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Abstract: Accurate detection of drought stress in plants is essential for water use efficiency and
agricultural output. Hyperspectral imaging (HSI) provides a non-invasive method in plant pheno-
typing, allowing the long-term monitoring of plant health due to sensitivity to subtle changes in
leaf constituents. The broad spectral range of HSI enables the development of different vegetation
indices (VIs) to analyze plant trait responses to multiple stresses, such as the combination of nutrient
and drought stresses. However, known VIs may underperform when subjected to multiple stresses.
This study presents new VIs in tandem with machine learning models to identify drought stress in
wheat plants under varying nitrogen (N) levels. A pot wheat experiment was set up in the glasshouse
with four treatments: well-watered high-N (WWHN), well-watered low-N (WWLN), drought-stress
high-N (DSHN) and drought-stress low-N (DSLN). In addition to ensuring that plants were watered
according to the experiment design, photosynthetic rate (Pn) and stomatal conductance (gs) (which
are used to assess plant drought stress) were taken regularly, serving as the ground truth data for this
study. The proposed VIs, together with known VIs, were used to train three classification models:
support vector machines (SVM), random forest (RF), and deep neural networks (DNN) to classify
plants based on their drought status. The proposed VIs achieved more than 0.94 accuracy across all
models, and their performance further increased when combined with known VIs. The combined VIs
were used to train three regression models to predict the stomatal conductance and photosynthetic
rates of plants. The random forest regression model performed best, suggesting that it could be used
as a stand-alone tool to forecast gs and Pn and track drought stress in wheat. This study shows that
combining hyperspectral data with machine learning can effectively monitor and predict drought
stress in crops, especially in varying nitrogen conditions.

Keywords: drought stress; gas exchange measurements; hyperspectral imaging; machine learning;
vegetation indices

1. Introduction

Despite advancements in agronomic management and breeding procedures, crop
productivity remains susceptible to abiotic stresses such as drought. During drought stress,
plants close their stomata to conserve water, decreasing the absorption of carbon dioxide
required for photosynthesis [1]. Furthermore, drought stress can affect nutrient absorption
and cause nutrient imbalances, impacting plant metabolic processes. Hence, developing
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tools to detect plant drought stress is essential for prompt intervention and management to
minimize crop losses.

Conventionally, agronomists and breeders evaluate drought stress by visual grading,
for example using the stay-green morphological features of plants [2]. However, this
method is subjective and prone to errors since stresses like iron and nitrogen deficiency
could exhibit similar stress symptoms. Multiple approaches, including gas exchange
measurements—stomatal conductance (gs) and photosynthetic rate (Pn) [3], soil moisture
monitoring [4], leaf temperature measurement [5], and water potential assessment [6], have
been deployed to detect drought stress in plants. While these methods provide detailed
and precise information, they have low throughput and may have limited applicability
to field conditions. Furthermore, some of these methods are invasive, limited to real-time
monitoring, and subject to the spatial variability of field crops.

With advancements in computer vision, remote sensing data derived from different
sensors, such as thermal, visible, and hyperspectral imaging (HSI), can effectively detect
and monitor the temporal and spatial impact of drought conditions [7,8]. Recently, there
has been a surge of interest in HSI applications for abiotic stress assessment, especially
nutrient and drought stress analysis. Drought stress leads to subtle modifications in the
chemical, physiological, and structural components of plants, which can be detected within
the short-wave infrared region (1300–1500 nm) of the spectrum [9]. With prolonged drought
stress, there are changes in leaf pigments, which can also be measured through the spectral
variations in the visible region [10]. The complex dynamics of drought stress initiation and
progression suggest that a single spectral band or VIs could be insufficient in detecting and
monitoring drought stress over time.

One standard method for analyzing HSI data in plant phenotyping is to extract
vegetation indices (VIs), which are mathematical combinations of spectral reflectance char-
acteristics of vegetation at different wavelengths [11]. VIs have the benefit of reducing the
effect of scale factors, including lighting conditions and slope effects [12]. VIs such as the
renormalized difference vegetation index (RDVI), normalized photochemical reflectance in-
dex (PRInorm), photochemical reflectance index (PRI570), normalized difference vegetation
index (NDVI), water index (WI), and normalized water index (NWI) have been used to de-
tect drought stress and monitor its progression. Ihuoma and Madramootoo [13] presented
a review of different VIs for monitoring plant drought stress for irrigation management.

To develop VIs for stress monitoring, spectral averaging, which calculates the average
spectrum over the pixel domain, is performed after pre-processing. After spectral averaging,
the resulting data are still huge and multicollinear. The high-dimensional features can
cause algorithmic instability, which can affect the accuracy of data analysis [14]. Moreover,
from the hundreds of wavelengths scanned, only a small subset may be associated with
the desired trait; the remainder is usually redundant or irrelevant, which may increase
the computational processing and overfitting. The high-dimensional data may also be
susceptible to noise and non-uniformity, which may affect the interpretation and accuracy
of the analysis. This may be mitigated by employing dimensionality reduction techniques,
either feature extraction or selection. In feature extraction, the data are transformed from a
high to a low-dimensional space. In contrast, a subset of relevant features from the original
hyperspectral datasets is selected for feature selection, discarding redundant or irrelevant
ones. Linear discriminant analysis (LDA) and principal component analysis (PCA) are
examples of feature extraction methods. Filter (e.g., ReliefF and correlation-based feature
selection [15]), wrapper (sequential feature selection, recursive feature elimination [16,17]),
and embedding techniques (e.g., random forest and LASSO [18]) are examples of feature
selection methods. Remeseiro and Bolon-Canedo [19] documented the detailed operation
of different feature selection methods for HSI analysis. Determining a standard method
to select spectral features in HSI analysis is challenging despite the availability of several
feature selection methods [20]. Each feature selection strategy has its benefits and setbacks.
Ensemble learning methods that combine the predictions of multiple selection methods to
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improve the overall accuracy and robustness of models are often employed to minimize
the effect of using a single feature selection model.

Machine learning (ML) models have been widely used for hyperspectral data anal-
ysis because they handle complex data patterns and relationships. ML methods such as
support vector machines (SVM) and random forest (RF), among others, have been used
to evaluate the predictive power of multiple spectral indices for plant drought [7] and
nutrient stress [21] analysis. Pairing whole spectra, extracted features, or selected features
with different ML methods can improve the accuracy of plant drought stress classification.
VIs are usually developed for specific stresses and may fail in plants with multiple stresses.

The relationship between drought stress and plant N content is complex and has a
substantial effect on plant growth and development. Nitrogen contributes to the production
of stress-related compounds such as osmoprotectants and secondary metabolites, which
enable plants to cope with drought stresses [22]. However, high N levels promote vegeta-
tive growth, which subsequently leads to increased water requirements of the plants. This
can exacerbate the effects of drought stress in plants [23]. Furthermore, low N levels lead
to a decrease in photosynthetic efficiency, which is already compromised during drought,
leading to huge reductions in plant photosynthetic rates [24]. Since N is a critical compo-
nent of proteins affecting plant stomatal behavior and water-use efficiency, understanding
the dynamics of plant spectral characteristics in response to drought stress under differ-
ent N contents is essential. From previous studies [25,26], adequate N content promotes
the growth and yield of plants. However, excess N levels may increase plant water de-
mand, potentially worsening drought stress. There is little knowledge on the non-invasive
assessment of excess or inadequate N levels on plants with variable water content.

This study aims to understand plant canopy spectral interactions under different N
and water levels. First, we examined the effectiveness of using various known VIs to assess
plant drought stress under different N regimes. An ensemble machine learning method was
developed to select sensitive features from which new VIs corresponding to drought stress
under low and high N content were proposed. Finally, a deep neural network was proposed
and trained with the known and proposed VIs to predict the stomatal conductance and
photosynthetic rate of plants. Since gas exchange measurements are effective in assessing
drought stress, the proposed and known VIs were used as input to train conventional ML
models to predict Pn and gs in wheat.

2. Materials and Methods

Figure 1 shows the workflow of the methods used in this experiment. The general steps
include HSI acquisition, data pre-processing, selection of known VIs, sensitive waveband
selection, development of proposed VIs, development of ML models, identification of
drought stress, and prediction of Pn and gs.

2.1. Experiment Setup

A drought experiment was set up in a glasshouse facility (https://www.cranfield.ac.
uk/facilities/plant-growth-facility, accessed on 10 November 2022) at Cranfield University.
This facility has a state-of-the-art phenotyping platform (Lemnatec Scanalyzer system)
for high-throughput data acquisition. In this experiment, a wheat cultivar, Cadenza,
was planted in 8 cm by 6 cm pots filled with low-N peat soil (Levington Advance M3,
CTS, BHGS Ltd, Worcestershire, UK). Plants were grown under natural light (with an
average light intensity of 450–600 µmol/m2/s PAR) with a 20 ◦C to 23 ◦C day temperature
range, while the optimum night temperature was between 18 ◦C and 20 ◦C. Plants (48 in
number) consisting of four treatments and 12 replicates were arranged in a randomized
complete block pattern. The treatments comprised plants with two N and water content
levels: WWHN, WWLN, DSHN, and DSLN (WW = well-watered; DS = drought stress;
HN = high N; and LN = low N). The plants were fertilized with two N levels, high N and
low N, made of 42.5 mM and 4.25 mM concentrations, respectively, at 30, 37, and 44 DAS
(days after sowing). They were prepared from a modified Letcombe nutrient solution [27].

https://www.cranfield.ac.uk/facilities/plant-growth-facility
https://www.cranfield.ac.uk/facilities/plant-growth-facility
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For the drought stress treatment, all the plants were first watered with equal amounts of
deionized water until the tillering stage (44 DAS), when the drought stress was imposed
(0 DADS—day after drought stress). All the well-watered treatments (WWHN and WWLN)
were kept at 80% field capacity (FC) (% FC is the proportion of soil moisture content at
field capacity), while the watering was stopped for the drought stress treatments (DSHN
and DSLN). The well-watered plants were watered slowly and thoroughly with deionized
water each day until the soil reached the desired moisture level (80% FC). To ensure the WW
plants were at 80% FC or above, a portable soil moisture meter was used to measure the
volumetric soil water content daily. In addition, the pots were weighed daily to determine
the rate of water decrease in the DS-based treatments. The soil surface was covered with
white pebbles to minimize water loss through evaporation. The WW plants were watered
daily until the end of the experiment, which lasted for 15 days.
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Figure 1. The schematic diagram of the methodology for analyzing spectral images for drought
stress identification (A) is the pre-processing step (involving data calibration, denoising, desampling,
segmentation); (B) is the drought stress-related physiological measurements (photosynthetic rate (Pn),
and stomatal conductance (gs)); (C) is the extraction of known VIs; (D) is the ensemble learning model for
selecting sensitive spectral wavelengths; (E) is the development of classification and regression models
for identification of drought stress and prediction of gas exchange measurements traits; Pn and gs.
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2.2. Physiological Measurements of Drought Stress

Drought stress can significantly affect the gas exchange rate of plants, reflecting plant
physiological responses to low water content. Gas exchange measurements such as stomatal
conductance (gs), transpiration rate, and photosynthetic rate (Pn) are often used to track
changes in the physiological properties of plants before noticeable symptoms such as
yellowing or wilting become apparent [28]. This study used the gs (mmol H2O m−2 s−1)
and Pn (µmol CO2 m−2 s−1) of plants as ground truth measurements to track changes
in plant physiological traits resulting from drought stress and N deficiencies. Stomatal
conductance measures the rate at which CO2 or water vapor enters and exits through
plant stomatal pores. It is a critical physiological indicator for screening drought-tolerance
genotypes of plants [29]. Additionally, the photosynthetic rate represents the capacity of
plants to convert carbon dioxide into organic compounds [30].

A LI-6400XT portable photosynthesis system (LI-COR Biosciences Inc., Lincoln, NE, USA)
was used to measure the gas exchange measurements of the plants a day before the water
stress was induced and continued every three days until the end of the experiment. Stomatal
conductance measurements were made between midday and 1700 h on the fully expanded
leaf of the main stem that had been marked and tagged. The CO2 concentration in the leaf
chamber was fixed at 400 µmol CO2 mol−1. To achieve the maximum photosynthetic capacity,
the leaf flow rate, temperature, relative humidity, and photosynthetically active radiation
were set at 200 µmol s−1, 20 ◦C, 50–65%, and 1800 µmol m−2 s−1, respectively. The stomatal
conductance values were recorded once the measurement was stabilized. The leaf area was
corrected during data processing when the leaf was smaller than the cuvette of the chamber.

To analyze the effects of each treatment on the dynamics of the gas exchange mea-
surements, the average gs and Pn of each treatment were subjected to a one-way ANOVA
test followed by Tukey’s honest significant difference (HSD), with * p < 0.05 considered
statistically significant. The ANOVA test compares the means across multiple groups to
determine if there exist any statistically significant differences between them. The statistical
analysis was performed in RStudio (Ver. 1.1.414, RStudio, Boston, MA, USA).

2.3. Hyperspectral Data Acquisition

The Lemnatec Scanalyzer housing a hyperspectral camera (hyperspec® inspectorTM
Headwall Photonic, Headwall Bolton, MA, USA) in the glasshouse was used to acquire
spectral images 3 m above the ground. The camera is a push broom type that covers the
visible-and-near-infrared (VNIR) regions, collecting light reflections between 390 nm and
1015 nm through an imaging slit. As the sensor is in motion, one row of spatial pixels
is collected per frame, where each pixel is made of the corresponding spectral data. The
sensor uses an FWHM (full width at half maximum) image slit of 2.5 nm to gather data
at 0.7 nm (in the VNIR area). It has 1600 × 1800-pixel spatial resolution and 925 spectral
information with an f/2 optical aperture. The sensor is directed vertically downward to the
ground, scanning 6 pots (50 cm apart) in a row at each pass. Spatial images are created by
concurrently capturing the spectral information of pixels distributed along the scan line
while the mirrors move horizontally. The target is scanned line by line, and spatial images
are formed by recording simultaneously the spectral information of pixels distributed in
a scan line (across-track direction), while the mirrors move horizontally. For information
on the operation and use of the Head photonic sensors for hyperspectral data acquisition,
readers are referred to [31–33] for further details. Imaging began on the day the drought
was induced and continued every other day until the end of the experiment. This produced
a total of 252 sets of hyperspectral imaging data.

2.4. Hyperspectral Image Pre-Processing

Obtaining useful information from hyperspectral images requires pre-processing to
normalize the spectral data from ambient illumination, reduce noise and other artifacts,
and improve the data quality for further processing. The pre-processing steps include ra-
diometric calibration, spectral down-sampling, and noise removal. Radiometric calibration
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standardizes and adjusts the radiometric data recorded by converting the raw sensor mea-
surements to meaningful physical units such as radiance or reflectance. This is important
in reducing the variable illumination and the dark current effect on the spectra. In this
study, a white panel (Zenith Lite™ Ultralight Targets 95%R, Sphereoptics®) was imaged
as the white reference data (Refwhite) while the camera lens was covered with an opaque
cap to collect the dark reference data (Refdark) [34]. The image reflectance was obtained by
using Equation (1).

reflectanceimage =
Rawimage − Refdark

Refwhite − Refdark
(1)

Hyperspectral imaging captures high-resolution images across a wide range of narrow
and continuous spectral bands. The massive amount of information presents computational
challenges that require down-sampling of the data for effective processing. Down-sampling
involves reducing the number of spectral bands or channels in the data, subsequently
reducing the spectral resolution. According to Sadeghi-Tehran et al. [32], down-sampling
helps reduce the computational complexities and noise generated during hyperspectral
data acquisition. This study used a band-averaging technique of 2 nm spectral width to
down-sample the data. The process involves grouping two adjacent spectral bands and
finding the average values to generate a new set of bands. As a result, the down-sampled
data had fewer wavebands overall but still had a representative spectral characteristics.

Spectral smoothing and denoising methods were applied to the raw spectra to reduce
noise levels and improve the signal-to-noise ratio, revealing underlying spectral patterns.
Spectral smoothing and denoising include using filters on the spectral bands to remove
spikes and smooth spectral curves. This process also isolates sensitive features that could
be masked by noise at various wavelengths. Here, a Savitzky–Golay filter (a commonly
used low-pass filter) to smooth and denoise the spectral bands was used to fit a polynomial
function to the data inside a moving window as a form of polynomial smoothing. The filter
chooses an odd-sized window of spectral points for each data point in the spectrum and
then fits the least square using the high-order polynomial. During this process, the relevant
data points are eventually swapped out for the matching values of the fitted polynomial. A
window of size 13 and a second-degree polynomial were used as the parameters. It should
be noted that a small window size generates significant artifacts, while a large window size
can be more effective in reducing large-scale noise and smoothing out noise of variable
frequencies. However, large window sizes tend to blur fine spectral details, which could
distort the originality of the spectral signature [35].

2.5. Segmenting the Hyperspectral Data

After pre-processing, the HSI data were segmented using a selected spectral ratio
and Otsu thresholding. A method that exploits the difference in the shape of the infrared
red regions of the spectrum in the plant and background was developed for the spectral
ratio. In this case, a normalized difference ratio between 910 and 950 nm wavelengths
was extracted to create the spectral ratio. The combination of spectral ratio and the Otsu
thresholding resulted in a binary image where the vegetation pixels were labeled as one
and the non-vegetation pixels as zeros. Supplementary Figure S1 shows the original image
and its corresponding image of a sample of the hyperspectral data.

2.6. Extracting Known Vegetation Indices

Vegetation indices (VIs) of plants derived from reflectance values in specific bands are
indicative of responses to different stresses. Combining VIs or customizing them based on
unique vegetation characteristics and environmental conditions is a common practice to
monitor plant stress [36]. This study extracted twenty-five known VIs sensitive to nitrogen
variations and drought stress (Table 1). The top ten VIs that correlated well with the gas
exchange measurements were evaluated to understand their sensitivities to subtle changes
in the nitrogen and water content of plants. The selected VIs were used subsequently for
the subsequent analysis.
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Table 1. List of selected VIs to monitor plant drought stress.

Vegetation Indices Formula Reference

Normalized difference vegetation index (NDVI) (R800 − R680)/(R800 + R680) [37]
Chlorophyll index green (Cl-green) NIR/Green − 1 [38]
Renormalized difference vegetation index (ReNDVI) R800 − R670/(R800 + R670) ½ [39]
MERIS terrestrial chlorophyll index (MTCI) (R753 − R708)/(R708 − R681) [40]
Red edge NDVI (RENDVI) (R705 − R740)/(R705 + R740) [37]
Normalized difference vegetation index (NDVI750) (R750 − R680)/(R750 + R680) [37]
Modified red edge simple ratio index (mRESR) (R750 − R445)/(R750 + R445) [39]
Photochemical reflectance index (PRI710) (R531 − R710)/(R531 + R710) [39]
Photochemical Reflectance Index (PRI720) (R531 − R720)/(R531 + R720) [41]
Structure insensitive pigment index (SIPI) (R800 − R455)/(R800 + R705) [42]
Pigment specific simple ratio (PSSRa) R800/R680 [43]
Reflectance difference (RD) R800 − R680 [43]
Chlorophyll index red edge (CI-red edge) (R750 − R700)/(R700) [44]
Water band index (WBI) (R950/R900 [45]
Transformed chlorophyll absorption in reflectance index (TCARI) 3 × [(R705 − 665) − 0.2 × (R705 − R560) × (R705/R665)]) [40]
Optimized soil-adjusted vegetation index (OSAVI) ((1 + 0.16) × (R865 − R665)/(R865 − R665 + 0.16)) [46]
Enhanced vegetation index (EVI) 2.5 × [(R800 − R680)/(R800 + 6 × R680 − 7.5 × R450 + 1)] [47]
Soil adjusted vegetation index (SAVI) ((1 + 0.5) × (R801 − R670)/(R801 + R670 + 0.5) [48]
Optimized soil adjusted vegetation index (OSAVI800) (1 + 0.16) (R800 + R670)/(R800 + R670 + 0.61) [46]
Red edge vegetation index (RSVI) (NIR/Red)-1 [48]
Improved SAVI with self-adjustment factor L (MSAVI) 0.5 × {2 × R800 + 1 − (2 × R800 + 1)2 − 8 × (R800 − R670)} [48]
Normalized difference infrared index (NDII) (R780 − R710)/(R780 − R680) [49]
Normalized difference water index (NDWI) (R560 − R830)/(R560 + R830) [50]
Difference vegetation index (DVI) R800 − R670 [51]
Vegetation stress ratio (VRS) R725/R702 [52]

2.7. Wavelength Selection and New Drought Stress Indices
Wavelength Selection Using Ensemble Learning

Hyperspectral images have a high spectral resolution comprising hundreds of narrow
bands. However, a significant portion of the spectral bands may be strongly correlated
(multicollinear). To reduce this multicollinearity, sensitive features related to the phenotypic
traits of interest are extracted using machine learning and statistical methods [53]. This study
implemented an ensemble learning method to select the most sensitive features (Figure 2).
Three feature selection models, correlation feature selection (CFS), chi-square (CS), and ReliefF
(RFF) were developed on 70% of training datasets and tested on 30% of test datasets. Each
model was trained using a k-fold cross-validation technique where the training dataset was
divided into K (5) subsets to train and validate the model multiple times. The features
selected were ranked in order of importance, and the top ten features from each model were
selected. Because each model had its drawbacks, the feature subset that was ultimately
selected might not be the best in the feature space. The features selected were combined to
obtain 30 features. A further selection was made on the combined feature subset using a
Boruta SHAP algorithm [54], which was ranked using a recursive feature selection method.

The selected wavelengths were used to develop new indices: drought-N ratio index
(RDI), normalized difference drought-N index (NDDI), and drought difference index (DDI)
using Equations (2)–(4). These equations were selected because they help minimize the
effect of varying light conditions, including sunlight intensity, angle of sunlight, etc.,
on the plant reflectance measurements. Additionally, the indices from these equations
reduce the effects of atmospheric conditions such as haze, aerosols, and scattering on
plant reflectance [55].

RDI =
RDλ1

RDλ2
(2)

NDDI =
RDλ1− RDλ2

RDλ1 + RDλ2
(3)

DDI = RDλ1 − RDλ2 (4)

where RDλ1 and RDλ1 are any two selected wavelengths.
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Using a custom-developed algorithm, the three proposed indices were calculated for
every possible pair combination of the selected wavelengths. The relationship between the
generated indices and the gas exchange measurements was ascertained using correlation
analysis. A matrix plot displaying a distinct pattern with multiple hotspots with somewhat
varied coefficient of determination (R2) values were produced by plotting all the squares of
correlation coefficient r values, which reflect the coefficient of determination. The optimal
wavelength combinations with the highest R2 values were chosen as the proposed indices.
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2.8. Machine Learning Models for Drought Stress Identification

Three machine learning algorithms, SVM, RF, and DNN, were trained using the selected
known VIs, proposed VIs, and combined VIs (combination of known and proposed Vis) to
identify drought stress in wheat. All three models are supervised learning models for both
classification and regression tasks. SVM finds the optimal hyperplane that maximizes the
margin between classes in the feature space, while RF is an ensemble learning model [56] that
uses bagging techniques where multiple decision tree models are trained on various subsets
of data independently [57]. DNN consists of multiple layers of neurons (input, hidden, and
output layers), with each layer containing numerous neurons connected through weighted
to learn a hierarchical representation of data through a backpropagation algorithm [58].
Supplementary Table S1 shows a comprehensive characteristic of each model and the reasons
for choosing the model for the identification of drought stress in wheat.

2.9. Multivariate Analysis for Stomatal Conductance and Photosynthetic Rate Predictions

Based on prior research, gas exchange measures can evaluate and track the dynamics
of drought stress since minute changes in these physiological traits indicate responses of
plants to water availability. However, the tools for measuring gas exchange are costly,
low throughput, and sometimes destructive. Hence, regression models were developed
to predict the plant gs and Pn using the plant VIs, which could be used as a proxy tool
to monitor drought stress. Four models, a polynomial regression (PR), random forest
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regression (RFR), support vector regression (SVR), and partial least squares regression
(PLSR), were trained to evaluate their abilities to predict gs and Pn. The RFR, SVR, and
PR were each trained with the VIs as the independent factors, while the gs or Pn was
the dependent variable. The PLSR model was computed considering the whole spectral
reflectance as the independent variable and gs or Pn as the dependent variable. Here, the
PLSR model was trained by concurrently finding the principal components that account
for the highest variance and low multicollinearity in the dependent and independent
variables [59]. This results in fewer uncorrelated components (variables) from the large
spectrum with little loss of information.

2.10. Model Training and Testing

All the models were trained with 70% of the dataset and tested on the remaining 30%.
In ML training, optimization of parameters by cross-validation (CV) search over various
parameter settings is required to improve the accuracy of predictions and classification and
minimize errors. Popular optimization techniques include gridsearchCV [60], randomized
search [61], and Bayesian optimization [62]. Since random search is computationally less
expensive and consumes less time for processing, the randomsearchCV tool in the Scikit
learn package (Python 3) was used to fine-tune the parameters of the ML models. Table 2
includes the list of parameters tuned and the range of values considered. Following the
model parameter tuning and training, the best-performing set of parameters was used for
model fitting and classification or regression.

Table 2. Model parameters for tuning and training using random search CV.

Model Parameters Range

DNN Hidden layers 1,2,3,4,5
Number of neurons 50, 100, 150, 200, 300
Activation function identity, logistics, tanh, ReLU
Weight optimization lbfgs, sgd, adam
Regularization penalty (α) 0.00001, 0.0001, 0.001, 0.01
Learning rate constant, adaptive, in scaling
Batch size 200, 300, 400, 500, 600, 700
Momentum for gradient descent update 0.9
Exponential decay rate (β) 0.9

SVM Kernel type rbf, poly, linear
Degree of the polynomial kernel 1, 2, 3
Regularization parameter (C) 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000
Kernel coefficient (gamma) 0.0001, 0.001, 0.01, 0.1, 1, 10, 100, 1000,

RF Number of trees 10, 30, 50, 70, 90, 110, 130, 150, 170, 190
Maximum depth of the tree 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
Number of features for the best split sqrt (1 8 1), log2 (1 8 1), 181
Minimum samples for splitting 2, 5, 10
Bootstrap samples for building tree True, False

The metrics root mean square error (RMSE), coefficient of determination (R2), and
mean absolute error (MAE), as shown mathematically from Equations (5) to (7), were used
to assess the validity of the regression models in predicting the Pn and gs. The R2, ranging
from 0 to 1, measures the proportion of the variance in the dependent variable that is
predictable from the independent variables. R2 values close to 1 indicate a good fit, which
shows a good performance of the model, and vice versa. The RMSE measures the square
root of the average squared differences between the predicted and observed variables,
which gives a sense of the magnitude of the errors made by the models. A low RMSE
suggests a good performance of the model. Generally, a high R2 and low RMSE indicate
good performance of the model. The MAE is the average of the absolute differences between
predicted and observed variables. A lower MAE shows that the model’s predictions are
close to the ground truth values. To objectively assess the performance of the classification
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models, we used three widely used classification metrics: average accuracy (AA), F-score,
and Cohen’s kappa score, as shown in Equations (5)–(10)

R2 =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 ×
√

∑n
i=1(yi − y)2

(5)

MAE =
1
n

n

∑
i=1

|xi − yi| (6)

RMSE =

√
∑n

i=1(xi − yi)
2

n
(7)

where n is the amount of data, xi is the observed values, yi is the predicted values, and
the bar denotes the mean of the variable. Statistical calculations were performed using the
statistical package in RStudio.

AA =
TP + TN

TP + TN + FP + FN
(8)

F − Score = 2 × P × R
P + R

(9)

K =
Po − Pc

1 − Pc
(10)

where P = TP
TP+FP and R = TP

TP+FN ; TP: true positive; TN: true negative; FP: false positive; FN:
false negative; Po is the probability of observed agreements; and Pc is the expected agreement.

3. Results

Before analyzing the results of the interaction between the proposed and known
VIs and how they are affected by drought stress and variable N levels, it is important to
understand how the multiple stresses affected the gas exchange measurements (which
served as ground truth measurements for this study) and the whole spectra of each treat-
ment. Section 3.2 summarizes the results of the plants’ gas exchange measurements under
drought and various N levels, while Section 3.3 examines the spectrum characteristics
of each treatment at three different growth stages. The following sections further detail
the extraction and proposal of new VIs and how they respond to drought stress when
combined with the known Vis.

3.1. Reference Data of Gas Exchange Measurements

Figure 3 is a box and whisker plot of the Pn measurements of the plants from the
0–15 DADS. The WWHN treatment produced the highest Pn throughout the drought stages,
while the DS treatments (DSHN, DSLN) steadily declined with time. It was observed that
the DS treatments were not significantly different at the beginning of the drought (0 DADS),
despite the variations in their N levels. However, the DSHN treatment was statistically
different from the WWLN treatment. Plants with varying N levels exhibited statistical
differences three days after drought stress initiation. That is, the WWLN and WWHN
were statistically different (p < 0.049), while the DSLN plants showed differences with
the WWHN (p < 0.045). The WWLN and DSLN, however, showed no differences at this
stage. The stress in the DS treatments became more noticeable on the 6 DADS, where
the means of both treatments (DSHN and DSLN) were statistically different from the
WWHN treatment (p < 0.026 and p < 0.015 for DSHN and DSLN, respectively). In contrast,
the WWLN did not differ much from the DSLN (p < 0.97) treatment; however, it was
statistically different from the WWHN (p= 0.036). At the end of the experiment, there
were clear distinctions between the drought-stressed (DSHN and DSLN) and well-watered
(WWHN and WWLN) treatments.
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Figure 3. Photosynthetic rates from 0 to 15 DADS for four different treatments: WWHN, WWLN,
DSHN, and DSLN. The WWHN and WWLN are the water well-watered plants with high and low
nitrogen, respectively, while the DSHN and DSLN are the drought-stressed plants with high and low
N levels, respectively. The results presented are mean and standard deviations from the original data;
the dissimilar lower-case group (a, b, and c) represents a significant difference with p < 0.05.

The gs measurement of the plants revealed a pattern comparable to the Pn measure-
ment, as shown in Figure 4. Throughout the drought stages, the WWHN treatment had the
highest gs, with the maximum at six DADS (0.37 mol H2Os−1). Despite having varying
N levels, the DS treatments showed no significant differences at 0 DADS. At 0 DADS, the
means of the DS treatments (DSHN and DSLN) were statistically different from the WWLN
treatment. After three days, the WWHN treatment had the highest gs (0.341 mol H2Os−1),
while the DSLN obtained the lowest gs (<0.252 mol H2Os−1). There were observable differ-
ences in the ranges and mean values of the WWHN treatments and the other treatments,
with p-values = 0.025, 0.011, and 0.012 for the WWLN, DSLN, and DSHN treatments, respec-
tively. However, the DS treatments were not significantly different from the WWLN. On
the six DADS, the WW treatments (WWHN and WWLN) had higher mean gs than the DS
treatments. While the DS treatments were statistically different from the WWHN treatment,
the DSLN and WWLN treatments were statistically not different. On the 12 DADS, there
were 80.3% and 60.2% decreases in gs for the DSHN and DSLN, respectively (indicating a
fast decline of gs for the DS treatments). On the final day (15 DADS), a significant difference
was observed in drought-stressed and well-watered plants, with the WWHN having the
highest and the DSHN having the lowest gs measurements.
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Figure 4. Stomatal conductance for the four treatments: WWHN, WWLN, DSHN, and DSLN
from 0 to 15 DADS. The WWHN and WWLN are the water well-watered plants with high and low
nitrogen, respectively, while the DSHN and DSLN are the drought-stressed plants with high and low
N levels, respectively. The results presented are mean and standard deviations from the original data;
the dissimilar lower-case group (a, b, and c) represents a significant difference with p < 0.05.
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3.2. Spectral Reflectance Analysis

Mean spectral curves for the different treatments at 0, 6, and 15 DADS are shown in
Figure 5. The spectral curves for all the treatments showed peaks at 570 nm and troughs
at 680 nm. The spectral reflectance of all the treatments exhibited comparable patterns
at 0 DADS, showing relatively low reflectance, particularly in the blue spectrum (around
450 nm) and red regions (around 670 nm). However, the DSLN treatment had slightly
higher reflectance comparably. The red edge region (around 700 nm) for all the treatments
showed a sharp progression from the red to the near-infrared regions, with the high N
treatments (DSHN and WWHN) showing a relatively higher reflectance in this region as
compared to the low N treatments, which showed low reflectance. Conversely, on the
6 DADS, the general trend in the visible spectrum was similar for all the treatments with
low reflectance in the blue (~450 nm) and red (~670 nm) regions. In the red edge region,
the WWHN had the highest reflectance (0.57 at around 730 nm), while the DSHN had the
lowest reflectance (0.39 around 720 nm). All the treatments had a slightly downward trend
in the reflectance value in the near-infrared regions. Furthermore, reflectance’s for the
well-watered plants (WWLN and WWHN) were close in proximity, with WWHN showing
slightly higher reflectance in the near-infrared regions. On the final day of the experiment
(15 DADS), all the treatments showed relatively low reflectance with minor variations,
with the DSHN treatment showing a relatively high reflectance (0.11) in the visible region.
All the treatments showed a sharp increase in reflectance in the red edge region starting
around 680 nm and transitioning to the near-infrared regions. However, the DSLN had a
slightly less sharp and shifted shape in this region. Interestingly, the DSLN had the highest
reflectance in the near-infrared region.
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Figure 5. Spectral reflectance of the averaged DSHN, DSLN, WWHN, and WWLN treatments for
0 DADS (a), 6 DADS (b), and 15 DADS (c). Spectral values are shown as mean ± standard deviation.
The WWHN and WWLN are the water well-watered plants with high and low nitrogen, respectively,
while the DSHN and DSLN are the drought-stressed plants with high and low N levels, respectively.
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3.3. Correlation between the Known VIs and Gas Exchange Measurements (Pn and gs)

Figure 6 displays heat maps of the Pearson correlation coefficient (r) between the
known VIs and the two gas exchange variables (Pn and gs). The correlation analysis was
performed for each treatment and the combined treatments (ALL). Figure 6a shows good
relationships between the VIs and gs in the WWHN treatment. PSSRa had the highest
correlation coefficient (0.88), while TCARI obtained the lowest (−0.04). Similarly, most VIs
had strong correlations in the WWLN treatment, with DVI, SAVI, and MSAVI obtaining
the highest correlation coefficient (0.94) and TCARI with the lowest (−0.29). However,
a contrasting trend was observed in the DS-based treatment. With the DSHN, while the
MTCI with r = 0.92 had the best correlation with the gs, a third of the extracted VIs had a
poor relationship with the gs (r < 0.4). The DSLN treatment reported the lowest correlation
with the gs measurements. SAVI (0.79) and RSVI (−0.79) were observed to have the highest
correlation, while NDVI (0.20) had the lowest correlation with the gs. When the treatments
were combined, most of the known VIs showed a positive correlation with the gs except
NDWII, RVSI, TCARI, and RD indices. The RVSI and SAVI had the highest correlation
coefficients (−0.79 and 0.79, respectively), and the NDVI800 had the lowest (0.18).
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Figure 6. Pearson correlations between the extracted features and the gas exchange measurements
(Pn and gs). VIs with a correlation of more than 0.5 were selected for further analysis. See Table 1 for
abbreviations of VIs.

From Figure 6b, a positive correlation was observed between the known VIs and
the Pn measurements in the WWHN treatment, except for a few indices (NDWII, RVSI,
TCARI, and RD), which were negatively correlated. Most indices had a high correlation
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coefficient, with RENDVI (0.87). The results obtained for the WWLN treatment show that
compared to the WWHN, there was a relatively low correlation between the indices and the
Pn measurements. MTCI had the best correlation (0.74) while the NDWII (−0.03) had the
lowest. In the DSHN treatment, the VSR index obtained the highest correlation coefficient
(0.84) and the NDII (0.19) had the lowest. Unlike the gs, the indices in the DSLN treatment
had relatively good correlations with the Pn. The highest correlation was observed in the
OSAVI index (0.88), while the lowest was recorded in the CI_green index (0.10). With the
combined treatments, the MSAVI, SAVI, and DVI reported the highest correlation with the
Pn (0.78), while the RD had the lowest correlation (−0.07).

3.4. Waveband Selection and Proposed Indices
3.4.1. Spectral Band Pair Correlation

Spectral band pair correlation is the correlation analysis between two specific spectral
wavelengths. It aids in understanding the interactions of different spectral bands, providing
insights into the characteristics of the observed traits. In HSI data, a significant portion
of the spectrum suffers from multicollinearity, which refers to the presence of strong
correlations or dependencies between spectral wavelengths in a hyperspectral dataset.
Figure 7 is a colormap showing the correlation between all pairs of wavebands of the
data, providing a visual representation of how spectral features across a wide range of
wavelengths are interrelated, indicating potential areas of redundancy or key spectral. The
lighter color bands across the colormap suggest that certain wavelength ranges have high
correlations with each other, while darker regions indicate lower correlations, suggesting
that spectral features in these areas do not share much information or are not related
linearly. The patterns off the diagonal (away from the central diagonal line) represent
cross-wavelength correlations. Large blocks of uniform color off the diagonal indicate
that features at one wavelength range are consistently correlated with features at another
range. It is observed that the band pair correlation within the NIR region (700–1015 nm)
follows a general pattern: adjacent bands had a strong tendency to correlate with one
another. For example, around 394–450 nm, 740–790 nm, and 920–1015 nm, there are regions
where spectral features are strongly correlated. However, among the highly correlated
spectral bands in this region, a few bands had low correlations with their adjacent bands
(940–953 nm). Spectral bands within the visible range (394–650 nm) had a low correlation
between adjacent wavebands. However, bands between 511 nm and 576 nm were highly
correlated to each other and to bands between 702 nm and 746 nm, showing the redundancy
of some of these spectral features.

3.4.2. Output of the Ensemble Model Waveband Selection

Feature selection is critical in hyperspectral imaging analysis to enhance model per-
formance by reducing overfitting, interpretability, and computational complexity [36].
The high correlation between the different spectral wavebands shows the significance of
feature selection in eliminating redundant information while keeping the relevant data.
Each model in this study selected the sensitive spectral features based on the order of
importance. Table 3 reports the top ten spectral wavelengths selected by the ensemble
model. The chi-square method selected most of the top features within the green spectrum
from 555–570 nm and the rest within the red regions (670–675 nm). The top ten features
using the ReliefF method were within the red (674–690 nm), red edge (722 nm), and in-
frared (949–957 nm) regions. The CFS selection method identified the top ten features
within the green regions (542–547 nm), the red region (669–671 nm), and the infrared
regions (939–957 nm). Generally, all three selection methods identified wavelength 674 nm
as one of the most informative features. Also, the ReliefF and CFS identified 669, 949, 940,
and 957 nm as the most sensitive features.

The output of the individual models was integrated with the Boruta SHAP model
to improve the selection process and reduce the dimensions of the selected features. The
output of the Boruta model was ranked in order of importance using the RF-RFE model. The
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ReliefF model ranked wavelengths in the green region as the top two (553 nm and 557 nm),
followed by the red wavelengths (669 nm and 674 nm). Wavelength in the near-infrared
region followed as the fifth most important feature. The 542 nm wavelength was selected
as the tenth most important feature.
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Table 3. The top 10 wavelengths selected by the different machine learning models.

Selected Wavelengths (nm)

Rank Chi-Square ReliefF CFS RFE

1 555 680 669 553
2 554 689 674 557
3 556 949 939 669
4 553 722 936 674
5 557 683 957 722
6 552 674 949 940
7 636 940 671 957
8 673 670 547 636
9 674 669 546 683
10 672 957 542 542

3.4.3. Proposed Drought Stress Indices

The selected wavelengths were combined in different forms using the RDI, NDDI, and
DDI equations to obtain the proposed drought stress indices. To analyze the relationship
between the drought stress and the proposed indices, the indices with high R2 values were
selected. From supplementary information (Table S2), the NDDI and RDI produced the best
indices that correlated highly with the gas exchange measurements (Pn and gs). Figure 8
is a correlation heatmap showing the relationship between the top ten proposed indices
and the gas exchange measurements (Pn and gs). Based on the R2 values, the NDDI with
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wavelengths (λ940 and λ957) had the best correlation for Pn (r = −0.78), whereas RDI with
wavelengths (λ669 and λ636), (λ636 and λ542), and NDDI with wavelengths (λ940 and λ557)
produced the best correlation (r = 0.67) with gs.
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3.5. Machine Learning-Based Drought Detection

This section evaluated the performance of the three traditional classification models
(RF, SVM, and DNN) on identifying plants with drought stress with different nitrogen
levels. Four different training features were used: known VIs, proposed VIs, combined
VIs (proposed and known VIs), and PCA-transformed features. The performances of the
models were evaluated based on the type of training features used.

3.5.1. Drought Stress Identification Using Machine Learning Models

Table 4 shows the performance of the models when trained with the known, proposed,
combined Vis and PCA extracted features. Figure 9 depicts the confusion matrices of the
three models on the test dataset. This depicts the performance of the models in classifying
the treatments: WWHN, WWLN, DSHN, and DHLN, which correspond to the different
nitrogen and drought stress levels. The confusion matrices are displayed as heatmaps, with
the classification accuracy increasing with the depth of color. The number of predictions
made by the model for each class is shown by the cells in the heatmap. The x-axis shows
the actual class, while the y-axis displays the predicted class.

Figure 9a shows the performance of the various models trained with the known Vis,
with the DNN model showing the best results. All the models had high accuracies in iden-
tifying the high N-based treatments (DSHN and WWHN), with the RF model achieving a
perfect accuracy score for the DSHN treatment identification. However, the SVM model had
low accuracy for WWHN treatment. For drought-stressed plants in low N-based treatments,
particularly DSLN, increased misclassification of treatments was observed. All the models
had high F1-scores and above 0.80 Cohen kappa scores, which shows good agreement
between predicted and actual class labels. The study demonstrates a performance improve-
ment in the SVM and DNN models when trained with the proposed models, with the DNN
achieving the best performance (Figure 9b). The SVM and DNN had a perfect accuracy
score for WWHN and SVM while having low misclassification for other treatments. A high
F1-score (0.911) and relatively low Kappa score (0.881) for the RF model shows that the
model has resulted in false positives in contrast to false negatives for classifying the treat-
ments. From Figure 9c, all the models performed well when trained with the combined Vis,
as evidenced by the high percentage of correctly predicted cases in the diagonal elements
of the confusion matrices. The RF model performed best, followed by the SVM and DNN
models. However, a one-way ANOVA test on the F1-scores shows no significant variation
in the performance of the models (Supplementary Information, Table S3). However, all the
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models showed comparably high misclassification for drought-based treatments. From the
confusion matrices in Figure 9d, the three models had above 87% accuracy when trained
with the PCA-transformed features. The RF model outperformed the others, producing
above 0.90 accuracy scores in all four classes. However, it struggled to identify DSHN,
as 6% of the treatment was classified as WWLN. The SVM model followed the RF model,
recording the best performance in DSLN classification with a 4% misclassification error.

Table 4. Performance metrics for RF, SVM, and DNN models for identification of drought-stressed
plants (metrics include average accuracy (AA), F1-score, and Kappa score).

Metrics

Features Model AA F-Score Kappa

Known VIs
RF 0.921 0.925 0.893

SVM 0.887 0.881 0.882
DNN 0.938 0.935 0.914

Proposed VIs
RF 0.914 0.911 0.881

SVM 0.924 0.930 0.919
DNN 0.948 0.949 0.933

Combined VIs
RF 0.983 0.984 0.965

SVM 0.981 0.982 0.975
DNN 0.977 0.979 0.969

PCA Features
RF 0.961 0.962 0.960

SVM 0.941 0.940 0.921
DNN 0.901 0.900 0.868
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3.5.2. Multivariate Model Analysis for Stomatal Conductance and Photosynthetic
Rate Predictions

Figures 10 and 11 are scatter plots illustrating the relationship between the actual
and predicted gs and Pn. Table 5 also summarizes R2, RMSE, and MAE, depicting the
performance of the regression models. It was observed in Figure 10 that most of the models
achieved high prediction accuracy, with the random forest regression (RFR) outperforming
the others with R2 = 0.87, RMSE = 0.035, and MAE = 0.015. The high R2 and low RMSE
suggest that the RFR model is robust and insensitive to noise. In contrast, the PR model with
an average R2 of 0.53 and RMSE of 0.52 was the least accurate in predicting the gs values.
During the PLSR modeling using the whole spectrum, optimal latent features were selected
to train the model to avoid the curse of dimensionality. In this case, fewer latent variables
with maximum R2 and minimum RMSE were selected. For the gs-based PLSR models,
20 latent variables were selected. The PLSR model exhibited a high prediction score with a
mean R2 of 0.842 ± 0.02 for the test scores. Although the RFR and SVR were trained with
a limited number of features (10 sensitive spectral features), their performances were as
good as the PLSR model.

Figure 11 shows that all the models achieved considerably high performance in pre-
dicting the Pn values except the PR model, which had R2 = 0.74. The RFR model exhibited
the highest score with R2 = 0.940 ± 0.05, RMSE = 0.015, and MAE = 0.004. Also, the PR
model underperformed when trained with the combined VIs, achieving 0.740 ± 0.01 (R2),
0.144 ± 0.281 (RMSE), and 0.127 ± 0.04 (MAE). Similarly, to the PLSR model for predict-
ing gs, 25 sensitive latent variables were selected for training the Pn-based PLSR model,
which performed well with R2 = 0.910±0.04, RMSE = 0.015, and MAE = 0.004.
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were trained with the combined VIs except the PLSR, which was trained with the whole spectrum.

Table 5. Performance of regression models for gs and Pn.

Stomatal Conductance (gs)

Metrics RFR SVR PR PLSR

R2 0.871 0.845 0.534 0.842
RMSE 0.035 0.038 0.221 0.031
MAE 0.015 0.011 0.142 0.017

Photosynthetic Rate (Pn)

Metrics RFR SVR PR PLSR

R2 0.940 0.830 0.740 0.910
RMSE 0.015 0.063 0.144 0.018
MAE 0.004 0.013 0.127 0.007

4. Discussion

This study utilized spectral information from hyperspectral imaging combined with
different machine-learning models to identify drought stress in wheat species supplied
with varying N levels. Since gas exchange measurements such as gs and pn are good
indicators for drought stress monitoring, they were measured and analyzed in this study.
From the results, the gs detected drought stress on the three DADS since the control
group (WWHN) and the DS treatments significantly differed on this day. Drought stress
was detectable on the six DADS using the Pn measurements, indicating the viability of
using gas exchange measurements to track drought dynamics in wheat species. This



Remote Sens. 2024, 16, 3446 20 of 25

supports the findings of [63], who analyzed the dynamics of plant water stress and recovery
using the photosynthetic parameters, as gs and mesophyll conductance CO2 (gm), where
the gs declined to 0.1 and less than 0.05 mol CO2 m−2 s−1 in moderately and severely
water-stressed plants, respectively.

Analysis of the spectral curves of the hyperspectral data reveals differences in treat-
ments in the visible and near-infrared regions. The low reflectance of all the treatments
in the visible regions was expected due to the strong chlorophyll absorption of the plants.
This agrees with multiple studies that stipulate that healthy plants have low reflectance
in the visible region, while high reflectance is normally observed in chlorophyll-depleted
plants [64,65]. Although the low N treatments had a relatively low N content, they could
not cause high reflectance, probably because the plants had a high concentration of chloro-
phyll at the start of the experiments. Nitrogen affects the overall plant health and leaf
cellular structure of plants, where adequate N content builds strong cellular structure while
degraded structure is observed in the plants with low N. The treatments with high N
(WWHN and DSHN) with a strong cellular structure scattered light more effectively, which
was evidenced in high reflectance in the red edge regions. The red edge region for these
treatments is because of the leaf internal structure, which caused a rapid transition from
strong absorption in the visible region to strong reflectance in the NIR region [66]. The high
reflectance of the DSHN and WWLN treatments in the visible regions on the six DADS
could be attributed to the decreased leaf pigments caused by the drought stress and low
N level, respectively, which affected the leaf chlorophyll content [67]. The DSLN showing a
relatively low reflectance in the NIR region shows that plants under drought stress with low
nitrogen experience significant stress, which leads to reduced NIR reflectance. The drought
and low N levels causes a cellular structural degradation, leading to a low reflectance in
the NIR region.

Twenty-five known VIs were extracted, with some VIs (RVSI, SAVI, NDVI705, NDVI750,
and EVI) revealing high correlations with the two gas exchange measurements. From pre-
vious studies [68,69], some of these VIs are associated with plant N, which shows that these
indices may not be effective for drought stress analysis. Hence, further analysis proposing
drought spectral indices was performed. Due to the high dimensionality of HSI, spectral
averaging and sensitivity analysis were performed to select the wavebands responsive
to drought stress and nitrogen deficiency. Over 600 features were discarded during the
feature selection process, revealing that a small subset of spectral features could capture a
significant amount of the most valuable information. In contrast, most of the remaining
features were typically redundant or contributed to noise [70]. The selection of sensitive
spectral features in the red edge and green spectral regions shows the responsiveness of
the wavelengths in these regions to both N variations and drought stress. Additionally,
the selection and ranking of the 553 nm wavelength by the ensemble model as the most
sensitive shows that it could decipher a physical meaning hidden in the high-dimensional
spectral data of drought-stressed plants irrespective of the nitrogen level present.

The evaluation of the proposed VIs using a spectral combination of the sensitive
features selected revealed that the NDDI and RDI-based indices had strong relationships
with drought stress, with NDDI30 and NDI20 having the strongest R2 values of 0.78 and
0.69, respectively. The proposed indices were primarily derived from wavelengths in the
blue (500, 550, and 580 nm) and near-infrared (710, 760, 770, and 783 nm) regions, which are
reported as wavebands commonly used to measure drought stress and plant N status [71].
This finding is confirmed by the work of Colovic et al. [72], who identified the double
difference index (DDI) produced from the near-infrared regions (749, 720, and 701 nm) as
the best-performing index in explaining the variation in plant water levels. This shows the
relatively important function of the near-infrared spectrum in drought stress analysis and
that a single band might not be practical to evaluate plant health (drought stress) due to
lant fluctuating nitrogen status and the dynamic nature of the drought stress.

Three models (SVM, RF, and DNN) were developed to identify stressed plants using
the known VIs, the proposed Vis, and the combined VIs and PCA-transformed dataset.
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Generally, all three classifiers had outstanding performances. This shows that traditional
machine learning models such as SVM and RF perform well in detecting drought stress in
wheat species with the right feature selection. Although the models performed well when
trained with the known or proposed VIs, their performance significantly improved when
the two sets of VIs were combined. This could be because the combined VIs features cover
the spectral areas strongly linked to both nitrogen and drought stress. For instance, indices
such as OSAVI, RVSI, and NDDI30 are derived from the green and near-infrared regions,
which strongly correlate to nitrogen concentration and drought stress. The PCA method
reduced the dimensionality of the hyperspectral dataset (622 wavebands) to two feature
sets representing the principal components. While PCA produces new feature components
that maximize data variance, ignoring the lower-order PC components may have resulted
in information loss, which affected the performance of the models [73].

Finally, while previous studies show that gas exchange measurements can monitor
drought stress dynamics in plants, the process is costly and has low throughput. This
study demonstrates the capability of training regression models using the combined VIs to
accurately predict gs and Pn, as shown in Section 3.5.2; however, it is essential to note some
limitations. The combined VIs were formulated from different spectral data, resulting in
non-linear and complex data. Due to the non-linear and non-addictive nature of the data,
the PR model was unable to learn the non-linear trend in the data.

This study contributes to the advancement of precision agriculture demonstrating the
effectiveness of combined VIs with machine learning models for drought stress monitoring
and gas exchange measurement prediction. The high accuracy in identifying stress despite
the variable N levels shows the potential for precise and reliable stress monitoring. This
study offers insights into the interactions between variable N levels and drought stress
dynamics. The methodology has strong potential for large-scale application in agriculture,
becoming a baseline for large-scale drought stress monitoring and management. This can
enhance high crop yield by optimizing irrigation and nutrient application Although the
study was conducted in a glasshouse, the scalability of hyperspectral imaging combined
with machine learning modeling means that this method can be deployed in large-scale
agricultural monitoring systems for high-throughput phenotyping.

5. Conclusions

In the field, crops can suffer multiple stresses, such as drought and nutrient deficiencies,
affecting their yield and overall production cost. While these stresses have separate effects
on plants, they also interact and have some common responses. Hence, identifying key
traits to monitor drought-stressed plants at variable N status is crucial to improving crop
yield. This study utilized spectral information from HSI combined with machine learning
to identify drought stress and predict gas exchange measurements (gs and Pn) in wheat
species. The experimental results demonstrated the capability of our proposed ensemble
model in selecting spectral features that are highly responsive to drought dynamics in
plants. A combination of the selected features resulted in proposed VIs, which achieved
high accuracy in identifying the drought-stressed plants compared to using known VIs
when used to train traditional machine learning models. However, the performance of the
models improved significantly when tey were trained with a combination of proposed and
known VIs, where DNN, RF, and SVM improved by 2.5%, 1.2%, and 1.8%, respectively,
compared to the models trained with the known VIs. In addition to identifying drought
stress by classification, the combined VIs were also used to train three regression models
to predict gs and Pn measurements. The RF regression model outperformed the others in
accurately predicting gs and Pn with error margins of 0.8 and 0.4, respectively. Although
excellent results were obtained, more research is required to validate the conclusions on a
larger spatial scale, exploring the potential application of the models for other plant species.
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Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/rs16183446/s1, Figure S1: Pseudo RGB image9 (R: 650 nm,
G: 550 nm, and B: 450 nm) and corresponding Segmented image (R: 600 nm, G: 500 nm, and B: 420 nm);
Table S1: Machine learning models for the identification of drought stress in wheat under variable
nitrogen levels. This shows the characteristics of each model and why they were chosen for this study;
Table S2: Correlation coefficients of proposed indices with gs and Pn; Table S3: A one-way ANOVA
test on the F1-score for all the models.
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