is now very acid. These unique experiments are being used to unravel the complex interactions between land use and fluxes of trace gases, initially CH₄.

2. Experimental methods used in trace gas flux studies

Soil is a heterogeneous material. Its physical, chemical and, especially biological properties vary spatially and temporally. Because of this, measuring and understanding elemental cycling processes such as CH₄ uptake is complex and tedious, requiring large samples and/or many replicates if large errors are to be avoided. While measurements integrated over a large scale are required for best estimates of fluxes over landscapes, the elucidation of processes and the factors controlling them require rigorously controlled studies. Techniques have therefore centred on cover boxes in the field or the incubation of small cores of soil in the laboratory; Mosier (1989) made a useful review of these small-scale techniques. Some of the techniques used in the field are now very sophisticated: Butterbach-Bahl et al. (1994) described the continuous (five samples per hour) measurement of fluxes of CH₄, NO, N₂O and NO₂ in a forest in Bavaria and the correlation of these fluxes to meteorological events, and Hargreaves et al. (1994) reported the use of a tuneable diode laser system to measure CH₄ fluxes from peatlands.

Studies at Rothamsted have utilized the incubation of small cores in the laboratory. This facilitated the control of environmental conditions (temperature and moisture), the manipulation of factors such as applications of fresh N fertilizer, and the minimizing of errors to enable the detection of differences in CH₄ uptake with a manageable number of soil cores. Full details of experimental methods were given by Hütsch et al. (1993, 1994).

The measurement of CH₄ uptake from ambient concentrations is not easy, so early work at Rothamsted used enhanced concentrations of ca. 10 ppmv to aid detection. All early measurements made with enhanced concentrations have now been repeated at ambient concentrations; rates of uptake are not significantly different, so the uptake at 10 ppmv is not an artefact of adding extra CH₄. For the work with enhanced concentrations of CH₄, usually four replicate cores were used, with two gas samples analysed at each sampling time from each core; eight
replicate cores were used for woodland soil because of its expected greater spatial variability. For the later work with ambient concentrations of CH$_4$, eight replicate cores were always used.

Autoclaving of cores was used to confirm that the uptake of CH$_4$ was biologically mediated. Cores were autoclaved at 123 °C (30 min sterilizing time, 10 min purge time) and then CH$_4$ uptake and carbon dioxide (CO$_2$) production measured; the physical structure of the cores remained intact; no water was lost. Figure 1a shows the result of one of these experiments. Clearly no CH$_4$ was taken up by the soil after autoclaving, establishing that the process is biological. However, the physical integrity of soil cores can be very important in biologically mediated reactions, especially where diffusion rates and gas gradients are involved. Further tests were therefore made on this effect. Figure 1b shows CH$_4$ uptake by intact and roughly broken cores; there is no significant difference between them, indicating that breaking/disrupting cores does not produce artefacts in CH$_4$ uptake.

3. Results

(a) Effects of land use and management

Figure 2 shows the uptake of CH$_4$ by soil under arable land (Broadbalk Continuous Wheat), cut grass (Park Grass) and grazed grass (Broadbalk Wilderness, grazed section) and woodland (Broadbalk Wilderness, wooded section); the soils

have pH values between 5.9 (grazed Wilderness) and 7.5 (Broadbalk arable) and receive no N other than from the atmosphere, or from animal returns in the case of the grazed grass; atmospheric inputs total 40–50 kg ha\(^{-1}\) a\(^{-1}\) to arable and grassland, perhaps 60–70 kg ha\(^{-1}\) a\(^{-1}\) to woodland (Goulding 1990). The effect of cultivation is immediately apparent. Growing grass cut for hay caused only a small reduction in the rate of uptake of CH\(_4\) over that in undisturbed woodland soil, but 150 years of arable cultivation has caused an 80% reduction in the rate of CH\(_4\) uptake. This has to be compared with the result of figure 1b, which shows that simply disturbing or breaking soil does not immediately reduce the rate of CH\(_4\) uptake. The soil under the grazed grass absorbs CH\(_4\) at a much slower rate than that under the cut grass. This may be due to an effect of N excreted from the sheep as urine and faeces, which contains much NH\(_4\)–N (see below).

(b) Effect of nitrogen fertilizer

The Broadbalk Experiment permits the truly long-term effects of fertilizer on environmental emissions to be assessed. All plots are at pH 7.5 and are managed in exactly the same way, except for fertilizer applications. All have grown winter wheat, with conventional cultivation, every year since 1843 except for the period from 1926 to 1967 when they were fallowed one year in every five to control weeds. Figure 3 shows that the continued application for 150 years of 144 kg ha\(^{-1}\) N fertilizer has significantly reduced CH\(_4\) uptake by about 50% compared with soil receiving no fertilizer; the reduction increases with the amount of fertilizer applied (Hütsch et al. 1993).

The effects we observed appear to be caused by NH\(_4^+\) rather than by inorganic N because we found no effect of NO\(_3^-\). Figure 4 shows uptake rates of CH\(_4\) by soil from plots of the Park Grass Experiment that are at pH 6.1–6.3 and receive
Figure 3. Effect of long-term applications of fertilizer and farmyard manure on the oxidation of CH$_4$ by soil. Data from the Broadbalk Continuous Wheat Experiment at Rothamsted. Fertilizer applied as ammonium sulphate from 1843 to 1968; thereafter as ammonium nitrate. Farmyard manure contains ca. 240 kg N ha$^{-1}$. All plots at ca. pH 7.5. ---, Farmyard manure; ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ . no fertilizer; − −△− −, 144 kg N ha$^{-1}$.

Figure 4. A comparison of the effects of ammonium-based and nitrate-based fertilizer on the oxidation of CH$_4$ by soil. Data from the Park Grass Experiment at Rothamsted. Plot 9/2 a (− −○− −) has received 96 kg N ha$^{-1}$ annually as ammonium sulphate since 1856; Plot 14/2 a (− −□− −) has received 96 kg N ha$^{-1}$ annually as sodium nitrate since 1856.

96 kg N ha$^{-1}$ a$^{-1}$, but Plot 14/2 receives NaNO$_3$ and Plot 9/2 (NH$_4$)$_2$SO$_4$. There is no uptake of CH$_4$ by the soil that has received NH$_4$–N for 140 years, whereas CH$_4$ uptake in the NO$_3$-treated plot is the same as that on an unfertilized plot at the same pH. The form of the N applied therefore has a significant effect on CH$_4$

metabolism. Some other research supports the idea that only \(\text{NH}_4^+ \) inhibits \(\text{CH}_4 \) oxidation. For example, Nesbit & Breitenbeck (1992) found that an addition of \(\text{NH}_4^-\text{N} \) to a culture of methanotrophs (7 \(\mu \)mol g\(^{-1} \), ca. 340 kg N ha\(^{-1} \) to the topsoil to 23 cm) inhibited \(\text{CH}_4 \) uptake, but the same application of \(\text{NO}_3^-\text{N} \) increased \(\text{CH}_4 \) uptake. However, much larger applications of \(\text{NO}_3^-\text{N} \) (ca. 1700 kg N ha\(^{-1} \)) reduced \(\text{CH}_4 \) uptake over that of controls, and Prieme (1994) also found an inhibitory effect of \(\text{NO}_3^- \), so the exclusive inhibitory effect of \(\text{NH}_4^+ \) is by no means proven.

We have evidence, too, that \(\text{NH}_4^-\text{N} \) has an immediate, i.e. short-term, effect as well as a long-term effect, and that simultaneous production and consumption of \(\text{CH}_4 \) can occur: figure 5 shows no net change in \(\text{CH}_4 \) concentration in soil to which only water was added, but net \(\text{CH}_4 \) production in soil receiving the same volume of \(\text{NH}_4^+ \) solution. This can only be explained if the treatment with water alone was producing \(\text{CH}_4 \) at the same rate as the ‘water + \(\text{NH}_4^+ \)’ treatment; the difference in observed \(\text{CH}_4 \) production rates occurred because the treatment receiving only water was also consuming \(\text{CH}_4 \) at about the same rate as it was being produced. The short-term suppression of \(\text{CH}_4 \) oxidation by \(\text{NH}_4^+ \) is in contradiction to the observations of Hütsch et al. (1993). This may be because they injected a small volume of \(\text{NH}_4^+ \) into intact cores and then incubated them, whereas we sieved and thoroughly mixed the soil with the \(\text{NH}_4^+ \).

The continued application of 35 t farmyard manure ha\(^{-1} \) a\(^{-1} \) appears to have had no effect on \(\text{CH}_4 \) uptake (figure 3). This is despite the fact that the manure contains more N (240 kg N ha\(^{-1} \) a\(^{-1} \), much of which is in the \(\text{NH}_4^+ \) form) than that applied as fertilizer. Possible reasons for the lack of effect are: (i) the manured plot has a much better structure that permits methanotrophs to survive despite the inhibitory effects of \(\text{NH}_4^-\text{N} \); (ii) the much larger microbial biomass (Jenkinson & Powlson 1976) and, perhaps, nitrifier population (but see Mikkelsen 1969) on the manured plot rapidly removes any \(\text{NH}_4^+ \); (iii) a change in the ratio of nitrifiers to methanotrophs is less detrimental to \(\text{CH}_4 \) oxidation in

Figure 6. A comparison of the effects of soil pH on the oxidation of CH$_4$ by soil. Data from (a) the Park Grass Experiment at Rothamsted, and (b) the Broadbalk and Geescroft Wilderness (woodland) Experiments. Plot 7 of Park Grass receives no nitrogen fertilizer. (a) — ■ —, Section A, pH 6.2; —■—, Section B, pH 5.6; —○—, Section C, pH 5.1; —△—, Section D, pH 4.8. (b) —■—•, Broadbalk Wilderness, pH 7.5; —○—•, Geescroft Wilderness, pH 4.1.

this soil because of the much greater total bacterial population; (iv) greater O$_2$ demand by the farmyard manure treatment during wet weather results in short periods of CH$_4$ production which stimulates methanotrophs; (v) NH$_4^+$ is released slowly from farmyard manure compared with the instantaneous addition of NH$_4^+$ from inorganic fertilizer.

(c) Effect of soil pH

The Park Grass experiment permits the comparison of the effects of a stable soil pH (the experiment began in 1856) on CH$_4$ uptake by soil without the complicating effects of fertilizer or management. Figure 6a shows CH$_4$ uptake by soil taken from the four sections of Plot 7 of the experiment. This plot receives no N fertilizer and its sections are limed for target pH values of 7, 6 and 5, with Section ‘d’ unlimed and allowed to reach equilibrium with atmospheric inputs. Acidity has a marked effect on CH$_4$ oxidation. A reduction in soil pH from 6.2 to 5.6 reduces uptake rate considerably, and at pH values below 5.1 no CH$_4$ is oxidized. In fact there is a slow production of CH$_4$ from the soil.

Figure 6b shows the effect of acidity on CH$_4$ uptake in a woodland soil. The neutral soil under Broadbalk Wilderness absorbs CH$_4$ rapidly; its rate of uptake is the fastest measured in any of the sites at Rothamsted. By contrast, the soil under Geescroft Wilderness that has acidified to pH 4.1 in the surface through inputs of acid deposition, emits rather than absorbs CH$_4$.

The effects of acidity in these experiments could be indirect, caused by the build-up of organic material at the surface of the acid soils. The most acid sections of the Park Grass Experiment have a mat of undecomposed organic material, the thickness of which increases with the acidity, and Geescroft Wilderness has a surface layer of undecomposed leaf litter. This peat-like material could well be a net CH₄ producer. Alternatively, there may be a direct inhibiting effect of acidity on methanotrophs.

The inhibition of CH₄ uptake in acid soil is not always found. We have measured small but significant uptake rates of CH₄ in soil cores taken from a Norway spruce forest at pH 4.7 and there have been other reports of CH₄ uptake in acidic forest soils (Yavitt et al. 1993). We discuss the possible effects of soil acidity and their interaction with NH₄⁺ below.

4. Discussion

The sink strength of soil for CH₄ is determined by the relative rates of production and oxidation. These are determined by the population and activity of three groups of bacteria: methanotrophs and nitrifiers, which can both mediate oxidation, and methanogens which are responsible for its formation. Methanotrophs are widely distributed in soil, and their numbers may be stimulated by large concentrations of CH₄. Harriss et al. (1982) found that a swamp soil was particularly effective at oxidizing CH₄ after it had dried. Thus rapid CH₄ uptake may be the result of previous periods of CH₄ production.

There are at least four possible causes of the reductions in CH₄ uptake that we observed.

1. The enzymes that oxidize CH₄, ammonia monooxygenase and methane monooxygenase, require a minimum (threshold) concentration of substrate to trigger activity. This concentration will vary between species but, generally, appears to be greater than ambient (Nesbit & Breitenbeck 1992). Thus the microbes in cultivated and therefore well-aerated soils, do not experience sufficient CH₄ production to trigger CH₄ oxidation. However, the greater oxygen demand of the farmyard manure plot on Broadbalk will increase the possibility of periods of CH₄ production during wet weather and thus of achieving sufficiently large CH₄ concentrations to trigger CH₄ oxidation.

2. Ammonia monooxygenase and methane monooxygenase can use either NH₄⁺ or CH₄ as a substrate. Under certain circumstances, a prevalence of NH₄⁺ may result in an adaptation of methanotrophs to favour oxidation of NH₄⁺.

3. Ammonium ions may suppress methanotrophs directly, or have an indirect effect through acidification of the rhizosphere, resulting from H⁺ excretion by plant roots as NH₄⁺ is taken up.

4. Physical, chemical and biological parameters define the ecological niche of individual species. Different land management practices may limit or prevent the formation of niches of one group, e.g. nitrifiers or methanotrophs.

The effect of NH₄⁺ ions seems to be universal and without doubt. The effect of acidity varies, suggesting that it is not the acidity itself that affects methanotrophs but some other change that sometimes accompanies acidification; this could be the release of toxic ions such as aluminium. The effect of NH₄⁺ could possibly be indirect, its uptake by plant roots leading to the excretion of H⁺ ions and acidification of the rhizosphere. However, most of our measurements of CH₄...
Table 2. Rates of oxidation of methane measured over a range of soils, land use types and countries

<table>
<thead>
<tr>
<th>source</th>
<th>methane oxidation rate/(mg CH₄ m⁻² d⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>arable</td>
</tr>
<tr>
<td>Rothamsted, U.K.</td>
<td>0.00–0.13</td>
</tr>
<tr>
<td>Mosier & Schimel (1991), U.S.A.</td>
<td>0.03–0.20</td>
</tr>
<tr>
<td>Dobbie & Smith (1994):</td>
<td></td>
</tr>
<tr>
<td>U.K.</td>
<td>0.30–1.30</td>
</tr>
<tr>
<td>Denmark</td>
<td>0.08–0.20</td>
</tr>
<tr>
<td>Prieme (1994), Denmark</td>
<td>–</td>
</tr>
</tbody>
</table>

Oxidation have been made 9–12 months after the last N application. It seems unlikely that the localized effect of H⁺ excretion will persist for this length of time. Also, for the Park Grass Experiment, most of the soil studied in the experiments is rhizosphere soil, the top 12 cm soil being full of grass roots. It seems unlikely that unmeasured acidification of the rhizosphere has occurred in this soil.

Table 2 compares rates of CH₄ oxidation measured in Rothamsted long-term experiments (this work and Hütsch et al. 1993, 1994) with rates measured over a range of countries, soils, land use types and managements, and using a range of sizes of cover boxes, micrometeorological techniques and tuneable diode lasers. The rates we observe are of the same order as those observed by other groups, but among the slowest. Our data would, therefore, seem representative of field rates. However, a true comparison of sites and factors requires standardized techniques and an understanding of the effects of factors that vary between sites, such as temperature and moisture. It is possible that rates of CH₄ oxidation are genuinely slower in south east England because of the long history of farming of agricultural land, and because of the large deposition of atmospheric N to woodland and forest. However, we may find faster rates of oxidation under certain conditions when we extend measurements through the year.

5. Conclusions

The way in which land is managed greatly influences the ability of soil to oxidize CH₄. Thus land management will have an indirect impact on the build-up of CH₄ in the atmosphere as well as a direct effect in some situations (wetlands). It would be wrong merely to blame intensive agriculture as is so often done. Methane uptake is inhibited by all forms of agriculture, even ‘rough’ grazing, and probably by forestry through increased atmospheric N inputs and, perhaps, acidification.

The research suggests that NH₄⁺ ions, and therefore NH₄⁺-based fertilizers, but not NO₃⁻-based fertilizers, inhibit CH₄ uptake by soil. The reasons for this are not yet clear, but involve the complex relationship between nitrifiers and methanotrophs, and possibly methanogens as well. Soil acidity is also an important factor in determining the rate of uptake of CH₄, but the relationship is not simple: some acid soils rapidly oxidize CH₄, others produce CH₄. However, the factors that af-
fect CH$_4$ uptake also affect the production and consumption of other greenhouse gases by soil. One should not consider one gas in isolation when developing policy on land use and greenhouse gases.

The research is being funded by the Ministry of Agriculture, Fisheries and Food. B.W.H. thanks Deutsche Forschungsgemeinschaft for a scholarship to allow her to study at Rothamsted. The following also contributed to the research: Rachel Cook, Wendy Gregory, David Jenkinson, Penny Hirsch, Sile O’Flaherty, Paul Poulton, Gavin Ross and Alan Todd.

References

K. W. T. Goulding and others

Discussion

R. S. CLYMO (School of Biological Sciences, QMC, London, U.K.). In the experiment comparing autoclaved with non-autoclaved soil, no uptake of CH\textsubscript{4} by the autoclaved soil was observed. I find this surprising. Should not a small amount, perhaps 5–10\%, of the CH\textsubscript{4} have diffused into the pore space of the autoclaved soil core?

K. W. T. GOULDING. We think that there may well have been some diffusion of CH\textsubscript{4} into the pore space of the autoclaved soil. However, after the CH\textsubscript{4} was introduced into the jars they were allowed to stand for 15 min to permit complete equilibration of the added CH\textsubscript{4} (Hürsch \textit{et al.} 1993). Thus \(t_0\) was not 0 but 15 min. The soil moisture content of the cores was 16–17\% w/w, and so the soil was sufficiently permeable for the CH\textsubscript{4} to diffuse rapidly and unmeasured during this time. This would not have affected subsequent measurements of the rate of any uptake and oxidation of CH\textsubscript{4} by the organisms in the soil.

K. A. SMITH (Soil Science Department, SAC, Edinburgh, U.K.). The effect of land use change from natural forest to agricultural land may be greater than the effect of fertilizer addition, in reducing the soil sink for methane, judging by recent results obtained in Edinburgh and Copenhagen.

The rate of land use change, and the rate of change of fertilizer use is, surely, too slow to account for the sudden levelling off of the rate of increase of the concentration of methane in the atmosphere.

M. G. R. CANNELL (Institute of Terrestrial Ecology, Edinburgh, U.K.). Are changes in land use and management playing a significant role in the current slowing in the rate of increase in atmospheric methane concentrations?

K. W. T. GOULDING. Our results agree with Dr Smith’s observations. Con-
version from unfertilized woodland to unfertilized arable land caused a greater reduction in the rate of CH$_4$ consumption than was caused by applying nitrogen fertilizer to the arable land. However, we must not forget that agriculture is an essential industry. For agricultural land, our data show the major reduction in the rate of CH$_4$ uptake to be associated with ammonium-fertilized and grazed agricultural land, not with cut or unfertilized grass or with organically manured land. We would also add that changes in land use have been occurring throughout the world for thousands of years. In the developed world, major changes in land use – e.g. from forest to agriculture – were made at least several centuries ago. These cannot account for the recent increases in atmospheric CH$_4$. However, the past 50 years have seen significant increases in the area of arable land through the ploughing of permanent grassland and an intensification of agriculture, particularly the greatly increased use of fertilizers and large increases in stocking density of grazing animals. We cannot quantify the contribution that these changes would have made to CH$_4$ uptake by land, and thus to the increase in CH$_4$ in the atmosphere, but they must have been significant.

Regarding the recent decrease in the rate of increase of atmospheric CH$_4$ concentrations, we agree that changes in the use of land and the application of fertilizers and manures are unlikely to have been the cause. Rumours of repairs to leaking natural gas pipelines in the former Soviet Union, and the industrial recession generally, may be a more likely cause.