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Abstract
The significance of research conducted on Arabidopsis thaliana cannot be overstated. This focus issue showcases how insights from 
Arabidopsis have opened new areas of biology and directly advanced our understanding of crops. Here, experts intimately involved in 
bridging between Arabidopsis and crops share their perspectives on the challenges and opportunities for translation. First, we 
examine the translatability of genetic modules from Arabidopsis into maize, emphasizing the need to publish well-executed 
translational experiments, regardless of outcome. Second, we highlight the landmark success of HB4, the first GM wheat cultivar on 
the market, whose abiotic tolerance is borne from direct translation and based on strategies first outlined in Arabidopsis. Third, we 
discuss the decades-long journey to engineer oilseed crops capable of producing omega-3 fish oils, with Arabidopsis serving as a 
critical intermediary. Fourth, we explore how direct translation of starch synthesizing proteins characterized in Arabidopsis helped 
uncover novel mechanisms and functions in crops, with potential valuable applications. Finally, we illustrate how shared molecular 
factors between Arabidopsis and barley exhibit distinct molecular wiring as exemplified in cuticular and stomatal development. 
Together, these vignettes underscore the pivotal role of Arabidopsis as a foundational model plant while highlighting the challenges 
of translating discoveries into field-ready, commercial cultivars with enhanced knowledge-based traits.
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© The Author(s) 2025. Published by Oxford University Press on behalf of American Society of Plant Biologists. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which per-
mits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
(Written by Cristóbal Uauy, editor)

Arabidopsis thaliana remains a remarkably powerful model 
plant species for gene discovery and mechanistic insights, provid-
ing a crucial foundation for hypothesis generation and testing in 
crops. However, as outlined in the vignettes and across the 
Focus Issue, translating insights from Arabidopsis to crops is often 
challenging due to differences in anatomy, physiology, genetics, 
and the limited tools available for functional characterization in 
many crop species. For instance, while research in Arabidopsis 
has deepened our understanding of epidermal development, dif-
ferences and novelties in epidermal traits of grasses such as bar-
ley, including cuticle metabolism and stomatal organization, 
complicate direct translation. Similarly, natural variation in 
starch morphology across grasses, along with the diverse sites of 
starch synthesis, offers a natural “playground” to explore novel 
mechanisms for proteins initially identified in Arabidopsis. 
Reviews published across the Focus Issue highlight additional 
examples of translations related to abiotic interaction, plant- 
microbe interactions, plant immunity, and eco-evolutionary 
research.

Recent advances, such as the ability to transform commercial 
cultivars in many crops, are beginning to overcome long-standing 

bottlenecks, enabling researchers to investigate gene function in 

elite, commercially relevant genotypes rather than outdated vari-

eties. As Raquel Chan aptly notes, improving an outdated variety 

is one thing—enhancing an elite cultivar under real-world field 

conditions is a far greater challenge. Translational work is inher-
ently long term, unpredictable, and fraught with setbacks, from 
the laboratory to the field. These translational challenges tend 
to grow with increasing evolutionary distance, making it progres-
sively more complex to translate findings first within dicots and 
then across to monocot species. Nevertheless, as Hilde Nelissen 
emphasizes, documenting these efforts—whether successful or 
not—is essential for progress.

Despite the challenges, notable success stories are emerging, 
such as drought- and heat-tolerant wheat and soybean, as well 
as oilseed crops engineered to produce omega-3 fish oils. These 
achievements underscore the importance of sustained commit-
ment, interdisciplinary collaboration, and navigating complex 
regulatory frameworks. We hope these vignettes, along with the 
companion review by Adrienne Roeder and other articles in this 
Focus Issue, will inspire the plant science community to continue 
tackling the urgent need for sustainable food and nutritional se-
curity in the face of climate change.

Let’s turn a negative into a positive 
when interpreting translational research
(Written by Hilde Nelissen)

The extent of lack of trait transfer from Arabidopsis to crops 
has never been clearer than after an ag biotech company provided 
insights into their high-throughput translation efforts (Simmons 
et al. 2021). Even in our own research, where we transferred 

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/article/37/5/koaf059/8104874 by R

otham
sted R

esearch user on 22 M
ay 2025

https://orcid.org/0000-0002-9814-1770
https://orcid.org/0000-0001-7494-1290
https://orcid.org/0000-0002-3264-0008
https://orcid.org/0000-0003-3580-3607
https://orcid.org/0000-0003-3905-3647
https://orcid.org/0000-0002-1084-0201
https://orcid.org/0000-0002-8893-9498
mailto:Cristobal.Uauy@jic.ac.uk
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/plcell/koaf059


information about fundamental processes such as the regulation 
of cell division and cell expansion during organ formation from 
Arabidopsis to maize, the translational success rate was variable. 
Although cell division and cell expansion show remarkably simi-
lar spatial and temporal regulation in both Arabidopsis and maize 
(Nelissen et al. 2016), not all pathways identified in Arabidopsis 
(Vercruysse et al. 2021; Schneider et al. 2024) translate to maize.

Some pathways show a one-on-one translation (Fig. 1A) as is 
exemplified by modulating gibberellic acid levels that results in 
similar phenotypes in Arabidopsis and maize (González et al. 
2010; Nelissen et al. 2012). Similarly, ectopic expression of 
CYTOCHROME P45078A family members increases organ size in 
both species (Anastasiou et al. 2007; Sun et al. 2017). However, 
translating findings across species can require multiple attempts. 
For example, overexpressing GRF INTERACTING FACTOR1 (GIF1) in 
maize using the ZmUBIQUITIN promoter failed to replicate the 
Arabidopsis phenotype (Nelissen et al. 2015). Only with the 
BdELONGATION FACTOR1alpha promoter were phenotypes similar 
to Arabidopsis observed, highlighting the challenges of achieving 
sufficient expression levels in maize (Joossens et al. 2024). This im-
portance of the correct timing, level, and location of expression il-
lustrates the need to understand the spatio-temporal regulation 
and mechanistics of the processes as well as having access to 

the right tools to achieve the desired outcome, supporting the 
need for fundamental research in crops.

However, translation is not always as straightforward (Fig. 1A). 
For some growth-regulatory pathways, no clear homologs have 
been identified in grasses (Schneider et al. 2024), while others pro-
duce distinct phenotypes when perturbed. For instance, muta-
tions in SAMBA in Arabidopsis enlarge leaves (Eloy et al. 2012), 
but in maize, they reduce leaf size (Gong et al. 2022a). This may re-
flect differences in cell cycle regulation, such as the absence of en-
doreduplication in maize. Similarly, Arabidopsis DA1 and DA1 
RELATED proteases and the E3 ligase BIG BROTHER that activates 
them regulate organ size, but no comparable phenotypes were ob-
served when their maize orthologs were similarly perturbed (Gong 
et al. 2022b). The difficulty of translating results across species 
stems from differences in physiology and anatomy or factors 
like regulatory differences, allele-specific effects, and genotype 
dependence in maize (Fig. 1B). The lack of phenotypes is often con-
sidered as a negative result, which is less interesting and impact-
ful. However, these experiments often require more replicates 
and care to justify a conclusion that “under the given circumstan-
ces” the mutant or overexpression line did not deviate from wild 
type, rendering the results challenging to publish; this in turn dis-
courages further exploration in maize.

Figure 1. From translation to interpretation: growth processes as an example and recommendations for the future. A) In leaves, the growth processes 
of cell division and cell expansion are, to a certain extent, similarly regulated in dicots and monocots; for several pathways, orthologous genes are 
present in both Arabidopsis and maize. However, we currently lack an understanding of why similar genetic perturbations in Arabidopsis and maize 
sometimes lead to comparable phenotypic outputs (as seen with GA20OXIDASE, CYP78A, and GIF1), while in other cases they do not (e.g. SAMBA, DA1, 
DAR, and BB). B) Recognizing these “negative” translational outcomes and gaining insights into the potential reasons for these differences in 
“translatability”—such as differences in penetrance, physiology, anatomy, redundancy, or network rewiring—will be critical. C) Making data from 
well-executed experiments with lack of phenotypes available will serve meta-analyses and allow to incorporate this understanding into the design of 
future model-to-crop experiments to significantly enhance the ability to translate plant biotech research into practical applications. Created in https:// 
BioRender.com.
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Despite the reluctance of some journals to publish such “lost in 
translation” stories, these results of well-executed translation ex-
periments that may not produce the desired result are urgently 
needed to better understand how we can more efficiently “trans-
late” in the future. In the era of artificial intelligence, we need to 
obtain examples of straightforward translation as well as of neu-
tral or even opposite phenotypic outcome as training sets to ob-
tain reliable models for predicting translation efficiency. So as a 
plant community, we should invest in documenting translational 
research efforts. If we cannot make the data available via peer- 
reviewed journals or curated databases, we should at least 
make them available as preprints. This way, the data are available 
for meta-analyses on translatability, and we avoid investing re-
search funds in replicating experiments (Fig. 1C).

In addition to improving the availability of results showing a 
translation bottleneck, we should also move away from consider-
ing these data as “negative” results. The cases in which transla-
tion does not lead to the expected result are often more 
interesting than the examples in which the “simple” 1-to-1 trans-
lation leads to the desired and comparable phenotype, because 
they raise many interesting biological questions as to why the 
translation is hampered. We should therefore avoid looking at 
translational research as a pure 1-to-1 translation and move to 
an interpretation where we consider more context, including the 
processes, molecular data, physiology, and anatomy (Fig. 1B). 
This interpretation is becoming more and more possible with 
the advent of pan-genomes (Gui et al. 2022), pan-cistromes 
(Engelhorn et al. 2023), single cell transcriptome atlases (Xu 
et al. 2024), and cross-species information (Curci et al. 2022). In ad-
dition, technological developments in crop plants allow for much 
more multiplex genome engineering to overcome redundancy 
(Lorenzo et al. 2023) and more genotype-independent transforma-
tion (McFarland and Kaeppler 2025).

The successful translation of insights from models to crops re-
lies on a well-balanced integration of fundamental and applied re-
search, as well as a synergy between model and crop studies. 
Arabidopsis research plays a central role in this process by uncov-
ering mechanistic insights, driving technological advancements, 
and providing a foundational blueprint for genome annotations 
often extrapolated to other plant species (Yaschenko et al. 2024). 
However, it is essential to recognize that crop research within aca-
demia remains a form of fundamental science as well. Currently, 
the focus is shifting excessively toward application, with public 
funding agencies prioritizing crop research on elite germplasm, 
which is often tied to consolidated commercial markets. This em-
phasis places crop researchers in a challenging position, as select-
ing one variety over others is problematic for public funding 
purposes, and breeding companies are typically reluctant to allow 
sequencing and publication of their elite germplasm. Moreover, 
without genotype-independent transformation methods, intro-
ducing biotechnological innovations into elite varieties for field 
evaluations remains complex as well as time and resource 
intensive.

To foster innovation, a more practical approach is to conduct 
research on crop lines with lower economic value that are more 
amenable to transformation and for which substantial informa-
tion is already available. Such efforts enable academic research-
ers to drive innovation, generate valuable insights, and provide 
actionable recommendations for breeders and companies. To en-
sure the continued advancement of plant science, it is therefore 
crucial to foster fundamental science and to maintain and 
strengthen the connections between Arabidopsis and crop re-
searchers. This collaboration safeguards the innovative mission 

of publicly funded plant research and bridges the gap between 
fundamental discoveries and applied solutions.

Why does translating abiotic stress 
tolerance from model plants to crops 
usually not have a happy end?
(Written by Raquel Lía Chan)

Current situation of second-generation GMOs 
worldwide
Second-generation GMOs (genetically modified organisms) are al-
most absent from the market. It is sufficient to visit the web page 
of ISAAA (https://www.isaaa.org/), which presents all the infor-
mation about approved transgenic events, to see dozens of 
herbicide- or insect-resistant crops, alone or combined and intro-
duced in a variety of species, such as maize, alfalfa, cotton, and 
soybeans. However, for abiotic stress–tolerant or nutritionally en-
riched varieties, only a few events were approved, albeit mostly 
not commercialized (https://www.isaaa.org). The reasons are 
multiple, including the negative public perception and the prohib-
ition of GMOs in many countries (Eriksson et al. 2020). However, 
the most important contributor is the lack of technologies that 
have proven efficient in field trials.

First-generation GMOs are easy to define: the crop resists or 
does not resist a given herbicide or insect, and there is no place 
for intermediary or fluctuating situations; such resistance does 
not depend on the environment. However, partial resistances 
were reported for certain evolving weeds involving mutations in 
genes encoding the protein targets of herbicides (Gaines et al. 
2020). On the other hand, abiotic stress tolerance cannot be de-
fined without considering the environment, changing every 
year, even for an individual region. A given improved crop could 
have a good performance in a place one year but not next year 
in the same or another place. This fact makes abiotic 
stress-tolerant crops less motivating for business (investments) 
than biotic stress-resistant ones (Chan et al. 2020). Hence, it is a 
great challenge for scientists to develop improved abiotic 
stress-tolerant crops exhibiting good performance in as many en-
vironments as possible.

The main reasons explaining the lack of 
translated drought tolerance from Arabidopsis 
to crops
A quick search in PubMed using the term “drought tolerance” 
leads to more than 15,000 documents. Notably, when the 
searched term is “drought-resistance,” another 5,000 articles 
can be added to the list, even though there is no resistance to 
drought because all plants need at least some water to survive. 
Generally, such articles are published in prestigious journals de-
scribing the performance of a given overexpressed or silenced 
(by different methods) gene in various plant species. When adding 
“Arabidopsis” as a search term, the number of documents de-
creased to a little more than 3,000, still enormous. By choosing 
some articles at random, it is noteworthy that many are devoted 
to transcriptome analyses, lacking functional characterization. 
Others, assessing transgenic or mutant plants, did not include 
seed yield evaluation or were performed at the seedling stage. 
At the end of the abstracts, we usually find a sentence like 
“These results contribute to understanding the functions of the 
gene X, suggesting its potential in breeding stress-resilient crops.” 
Undoubtedly, it is valid to study a gene function under water 
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deficit or another abiotic stress; the problem is the interpretation, 
with the terms drought resistance or drought tolerance often in-
cluded in the title. That is because, in crop assessments, tolerance 
to any stress must be related to production (biomass, fruits, or 
grains, depending on the species). Without those data, farmers 
will not adopt such technologies.

It is hard to translate a given gene technology from Arabidopsis 
to crops and also from crop species grown in carefully controlled 
conditions to the field. Arabidopsis plants are grown in pots in 
carefully controlled conditions. Usually, a sole abiotic stress fac-
tor is applied in 1 experiment, maintaining optimal other growth 
conditions. In the field, plants live in a community, competing 
for light, nutrients, and water (Passioura 2010). It is impossible 
to control the conditions, and biotic and abiotic stressor factors 
are combined. Transcriptomes of plants subjected to combined 
stresses differ from the sum of the isolated transcriptomes 
(Mittler 2006; Rivero et al. 2014; Zandalinas et al. 2021; 
Pardo-Hernández et al. 2024). Hence, when adding the enormous 
differences between growth chambers or greenhouses and open 
fields to the fact that yield is rarely evaluated in such controlled 
experiments, the probability of failure is much greater than that 
of success. Another point to consider, being cautious in interpre-
tations, is that it is easy to improve something of low quality. 
Most transformable crops are older, outdated varieties (Araus 
et al. 2019), as modern ones are not transformable. Doing several 
backcrosses with a better or commercial genotype leads to a mod-
ern variety crop bearing the overexpressed or edited gene. Hence, 
the differential beneficial traits observed in the first generation 
can be, partially or totally, lost in the subsequent generations.

The story of HB4 wheat and soybean
HaHB4 (Helianthus annuus homeobox 4) is a sunflower gene encoding 
a homeodomain-leucine zipper transcription factor. As in other 
cases, this gene was tested in Arabidopsis and found to confer 
water deficit tolerance (Dezar et al. 2005). Notably, this gene suc-
ceeded in improving soybean (27 field trials; Ribichich et al. 2020) 
and wheat (37 field trials; Waltz 2015; González et al. 2019) per-
formance under drought and heat tolerance; HaHB11, another 
gene from the same family, also tested in Arabidopsis (Cabello 
et al. 2016), significantly improved seed yield in maize and rice 
plants (Raineri et al. 2022, 2023). Both soybeans and wheat trans-
formed with HaHB4 have been on the market since 2022, after a 
long pipeline of regulatory processes ending in safety approvals 
in many countries (https://www.isaaa.org; Miranda et al. 2022).

HaHB11 crops are still undergoing the long regulatory proc-
esses. What was different about HaHB4 and HaHB11 compared 
with other genes in the literature? Besides good luck, the authors 
followed the paper published by the group of Dr. Dirk Inze (Skirycz 
et al. 2011), demonstrating that tolerance to severe drought was 
unrelated to seed yield in moderate or water-sufficient conditions. 
On the contrary, most drought-tolerant Arabidopsis genotypes ex-
hibited seed yield penalties under well-watered or moderate 
stress conditions. This paper was the compass to evaluate each 
gene functionally in response to stress. As a rule, seed yield was 
assessed in many stress conditions, including moderate and se-
vere stress, applied at different developmental stages. Once hav-
ing promising results in such experiments, we can take the 
enormous risk of switching to crops, which is much more time- 
consuming and costly. And the same is true for gene editing. 
Undoubtedly, the second secret is the interdisciplinary approach, 
working with agronomists, who are experts in assessing field 
trials.

The great challenge and future perspectives
HaHB4 is a successful example of translational research in plant 
molecular biology starting from the model plant Arabidopsis 
(Fig. 2; González et al. 2020; Gupta 2024). In this case, we can say 
that Arabidopsis undoubtedly did its job as a model system for 
gene discovery. For sure, it is not enough. Food security amid an 
increasing world population and climate change challenges re-
quires more and more technologies to produce food in the same 
limited arable lands (Hall and Richards 2013). The challenge for 
plant scientists is to learn how to evaluate the performance of 
newly discovered genes to overexpress or mutate, to not overin-
terpret from experiments performed in model plants or in crops 
grown in controlled conditions, and, importantly, to work together 
with scientists from other disciplines to obtain a more holistic 
view of a given technology.

The Road Less Travelled—converting a 
discovery into a useful product, as seen from 
the perspective of the Rothamsted omega-3 
fish oil project
(Written by Johnathan A. Napier)

It is a well-appreciated fact that omega-3 long chain polyunsa-
turated fatty acids (LC-PUFAs; also known as omega-3 fish oils) are 
beneficial for human health, reducing the risk of cardiovascular 
disease and also playing key roles in neonatal development and 
wider anti-inflammatory responses (Choi and Calder 2024). Most 
vertebrates, including humans, have a very limited capacity to 
synthesize these fatty acids and therefore must obtain them 
from dietary sources. As the name implies, omega-3 fish oils are 
predominantly sourced from marine environments but unfortu-
nately due to a combination of growing demand and over- 
exploitation, the fish stocks that provide these vital oils are at 
the maximum level of sustainability (Tocher et al. 2019). It was 
for this reason that over 25 years ago, myself and Olga Sayanova 
initiated a project to engineer plants with the capacity to synthe-
size the omega-3 LC-PUFAs eicosapentaenoic acid and docosahex-
anoic acid (EPA and DHA).

The primary biosynthesis of EPA and DHA occurs at the base of 
the marine food web, being carried out by unicellular microalgae 
and bacteria, with these fatty acids accumulating in all higher tro-
phic levels (Hamilton et al. 2020). The approach to engineer plants 
with the capacity to synthesize EPA + DHA is deceptively straight-
forward, requiring the transfer of genes from algae into a higher 
plant host (Sayanova and Napier 2004). However, several factors 
impeded initial attempts to reconstitute this pathway. These in-
cluded the requirement for de novo gene discovery for the desa-
turases and elongases that generate EPA + DHA from 
endogenous precursors (Fig. 3A) along with only a partial under-
standing of the biochemical fluxes that underpinned this path-
way. In addition, synthesis of EPA required a minimum of 3 
genes and DHA required at least 5 genes, each under the control 
of their own (seed-specific) promoter (Venegas-Calerón et al. 
2010). Thus, assembling these cassettes for expression in trans-
genic plants was technologically challenging in this pre-MoClo 
era (Fig. 3B). And although nowadays researchers are very familiar 
with the design-build-test-learn (DBTL) mantra of synthetic/engi-
neering biology, this iterative methodology was crucial to the suc-
cess of the omega-3 project (Ruiz-López et al. 2012).

Part of the success of the omega-3 project might be attributed 
to a pragmatic approach to advancing the research toward the ul-
timate goal of a viable prototype, suitable for scale-up and 
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translation. The initial phase of gene discovery utilized simple 
systems like S. cerevisiae to validate individual biosynthetic activ-
ities and also to demonstrate the feasibility of reconstructing the 
PUFA pathway in a heterologous host (Beaudoin et al. 2000). 
However, since the ambition of this project was always to utilize 
the scale of agriculture, further advances focused on generating 
transgenic plants, initially in the model system Arabidopsis (on 
account of the ease of transformation). A landmark demonstra-
tion of the constitutive accumulation of EPA in Arabidopsis was 
published in 2004 (Qi et al. 2004), quickly followed by a related 
study demonstrating seed-specific accumulation in tobacco and 
linseed (Abbadi et al. 2004). Intriguingly, although the seed- 
specific expression of the biosynthetic genes (predominantly 
sourced from algae and also oomycetes and recoded for 
higher plants) achieved proof-of-principal accumulation of 
omega-3-LC-PUFAs (∼1–2% total fatty acids), non-native biosyn-
thetic intermediates such as γ-linolenic acid and stearidonic 
acid accumulated to much higher levels (∼20% total fatty acids) 
(Abbadi et al. 2004). This metabolic bottleneck was subsequently 
shown to be due to the enzymes of the pathway (desaturases, 
elongases) working sequentially but utilizing different substrates. 
This process was termed substrate-dichotomy (Haslam et al. 
2013) and was finally overcome by harmonizing the initial 2 steps 
of the pathway to use acyl-CoAs (Domergue et al. 2005). This al-
lowed for the efficient, seed-specific accumulation of EPA and 
DHA in the seeds of transgenic plants. Importantly, it was shown 
that these non-native fatty acids accumulated in the seed oil tria-
cylglycerols (Haslam et al. 2013). To date, the highest combined 
levels of EPA and DHA have been achieved in the Brassiciae 
Camelina sativa (Han et al. 2022), although significant levels of 
DHA alone have also been demonstrated in oilseed rape (Canola) 
(Petrie et al. 2020). In both cases, this was after initial iteration 
and validation in Arabidopsis, confirming the utility of this model 
system as a proof-of-principle workhorse for translational studies.

Creating a successful prototype transgenic plant accumulating 
high levels of EPA and DHA is a major achievement for plant bio-
technology, demonstrating the potential for “green factories” to 
provide a sustainable alternative to the extraction of fish oils 

from marine stocks. But demonstrating the accumulation of these 
fatty acids in experimental plants grown under highly controlled 
laboratory conditions is very far from the real-world experience 
in the field and the gauntlet of biotic and abiotic challenges crops 
face in agricultural systems. Thus, the next essential step in vali-
dating this technology was to carry out field trials (Han et al. 2020), 
which served to not only confirm the robust nature of the EPA and 
DHA trait but also allow scale-up of seed, which in turn can be 
used to extract oil for use in de-risking studies demonstrating its 
efficacy as a drop-in replacement for fish oil in multiple applica-
tions (including aquaculture and direct human nutrition). Such 
translational studies also provide confidence for potential com-
mercialization partners and would-be investors—in that respect, 
it is perhaps surprising (and slightly disappointing) how very few 
projects progress from the laboratory to the field (Ricroch et al. 
2024)—within the plant sciences research community, there 
needs to be greater emphasis on field trials, at least for traits 
that are often articulated in funding pitches as delivering wider 
benefits beyond simple academic discovery. To that end, re-
searchers and funders should both be more proactive in enabling 
positive research discoveries to move beyond the (literal and 
metaphorical) constraints of laboratory-based studies.

And although the step from laboratory to field is “the road less 
travelled” (Khaipho-Burch et al. 2023), it does not represent the 
end of the journey to bring an innovation to full utilization and im-
pact—in the case of GM traits such as the omega-3 fish oils exam-
ple described here, regulatory approval is necessary, for both 
commercial cultivation and use as a food or feed ingredient. 
Such approvals are usually obtained from national (as opposed 
to pan-national) agencies and in some jurisdictions can be both 
slow and costly to secure. A further issue that will be relevant to 
the commercialization of any trait is intellectual property, a topic 
that requires significant professional input.

Irrespective of all of these, the successful production of 
omega-3 fish oils in transgenic oilseeds and the subsequent trans-
lation and regulatory approval represent one of the best practical 
examples of the power of plant biotechnology to deliver to the 
twin goals of better nutrition and reduced environmental impact. 

Figure 2. Schematic representation of the pipeline to follow to translate molecular technologies from Arabidopsis to crops. Schematic and abbreviated 
steps to be followed from gene discovery to arrive at a market product. Triangles indicate the way forward when there are beneficial effects. In the 
central square: illustrations of such steps and experiments needed to decide progress. The characteristics to be evaluated at each stage are shown in the 
bottom rectangles. Crosses for each characteristic indicate detrimental effects, determining the need to backtrack following the arrow.
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Importantly, this was achieved through underpinning research 
carried out in model systems such as Arabidopsis and S. cerevisiae, 
leveraging knowledge and resources to drive discoveries forward 
to deliver genuinely useful innovations.

Challenges in translation: starch synthesis 
in Arabidopsis vs crops
(Written by David Seung)

Despite not being starchy crops, Arabidopsis and other model 
systems (such as Chlamydomonas) have laid the foundation for 
developing a molecular understanding of starch synthesis (Ball 
and Morell 2003; Streb and Zeeman 2012). Starch is vital for hu-
man nutrition as a major dietary carbohydrate. It accumulates 
in large amounts in cereal grains and many root and tuber crops. 
Increasing starch yield is a major biotechnological goal, but it is 
equally important to improve its nutritional and functional qual-
ity to meet health and sustainability goals (Chen et al. 2021). For 
example, starch can be made less digestible in the gut to create 
more “resistant starch,” which acts as a fermentable dietary fiber 
that has positive impacts on gut microbiome and health (Li et al. 
2019). Starch is also often modified using chemical and physical 
approaches to achieve the functionality required for manufactur-
ing various food and nonfood products. These approaches can be 

energy intensive and environmentally harmful (Maniglia et al. 
2021). Genetics offers an alternative method to achieve modified 
starch properties (Chen et al. 2021). Engineering such changes in 
starch requires a solid mechanistic understanding of its biosyn-
thesis in crop plants.

The main challenge in translating findings between 
Arabidopsis and crops is the enormous natural variation 
between plant species and organs in starch structure 
(Matsushima 2015; Tetlow and Emes 2017) and the metabolic 
context in which the starch is synthesized (Smith and Zeeman 
2020). Starch is produced in plastids as semi-crystalline, 
insoluble starch granules, which are composed of 2 different glu-
cose polymers—amylopectin and amylose (Seung 2020). 
Arabidopsis, like most other plants, produces starch primarily 
in the photosynthetic chloroplasts of leaves and degrades it at 
night to sustain metabolism and growth (Graf et al. 2010). 
Multiple starch granules accumulate between the thylakoid 
membranes of the chloroplast. This is distinct from most crop 
organs, where starch is synthesized in nonphotosynthetic amy-
loplasts continuously through grain or storage organ develop-
ment. There is also massive variation in starch granule 
morphology between species (Fig. 4).

Nevertheless, Arabidopsis has been essential for discovering 
new players involved in starch synthesis, and almost all these 

Figure 3. Schematic representation of engineering plants to accumulate omega-3 polyunsaturated fatty acids by the addition of genes from marine 
microalgae. Representative sources of biosynthetic genes are shown (from left to right: Phaeodactylum tricornutum; Mantionella spp.; Emiliana huxleyi; 
Thalassiosira pseudonana). Codon-optimized open reading frames encoding the enzymatic activities required for the synthesis of EPA and DHA were 
expressed under the control of seed-specific promoters and introduced into Camelina sativa by Agrobacterium-mediated transformation. The ability of 
Camelina to be transformed by floral dipping facilitated direct translation from studies in Arabidopsis.

6 | The Plant Cell, 2025, Vol. 37, No. 5

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/article/37/5/koaf059/8104874 by R

otham
sted R

esearch user on 22 M
ay 2025



players are now known to also play important roles in various 
crops. However, the exact mechanisms by which they act differs 
depending on species and organs.

There are many examples to illustrate this, but I will highlight 
the recent advances in our understanding of starch granule initia-
tion (Seung and Smith 2019). Although the biochemical reactions 
required for amylopectin and amylose synthesis were relatively 
well understood, the steps required for initiating the synthesis 
of a starch granule were unknown. Almost a decade ago, Sam 
Zeeman (ETH Zurich) and I characterized in Arabidopsis the 
PROTEIN TARGETING TO STARCH (PTST) family of proteins, 
which are glucan-binding proteins that interact with other bio-
synthesis enzymes, presumably assisting with substrate binding 
(Seung et al. 2015, 2017). One member of this family is PTST2, 
which plays an important role in granule initiation. Instead of 
having multiple granules per chloroplast, Arabidopsis mutants 
deficient in PTST2 typically have only 1 large starch granule per 
chloroplast (Seung et al. 2017). We proposed that PTST2 acts in 
granule initiation by interacting with STARCH SYNTHASE 4 
(SS4), which was known to be the major enzyme involved in gran-
ule initiation (Roldán et al. 2007).

The discovery of PTST2 led us to identify 4 other non-enzymatic 
proteins that interact with PTST2 and play important roles in 
granule initiation (Seung et al. 2018; Abt et al. 2020). The rapid 
pace at which we discovered this suite of proteins was largely 
due to the ease of genetic and biochemical approaches in 
Arabidopsis.

When I started at the John Innes Centre, we aimed to under-
stand starch granule initiation in developing wheat grains. 
Wheat endosperm starch is inherently different from 

Arabidopsis leaf starch in that it has 2 distinct types of starch 
granules—large A-type granules and small B-type granules 
(Fig. 4). A-type granules form during early grain development, 
while B-type granules are initiated around 10 to 15 days after 
the A-type granules. The role of the wheat PTST2 ortholog (re-
ferred to as B-GRANULE CONTENT 1, BGC1) on these 2 distinct 
waves of granule initiation could not have been predicted from re-
sults in Arabidopsis. Firstly, both PTST2/BGC1 and SS4 play impor-
tant roles in the initiation of both A-type granules (Chia et al. 2020; 
Hawkins et al. 2021). In wheat mutants lacking either protein, 
most amyloplasts initiated many smaller granules during early 
grain development rather than a single A-type granule. The small-
er granules grew up against each other to form “compound” 
granules—where individual granules appear polygonal due to im-
paction; this is a type of granule naturally found in other cereals 
(such as rice) (Matsushima 2015). This was consistent with find-
ings in Arabidopsis, which showed that these proteins are impor-
tant for controlling starch granule number. However, it was 
essentially the opposite phenotype of the Arabidopsis mutants 
(Roldán et al. 2007; Seung et al. 2017), with more rather than fewer 
granules per plastid.

However, PTST2/BGC1 is also important for B-type starch gran-
ule initiation, because reduced function in this gene leads to fewer 
B-type granules—a discovery that was led by Kay Trafford’s team 
(Chia et al. 2020). Interestingly, we later discovered that BGC1 acts 
with another enzyme, the plastidial glucan phosphorylase (PHS1), 
and not SS4 in B-type granule initiation (Kamble et al. 2023). 
Knockout mutants in PHS1 in wheat had significantly fewer 
B-type granules (Fig. 4). In contrast, Arabidopsis phs1 mutants 
have no effect on starch granule number (Malinova et al. 2017). 

Figure 4. Starch granule morphology observed using scanning electron microscopy. Arabidopsis produces starch in its leaves, and the starch granules 
are relatively small and have a flattened appearance. In the endosperm starch of cereals, there is vast natural variation in granule shape and size. 
Wheat starch has distinctive bimodal granules that can be further classed into large A- and small B-type starch granules (marked in the figure). 
Variation in granule morphology can be induced in wheat by mutating granule initiation genes characterized in Arabidopsis. Bars = 20 µm.
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This suggests that A- and B-type granule initiations occur through 
distinct biochemical mechanisms, a distinction that could not 
have been determined solely using Arabidopsis.

Arabidopsis therefore gave us a head start in developing our 
current model of starch granule initiation in wheat grains by pro-
viding candidate genes to initially study. However, further re-
search in wheat was essential to discover how the functions of 
those genes mediate the distinct temporal pattern of A- and 
B-type granule initiations. We believe we will discover many 
more examples of functional diversification in granule initiation 
proteins of other species that have different initiation patterns 
compared with wheat. We already know that knocking out 
PTST2 orthologs in rice and Brachypodium has effects on granule in-
itiation that are distinct from that in wheat (Peng et al. 2014; 
Watson-Lazowski et al. 2022; Yan et al. 2024). Characterizing 
these differences will lead to mechanisms underpinning interspe-
cies diversity in granule morphology. For now, we can already ma-
nipulate starch granule shape and size in wheat using the 
components we characterized (Fig. 4) (Chen et al. 2021). We are 
now working with food researchers and industrial partners to ex-
amine how altering starch granule morphology can benefit bread- 
and pasta-making quality, nutrition, and gut health.

Beyond face value—understanding 
and engineering plant surfaces
(Written by Linsan Liu and Sarah M. McKim)

Land plants are equipped with exquisite epidermal adaptations 
to cope with the aerial environment. The outer epidermal cell 
layer, consisting mostly of pavement cells, prevents surface water 
loss by secreting an external, impermeable waxy cuticle 
(González-Valenzuela et al. 2023). Gas exchange and transpiration 
occur instead through stomata, regularly spaced air pores that 
open and close via movement of 2 opposing guard cells (Lawson 
and Morison 2004). As plants expanded into diverse terrestrial 
niches, from arid plains to high-altitude plateaus, they often 
evolved further adaptive epidermal elaborations, including novel 
cell types, different stomatal morphologies, and cuticular special-
izations (Koch et al. 2008). Accordingly, exploiting epidermal var-
iation in crops could stabilize and improve yield under changing 
climates; for example, less permeable cuticles coupled with fast-
er, fewer stomata may help cereals perform better in warmer, dri-
er conditions (Jolliffe et al. 2023). However, we know relatively 
little about epidermal features in crops in contrast to the super- 
tractable but non-crop Arabidopsis, where study of cuticle mu-
tants, especially the eceriferum (cer, “waxless”) alleles, as well as 
disrupted stomatal patterning mutants has identified genes, met-
abolic pathways, and processes important for cuticle and stomata 
formation (Lee and Bergmann 2019; Lee and Suh 2022). Perhaps 
reflecting their deep adaptive importance, many of these genes 
appear broadly conserved and represent fortunate, low-hanging 
translational fruit, such as in cases where transgenic overexpres-
sion of orthologous cuticular genes increased disease and drought 
resiliency in multiple crops (Kong et al. 2020; Liu et al. 2022b). 
However, unique cuticular chemistries and novel epidermal 
cell types in crops along with gene subfunctionalizations 
mean that the Arabidopsis model is insufficient to predictively 
engineer all epidermal traits important for crop performance 
(Kong et al. 2020).

We argue that fundamental research in crops compliments 
work in Arabidopsis to bridge this knowledge gap and enhances 
our understanding plant surface evolution. Our recent investiga-
tion of barley cer mutants lacking the “wax bloom,” a late-stage, 

bluish-white (glaucous) cuticular deposition associated with in-
creased yield, nicely showcases this beneficial interaction 
(Fig. 5). In contrast to the typical plant cuticular waxes made up 
of very long chain fatty acids (VLCFAs) and their derivatives 
(González-Valenzuela et al. 2023), the wheat and barley wax 
bloom is dominated by β-diketones and OH-β-diketones cuticular 
crystals absent in Arabidopsis. Consequently, exploiting cereal 
wax bloom mutants was essential to identify the novel metabolic 
gene cluster responsible for β-diketone and OH-β-diketone syn-
thesis (Hen-Avivi et al. 2016; Schneider et al. 2016). Nonetheless, 
our study of the barley wax bloom mutant cer-x identified the first 
upstream regulator of the bloom and metabolic cluster expression 
as HvWAX-INDUCER1 (HvWIN1) (McAllister et al. 2022), a barley 
ortholog of the WIN/SHINE (SHN) transcription factors originally 
characterized in Arabidopsis to promote leaf VLCFAs (Aharoni 
et al. 2004). Interestingly, HvWIN1 appears dispensable for barley 
leaf VLCFAs (Aharoni et al. 2004), highlighting how conserved 
transcriptional regulators target different cuticular components 
across species. Moreover, the other SHN transcription factor in 
barley, NUDUM (NUD), appears further unfunctionalized to pro-
mote grain-to-hull adhesion, a protective adaption unique to 
Hordeum ssp. and beneficial in malting (Taketa et al. 2008). 
Intriguingly, we noticed that multiple cer mutants also showed de-
fective hull adhesion. We have cloned several of these genes that 
appear to act both dependent and independent of NUD, with 1 
published so far (Campoli et al. 2024). In all cases, their molecular 
function was informed by their previous characterization in 
Arabidopsis and collectively represent an example of a crop- 
specific cuticular specialization (hull adhesion) driven by repur-
posed epidermal regulatory pathways.

In addition to hull adhesion, wax bloom mutants have also 
been associated with defective epidermal patterning on leaves 
(Zeiger and Stebbins 1972; Gray et al. 2000). Understanding this 
pleiotropy is part of a long-standing mystery to explain why mu-
tants in cuticle formation influence epidermal cell patterning 
and vice versa across plants (Bird and Gray 2003; Berhin et al. 
2022). Excitingly, our recent work and that of others point to an 
underlying circuitry involving stomatal patterning (Liu et al. 
2022a; Yang et al. 2022; Zhang et al. 2022). Despite the difference 
in epidermal cell organization between Arabidopsis, where sto-
mata form in dispersed locations in the expanding leaf, and 
grasses, where strict parallel cell files with specific lineages, in-
cluding stomata, are formed much earlier, both show an alternat-
ing pavement cell to stomata arrangement important for proper 
stomatal movement (Fig. 5). Best understood in Arabidopsis, this 
pattern originates from an asymmetric cell division (ACD) that 
generates a smaller daughter cell expressing core stomatal 
factors that divides again to form the pore, and a larger daughter 
cell, where signaling cascades downstream of EPIDERMAL 
PATTERNING FACTOR (EPF) peptides degrade these stomatal fac-
tors, promoting direct differentiation into a pavement cell 
(Lee and Bergmann 2019). Many components of this pathway 
are conserved between Arabidopsis and other plants, with overex-
pression of native and even synthetic EPFs reducing stomatal den-
sity and improving drought tolerance in multiple cereals (Hughes 
et al. 2017; Caine et al. 2019; Ferguson et al. 2024; Karavolias et al. 
2024). In fact, we showed that 2 barley mutants, initially described 
for their patchy wax blooms, cer-g and cer-s, are defective alleles of 
inhibitory cascade components that cause stomatal “clusters” 
when the larger daughter cell divides at least 1 more time and 
forms stomata rather than pavement cells (Liu et al. 2022a), con-
sistent with the phenotypes of loss-of-function mutants in these 
cer gene orthologs in Arabidopsis. However, we also revealed 

8 | The Plant Cell, 2025, Vol. 37, No. 5

D
ow

nloaded from
 https://academ

ic.oup.com
/plcell/article/37/5/koaf059/8104874 by R

otham
sted R

esearch user on 22 M
ay 2025



that these mutants show more permeable cuticles and substan-
tial reductions in cuticle-related gene expression during these 
early patterning events, suggesting that these inhibitory cascades 
also promote cuticle deposition as well as pavement cell fate (Liu 
et al. 2022a). Our work adds to accumulating evidence from 
Arabidopsis that dynamic tuning of cuticle properties, often 
with deposition promoted by EPF-driven cascades and repressed 
by core stomatal factors, is important for asymmetric cell fate 
and stomatal progression (Gray et al. 2000; Smit et al. 2023) with 
possible roles in environmental control of stomatal density 
(Kaufman et al. 1985).

This type of regulatory interplay may be relevant to the “im-
proved” surfaces from overexpression of cuticular regulators in 
cereals that may also impact stomatal density but also to other 
epidermal features in grasses. Grasses develop additional epider-
mal file lineages, including those for distinctive prickle cells, 
shrinking bulliform cells, and rigid silica cells (sometimes with ac-
cessory cork cells), which, while less studied, are all likely adap-
tive in arid conditions (Kaufman et al. 1985; Werker 2000; 
Matschi et al. 2020). Using grass models to understand these spe-
cialisms often finds repurposing stomatal and other patterning 
systems first characterized in Arabidopsis (Raissig et al. 2017; 
Abrash et al. 2018; Schuler et al. 2018; Sun et al. 2020). In fact, 
we noted that cer-g and cer-s barley mutants show clustered 
prickle hairs as well as clustered and weakened identity silica/ 
cork cell pairs, cells whose spacing also derive from ACDs. 
Moreover, these mutants also showed switching of specialized 
cell fate could switch within a single file. Taken together, these 
phenotypes suggest that these pathways promote asymmetric 
cell fate in multiple file types but also reinforce file identity, 
thus playing a pivotal patterning role across the entire epidermis.

Understanding the higher order of file placement as well as ge-
netic and functional interactions between epidermal traits are key 
problems in grass epidermal research. However, existing mutant 
resources offer an excellent genetic handle—rescreening in our 
laboratory has revealed more wax bloom mutants with substan-
tial epidermal patterning changes, including roles for HvWIN1, 
suggesting that easily observable cuticle defects may be a proxy 
for defective epidermal patterning (personal observation) and a 
platform to explore possible mechanistic relationships between 
early patterning decisions about cell fate and later appearing epi-
dermal features like the wax bloom. In our current work, we aim 
to integrate precise genetic, transcriptomic, chemical, and ultra-
structural analyses to unravel the hierarchy coordinating grass 
epidermal features.

In summary, combined insights from both Arabidopsis and 
grass models work together towards a comprehensive under-
standing of epidermal development and possible routes to uncou-
ple pleiotropic effects (Fig. 5). By leveraging their respective 
strengths and conducting comparative research, we will further 
enhance our genetic and molecular toolkits for engineering this 
critical adaptive feature of plants, aiding in the development of 
crops with improved productivity and resilience under current 
and future climates.

Arabidopsis research into the future
(Written by all authors)

Arabidopsis remains an invaluable model system not only for 
developing and refining technologies but also as an in planta plat-
form for validating biochemical and metabolic pathways. 
The increasing availability of genomic data and advanced 

Figure 5. Complementary research in Arabidopsis and crops aids understanding of epidermal features in plants and the engineering of plant surfaces 
for improved crop performance. The outer epidermal cell layer is covered by cuticle and made up of mostly pavement cells interspersed with other 
specialized cell types. In Arabidopsis, specialized epidermal cells are scattered across the leaf surface, while in cereal grasses such as barley, epidermal 
cells are arranged with pavement cells in distinctive files. In both cases, specialized cells are spaced away from each other. Cuticles can vary by cell type 
and also show specializations between species, such as crystalline wax blooms in barley. Research on Arabidopsis greatly informs our understanding of 
genes and pathways guiding epidermal cell spacing and cuticular metabolism in crops and together reveals extensive conservation but also variation 
and novelty across species. Excitingly, complementary research in both Arabidopsis and grass models paint an emerging picture of how the regulation 
of cuticular specializations and epidermal patterning may be coordinated. Leveraging these insights will help us better engineer crops for desired 
epidermal traits. SEM photos present wax blooms on the leaf sheath of barley. Scale bar = 5 µm.

Challenges of translating Arabidopsis insights into crops | 9
D

ow
nloaded from

 https://academ
ic.oup.com

/plcell/article/37/5/koaf059/8104874 by R
otham

sted R
esearch user on 22 M

ay 2025



transformation and genome-editing tools in crops has expanded 
the potential for functional genetics and molecular studies di-
rectly in these species, leading to a shift away from exclusive reli-
ance on Arabidopsis. However, this molecular progress has also 
reinforced the need for fast and tractable model systems to fur-
ther characterize mechanisms identified in crops. With its ease 
of growth, efficient transformation, minimal growth-space re-
quirements, and well-established resources, Arabidopsis should 
be considered as a key component of the crop researcher’s tool-
box, alongside systems like Nicotiana benthamiana, for experiments 
such as complementation assays, protein localization, and 
protein-protein interaction studies. Moreover, many fundamental 
biological processes, including those discussed here, remain in-
completely understood in Arabidopsis itself, ensuring its contin-
ued role as a source of novel genes and mechanisms relevant to 
crops. Finally, Arabidopsis serves as a critical reference for under-
standing the evolution of pathways and traits. A growing trend in 
plant sciences is to explore how plants differ rather than assum-
ing uniformity based on a single model species. The extensive 
knowledge generated from Arabidopsis provides an essential 
framework for comparative studies, helping to distinguish con-
served mechanisms from lineage-specific innovations.
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