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The nutritional quality of cereals varies 
geospatially in Ethiopia and Malawi

D. Gashu1,14, P. C. Nalivata2,14, T. Amede3, E. L. Ander4, E. H. Bailey5, L. Botoman2,6, 
C. Chagumaira2,5,7,8, S. Gameda9, S. M. Haefele8, K. Hailu1,10, E. J. M. Joy11, A. A. Kalimbira2, 
D. B. Kumssa5, R. M. Lark5,7, I. S. Ligowe2,6, S. P. McGrath8, A. E. Milne8, A. W. Mossa5, 
M. Munthali6, E. K. Towett12, M. G. Walsh13, L. Wilson5, S. D. Young5 & M. R. Broadley5 ✉

Micronutrient deficiencies (MNDs) remain widespread among people in sub-Saharan 
Africa1–5, where access to sufficient food from plant and animal sources that is rich in 
micronutrients (vitamins and minerals) is limited due to socioeconomic and 
geographical reasons4–6. Here we report the micronutrient composition (calcium, 
iron, selenium and zinc) of staple cereal grains for most of the cereal production areas 
in Ethiopia and Malawi. We show that there is geospatial variation in the composition 
of micronutrients that is nutritionally important at subnational scales. Soil and 
environmental covariates of grain micronutrient concentrations included soil pH, soil 
organic matter, temperature, rainfall and topography, which were specific to 
micronutrient and crop type. For rural households consuming locally sourced food—
including many smallholder farming communities—the location of residence can be 
the largest influencing factor in determining the dietary intake of micronutrients 
from cereals. Positive relationships between the concentration of selenium in grain 
and biomarkers of selenium dietary status occur in both countries. Surveillance of 
MNDs on the basis of biomarkers of status and dietary intakes from national- and 
regional-scale food-composition data1–7 could be improved using subnational data on 
the composition of grain micronutrients. Beyond dietary diversification, 
interventions to alleviate MNDs, such as food fortification8,9 and biofortification to 
increase the micronutrient concentrations in crops10,11, should account for 
geographical effects that can be larger in magnitude than intervention outcomes.

Globally, more than two billion people are affected by one or more 
MNDs and the risks of deficiency are greater in sub-Saharan Africa (SSA) 
than in most other regions1–3,12. These MNDs, which are also known as 
‘hidden hunger’, remain a major challenge for achieving the United 
Nations’ Sustainable Development Goal 2 (zero hunger) by 203012. 
Causes of MNDs include the inadequate intake of micronutrients —in 
particular, calcium (Ca), iron (Fe), iodine (I), selenium (Se), zinc (Zn) 
and vitamin A —especially in regions in which diets are dominated by 
cereals and where access to foods from plant and animal sources that 
are richer in nutrients is limited11. Most cereal grains have inherently 
small micronutrient concentrations, especially once bran and embryo 
fractions are removed during milling10. Cereal grains also contain large 
concentrations of anti-nutritional compounds such as phytates (inosi-
tol phosphate compounds), which inhibit the absorption of Ca, copper 
(Cu), Fe, magnesium (Mg) and Zn in the human gut2,3,5,10.

The prevalence of MNDs must be estimated if policy responses are 
to be developed in the context of socioeconomic and environmental 

drivers of food system change6. The prevalence of MNDs can be deter-
mined from multiple sources of evidence. Biomarkers of status, includ-
ing micronutrient concentrations or enzyme activities in blood and 
other tissues, are often used to assess population status7,12,13. However, 
establishing thresholds of sufficiency for biomarkers can be challenging 
due to variation in the ranges considered to be ‘healthy’ between demo-
graphic groups, physiological buffering and the influence of infection 
and inflammation, which can have short-term effects on circulating 
concentrations of micronutrients in the human body7,14. Biomarker 
studies also impose burdens on participants and technical challenges for 
the collection, storage and analysis of samples, especially in low-income 
settings. Complementary methods to estimate MND risks include meas-
uring micronutrient intake from composite dietary analyses15 or, more 
commonly, from estimates of intake from dietary recall5, household 
food consumption and expenditure data5,16 and food balance sheets1–3.

Estimates of the prevalence of MNDs from food supply and intake 
require reliable data on the micronutrient composition of food; 
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national or international food-composition tables are routinely used 
in SSA2,5. However, data are typically limited to single values for each 
food–nutrient combination and are therefore of limited value for 
exploring spatial drivers of micronutrient intake. This is problematic 
given the widespread consumption of locally produced staple foods 
such as cereal grains among smallholder farming communities, and 
given that food micronutrient composition varies within countries5,17.

Subnational food composition data have not yet been used to inform 
estimates of the prevalence of MNDs in SSA. This is despite a long his-
tory of studies in the fields of medical geology and veterinary sciences, 
which have linked human and livestock nutritional status to soil and 
landscape factors. These include studies on the micronutrients I18, 
Se4,18,19, molybdenum (Mo)20 and cobalt (Co)21. Substantial variation 
in the Ca, Fe, Se and Zn concentrations of staple crops was recently 
reported from nine districts in Uganda and some of this variation was 

associated with soil characteristics17. The case for using subnational 
food composition data to estimate the prevalence of MNDs is strength-
ened by recent evidence of long-range geospatial variation in grain Se 
concentration being linked to biomarkers of Se dietary status. In parts 
of the Amhara region of Ethiopia, nutritionally important variation in 
the grain Se concentration of teff (Eragrostis tef (Zucc.) Trotter) and 
wheat (Triticum aestivum L.) was associated with soil and landscape 
covariates at distances extending further than 100 km, which is similar 
to patterns seen among human biomarkers of Se dietary status22,23. In 
Malawi, human Se dietary status was associated with variation in the 
grain Se concentration in maize (Zea mays L.) at localized scales4,5,15,24–26. 
Grain sampling for micronutrient quality has not yet been conducted 
systematically at wider geographical scales in SSA.

Grain surveys of cultivated land in Ethiopia and Malawi
Grain micronutrient concentrations in cereal crops are reported here 
from 1,389 locations in Ethiopia, based on a spatially balanced sample 
in the Amhara, Oromia and Tigray regions, during the late-2017 and late-
2018 harvest seasons. The sampling frame represents a subset of around 
354,000 km2 of cultivated land—representative of most of the cereal 
production area in Ethiopia (Fig. 1)—which was constrained to acces-
sible locations that were less than 2.5 km from a known road. At each 
location, a grain sample and a co-located composite soil sample were 
taken with the informed consent of the farmer. Grain samples reported 
from Ethiopia included teff (n = 373), wheat (n = 328), maize (n = 302), 
sorghum (Sorghum bicolor (L.) Moench; n = 138), barley (Hordeum 
vulgare L.; n = 181) and finger millet (Eleusine coracana (L.) Gaertn.; 
n = 39), with a smaller number of triticale (× Triticosecale Wittm. ex 
A. Camus; n = 20) and rice (Oryza sativa L.; n = 8) samples. In Malawi, 
grain micronutrient concentrations are reported from 1,812 locations, 
which were sampled during the April–June 2018 harvest season. The 
Malawi sampling frame represents around 66,000 km2 of cultivated 
land (Fig. 1). Cereal production in Malawi is less diverse than in Ethio-
pia and grain samples comprised mostly maize (n = 1,608) samples, 
together with sorghum (n = 117), rice (n = 54), pearl millet (Pennisetum 
glaucum (L.) R. Br.; n = 32) samples and a single finger millet sample. 
Sampling designs, grain analyses and geostatistical methods expanded 
on those described for part of the Amhara region22 (Extended Data 
Figs. 1–9 and Extended Data Tables 1–3).

Variation between and within crops
Grain Ca, Fe, Se and Zn concentrations varied substantially between and 
within crop species (Fig. 2 and Extended Data Table 1). Maize typically had 

Regions
Cropland
Barley
Finger millet
Maize
Rice
Sorghum
Teff
Triticale
Wheat
Pearl millet

N N

a b

33° E 36° E 34° E 36° E39° E 42° E 45° E

0 100 200 km 0 50 100 km

12° N

9° N

6° N

10° S

12° S

14° S

16° S

Fig. 1 | Sampling locations. a, Ethiopia. b, Malawi. Cropland area masks are coloured light grey.

Ethiopia Malawi

C
a

Fe
S

e
Z

n

100

1,000

10,000

10

100

1,000

0.001

0.010

0.100

1.000

10

30

50

Crop

C
on

ce
nt

ra
tio

n 
(m

g 
kg

–1
 D

M
)

Barley
Finger millet

Teff
Triticale

Wheat
Maize

Rice
Sorghum

Pearl millet

Fig. 2 | Grain Ca, Fe, Se and Zn concentrations of crop species in Ethiopia 
and Malawi. Boxes within the violins show the interquartile range, medians are 
marked as horizontal lines; whiskers indicate the minimum and maximum 
values. DM, dry matter.



Nature | www.nature.com | 3

the lowest concentration of all four micronutrients; people relying on 
maize-based diets are therefore likely to have the lowest micronutrient 
intakes. Finger millet is a good potential source of Ca, with a median grain 
Ca concentration (4,574 mg kg–1; range, 3,203–6,264 mg kg–1) that is almost 
two orders of magnitude greater than in maize (median, 64.5 mg kg–1) 
in Ethiopia. The single finger millet sample from Malawi had a grain Ca 
concentration of 3,564 mg kg–1, which is consistent with the large Ca con-
centrations that have been reported for finger millet flour from markets in 
Malawi26 (range, 2,900–4,700 mg kg–1). A screen of finger millet varieties 
in India27 showed a grain Ca concentration range of 1,350–3,120 mg kg–1 
(n = 49 genotypes), indicating that the trait is conserved across the spe-
cies. Although the bioavailability of Ca in finger millet will be limited by 
phytate, as it is for teff, which also had a high grain Ca concentration in 
Ethiopia (median, 1,473 mg kg–1; range, 46.8–7,925 mg kg–1), fermenting 
flour to produce injera (a thin flat bread that is commonly consumed in 
Ethiopia) increases the bioavailability of Ca and other mineral micronu-
trients by stimulating endogenous phytase enzymes28.

Within-species variation in grain Ca, Fe, Se and Zn concentrations 
will arise due to spatial variation in soil and landscape factors, and 
the effects of extrinsic soil dust. The potential effects of soil dust are 
pronounced for Fe; soil total Fe concentrations (medians, 92,744 and 
28,804 mg kg–1 for Ethiopia and Malawi, respectively) are more than 
three orders of magnitude larger than median grain Fe concentrations 
of 20.3 and 21.3 mg kg–1 for maize grain in Ethiopia and Malawi, respec-
tively. Grain concentrations of Se and Zn are less sensitive to soil dust 
due to the much lower total concentrations of these elements in soils 
(medians, 0.35 and 0.32 mg kg–1 for Se and 100.1 and 33.7 mg kg–1 for 
Zn, in Ethiopia and Malawi, respectively).

Geospatial mapping and dietary contributions
This study focused on mineral concentrations in grain of teff and wheat 
for Ethiopia and maize for Malawi. These crops were chosen because 

they comprise a large proportion of the energy intake in national diets 
and have good spatial coverage in the survey. Grain concentration 
maps were based on ordinary kriging. Kriging variances—the expected 
squared error of the predictions—quantify the uncertainties in the 
maps (Extended Data Figs. 3, 4). The dietary contribution for each 
crop–nutrient combination was then mapped as a percentage of dietary 
requirements and visualized on quartile scales from yellow (small) to 
dark red (large). These calculations used food balance sheets from 
the Food and Agriculture Organization29 and assumed estimated aver-
age requirement (EAR) thresholds for a representative demographic 
group—adult women aged 18–24 years eating an unrefined (that is, 
high phytate) diet30.

There is spatially dependent variation in grain Ca, Fe, Se and Zn con-
centrations over large distances in Ethiopia and Malawi (Figs. 3, 4). 
These observations are likely to be of nutritional importance given that 
most cereals are grown, milled and consumed locally in Ethiopia31 and 
Malawi5, because they show that the dietary supply and intake of these 
nutrients varies substantially from one location to another. In Ethiopia, 
spatial dependencies were seen over distances from 100 to 200 km for 
the concentration of Ca in teff, for the concentrations of Fe in teff and 
wheat, and for the concentration of Se in wheat (Extended Data Fig. 2 
and Extended Data Table 3). For grain Se and Zn concentrations in teff, 
and grain Ca and Zn concentrations in wheat, longer-range spatial 
variation extends beyond 250 km. In Malawi, the spatial dependence 
of the variation in grain Ca, Fe and Se concentration of maize occurs 
at distances of 50–80 km. For the concentration of Zn in maize grain 
in Malawi, more of the variation was attributable to differences over 
distances that were too short to be resolved by our sampling frame, 
although the value of the variogram still increased at distances up to 
100 km.

In Ethiopia, the Ca concentrations in teff and wheat grain were gen-
erally greater in crops sampled from north, northeast and east Tigray 
region, north and northwest Amhara region and from areas of the Rift 
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Valley than crops from most of the Amhara region (Fig. 3). A trend of 
increasing grain Se concentrations in teff and wheat22 and increasing 
Se dietary status of children31 from the west to the east of the Amhara 
region has been reported previously. The largest grain Fe and Zn con-
centrations in teff and wheat were in north Amhara, Tigray and north-
west and southwest Oromia regions. In Malawi, maize grain Ca, Se, Zn 
and—to a lesser extent—Fe concentrations are typically greater in the 
Shire Valley of the southern region, than in the northern and central 
regions (Fig. 4). These observations are consistent with observations 
that crops growing on localized soil types (for example, Vertisols) have 
greater grain micronutrient concentrations than crops growing on 
more weathered, acidic soils4,5,25,26. As in Ethiopia, geographical areas 
with the largest maize grain Se concentration in Malawi co-located with 
areas of Se sufficiency that have been reported in both cross-sectional 
studies15 and representative surveillance analyses24 of human biomark-
ers of Se dietary status.

Links between grain micronutrient concentration and a dietary out-
come were observed for Se, for which there is a reliable biomarker of 
dietary status7,13. Biomarker data for Se for 321 enumeration areas in 
Ethiopia23 and 101 enumeration areas in Malawi24 are available from 
recent National Micronutrient Surveys. For each enumeration area, the 
nearest grain sample site for any crop type was identified. In both coun-
tries, there is a statistically significant positive relationship between the 
Se concentration in grain and the Se concentration in serum (Ethiopia) 
and plasma (Malawi) (Extended Data Fig. 5). Direct evidence of links 
between the grain concentration of other micronutrients, biomark-
ers of dietary status and health outcomes remains a major research 
challenge.

Soil and environmental factors that influence variation in grain 
micronutrients—for teff, wheat and maize in Ethiopia, and for maize 
in Malawi—were observed (Extended Data Figs. 6–9 and Extended Data 
Table 3). For example, soil pH was statistically significantly correlated 
with grain Se concentration for all crops in both countries (positive 

relationships). Grain Zn concentration was significantly correlated 
with soil pH for teff in Ethiopia (negative relationship) and for maize in 
both countries (positive relationships). Further studies of contrasting 
responses to soil pH, observed in teff and maize, are needed. However, 
the generally weak predictive value of soil pH on grain Zn concentration 
(Extended Data Figs. 7, 9) is consistent with a survey of staple crops in 
Uganda17. Soil organic carbon was significantly correlated with grain 
Se concentration in wheat in Ethiopia (negative relationship), grain Zn 
concentration in wheat in Ethiopia (positive relationship) and grain 
Zn concentration in maize in both countries (positive relationships). 
Grain micronutrient composition was also significantly correlated with 
at least one environmental covariate for each micronutrient, crop and 
country. In Ethiopia, grain Se concentration was negatively correlated 
with mean annual precipitation for each crop and was positively corre-
lated with mean annual temperature for teff and wheat in Ethiopia and 
maize in Malawi. Mean annual temperature and topographic index—a 
measure of soil wetness at a site—were positively correlated with grain 
Zn concentration for maize in Malawi. Multivariate spatial statistical 
modelling could be informative about soil and environmental factors 
that jointly influence the variation of grain micronutrient concentra-
tion; however, this requires additional statistical assumptions and is 
beyond the scope of this study.

In Ethiopia, the proportion of dietary Ca requirements that can be 
met by the consumption of teff and wheat is much greater than for 
maize in Malawi, however, it is still likely to be less than 25% of the 
required amount for most of the population (Fig. 3). In Malawi, maize 
intake provides less than 3% of dietary Ca requirements for many, 
despite providing more than 50% of dietary energy requirements 
(Fig. 4). Cereals provide a greater proportion of the dietary Fe, Se and 
Zn requirements than Ca in both countries. For example, for some 
rural households in Malawi, more than 100% of dietary Fe, Se and Zn 
requirements will be met by eating locally produced maize alone. 
However, most households will receive less than 25% of Se, less than 

Ca

79.9–1,080
71.7–79.8
67.5–71.6
63.4–67.4
59.3–63.3
55.2–59.2
51.1–55.1
46.9–51.0
42.8–46.8
26.2–42.7

Fe

72.1–522

43.6–72.0

31.3–43.5

25.2–31.2

21.2–25.1

19.1–21.1

17.1–19.0

15.0–17.0

13.0–14.9

2.72–12.9

Se

79–1,788

51–78

37–50

30–36

23–29

16–22

9–15

1–8

Zn

25.8–43.4

24.0–25.7

22.9–23.9

21.7–22.8

20.7–21.6

19.6–20.6

17.9–19.5

10.8–17.8

>4
3–4
2–3
<2

>100
50–100
25–50
<25

>100
50–100
25–50
<25

>100
75–100
50–75
<50

Ca Fe Se Zn

a

b

Fig. 4 | Maize grain micronutrient concentrations and contribution to dietary supply in Malawi. a, Grain concentration. Units are mg kg–1 for Ca, Fe and  
Zn; μg kg–1 for Se (3 significant figures). b, Percentage of micronutrient dietary supply requirement from maize.



Nature | www.nature.com | 5

50% of Fe and less than 75% of their Zn requirements from a typical 
consumption pattern for maize.

Surveillance and interventions
Surveillance of MNDs and food system foresighting activities currently 
rely on national or international food composition data to estimate 
micronutrient supply as a proxy for intake6,7. Subnational food com-
position data are not yet used, probably because of the logistical and 
conceptual challenges in generating data in the required forms. Chal-
lenges include sampling crops across large areas during short harvest 
periods, analysing large numbers of samples and associated data in 
areas in which access to suitable laboratories and trained personnel is 
often lacking, and communicating sparse data and associated uncer-
tainties. Spatial dependencies in the grain micronutrient concentra-
tions found in this study can be communicated simply using localized 
administrative level boundaries. Mean grain Ca and Zn concentrations 
for teff and wheat show spatial trends when mapped to woreda admin-
istrative levels in the Amhara region of Ethiopia using geostatistical 
models and block kriging (Fig. 5).

Ideally, improved access to diverse diets would alleviate many MNDs1–6.  
However, this is unlikely to be feasible in the shorter term for many peo-
ple for socioeconomic reasons6. A crop micronutrient survey within a 
country could inform shorter-term interventions to alleviate MNDs. 
Such interventions include supplementation32, food fortification8,9 
and biofortification of staple crops through breeding and agronomic 
approaches10,11. For example, Zn-biofortified wheat varieties, which 
were recently released in India and Pakistan33,34, have been bred with a 
target to increase Zn concentrations by 8–12 mg kg–1 above a notional 
baseline grain Zn concentration of 25 mg kg–1. Similarly, increases in 
grain Zn concentration in new Zn-biofortified hybrid maize varieties 
of 15% in Guatemala (ICTA HB-18 and ICTA B-15) and 36% in Colom-
bia (BIO-MZN01), with target levels of around 30 mg kg–1, have been 
reported35. Here, geographical differences in grain Zn concentration, 
in both wheat (Ethiopia) and maize (Malawi), can exceed these breed-
ing targets. Subnational spatial sources of variation could support 
priority areas for the release of new crop varieties or micronutrient 
fertilization strategies and improve impact evaluations of biofor-
tification interventions. The persistence of MNDs is clearly more 
complex than micronutrient supply in cereal grains36. For example, 
livestock are important components of diverse diets and income; 

identifying areas of lower concentrations of micronutrients in for-
age crops could inform strategies to improve livestock health and  
production20,21.

This study did not explore the effects of crop variety (genotype) 
or farmer management strategies (management), which will con-
tribute substantially to the variation in yield and grain micronutri-
ent concentrations, even over short distances within and between 
fields of the same farm37,38. For example, the preferential use of locally 
sourced organic materials by smallholder farmers on certain fields can 
improve the quality and yield of grain micronutrients in maize-based38 
and wheat-based39 systems in SSA. Temporal variation in environmen-
tal (environment) factors, such as the projected decreases in cereal 
grain micronutrient concentrations due to increased atmospheric 
CO2—of 6% for Fe and 9% for Zn in wheat by the mid-twenty-first cen-
tury40—and increased leaching of soil Se under higher rainfall41, should 
also be considered. However, rising temperatures may compensate 
for some of these effects in terms of grain micronutrient quality42. 
A better understanding of how the complex interactions between 
genotype, management and environment drive crop micronutrient 
quality within diverse, climate-smart farming systems is essential for 
a more-sustainable global food system.
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Methods

Ethical approval
Grain and soil samplings from farmers’ fields were completed in Novem-
ber–December 2017 (for most of Amhara region) and November 2018–
January 2019 (Amhara, Oromia and Tigray regions) in Ethiopia, and in 
April–June 2018 in Malawi. The work involved sampling of grain and 
soil from farmers’ fields and grain stores with the informed consent 
of the farmers. The work was conducted under ethical approvals from 
the University of Nottingham, School of Sociology and Social Policy 
Research Ethics Committee (REC); BIO-1718-0004 and BIO-1819-001 
for Ethiopia and Malawi, respectively. These REC approvals were rec-
ognized formally by the Directors of Research at Addis Ababa Uni-
versity (Ethiopia) and Lilongwe University of Agriculture and Natural 
Resources (Malawi), who also reviewed the study protocols.

Sampling design
The objective of this study was to support the spatial mapping of grain 
Ca, Fe, Se and Zn concentration of cereal crops. We sought reasonable 
spatial coverage over the target sample frame and used ‘main-site’ and 
‘close-pair’ sampling to support the estimation of parameters of the 
spatial linear mixed model (LMM)22,43.

In Ethiopia (Amhara, Oromia and Tigray regions), target sample 
frames were constrained to locations at which the probability of the 
land being under crop production was ≥0.9 based on predictions pro-
duced on a 250-m grid. These predictions were derived from the inter-
pretation of high-resolution satellite imagery by trained observers and 
by machine learning methods applied to multiple covariates derived 
from remote sensing data and digital elevation models44,45. The sample 
frame was further constrained to include only those locations from a 
250-m grid that fell within 2.5 km of a known road. A map indicating 
nodes on a 250-m grid (with the same origin as the agricultural land-use 
grid) that met this requirement was prepared. These constraints may 
introduce possible biases into predictions made at locations outside 
the designed sample frame, however, it would not otherwise have been 
possible to visit all of the sample locations in the time available. Infor-
mation on the distribution of roads was taken from OpenStreetMap 
(www.openstreetmap.org). Of a total land area of around 1.1 million km2 
in Ethiopia, the total cropland mask represented 354,325 km2, of which 
220,467 km2 was within 2.5 km of a known road. In Malawi, the cropland 
area was determined from the European Space Agency Climate Change 
Initiative46. The agricultural area used was defined as including all raster 
cells that included the category of ‘cropland’ in their description. In 
Malawi, where road access to cropped areas is generally better than 
in Ethiopia, no constraint to road distance was imposed on sample 
locations. The mapped cropland areas are shown in Fig. 1.

In Ethiopia, a total of 1,825 primary sample locations were selected 
a priori, with each 250-m grid node within the sampling frame allocated 
an equal prior inclusion probability. This was done using the lcube 
function from the BalancedSampling library for the R platform47,48. 
The lcube function implements the cube method, to enable random 
sampling according to specified inclusion probabilities while aim-
ing for balance and spread with respect to the specified covariates49. 
Here, inclusion probabilities were uniform across the sample frame 
and sample locations were selected for spatial balance, which entails 
that the mean coordinates of sample locations are close to the mean 
coordinates of all points in the sample frame, and spatial spread, which 
ensures that the observations are spread out rather than clustered with 
respect to the spatial coordinates50. A subset of 175 of these locations 
were selected as close-pair sites at which an additional nearby sample 
was taken to support the estimation of parameters of the spatial LMM43.

In Malawi, a different sampling method was used to achieve good 
spatial coverage of a total of 1,710 main-site locations. These included 
820 fixed sample points from the 2015/16 Demographic and Health 
Survey of Malawi24,51. The stratify function in the spcosa library for 

the R platform52 divides a sampling domain into Delaunay polygons 
centred on a set of fixed points and with the remaining polygon cen-
troids selected to partition the domain into approximately equal-area 
regions. The centroids of the polygons were selected as sample points. 
An additional 890 sample points were found in addition to the 820 fixed 
ones, with the stratify function. Once these were obtained, a further 190 
locations were selected at random as close-pair sites for an additional 
nearby sample, as in Ethiopia.

Field sampling
Sampling was conducted by teams who were trained in standard pro-
cedures and risk assessments. Each team planned to visit five main-site 
locations per day. Main-site locations were loaded onto a computer 
tablet and printed on paper maps for each team. A team would navi-
gate to the target location, using a handheld GPS device for the last 
few kilometres. At each sample location, the team would identify the 
nearest field with a mature cereal crop within a 1-km radius, and sam-
ple grain and soil, subject to farmer consent. If a field with a standing 
mature cereal crop was not apparent, that is, the crop had been har-
vested, or a non-cereal crop had been grown, the team would ask the 
farmer to identify a field from which a cereal crop had recently been 
harvested and stored, and from which a sample could be obtained. If 
sampling was not possible, then the team would either look beyond 
a 1-km radius for an alternative location, or abandon the location. At 
designated close-pair locations, a second field was identified ideally 
within around 500 m (range, 100–1,000 m) of the main-site location. 
If a close-pair location could not be found, then a close-pair location 
would be selected at the next sample location that was not already 
earmarked for a close-pair sample.

Within a selected field, samples were taken from a 100 m2 (0.01 ha) 
circular plot. This was centred as close as practical to the middle of 
the field unless this area was unrepresentative due to disease or crop 
damage. Five subsample points were located (Extended Data Fig. 1). 
The first point was at the centre of the plot. Two subsample points were 
then selected at locations on a line through the plot centre along the 
crop rows, and two more points on a line orthogonal to the first through 
the plot centre. Where possible, the central sampling location was 
fixed between crop rows, and the long axis of the sample array (with 
sample locations at 5.64 and 4.89 m) was oriented in the direction of 
crop rows with the short axis perpendicular to the crop rows. A single 
soil subsample was collected at each of the five subsample points with 
a Dutch auger with a flight of length of 150 mm and diameter of 50 mm. 
The auger was inserted vertically to the depth of one flight and the five 
subsamples were stored in a single bag. Where a mature or ripe crop 
was still standing in the field, grain samples were taken close to each 
augering position by a different operator, to minimize further contami-
nation by dust and soil. For maize, a single cob was taken at each of the 
five points. Maize kernels were stripped from around 50% of each cob 
lengthways and composited into a single sample envelope for each 
location. For smaller-grained crops, sufficient stalks were taken so 
that approximately 20–50% of the sample envelope was filled (dimen-
sions 15 cm × 22 cm), with samples placed grain‐first into the sample 
bag and the stalks were twisted off the grain heads and discarded. If a 
crop was in field stacks, then a subsample, comprising five cobs for 
maize, or a representative sample for other crops was taken from each 
available stack, taking material from inside the stack to minimize con-
tamination by dust and soil (Extended Data Fig. 1). If a crop was in a 
farmers’ store, that is, already averaged from across the field, then a 
representative sample was taken, while avoiding grain from the store 
floor if grain was loosely stored and avoiding grain with visible soil or 
dust contamination.

Photographs at sample locations and of sample bags were recorded 
for quality assurance along with site GPS locations. In Ethiopia, 1,385 of 
the 1,389 locations from where grain data are reported had positional 
uncertainties of ≤8 m as recorded by the GPS. The other four locations 
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had positional uncertainties of 9–16 m. In Malawi, 1,790 of the 1,812 
locations had positional uncertainties of ≤9 m. A further 16 locations 
had positional uncertainties of 10–17 m, and 6 locations had positional 
uncertainties of 2,900–5,000 m. We took a decision not to exclude any 
data based on positional uncertainties for this study. We used robust 
estimators of the variograms (Extended Data Fig. 2), which are resist-
ant to effects of spatial outliers due to a small number of points being 
in the wrong position53 and these models were validated. Any effect 
of position error on the broad mapped pattern of long-range spatial 
variation at these scales will therefore be very limited and localized.

Sample preparation
Whole-grain samples were air-dried in their sample bags. Each sample 
was then ground in a domestic stainless-steel coffee grinder, which was 
wiped clean before use and after each sample with a non-abrasive cloth. 
Whole grains are consumed in many settings, although more-refined 
fractions—with concomitant losses of more micronutrient-rich bran 
and endosperm fractions—are often consumed. All preparation was 
done away from sources of contamination by soil or by dust. A 20-g 
subsample of the ground material was then shipped to the University of 
Nottingham. Soil samples were oven-dried at 40 °C for 24–48 h depend-
ing on the moisture content of the soil. Preparation took place in a soil 
laboratory to avoid cross-contamination with grain samples. Plant 
material was removed from each soil sample, which was then disag-
gregated and sieved to pass 2 mm. This material was then coned and 
quartered to produce subsample splits. A 150-g subsample of soil was 
poured into a self-seal bag, labelled and shipped to the UK for analysis 
in the laboratories at the University of Nottingham and Rothamsted 
Research. Soil pH(water) and soil organic carbon (SOC) content were 
measured using standard methods22.

Grain micronutrient analyses
Grain micronutrient analysis methods followed standard methods54. 
Approximately 0.2 g of each ground sample was weighed and digested 
using a microwave system. For samples collected in the Amhara region 
in 2017, a Multiwave 3000 48-vessel MF50 rotor (Anton Paar) was 
used; digestion vessels were perfluoroalkoxy tubes in polyethylethyl-
ketone pressure jackets (Anton Paar). Samples were digested in 2 ml 
70% trace-analysis-grade HNO3, 1 ml Milli-Q water (18.2 MΩ cm; Fisher 
Scientific) and 1 ml H2O2. Settings were: 1,400 W, 140 °C, 2 MPa, for 
45 min. For samples collected in 2018–2019, we used a Multiwave Prom 
41HVT56 rotor and pressure-activated venting vessels made of modi-
fied polytetrafluoroethylene (56-ml ‘SMART VENT’, Anton Paar). Sam-
ples were digested in 6 ml of 70% trace-analysis-grade HNO3. Settings 
were: 1,500 W, 10 min heating to 140 °C, 20 min holding at 140 °C, and 
15 min cooling to 55 °C. Two operational blanks were typically included 
in each digestion run. Duplicate samples of a certified reference mate-
rial (Wheat flour SRM 1567b, NIST) were included in approximately 
every fourth digestion run. Following digestion, each tube was made up 
to a final volume of 15 ml by adding 11 ml Milli-Q water, then transferred 
to a 25-ml universal tube (Sarstedt) and stored at room temperature. 
Samples were further diluted 1:5 with Milli-Q water into 13-ml tubes 
(Sarstedt) before analysis.

Multi-elemental analysis of grain (Ag, Al, As, B, Ba, Be, Ca, Cd, Cr, Co, 
Cs, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, S, Sr, Ti, Tl, U, V and Zn) was 
undertaken using inductively coupled plasma mass spectrometry (ICP–
MS; iCAPQ, Thermo Fisher Scientific). The instrument used a helium 
collision cell with kinetic energy discrimination to reduce polyatomic 
interferences. Samples were introduced from an autosampler incor-
porating an ASXpress rapid uptake module (Cetac ASX-520, Teledyne 
Technologies) through a perfluoroalkoxy Microflow PFA-ST nebuliser 
(Thermo Fisher Scientific). Internal standards were introduced to the 
sample stream on a separate line via the ASXpress unit and included Sc 
(20 μg l–1), Rh (10 μg l–1), Ge (10 μg l–1) and Ir (5 μg l–1) in 2% HNO3 (Primar 
Plus grade; Fisher Scientific). An external multi-element calibration 

standard (Claritas-PPT grade CLMS-2; SPEX Certiprep) was used to cali-
brate Ag, Al, As, B, Ba, Be, Cd, Ca, Co, Cr, Cs, Cu, Fe, K, Li, Mg, Mn, Mo, Na, 
Ni, P, Pb, Rb, S, Se, Sr, Tl, U, V and Zn, in the range of 0–100 μg l–1 (0, 20, 
40, 100 μg l–1). A bespoke external multi-element calibration solution 
(PlasmaCAL, SCP Science) was used to create Ca, K, Mg and Na stand-
ards in the range of 0–30 mg l–1. B, P and S calibration used in-house 
standard solutions (KH2PO4, K2SO4 and H3BO3); Ti was determined 
semiquantitatively. Sample processing was undertaken using Qtegra 
software (Thermo Fisher Scientific) with external cross-calibration 
between pulse-counting and analogue detector modes when required. 
Se was determined separately using a triple quadrupole ICP–MS (iCAP 
TQ; Thermo Fisher Scientific) using an oxygen cell to mass shift the 
isotope 80Se to m/z 96 (80Se16O) to reduce interference from the 40Ar 
dimer. Drift correction was achieved using Rh as an internal standard; 
calibration used the CLMS-2 multi-element standard (Certiprep).

Analyses were conducted in batches of around 240 samples per 
run on the ICP–MS instrument (Extended Data Table 1). Individual 
grain concentration data were corrected for run-specific operational 
blanks and then converted to concentration on a dry-matter basis. 
Element-specific limits of detection were reported as 3× the standard 
deviation of the operational blank concentrations, assuming a notional 
starting dry weight of 0.2 g of sample material (Extended Data Table 1). 
For samples for which the grain element concentration was less than the 
limit of detection, data were removed before the statistical analyses. 
No adjustment was made for potential contamination of grain samples, 
for example, with soil dust from the field or store using typical markers 
(for example, Fe, V). Two sorghum samples, taken from a grain store in 
Malawi, were excluded from the data analysis based on high concentra-
tions of Ca, Mg and other elements that were considered unlikely to 
have arisen from soil contamination.

Statistical analyses
Summary statistics were computed for concentrations of all elements 
in grain and histograms were examined. It is common for geochemical 
variables to be log-normally distributed, and the coefficient of skewness 
of the data was examined using octile skewness as a robust measure of 
asymmetry of the distribution55. The data were analysed on the original 
scales of measurement (mg kg–1) if the octile skewness was within the 
interval [−0.2, 0, 2] as described previously56. If the octile skewness 
fell outside this range (with a positive value), and the absolute value of 
the octile skewness after loge transformation was smaller than on the 
original scale, then the data were analysed on the loge scale (Extended 
Data Tables 1, 2).

Variograms were estimated for each variable using three estimators 
(Extended Data Table 2): the standard estimator57 and two alterna-
tives58,59. The two alternative estimators are more robust than the stand-
ard estimator to outlying data, be these marginal outliers (apparent on 
the histogram) or spatial outliers (apparent in local spatial context). The 
variogram estimates were formed from all pairwise comparisons among 
observations up to a maximum lag distance (330 km in Ethiopia and 
100 km in Malawi), and with lag bins with a width of 10 km. The distance 
between any two locations (specified by latitude and longitude) was 
computed as the great circle distance using the distVincentySphere 
function from the geosphere library of the R platform47,60. Exponential 
variogram functions were then fitted to the estimates by weighted least 
squares61. The exponential variogram was selected because it ensures 
positive definite covariance matrices for distances on the sphere62. 
Each model was then tested by cross-validation. The selected models 
are shown in Extended Data Fig. 2.

In cross-validation, each observation was removed and predicted 
from the remaining observations by ordinary kriging. This was done 
using each variogram model fitted for each variable to the sets of 
point estimates computed by the three estimators. The standardized 
squared prediction error (SSPE) was computed for each observation 
as the squared difference between the observed and predicted values 



divided by the prediction error variance (kriging variance) as computed 
in the standard ordinary kriging equations53. The median value of the 
SSPE has an expected value of 0.455 in the case of a valid underlying 
variogram model with normally distributed kriging errors53. The stand-
ard estimator due to Matheron57 is more statistically efficient than the 
robust alternatives, so if the model fitted to these estimates appeared 
correct from the cross-validation results (the median SSPE is within the 
95% confidence interval) then the alternatives were not considered. 
If the SSPE suggests that the model fitted to Matheron estimates are 
affected by outliers, then the models fitted to robust estimates were also 
cross-validated, and one was selected on the cross-validation results53.

Once a variogram model was selected it was used to compute pre-
dictions of the grain concentration (with or without transformation) 
on nodes of a fine square grid. This was done by ordinary kriging61. In 
ordinary kriging, it is assumed that the mean value of the variable of 
interest is locally constant, but unknown. An estimate is found that is a 
linear combination of the observations such that the expected squared 
error of the prediction (the ordinary kriging variance) is minimized. The 
kriging variance is also computed as a measure of the uncertainty of 
the prediction. For a given variogram, the kriging variance reflects the 
proximity of the location at which a prediction is made to observations 
of the variable of interest. In the case of variables that had been trans-
formed to logarithms, the prediction at each location was computed 
by exponentiation of the prediction on the loge scale. The resulting 
back-transformed estimate is a median-unbiased predictor, which is 
appropriate for variables with a skewed distribution63. Note, the kriging 
variance cannot be meaningfully back-transformed. However, it still 
indicates how the uncertainty of the predictions varies in space and so it 
is mapped here on the loge scale for transformed variables. The kriging 
variance maps are shown in Extended Data Figs. 3, 4. In Ethiopia, where 
the sample sites are irregularly distributed over the mapped area, the 
kriging variance differs markedly depending on the local sample density.

In Ethiopia, we mapped the percentage of dietary requirement poten-
tially met by the intake of wheat and teff (Fig. 3); similarly, in Malawi 
for maize (Fig. 4). In Ethiopia, 97.6 g per capita per day of wheat and 
89.3 g per capita per day for teff (based on the Food and Agriculture 
Organization database item, ‘other cereals’) were used as reference 
intakes29; in Malawi, 342.8 g per capita per day was used as a reference 
maize intake29. Estimated average requirement (EAR) thresholds of 860, 
22.4, 45 and 10.2 mg per capita per day for Ca, Fe, Se and Zn, respectively, 
were chosen as a representative threshold, based on an adult woman 
aged 18–24 years eating an unrefined (that is, high phytate) diet30. 
These thresholds are similar to other demographic groups. Because 
a comparable measure of uncertainty to the kriging variance for this 
derived variable is not available, we defined a mask for Ethiopia, where 
the sparsity of sampling leads to larger uncertainty compared with 
Malawi. We considered the Zn concentration in teff, a variable with 
spatial dependence over long distances, and identified those areas 
in which the kriging variance for this variable exceeded 75% of the 
variance of the variable itself because the sampling was sparse. These 
areas defined the mask used for the maps of the percentage of dietary 
requirement for all variables and is shown in grey in Fig. 3.

The maps shown in Figs. 3, 4 are made by point kriging—that is, 
they are predictions of a measurement at an unsampled site. Ordi-
nary kriging can also be used to predict the mean value of a variable 
across a region or ‘block’61. To illustrate the communication value of 
this approach, the mean concentrations of Zn and of Ca in grain (teff 
and wheat) are shown at the woreda level in the Amhara region (Fig. 5). 
These were obtained by block kriging of woreda means from the same 
sample data, and with the same variogram models as used to produce 
the point kriging predictions.

Grain–biomarker links
Determining the links between a dietary biomarker of status and grain 
micronutrient concentration focused here on Se, for which there is a 

reliable biomarker of dietary status13; this is not the case for Zn7 and the 
other micronutrients analysed in this study. Data on the concentration 
of Se in the blood of women of reproductive age were available from 
micronutrient surveys in Ethiopia (serum23) and Malawi (plasma24). 
Mean concentrations were computed for each enumeration area avail-
able—321 in Ethiopia and 101 in Malawi—for which the latitude and 
longitude for each enumeration area centroid were available. For each 
enumeration area, the nearest grain sample site (regardless of crop) was 
found. In Ethiopia, the median distance to the nearest grain sample site 
over all enumeration areas was 17 km. In Malawi, the median distance 
was much shorter (1.4 km), which is attributable both to the denser 
crop sampling in Malawi and to the fact that enumeration areas used 
for the micronutrient survey were targeted for sampling.

The enumeration areas do not comprise a simple independent ran-
dom sample, so the relation between the serum or plasma Se concen-
tration and the Se concentration in the nearest grain sample could not 
be quantified by a statistic such as the correlation coefficient. It was 
therefore studied with an appropriate LMM incorporating a spatially 
correlated random effect, modelled with a Matérn correlation func-
tion64. Exploratory analysis indicated that a loge transformation of all 
serum or plasma Se concentrations was necessary for the assumption of 
normal random effects to be plausible. The observed serum or plasma 
Se concentration was modelled as a linear function of the concentration 
in grain at the nearest sample location. Residual maximum likelihood 
was used to estimate the random effects parameters. The fixed effects 
were then estimated by weighted least squares65 along with their stand-
ard errors. The evidence against the null hypothesis that the regression 
coefficient for serum or plasma Se on grain Se concentrations was zero 
was tested by a log-likelihood ratio test.

Plots of the serum or plasma Se concentration in women of reproduc-
tive age, in Ethiopia and Malawi, respectively, show a positive correla-
tion between the variables (Extended Data Fig. 5), which is supported 
by the statistical models. For Ethiopia, the estimated regression coef-
ficient (log[ng serum Se per ml] and log[mg of grain Se per kg]) was 0.08 
with a standard error of 0.02. The null hypothesis that the coefficient 
was zero is rejected on the grounds of the log-likelihood ratio statistic 
(L = 14.48, P = 1.4 × 10−4). If there was no relationship between the bio-
marker and the grain Se concentrations, the probability of obtaining an 
L-statistic this large or larger would be very small. Similarly, for Malawi, 
the estimated regression coefficient was 0.09 with a standard error of 
0.03 (L = 11.56, P = 6.7 × 10−4).

Environmental–soil–grain links
Data on the concentration of Se and of Zn in grain (maize in Malawi; 
teff, wheat and maize in Ethiopia) were extracted along with the cor-
responding data on soil pH(water) and SOC. Observations for three envi-
ronmental covariates were also extracted for these same locations: (1) 
mean annual temperature; (2) mean annual precipitation values from 
the CHELSA datasets66,67, which are downscaled to a spatial resolution 
of 30 s; (3) topographic index values from the 30-s resolution MERIT 
Digital Elevation Model68. The topographic index—which is sometimes 
called the topographic wetness index—is a measure of the tendency 
for drainage to accumulate at a site and is widely used as a predictive 
measure for soil properties. Following exploratory analysis, grain Se 
concentration data were loge-transformed to make the assumption of 
normal random effects plausible; this was not necessary for grain Zn. 
Measurements of SOC from Malawi showed a marked positive skew 
and were therefore loge-transformed.

Data were analysed using a LMM in which a regression-type function 
of environmental covariates was considered as a fixed effect along with 
a spatially autocorrelated random effect, as described for the biomarker 
data. Random-effect parameters were estimated by maximum likeli-
hood, and then the fixed-effect parameters by weighted least squares. 
The first model was fitted with a constant mean as the only fixed effect. 
The second model was fitted with mean annual precipitation as a fixed 
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effect. The evidence for this predictor was evaluated by a log-likelihood 
ratio test of the second model against the first. The predictor was 
retained initially if the probability of obtaining a value of L as large 
or larger than observed under the null hypothesis of no effect of the 
predictor was <0.05. Additional predictors were then considered in 
the order of mean annual temperature then topographic index. Finally, 
the P values were evaluated as the outcome of multiple tests, control-
ling the false-discovery rate (FDR)69 at 0.05. The FDR is the expected 
proportion of incorrectly rejected null hypotheses among all rejected 
ones. For each micronutrient in each crop and country, the predictors 
were identified that could be regarded as significant with FDR control 
at 0.05. The same procedure was followed to produce a comparable 
model based on the two soil properties, considering first soil pH and 
then SOC.

Plots of grain Se and Zn concentrations against the environmental 
covariates and soil properties are shown in Extended Data Figs. 6–9. The 
evidence for environmental covariates or soil properties as predictors 
of micronutrient content in the grain is summarized in Extended Data 
Table 3. Extended Data Table 3 also shows the estimated coefficients, 
and their standard errors, in separate models for each micronutrient; 
for maize, teff or wheat in Ethiopia and for maize in Malawi. The predic-
tors in these models are only those that were selected with FDR control.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All data are freely available from the corresponding author and avail-
able online at https://github.com/rmlark/GeoNutrition.

Code availability
All code is freely available from the corresponding author and available 
online at https://github.com/rmlark/GeoNutrition.
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Extended Data Fig. 1 | Sampling protocol. Target layout of the five sample points (black circles) for a standing crop (left) or for a crop harvested in the field 
(right).
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Extended Data Fig. 2 | Variogram estimates for grain concentrations of Ca, Fe, Se and Zn. a, Teff in Ethiopia. b, Wheat in Ethiopia. c, Maize in Malawi.



Extended Data Fig. 3 | Kriging variance maps for grain micronutrient concentrations in Ethiopia. a–h, Teff (a–d) and wheat (e–h) grain concentration of Ca 
(a, e), Fe (loge) (b, f), Se (loge) (c, g) and Zn (d, h).
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Extended Data Fig. 4 | Kriging variance maps for maize grain micronutrient concentrations in Malawi. a, Ca (loge). b, Fe (loge). c, Se (loge). d, Zn.



Extended Data Fig. 5 | Relationships between Se concentration in blood fractions and grain Se concentrations. a, Ethiopia (serum). b, Malawi (plasma).
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Extended Data Fig. 6 | Relationships between grain Se concentration and environmental and soil covariates in Ethiopia. Data for teff (top), wheat (middle) 
and maize (bottom) are shown.



Extended Data Fig. 7 | Relationships between grain Zn concentration and environmental and soil covariates in Ethiopia. Data for Teff (top), wheat (middle) 
and maize (bottom) are shown.
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Extended Data Fig. 8 | Relationships between grain Se concentration and environmental and soil covariates in Malawi. Data for maize are shown.



Extended Data Fig. 9 | Relationships between grain Zn concentration and environmental and soil covariates in Malawi. Data for maize are shown.
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Extended Data Table 1 | Analytical data for grain micronutrient concentration

Top, numbers of grain analysis runs for microwave digestion and ICP–MS steps for the grain surveys, including limit of detection (LOD) and certified reference material (CRM) recovery values 
for Ca, Fe, Se and Zn from wheat flour (SRM 1567b, NIST). Bottom, summary statistics for grain concentrations of Ca, Fe, Se and Zn in teff and wheat in Ethiopia, and maize in Malawi. The 
selected scale used for analysis is shown in italic.



Extended Data Table 2 | Cross-validation of variograms

Median standardized squared prediction error from cross-validation of the selected variograms for grain concentration of Ca, Fe, Se and Zn in teff and wheat in Ethiopia and maize in Malawi.
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Extended Data Table 3 | Predicting grain micronutrient concentrations based on environmental covariates and soil 
properties

Top, significance tests for model parameters. MAP, mean annual precipitation (downscaled); MAT, mean annual temperature (downscaled); pH, soil pH measured in water; SOC, soil organic 
carbon percentage by mass; TI, topographic index. L is the log-likelihood ratio statistic for the null hypothesis that the named predictor is unrelated to the target variable and p is the 
corresponding P value. FDR indicates whether the predictor is retained (as indicated by a check mark) with control of the FDR at 0.05. Bottom, estimated coefficients (β) and their standard 
errors (SE) for selected predictors for grain micronutrient concentrations.
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