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ABSTRACT Gene regulatory networks are powerful tools which facilitate hypothesis generation and
candidate gene discovery. However, the extent to which the network predictions are biologically relevant
is often unclear. Recently a GENIE3 network which predicted targets of wheat transcription factors was
produced. Here we used an independent RNA-Seq dataset to test the predictions of the wheat GENIE3
network for the senescence-regulating transcription factorNAM-A1 (TraesCS6A02G108300). We re-analyzed
the RNA-Seq data against the RefSeqv1.0 genome and identified a set of differentially expressed genes
(DEGs) between the wild-type and nam-a1 mutant which recapitulated the known role of NAM-A1 in
senescence and nutrient remobilisation. We found that the GENIE3-predicted target genes of NAM-A1
overlap significantly with the DEGs, more than would be expected by chance. Based on high levels of overlap
between GENIE3-predicted target genes and the DEGs, we identified candidate senescence regulators. We
then explored genome-wide trends in the network related to polyploidy and found that only homeologous
transcription factors are likely to share predicted targets in common. However, homeologs which vary in
expression levels across tissues are less likely to share predicted targets than those that do not, suggesting
that they may be more likely to act in distinct pathways. This work demonstrates that the wheat GENIE3
network can provide biologically-relevant predictions of transcription factor targets, which can be used for
candidate gene prediction and for global analyses of transcription factor function. The GENIE3 network has
now been integrated into the KnetMiner web application, facilitating its use in future studies.
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Transcriptional regulation of gene expression is fundamental to all
biological processes. Increasingly, this is studied using large-scale
datasets obtained from RNA-Sequencing (RNA-Seq) experiments across
multiple tissues, genotypes, treatments, and timepoints. As library prep-
aration and sequencing costs fall, more and more RNA-Seq datasets are
being published, providing a wealth of transcriptional information. These

datasets are then available for integration into large-scale gene regulatory
networks covering various biological conditions. In wheat (Triticum
aestivum), genomic and transcriptomic analysis has historically been
hampered by its large, repetitive polyploid genome (Appels et al.
2018). More recently, a high-quality genome and gene annotation has
facilitated transcriptomics work in wheat (Appels et al. 2018;
Ramírez-González et al. 2018). This has allowed the use of substantial
RNA-Seq datasets to build gene regulatory networks and predict
transcription factors involved in complex processes such as senes-
cence (Borrill et al. 2019) and grain development (Pfeifer et al. 2014;
Chi et al. 2019). However, these studies typically use bespoke
RNA-Seq datasets to generate the regulatory networks, rather than
exploiting publicly-available data.

Recent efforts to standardize and manually curate public RNA-
Seq datasets [8], combined with the publication of large datasets
which span wheat development [2], have resulted in unprecedented
availability of wheat transcriptome data. These large, curated datasets
can now be mined to build new gene regulatory networks covering
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many biological processes in wheat. Using 850 RNA-Seq datasets
combined from multiple independent studies, gene co-expression
networks for root, leaf, spike, and grain tissues, as well as abiotic and
biotic stresses, were developed (Ramírez-González et al. 2018). This
same study also generated a network of predicting transcription
factor - target relationships using the 850 independent RNA-Seq
samples from a wide range of developmental, tissue, genotypes and
stress conditions (Ramírez-González et al. 2018). This network was
created with the Gene Network Inference with Ensemble of trees
3 (GENIE3) algorithm, which uses a Random Forests approach to
predict the strength of putative regulatory links between target genes
and their putative regulators (i.e., transcription factors) (Huynh-Thu
et al. 2010). The program produces a ranked list output of each
pairwise comparison ranked from the most confident to the least
confident regulatory connection. GENIE3was able to recapitulate known
genetic regulatory networks in Escherichia coli when first tested. Further
testing demonstrated that the GENIE3 network was able to predict
known transcription factor-gene regulatory connections in a Drosophila
melanogaster dataset (Huynh-Thu and Geurts 2018). Intriguingly, in this
same study the GENIE3 network was not able to predict gold-standard
interactions in a Saccharomyces cerevisiae dataset, performing no better
than random. This suggested that the relative performance of the
GENIE3 network is data-dependent, highlighting the importance of
testing the outputs of a GENIE3 network before utilizing it for de novo
predictions. Since its introduction, the GENIE3 algorithm has been used
to identify tissue-specific gene regulatory networks inmaize (Huang et al.
2018) and key regulatory genes in glaucoma (Chen et al. 2017), as well as
to study the drought response in sunflower (Marchand et al. 2014).
Notably, previous studies have integrated the GENIE3 network predic-
tions with ChIP-Seq and other proteomic and transcriptomic data and
found that the GENIE3 predictions do correspond with independent
biological datasets (Walley et al. 2016; Huang et al. 2018).

Here we have conducted a series of analyses to investigate whether
the GENIE3 network provides biologically-relevant information in
polyploid wheat. As a first case study, we re-analyzed the RNA-Seq
datasets from Pearce et al. (Pearce et al. 2014) which examined gene
expression of the NAC transcription factor NAM-A1. This transcrip-
tion factor is known to affect monocarpic senescence and nutrient
remobilisation in polyploid wheat, affecting gene expression even
before visual signs of senescence can be observed (e.g., 12 days after
anthesis in flag leaf) (Uauy et al. 2006; Pearce et al. 2014). We
compared the differentially expressed genes between wild-type and
nam-a1 mutant lines with the GENIE3 predicted targets of the
NAM-A1 transcription factor (Pearce et al. 2014). This publicly-
available RNA-Seq data were not used in the generation of the
GENIE3 network, thus serving as an independent dataset for testing
purposes. We then explored the GENIE3 network for genome-wide
trends relating to polyploidy and investigated the putative functions
of targets for wheat transcription factors. Finally, we integrated the
GENIE3 network into the KnetMiner web application (Hassani-Pak
et al. 2016; Hassani-Pak et al. 2020) to facilitate exploration of the
data within a wider context.

MATERIALS AND METHODS

GENIE3
The GENIE3 network was previously published in (Ramírez-Gonzá-
lez et al. 2018) and made available at https://doi.org/10.5447/ipk/
2018/7. In brief, it utilized a set of 850 publicly-available RNA-Seq
samples in a Random Forests approach to predict targets of wheat
3,384 transcription factors (Huynh-Thu et al. 2010). The top one

million connections in the network were used for all analyses in the
paper, consistent with previous studies (Huang et al. 2018; Ramírez-
González et al. 2018).

RNA-Seq analysis

Mapping: Publicly-available reads from (Pearce et al. 2014) were
downloaded from https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE60635. Reads from the wild-type and nam-a1 (gpc-a1)
mutant lines from 12 and 22 days after anthesis (DAA) were
pseudoaligned with kallisto (v 0.43.1) (Bray et al. 2016) against
the v1.1 annotation from the RefSeq genome v1.0 (Appels et al.
2018) using standard settings for single reads (–single -b 30 -l 200 -s
20) (Supplementary Table 1). Only the A and B genomes of
RefSeqv1.0 were used for the pseudoalignment, as the raw reads
were derived from tetraploid cv. Kronos plants.

Differential expression analysis: Gene expression levels (transcript
per million, TPM) were determined using the R package Sleuth
(Pimentel et al. 2017) using the default settings for the Wald test
(sleuth_wt; v 0.30.0). Sleuth utilizes a general linear model to estimate
the biological variance between replicates not due to technical factors,
where the bootstraps produced by kallisto are treated as proxies for
true technical replicates.We compared the expression of genes between
the wild-type and nam-a1mutant samples at 12 and 22 DAA.We used
the cut-off of q, 0.05 (unless otherwise stated) to identify differentially
expressed genes, where q is the p-value adjusted for false discovery rate
using the Benjamini-Hochberg correction (Benjamini and Hochberg
1995). The list of differentially expressed genes for each timepoint is
reported in Supplementary Table 2.

In order to compare our identified differentially expressed genes
with those originally identified in (Pearce et al. 2014), we re-analyzed
the original set of differentially expressed genes using the same four
statistical approaches—DESeq (Anders and Huber 2010), edgeR
(Robinson et al. 2009), the Mann-Whitney-Wilcoxon test, and the
Student’s T-test—at different p-value cut-offs. We applied the same
adjustment as used in (Pearce et al. 2014), where the DESeq and
edgeR p-values were adjusted using the Benjamini-Hochberg method
(Benjamini and Hochberg 1995) to account for false discovery rate.
For consistency with the original paper, we refer to the statistical
significance of all four tests as a p-value, though the DESeq and edgeR
p-values are comparable to the adjusted q-value generated by Sleuth.

Methods for ID conversion and comparison: The genes and contigs
identified as differentially expressed in the original (Pearce et al. 2014)
study were converted to RefSeqv1.1 gene models where possible using
BLASTn (Altschul et al. 1990). Briefly, the differentially expressed
sequences were extracted from the IWGSC CSS genome (IWGSC
2014) and compared with BLASTn (v 2.2.3; -num_alignments 1 -
outfmt 6) against the RefSeq v1.1 transcriptome (including both high
and low confidence gene models). The BLAST hit with the greatest
percent identity to the original CSS sequence was assigned as the
equivalent RefSeqv1.1 gene model.

Comparison of the differentially expressed genes
with GENIE3

Calculation of shared ratios: We calculated the level of overlap or
shared genes between different transcription factors or datasets as follows:

jA \ Bj
jAj
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Where A and B are sets of genes, and |A| , |B|.
For example, given two sets of genes A and B, where A contains

5 genes and B contains 10 genes, if they share two genes in common
the shared ratio is 2/5, or 0.4.

This calculation was carried out as implemented in R scripts
available at https://github.com/Uauy-Lab/GENIE3_scripts. It was
used to create the distribution of shared targets between transcription
factors and the differentially expressed genes, as well as between the
predicted targets of any two transcription factors.

Distributions of shared ratios: Initially, we analyzed the shared ratios
between transcription factors in the GENIE3 network and the set
of differentially expressed genes obtained from the re-analyzed
NAM-A1 RNA-Seq data. The target genes of 1000 randomly
selected transcription factors were compared against the differ-
entially expressed genes at 12 and 22 DAA to obtain the distri-
bution of shared ratios (Figure 1B). This calculation was also
carried out individually for the targets of NAM-A1 against both
timepoints.

Following this, the shared ratio was calculated for 1000 randomly
selected pairs of transcription factors from the GENIE3 network (see
Figure 3A). The same analysis was carried out for individual tran-
scription factor super-families, based on the family assignments from
https://opendata.earlham.ac.uk/wheat/under_license/toronto/Ramirez-
Gonzalez_etal_2018-06025-Transcriptome-Landscape/data/data_tables/
transcription_factors_to_use_high_confidence.csv (Ramírez-González
et al. 2018). All pairs selected were unique, and where a transcription
factor family was not large enough to contain 1000 unique pairs, the
maximum number of unique pairs was sampled (e.g., in the family
CCAAT_HAP3, N = 3 and thus the number of unique pairs sampled
was 6). This calculation was also carried out for all homeolog pairs,
where triads were classified as in https://opendata.earlham.ac.uk/wheat/
under_license/toronto/Ramirez-Gonzalez_etal_2018-06025-Transcrip-
tome-Landscape/data/TablesForExploration/Triads.rds (Ramírez-
González et al. 2018). The subset used for this analysis only included
syntenic 1:1:1 triads (see Ramírez-González et al. 2018 for definition),
resulting in a total of 708 triads and 2,124 individual genes.

Movement ratios: The shared ratios of homeologous pairs were also
distinguished by movement classifications, as defined previously
(Ramírez-González et al. 2018). In brief, triads were classified into
three categories (“Dynamic”, “Middle 80”, and “Stable”) based on
variation in their homeolog expression bias across tissues. Dynamic
triads show more variation in relative homeolog expression levels
across tissues than stable triads. The assignment of triads to each
category is found here: https://opendata.earlham.ac.uk/wheat/under_
license/toronto/Ramirez-Gonzalez_etal_2018-06025-Transcriptome-
Landscape/data/Triad_Subsets_Movement/. Triads in the “HC_CS_
no_stress_movement_top_10pc.txt” file were defined as Dynamic,
the “HC_CS_no_stress_movement_middle_80pc.txt” as Mid 80, and
the “HC_CS_no_stress_movement_low_10pc.txt” as Stable. This
analysis was implemented in “Genie3_Statistics_SharedRatios_
Homoeologs_MovementCategories_Figure4_SuppFig3.Rmd” at
https://github.com/Uauy-Lab/GENIE3_scripts.

Developmental expression datasets: Public datasets were used for the
expression analysis in Figure 2. The developmental time course
was first published in (Ramírez-González et al. 2018), from the
spring wheat cv. Azhurnaya. This dataset was included in the
generation of the GENIE3 network. The senescence-specific time
course was first published in Borrill et al. (2019), from the spring

wheat cultivar Bobwhite, and was not included in the GENIE3
network.

Gene Ontology (GO) term analysis
GO-term enrichment analysis was carried out as previously described
in (Borrill et al. 2019), using the GOSeq (v 1.34.1) package in R
(Young et al. 2010).

Data visualization, manipulation, and statistical analyses
Graphs weremade in R, principally using the ggplot2 (v 3.1.1)(Wickham
2016) and ggpubr (v 0.2)(Kassambara 2019) packages as well as the
“aheatmap” function of the NMF package (v 0.21.0)(Gaujoux and
Seoighe 2010). Networks in Figures 3B and C were visualized using
Cytoscape (v 3.7.1) (Shannon et al. 2003). Data manipulation was also
carried out in R, using the packages dplyr (v 0.8.0.1)(Wickham
et al. 2019) and tidyr (v 0.8.3)(Wickham and Henry 2018) in
scripts as linked throughout the methods. Statistical analyses were
carried out in R, as detailed in the results section. The sign test was
carried out using the R package BSDA (v 1.2.0) (Arnholt and
Evans 2017).

Data availability
All scripts used for analysis in this paper are available on Github at
https://github.com/Uauy-Lab/GENIE3_scripts. Links to the public
datasets used in the analysis are included within the Materials and
Methods, where appropriate, or are linked in the scripts on Github.
Datasets from the Ramírez-González et al. 2018 paper are available at
https://opendata.earlham.ac.uk/wheat/under_license/toronto/Ramirez-
Gonzalez_etal_2018-06025-Transcriptome-Landscape/. The original
GENIE3 network is deposited at https://doi.org/10.5447/ipk/2018/
7. Supplementary Table 1 contains Kallisto mapping statistics. Sup-
plementary Table 2 contains the list of de novo differentially-
expressed genes. Supplementary Table 3 contains the list of candidate
senescence regulators, as shown in Figure 2. Supplementary File
1 contains Supplementary Figures 1-4. Supplementary File 2 contains
the enriched GO terms for the GENIE3 targets of all transcription
factor families and of the candidate senescence regulators (see
Supplementary Table 3). Further information on the contents of this
file is available in the README.txt file within Supplementary File 2.
Supplemental material available at figshare: https://doi.org/10.25387/
g3.11953728.

RESULTS

RNA-Seq analysis
In 2014, Pearce et al. analyzed the differences in gene expression
between wild type (WT) Kronos, a tetraploid wheat cultivar, and a
NAM-A1 loss-of-function mutant (nam-a1 or gpc-a1) which con-
tained a premature stop codon (W114�) (Pearce et al. 2014). Their
analysis was carried out before the release of a complete wheat
genome or gene annotation, relying upon a bespoke gene annotation.
Here, we reanalysed the RNA-Seq datasets for the wild-type
and nam-a1 single mutant lines at 12 and 22 DAA using the most
recent wheat genome annotation and an updated alignment
method (Appels et al. 2018). Reads were pseudoaligned to the
A and B genomes of the RefSeqv1.1 transcriptome using kallisto
(Bray et al. 2016), a software which has been shown to differentiate
well between homeologs during alignment and is thus appropriate
for use with polyploid wheat (Borrill et al. 2016; Ramírez-Gonzá-
lez et al. 2018). Each sample contained on average 35 million
reads, with the exception of one sample with 85 million reads, of
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which on average 78% were pseudoaligned to the transcriptome
(Supplementary Table 1).

To identify genes differentially expressed between the WT and
nam-a1 mutant at the two developmental timepoints (12 and
22 DAA) we used sleuth, a program designed for analysis of
RNA-Seq experiments for which transcript abundances have been
quantified with kallisto (Pimentel et al. 2017). Using an adjusted
p-value cut-off of q, 0.05, we identified 866 differentially expressed
genes (DEGs) between WT and the nam-a1 mutant at 12 DAA and
130 DEGs at 22 DAA (Supplementary Table 2). This set of DEGs will
be referred to as the de novo DEGs throughout the paper. We carried
out gene ontology (GO) term enrichment analysis on the two sets of
DEGs and found that DEGs at both timepoints are highly enriched
for terms related to metal ion transport, including zinc, manganese,
and copper (P , 0.001, adjusted for false discovery rate; Supple-
mentary File 2). This correlates closely with the findings from the
original analysis, which found that GO terms related to transporter
function were highly regulated by NAM-A1 (Pearce et al. 2014). This
also supports previous physiological studies of the NAM genes which
found them to be important in nutrient remobilisation and transport
(Uauy et al. 2006; Waters et al. 2009).

We used BLASTn to compare the differentially expressed sequences
from the Pearce dataset to the RefSeqv1.1 transcriptome annotation
which was used for the de novo analysis (Appels et al. 2018). We
successfully assigned 453 out of 517 DEG identified by Pearce et al. to
RefSeqv1.1 gene models (442/504 DEG at 12 DAA and 11/13 DEG
22 DAA). Based on this common nomenclature, we then directly
compared the de novo DEGs identified by sleuth with the DEGs
identified originally (Pearce et al. 2014).At 12DAA, 177 of the 442DEGs
(40%) were present in the de novo differential expression set, whereas at
22 DAA, 7 of the 11 DEGs (64%) were found in the de novo set.

At both developmental time points, our reanalysis identified more
transcripts as significantly differential expressed compared to the
original study (Pearce et al. 2014). This is possibly due in part to the
study being carried out before the advent of a complete wheat genome
annotation, relying instead on mapping of transcriptome assemblies
to incomplete chromosome contigs. We have shown previously that
earlier gene annotations could be incomplete or mis-annotated
(Brinton et al. 2018). However, this discrepancy in numbers of
differentially expressed genes is most likely a result of the more
liberal significance cut-off used in the current study, as compared to
the stringent combination of four statistical tests which were used to
reduce false positive discoveries in the original study (Pearce et al.
2014). Specifically, the earlier analysis combined pairwise compari-
sons of samples using the programs DESeq (Anders and Huber 2010)
and edgeR (Robinson et al. 2009), both adjusted for false discovery
rate using the Benjamini-Hochberg method (Benjamini and Hoch-
berg 1995), in combination with the Mann-Whitney-Wilcoxon test
and the Student’s t-test. For a gene to be considered differentially
expressed, the p-value was required to be, 0.01 for all tests except the
Mann-Whitney-Wilcoxon, which utilized a cut-off of P , 0.05. To
test whether the more stringent cut-off was driving the reduced
number of identified DE genes in the original analysis, we reanalysed
the original data from Pearce et al. (2014) using a cut-off of P, 0.05
for all four tests. Focusing on 12 DAA, with the highest proportion of
DE genes, 837 genes were found to be differentially expressed under
this cut-off, consistent with the 866 DEGs identified in our analysis.
Conversely, if we increased the stringency of our re-analysis using a
cut-off of q , 0.01 in Sleuth, we recover only 509 DEGs, which
is similar to the identification of 504 DEGs at 12 DAA by Pearce
et al. (2014).

To determine the impact of the cut-off value on the calling of DEGs,
we ranked the de novo DEGs by q-value and recorded the position of
the 177 shared DEGs at 12 DAA. We found that the majority of shared
DEGs (53%) ranked in the top quarter of the list of de novo DEGs
(Supplementary Figure 1A). However, 9% of the common DEGs were
found in the bottom quarter of the de novo DEGs. We then looked at
the distribution of q-values across the universe of genes included in the
RNA-Seq experiment. For both timepoints, there is a peak in the
density of q-values around 0, representing the expected enrichment of
differentially expressed genes (Supplementary Figure 1B). We found
that by selecting a cut-off of 0.05, we could capture most of the peak
present in the 12 DAA dataset. In contrast, selecting a cut-off of 0.01
would be too conservative, excluding much of the enriched peak.
Together, this suggests that the cut-off value of q, 0.05 is appropriate
to maximize the identification of relevant DEGs.

The GENIE3 network predictions overlap with
known DEGs
To investigate whether the GENIE3 network provides biologically
relevant information, we compared the GENIE3 predicted targets for
NAM-A1 against the list of differentially expressed genes identified
between the wild-type and nam-a1 mutants from the de novo RNA-
Seq analysis. As the RNA-Seq experiment was carried out in tetra-
ploid wheat, we only considered target genes on the A or B genome.
We focused on the 12 DAA and 22 DAA timepoints, which captured
the onset and intermediate stages of senescence, respectively. At
12 DAA, we found that of the 79 genes predicted to be targets of
NAM-A1 in the GENIE3 network, 12 were shared with the set of de
novo DEGs (15.2%; Figure 1A). However, at 22 DAA only 4 of the
79 GENIE3 predicted targets were shared with the DEGs (5.1%;
Figure 1A). The decrease in overlap between 12 and 22 DAA is
consistent with NAM-A1 primarily acting early in senescence (Uauy
et al. 2006; Pearce et al. 2014).

We then compared the lists of DEGs at 12 and 22 DAA against the
targets of all 3,384 transcription factors included in the GENIE3
dataset (Figure 1B). The median number of shared targets between
the DEGs and predicted targets of a given transcription factor was 0,
with a maximum of 33.3%. Comparing the overlap between random
transcription factors and the RNA-Seq dataset, we found a signifi-
cantly higher level of overlap between the GENIE3-predicted targets
of NAM-A1 and genes differentially expressed in the nam-a1 mutant
at both timepoints (P , 2.2e-16, Sign Test; Figure 1B). This result
suggests that the GENIE3 network has value in directing focus toward
targets with independent experimental support.

We also investigated whether the predicted targets of NAM-A1
shared enrichedGO terms with the differentially expressed genes in the
nam-a1 mutant. We identified 32 GO terms which were significantly
over-represented among the predicted targets of NAM-A1, of which
11 were shared with the 137 GO terms enriched in de novo DEGs at
12 DAA. Of these 11 GO terms, all but one had 9 or more of its
associated genes included in the list of predicted targets. These shared
terms included known NAM-A1-related processes such as iron-
ion binding (GO:0005506), oxidoreductase activity (GO:0016491,
GO:0055114) and transmembrane transport (GO:0055085). This again
supports the assertion that the GENIE3 network is predicting bi-
ologically relevant putative targets of NAM-A1.

Identification of senescence associated
transcription factors
We hypothesized that transcription factors which also share pre-
dicted targets with the de novo DEGs may have roles in senescence.
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We therefore identified transcription factors that had a higher
percentage of shared targets with the de novo DEGs than NAM-
A1 itself (Figure 2C, Supplementary Table 3). In total, we identified
20 such transcription factors, 0.6% of all transcription factors in the
network. Five transcription factors were identified through compar-
ison to the 12 DAA DEGs, 11 with the 22 DAA DEGs, and a further
four which had a higher shared ratio at both time points. We obtained
expression data for all 20 of the transcription factors across a
developmental time-course and a senescence-specific time-course
(Ramírez-González et al. 2018; Borrill et al. 2019). A diverse range
of transcription factor families were represented, including four
NACs, from the same family as NAM-A1 (Supplementary Table 3).
Only one pair of homeologs was identified, from the C2C2-CO-like
family. Using the developmental time-course, we calculated the fold-
change in gene expression between non-senescing tissues and senescing
leaf tissues as previously described (Borrill et al. 2019). We found that
14 of the 20 genes showed an increase in expression in the senescing
tissues, four of which were enriched more than twofold (Figure 2A).
Based on a published analysis of the senescence-specific time-course,
six of the 20 transcription factors were identified as differentially
regulated during flag leaf senescence in wheat (Borrill et al. 2019).
Analysis of the GENIE3 predicted targets for these 20 genes identified
nine transcription factors which shared at least one target gene with
NAM-A1 (Figure 2B).

To investigate the potential functions of these 20 transcription
factors further, we identified GO terms which were enriched
in the GENIE3-predicted targets of these transcription factors
(Supplementary Table 3; Supplementary File 2). At 12 DAA, the
targets of three of the nine transcription factors were enriched for
transporter-related GO terms, while others were enriched for
senescence-related GO terms such as catabolism, phosphatase
activity, and chlorophyll biosynthesis. Of the transcription factors

identified at 22 DAA, GO terms related to transporters, senescence,
circadian rhythms, and stress responses were enriched in the
GENIE3-predicted targets. By integrating the information from
the GENIE3 network with independent senescence-related expres-
sion data, we were able to identify a robust set of candidate
senescence-associated transcription factors to prioritize for func-
tional characterization.

Non-homeologous transcription factors share few
targets in the GENIE3 network
After establishing that the GENIE3 network can provide biolog-
ically-relevant predictions, we then turned to using the network to
interrogate genome-wide patterns in transcription factor targets.
We first investigated the extent to which transcription factors
share the same targets. To do this, we carried out pairwise
comparisons between randomly selected transcription factors
and calculated the overlap between their targets. Following
1,000 iterations, we found that any two random transcription
factors typically have no targets in common, with a median and 3rd

quartile shared ratio of 0%. The distribution was highly positively
skewed, as the vast majority of comparisons shared 0 targets
(Figure 3A, B; Table 1). However, there was a long tail to the
right of the graph, highlighting that in some cases, certain non-
homeologous transcription factors do share a substantial portion
of targets.

The set of transcription factors in the GENIE3 network was then
split into separate transcription factor super-families, as previously
annotated (Appels et al. 2018). The same analysis was performed
within each transcription factor family, carrying out pairwise com-
parisons between transcription factor targets. We found that for the
majority of transcription factor families, the distributions of shared
targets were very similar to that found for the full set, as illustrated by

Figure 1 GENIE3 predicts targets of NAM-A1 that over-
lap with genes differentially expressed in nam-a1 mu-
tants. (A) More overlapping genes are identified at
12 DAA (15.2% of the GENIE3 targets) than at
22 DAA (5.1%). (B) Most transcription factors share very
few predicted targets with the nam-a1 differentially
expressed genes, with a distribution skewed strongly
toward 0. At both time points, the predicted targets of
NAM-A1 overlap significantly more with the nam-a1
DEG than would be expected by chance (Sign Test,
P , 0.001). Note that the x-axis is capped at 0.25, to
emphasize the skew of the distributions toward zero.
“Ratio” refers to the shared ratio of targets between the
DEGs and the GENIE3 transcription factors.
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the representative NAC and C2C2-Dof families (Figure 3A, Table 1;
Supplementary Figure 2). Not all transcription factor families were
large enough to support 1,000 unique pairwise comparisons, and in
these cases the distribution clearly deviates from the whole (e.g., in
CCAAT_HAP3, N = 3).

Roughly 70% of wheat homeolog triads (composed of A, B, and D
genome copies) show balanced expression patterns, that is, similar
relative abundance of transcripts from the three homeologs across
tissues (Ramírez-González et al. 2018). We therefore hypothesized
that homeologs would be more likely to share predicted targets than
randomly selected transcription factors, even within the same family.
To test this, we randomly selected syntenic triads from the GENIE3
dataset, and calculated the percentage of shared genes for each of the
three pairwise comparisons (A-B, A-D, B-D). This was carried out for
the 708 syntenic triads included in the network, a total of 2,124
pairwise comparisons, and showed that homeologs are indeed more
likely to share targets with each other than randomly selected triads
are (Figure 3A, C, Table 1).

Dynamic triads share fewer targets than stable triads
Wheat genome triads can be classified into different categories based
on how the expression levels of the homeologs varies across tissues

(Ramírez-González et al. 2018). So-called ‘dynamic’ triads represent
the 10% of triads which show the highest variation in relative
expression levels of the different homeologs across tissues, while
‘stable’ triads represent the 10% of triads with the lowest variation.
Dynamic triads are under more relaxed selection pressure and we
hypothesized that they may represent the initial steps toward neo or
sub-functionalization of wheat homeologs (Ramírez-González et al.
2018). This hypothesis would suggest that homeologs in dynamic
triads are more likely to have distinct functions, and thus may be less
likely to share predicted targets. To test this, we compared the level of
overlap between targets of homeologous transcription factors in
dynamic and stable triads, as well as the ‘Mid 80’ intermediate set.
We found that the dynamic triads do indeed have significantly less
overlap in targets than the stable triads (P, 0.05, Wilcox test; Figure
4A; Table 1), supporting the neo/sub-functionalization hypothesis.

We next examined whether the targets of a transcription factor
may hold signatures of the evolutionary origin of that transcription
factor. We hypothesized that a transcription factor is more likely to
have targets that reside on the same genome as the transcription
factor itself; e.g., GENIE3-predicted targets for an A genome tran-
scription factor will be enriched for A genome targets compared to B
and D genome targets. We found no significant association between

Figure 2 Candidate senescence
regulators. Twenty transcription
factors were identified which had
a higher shared ratio between
the GENIE3-predicted targets and
the RNA-Seq DEGs than NAM-A1
itself. (A) Their expression pattern is
shownacross adevelopmental time
course (Ramírez-González et al.
2018) and a senescence-specific
time course (Borrill et al. 2019).
The TPM reported is averaged
across three samples of the same
tissue and timepoint from each
dataset. Genes upregulated in
senescence are highlighted with
a light blue box, and those with a
greater than twofold increase are
highlighted with a purple box
(left side). Genes present in the
list of 341 candidate transcrip-
tion factors based on the senes-
cence time course in Borrill et al.
2019 are indicated with a green
asterisk. (B) The number of tar-
gets shared between the tran-
scription factors and NAM-A1.
(C) The shared ratio for each gene
against the 12 DAA (gray) and
22 DAA (black) DEGs. Note that
genes which had a higher shared
ratio at both 12 and 22 DAA are
shown with split bars.
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the genome of origin of the transcription factor and the genomes of its
targets (Figure 4B). Likewise, we found no significant association
between transcription factor genome and target genome when triads
were assigned into their respective movement categories. For exam-
ple, an A genome transcription factor from a Dynamic triad had
similar numbers of GENIE3-predicted targets from each of the three
genomes. (Supplementary Figure 3).

GO-term enrichment of predicted targets suggests
novel biological functions
We next examined if we could use the GENIE3-predicted targets to
gain a more general overview of functional trends within transcrip-
tion factor families. Using the GO terms described in (Ramírez-
González et al. 2018), we carried out a GO-term enrichment on the
targets of individual transcription factor families (Supplementary File
2). To test the validity of this method, we first checked the predicted
GO terms of the Heat Stress Factor (HSF) transcription factor family.
Based on their known role in responding to heat and light stress
(Kotak et al. 2007), we expected to see GO terms highly enriched for
heat and light stress responses. This was the case, suggesting that this
approach can provide accurate insights into the large-scale functions
of transcription factor families.

We then identified enriched GO terms for the remaining 56 tran-
scription factor families. Some families were enriched for few or no
GO terms, and we found that this was typically the case for families
with few members. We restricted our analysis, therefore, to the
34 transcription factor families with at least 30 members. In many
cases, enriched GO terms supported known functions of transcrip-
tion factor families. For example, the MADS_II family was enriched
for, among other terms, floral organ identity (GO:0010093) which
corresponds to their known role in flower patterning in wheat and

other species (Ng and Yanofsky 2001). The mTERF family was
strongly enriched for chloroplast-related terms, corroborating their
known role in organelle function (Kleine 2012; Quesada 2016) while
the WRKY family was highly enriched for stress-response GO terms
(Rushton et al. 2010; Phukan et al. 2016; Jiang et al. 2017).

Beyond the expected enriched GO terms, we also identified some
cases where highly significantly enriched GO terms may point toward
a previously unknown function within that transcription factor
family. For example, one of the more highly enriched GO terms
for the C2C2-Dof family is positive gravitropism (GO:0009958). This,
combined with other GO terms related to amyloplasts and auxin
responses, suggests that members of the C2C2-Dof family may play a
role in regulating the gravitropic growth of roots (Su et al. 2017). We
also see that the TUB family, of Tubby-like transcription factors, is
highly enriched in cell-cycle related GO terms. This includes
specific terms involved in microtubule movement and spindle
formation (GO:0007018 and GO:0051225) as well as in regulation
of cell cycle progression and transition (GO:0010389, GO:0051726
and GO:0000911). Plant TUB proteins contain an F-box domain,
suggesting they may function in tandem with other F-box-con-
taining proteins, such as SCF E3 ubiquitin ligases, which also
regulate the cell cycle in plants (Gusti et al. 2009).

The GENIE3 network is accessible through KnetMiner
We have made the GENIE3 network available in the KnetMiner
discovery platform for wheat (https://knetminer.org/) (Hassani-Pak
et al. 2016; Hassani-Pak et al. 2020). The top one million TF-target
predictions were integrated onto the wheat genome-scale knowl-
edge graph (Hassani-Pak et al. 2016) as directed relations between
genes (A regulates B). The interaction weight for each predicted
relationship was also included in the network, where larger weights

Figure 3 Non-homeologous transcription factors share few targets in the GENIE3 network. (A) Comparison of the shared targets of 1000 random
transcription factor pairs found that the majority of transcription factors share few to no targets in common. This was also found to be the case within
the majority of transcription factor families, showing here NAC and C2C2_Dof transcription factors. However, pairs of homeologous transcription
factors shared many more targets in common, with a mean shared ratio of 39.7%. (B) An example of shared overlap between two homeologous
transcription factors, the NAC transcription factors NAM-A1 (TraesCS6A01G108300) and NAM-D1 (TraesCS6D01G096300) is shown, with the two
homeologs sharing 62% of possible targets. (C) The two randomly chosen transcription factors, in this case TraesCS1D01G436500 (Sigma 70-like
family) and TraesCS4B01G383400 (HSF family), share no targets.
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correspond to more strongly supported relationships. The data are
accessible in conjunction with other information types (e.g., protein-
protein interactions, literature co-occurrence, ontologies, homology,
etc.) and can be searched through the KnetMiner web-app or web-
services.

KnetMiner can be searched using keywords, genes or genomic
regions to identify connections between genes and hidden links to
complex traits. Searching for “NAM-A1” returns two hits, TRAESC-
S6A02G108300 and TRAESCS6D02G096300, which correspond to
NAM-A1 and its D-genome homeolog NAM-D1, respectively. Using
the KnetMiner network, we can visualize the relationships between
NAM-A1 and NAM-D1, seeing, for example, that they target each
other in the GENIE3 network (Figure 5). Associated traits are also
included in the network, linking NAM-A1 and NAM-D1 to “Grain
Protein Content” (Figure 5). Links to orthologous genes in other
species are also included in the network, such as the Arabidopsis
thaliana ortholog ANAC018 (Figure 5).

DISCUSSION
Here we have shown that a GENIE3 network provides biologically-
informative predictions of targets for transcription factors in polyploid
wheat. We have used the network in conjunction with independent
RNA-Seq datasets to identify a set of candidate senescence regulators.
We have also shown the value of the network to analyze genome-wide

patterns of homeologous transcription factors and transcription factor
families.

Re-analysis of an RNA-Seq dataset identifies a high-
quality set of differentially expressed genes
In our analysis of the GENIE3 network, we used a previously
published RNA-Seq dataset to test its ability to predict the targets
of a well characterized transcription factor, NAM-A1 (Uauy et al.
2006). In doing so, we needed to re-align the raw RNA-Seq reads to
themost current transcriptome, RefSeqv1.1 (Appels et al. 2018). After
carrying out de novo pseudoalignment and differential expression
analysis, we obtained a larger set of differentially expressed genes
between the wild-type and mutant nam-a1 lines than the original
study (Pearce et al. 2014). In part, this is likely due to the less strict
cut-off used in our study (q, 0.05). In the original study (Pearce et al.
2014), a combination of four statistical tests were used to reduce the
number false positive discoveries. However, as our intention was not
to reduce the rate of false positives, but rather that of false-negatives
or incorrectly removed genes, we used a less stringent cut-off, based
solely on adjusting the original q-values for false discovery rate. We
found that the DEGs identified in Pearce et al. (2014) were found
throughout the de novo list of DEGs, suggesting that the cut-off
chosen was not overly generous (Supplementary Figure 1). We also
closely recapitulated their findings in that our de novo DEGs were
highly enriched for metal ion transport-related GO terms, indicating

Figure 4 The effect of relative homeolog expression variation on shared ratios. (A) There is a significant reduction in shared targets between
homeologs in dynamic triads compared to stable triads (Wilcox test, P = 0.021). There is a near-significant decrease between theMid 80 subset and
the Dynamic triads (P = 0.051), and a slight non-significant decrease from Stable to Mid 80 triads (P = 0.21). (B) We found no evidence that
transcription factors from a specific genomewere more or less likely to have targets from the same genome (Two-sample Kolmogorov Smirnov test,
FDR adjusted).

n■ Table 1 Summary statistics for the shared ratio distributions

Category Minimum 1st Quartile Median Mean 3rd Quartile Maximum Number of Comparisons

All TFs 0 0 0 0.004 0 0.83 1,000
NACs 0 0 0 0.02 0 0.82 1,000
C2C2_Dofs 0 0 0 0.02 0 0.80 1,000
Homeologs 0 0.21 0.41 0.40 0.59 0.92 2,124
Stable 0 0.25 0.43 0.41 0.57 0.88 132
Mid 80 0 0.20 0.39 0.39 0.57 0.92 1,590
Dynamic 0 0.15 0.36 0.35 0.53 0.85 156
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that the de novo DEGs are consistent with NAM-A1 function. These
enrichment results also corroborate our understanding ofNAM-A1 as
a critical regulator of nutrient remobilisation during senescence.

The GENIE3 network provides biologically relevant
transcription factor - target relationships
Gene networks are increasingly used in plant genetics research as a
way to establish relationships across large gene sets and for hypoth-
esis-generation. Initial assessment of the biological relevance of these
gene networks often rely on enrichment analyses using GO terms.
These methods are useful in identifying trends within large gene sets,
as we found when carrying out GO term enrichment of transcription
factor families. The targets of families with known functions, such as
the Heat Stress Factors, were enriched for the expected GO terms
(Kotak et al. 2007). However, these enrichment analyses are limited
by the information that is used to develop the GO terms themselves.
Very few GO term annotations are supported by experimental
evidence even in model species such as Arabidopsis thaliana (Rhee
and Mutwil 2014). GO terms associated to the RefSeqv1.0 tran-
scriptome were based primarily on automated annotation and ortho-
logs in other plant species, with over 96% of the GO terms assigned to
genes based on inference from sequence orthology (ISO) (Appels
et al. 2018). As a result, while enrichment analyses with GO terms can
provide useful information particularly with large-scale datasets, they
must be combined with external data to validate their predictions.

As a result, while the GO term enrichment analyses suggested that
the network produced biologically relevant results, more rigorous
testing of the network required the use of experimentally-derived
data. By using independent RNA-Seq datasets, which were not used
in the creation of the GENIE3 network, we were able to show that the
predictions made by the in silico network hold up under comparison
to in vivo datasets. It is important to note, however, that the overlap
between the predicted targets of NAM-A1 and the differentially
expressed genes from the RNA-Seq data are far from complete.
At 12 DAA, the timepoint where NAM-A1 is thought to first start

exerting its effect, only 12 genes are shared out of 79 predicted genes
and 866 differentially expressed genes. While this gives a shared ratio
of approximately 15%, significantly higher than that expected by
chance, the GENIE3 network and the differentially expressed genes
do not contain identical targets. However, based on the differences in
the datasets used, it is likely that a large portion of this discrepancy is
due to the fact that the GENIE3 network was derived from 850
distinct RNA-Seq samples, spanning different tissues, ages, stresses,
and varieties, while the RNA-Seq dataset came from single timepoints
taken from flag leaf tissue (Pearce et al. 2014; Appels et al. 2018).
While NAM-A1 is expressed in the flag leaf during senescence, it is
also expressed in the peduncle during senescence (Borrill et al. 2016;
Ramírez-González et al. 2018), and at lower levels in various leaf,
stem, and even spike tissues during development (Supplementary
Figure 4). It is possible that many, if not most, of the predicted targets
from the GENIE3 network may be regulated or influenced in some
way by NAM-A1, but not in the flag leaf and at the precise 12 DAA
and 22 DAA timepoints captured in the independent RNA-Seq data.

The GENIE3 network can be used for hypothesis
generation with large gene sets
The fact that any two random transcription factors share, on average,
zero targets in common in the GENIE3 network highlights that the
network is not overwhelmed by spurious connections between tran-
scription factors and biologically irrelevant targets. The network is
also not so conservative that transcription factors with similar
functions share no targets in common, as is made clear by the more
normally-distributed homeologs (Figure 3A). Nevertheless, as most
transcription factors do not share targets, this suggests that the
original cut-off chosen for the network (1,000,000 connections)
was appropriately stringent to avoid noisy, low-confidence connec-
tions. More recently, the GENIE3 network has been integrated
into the RTP-STAR pipeline for gene regulatory network inference
which trimmed the network based on the proportion of transcription
factors present in the initial dataset (Clark et al. 2019). This has been

Figure 5 The KnetMiner network depicts connections with NAM-A1. The wheat transcription factors NAM-A1 and its homeolog NAM-D1 target
each other in the GENIE3 network (purple arrows) and share some target genes (blue triangles) in common. The network also identifies traits
associated to genes (green pentagons), such as “Protein Content” for NAM-A1, NAM-D1, and the A. thaliana ortholog ANAC018. The legend
below the network describes the meaning of each shape in the network. Not all connections present in the KnetMiner network are depicted in the
figure; only a subset are shown for clarity.
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demonstrated to maximize the precision of the network (Shibata et al.
2018), though with the caveat that this analysis was focused on
identifying direct downstream targets of two specific transcription
factors. In preliminary investigations, we found that trimming the
GENIE3 network by edge weight did lead to a slight increase in the
shared ratio between the predicted targets and the de novo DEGs,
however this was mostly due to the loss of predicted targets of NAM-
A1 (data not shown). Therefore, where the aim is a global analysis of
gene regulation, a less stringent cut-off such as that used here might
be recommendable to minimize type II errors.

The presence of overlapping targets between transcription factors
suggests that the transcription factors may be acting in similar
pathways. However, it is important to recognize the limitations of
the network, in particular that predicted targets of a transcription
factor are not necessarily true targets. Therefore, integrating the
GENIE3 network with other sources of regulatory information, such
as RNA-Seq datasets as demonstrated here, can provide cumulative
evidence toward new hypotheses and candidate genes. By combining
the DEGs obtained from a nam-a1 mutant line and the GENIE3
network, we have produced a set of candidate transcription factors
which may act in the same or similar pathways as NAM-A1. We have
then compared these candidates with an independent senescence
time-course (Borrill et al. 2019), highlighting six candidate genes
which were identified through both methods and are good candidates
for further exploration. Moving forward, information generated from
networks such as the GENIE3 will need to be validated functionally
and in planta. Recently, NAM-A2, a previously uncharacterized
member of the NAM family of transcription factors, was predicted
to be involved in senescence based on expression and network data
(Borrill et al. 2019). The function of this transcription factor was then
validated using independent mutant TILLING lines (Krasileva et al.
2017) demonstrating the ability of the networks to predict biologically-
relevant candidates.

Homeolog expression variation in dynamic triads may be
indicative of functional divergence
Previous work showed that triads of homeologs can display variable
patterns of genome dominance across different tissues (Ramírez-
González et al. 2018). Triads with the most variable relative homeolog
expression patterns, ‘Dynamic’ triads, were also found to have higher
Ka/Ks values, suggesting they were under reduced selection pressure.
It was proposed that the variation in relative expression patterns
across tissues arises as a result of this relaxed selection pressure,
facilitating both neo- and sub-functionalization following polyploidy.
We found that dynamic triads were less likely to share GENIE3
targets in common than stable triads, supporting the hypothesis
that dynamic triads are in the process of diverging functionally
(Figure 4B). However, we found no correlation between the genome of
origin of the transcription factor and the target genomes in dynamic
triads (Supplementary Figure 3).

At what stage, then, did the targets of homeologs in dynamic triads
begin to diverge? These results may suggest that the variation in
expression seen between the homeologs arose following polyploid-
isation, as there is no bias toward the genome of origin. However, we
do not know enough about the behavior of transcription factors
following polyploidisation to draw clear conclusions. For example, we
do not know to what extent transcription factors gain the ability to
regulate homeologous genes on other genomes after hybridization.
The application of methods such as ChIP-Seq (Park 2009), DAP-Seq
(Bartlett et al. 2017), and large-scale yeast two-hybrid interaction
screens (Brückner et al. 2009) to transcription factors in diploid and

polyploid wheat will provide experimental data on homeologous
transcription factor interactions and binding preferences. Until these
datasets become available it is premature to draw conclusions on the
evolutionary origins of transcription factor homeolog functional
divergence. Nevertheless, genome-wide analyses of datasets such as
the GENIE3 network and the expression datasets on expVIP have
pointed to the dynamic triads as a source of genetic functional
variation (Borrill et al. 2016; Ramírez-González et al. 2018).

CONCLUSIONS
Using publicly available datasets, we have shown that the wheat
GENIE3 network provides biologically-relevant information that can
be used to guide hypothesis generation in wheat. The utility of the
network lies particularly in enrichment analyses of larger gene sets
and in integration with other datasets, such as independent RNA-Seq
experiments, for candidate gene selection. New germplasm resources
in wheat, such as the in silico TILLING resource (Krasileva et al.
2017), can be rapidly leveraged for functional characterization of
candidate genes in planta. Transgenic approaches such as CRISPR
(Rey et al. 2018) and virus-induced gene silencing (VIGS) (Lee et al.
2012) can now be used in wheat to validate gene function. The GENIE3
network can be accessed through the KnetMiner web application and
using R scripts available from https://github.com/Uauy-Lab/GENIE3_
scripts. We predict that gene regulatory networks such as GENIE3 will
play an increasingly important role in wheat genetics as more tran-
scriptomic datasets become publicly available.
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