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A B S T R A C T   

Organic matter amendments appear to increase yield, but need to be sustained, as yield decreases when 
amendments cease. Here we mathematically devise optimal strategies for organic matter applications that take 
account of how quickly, in years of application, yields build up with amendments and how long these benefits 
persist. The empirical idea of a nutrient response curve is used and extended to include more than a single 
nutrient input as well as the effect of yield-enhancing factors such as organic matter that endure for more than 
one year. Nonlinear regression is used for the selection and the parameter identification for a reciprocal response 
curve working with a dataset from Rothamsted’s Woburn organic manuring long term experiment. Such a 
response curve is then treated analytically to develop economically optimum applications over a period of time. 
A simple static case is developed first and is shown to be equivalent to the well-known break-even ratio (BER) 
used in nitrogen fertiliser guidance by the Agricultural and Horticultural Development Board in the UK. The 
mathematical technique of optimal control is then employed to deduce dynamic strategies where the application 
of an amendment may change from year to year and for different time frames. Because this empirical modelling 
methodology can appear complex, we infer a rule-of-thumb for an equilibrium level of yield-enhancement rather 
like the equilibrium level of organic carbon that builds up over several years. This yield-enhancing power of 
organic matter is somewhat variable and probably does not persist in soil for as long as the organic matter from 
which it derives. It appears beneficial to apply amendments at a constant rate for much of the time-frame of 
interest but to begin with a large application to raise the fertility to the yield-enhancement equilibrium. After a 
transition year with reduced amendments, applications of organic matter are stopped for the final five years with 
the example amendment studied, farmyard manure. These conclusions depend on the persistence of the yield- 
enhancing power of organic matter in soil associated with the soil organic carbon kinetics.   

1. Introduction 

Chemical fertilisers are held responsible for all manner of current 
environmental ills (UNEP, 2022). However, without fertiliser crop yields 
may be expected to decrease, which threatens future food security 
(Stewart et al., 2005; Stewart and Roberts, 2012). Moreover, if yield 
levels become uneconomic as a result of a change in management 
practices, the area sown to some crops such as oilseed rape could drop 
dramatically (Dewar, 2017). Balancing such contradictory aims makes 
agricultural sustainability quite challenging. 

A possible remedy to this issue may be to rely on organic amend-
ments, such as manure and compost, whose many benefits for agricul-
tural and soil health are becoming increasingly recognised (Johnston 
et al., 2009). Like fertiliser, organic amendments can increase yield so 
they could partly replace artificial nitrogen (N). The yield enhancing 
power of organic amendments follows from both physical and chemical 

processes by improving both nutrient availability and physical attributes 
such as soil structure and water retention (Johnston et al., 2009; Thomas 
et al., 2019; Neal et al., 2020; Albano et al., 2022). In this article, our 
approach empirically bypasses these complications from relying on the 
concept of crop nutrient response curves (Greenwood et al., 1971; 
Thornley, 1978; George, 1984). 

For a given crop, nutrient response curves map crop yield onto 
nutrient doses and are usually obtained from field experiments where 
different plots receive different rates of fertiliser application. As such, 
characterising crop nutrient demand, empirical response curves corre-
spond to production functions that integrate the whole chain of pro-
cesses involved in the soil-plant-atmosphere system throughout a 
growing season (Thornley and Johnson, 1990). 

Nutrient response curves underpin guidance on the use of N fertiliser 
for a wide range of crops (e.g., RB209, 2022). Guidance is usually given 
in terms of profit maximisation and relies on the concept of the 
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break-even ratio (BER), which defines the on-farm economic optimum 
nutrient (nitrogen) rate. Maximum profit is reached when the cost of 
fertiliser (i.e. marginal cost) cΔN equates the crop value (i.e. marginal 
revenue) pΔY, where c is the unit cost (in £/kg N) of fertiliser and p is the 
price (in £/t) of the crop; ΔY representing the small increment in yield 
associated with a small increment in nitrogen input ΔN. It follows that 
the BER value is defined as the ratio c∕p. The corresponding BER ni-
trogen rate then is the rate at which the slope of the response curve 
solves the equation 

dY
dN

=
c
p
:= lim

ΔN→0

ΔY
ΔN

(1)  

Such a principle can be extended to other nutrients like phosphorus P 
and potassium K (Barnes et al., 1976; Thornley, 1976, 1978). 

Here we go further and answer the question of how to apply inputs 
such as organic matter whose benefits persist for more than one year. 
Note that soil carbon is not seen as a plant nutrient, but rather as a proxy 
(or hidden variable) to quantify the yield enhancing properties that 
result from amendment. And, because amendments such as manure or 
compost can also be in short supply, we seek optimal means for how to 
apply N alongside annual applications of organic amendments that take 
account of how quickly yields build up with amendment, how long these 
benefits persist, and how N fertiliser might be reduced in such a way as 
to increase NUE (nutrient use efficiency). With this view in mind and in 
contrast to the BER reasoning, our approach will follow the time evo-
lution of soil fertility. 

To this end, we use discrete optimal control theory (Sage and White, 
1977; Sethi, 2019), which brings a rational basis for combining appli-
cations of inorganic fertiliser and organic matter to a sequence of crops 
grown in consecutive seasons that ensures maximum profit from crop 
production. Our methodology thus generalises into a dynamic form the 
break-even ratio used for annual nitrogen fertiliser recommendations. In 
this paper, we show how this methodology can be used to develop 
efficient time-dependent N and OM guidance that is both sustainable 
and optimal. Examples of the method in action will be presented using 
datasets from a long-term experiment with respect to N and organic 
matter. In our approach, we do not aim at describing in detail the dy-
namics of the nitrogen and carbon cycling. Rather we wish to capture the 
essence of the problem from a parsimonious and empirical approach 
with the right level of model complexity in view of farming applications 
and the field experiment observations at our disposal. 

2. Materials and methods 

2.1. Overview 

Technically, the dynamic methodology that we propose in this article 
computes economically optimal strategies, over a finite period of time, 
for the combined applications of organic matter and fertiliser in each 
season. In practice, our framework is based on a generalisation of 
response curves defined analytically as inverse polynomials inspired by 
Balmukand (1928), Greenwood et al. (1971) and Thornley (1978), 
because negative exponential or linear-plus-exponential (‘lexp’) 
response curve models (George, 1984) do not extend so readily to 
include more than a single input or a yield-enhancing factor such as 
organic matter that endure for more than one year. However, a modi-
fication of ‘lexp’ model is proposed in B and showed to perform no better 
than the inverse polynomial model presented below in terms of fitting a 
long term experiment dataset from the Woburn Organic Manuring 
experiment (Mattingly, 1974). 

In contrast with a static constrained optimisation scheme, where the 
constraints are usually algebraic equations or inequalities (Mangasarian, 
1969), optimal control theory is a dynamical system optimisation 
technique whose constraints are given by evolution equations (Pon-
tryagin, 1987; Sage and White, 1977; Sethi, 2019). Our approach here is 
very much simplified in the sense that we will formulate our problem in 
a discrete fashion as a sequence of a finite number of seasons describing 
the yearly evolution of the soil nitrogen and carbon contents (Fig. 1). 

Conceptually, optimal control theory needs us to clearly distinguish 
between two types of variables, namely, state variables and control 
variables. In our case, state variables correspond to the soil nitrogen and 
carbon contents, whereas control variables represent the artificial ni-
trogen and yield-enhancing carbon inputs related the amounts of fer-
tiliser and organic amendment added each season. Note that this 
requires us to question the theoretical nature of what a response curve 
represents. Here, a response curve will be a multivariate function of the 
state variables, i.e. the soil mineral nitrogen and carbon, and not a 
function of the N and C inputs as assumed in a static BER type of 
approach. The response curve and recurrence equations parameter 
identification that we have developed takes care of this distinction be-
tween the variables (Sec. 2.3). Finally, a third type of variable known as 
a Lagrange multiplier, also referred to as co-state, needs to be introduced 
to ensure that the problem constraints are satisfied. In turn we will 
derive two additional recurrence equations determining the evolution of 
the two Lagrange multipliers associated with the changes in soil carbon 
and soil mineral nitrogen. That is to say we allow some organic C and 
mineral N to be retained in soil from one year to the next. These 
Lagrange multipliers are usually interpreted as shadow prices (Intrili-
gator, 1971; Clark, 1976; Chiang, 1984; Sethi, 2019), bringing a mon-
etary value to the gain or loss of soil fertility. 

Because identification of the parameters of the response curve is a 
somewhat different issue from optimal control theory, we start by pre-
senting a method to fit a four-parameter response curve (Eq. (3)), which 
includes the dynamics of carbon. The results are presented in Sec. 3.1. 
To do this we require data and have used several years of yield data from 
one of the Rothamsted long-term experiments (Macdonald et al., 2019). 
With the parameterised curves, we demonstrate the limitations of a 
BER-type static analysis using classical optimisation techniques and go 
on to develop a dynamic approach to the use of organic amendments 
over more than one year using optimal control theory. 

2.2. The Woburn manuring experiment 

The Woburn Organic Manuring experiment managed by Rothamsted 
Research (Mattingly, 1974) was started in 1964 to compare, within a 
single long-term experiment, most of the treatments to increase soil 
organic matter which had previously been tested in separate experi-
ments at Woburn leading up to the 1960 s. It continues to this day with 

Fig. 1. Schematic of the optimal control theory (OCT) for fertiliser and organic 
amendment applications. Here, with the view of maximising profit, OCT is used 
for a crop (e.g. wheat) grown continuously over T seasons and whose yield 
response to nutrient inputs and organic amendments is known. It allows 
determining the schedule and application rates of nitrogen (Ut) and organic 
matter (Vt), such as farmyard manure (FYM), in accord with the yearly dy-
namics of soil nitrogen Nt and carbon Ct assumed to be governed by simple 
linear and uncoupled recurrence equations dynamics. It is predicted that 
organic amendments should be discontinued after a critical discontinuation 
time t*, which depends on the application cost of organic amendments and the 
carry-over constant κ of carbon. 
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modifications and its purpose is to evaluate, from crop yields and soil 
analyses, the cumulative effects of organic matter on a light, 
poorly-structured, sandy soil with a long history of arable cropping. 

The experimental design is organised around four blocks of eight 
plots and has had three different phases from 1964 (Macdonald et al., 
2019). We make use of data from the second phase spanning the period 
1981–1994 (Mattingly et al., 1981–1994). Each plot was split into 6 N 
treatments. During an initial stage, fertility was built up from several 
organic amendments, a series of crops being grown sequentially; in the 
second stage, amendments were ceased. 

During the build-up stage (1981–1986) of the second organic 
manuring phase, the plots in each block received several types of organic 
amendments with different carbon concentrations: farmyard manure 
(Fd), wheat straw (St) and clover grass ley (Lc). In each block, four plots 
had grass ley with clover but were distinguished based on their previous 
treatment history, having been treated with nitrogen, peat or green 
manure in the previous experimental design. Finally, two control plots 
(Fd, Fs) received no organic carbon input, however, being treated with 
doses of mineral nutrients, without N (i.e. P, K, Mg fertiliser), equivalent 
to the nutrient content of the farmyard manure (Fd) or straw treatments 
(Fs). On the plots without any grass ley, crops (barley, bean, wheat, 
sugar beet, oat, rye) were grown sequentially. In Sec. 2.3.2, 3.1 where 
the parameters of the response curve are identified, we shall focus on the 
plots which received farmyard manure (FYM). In this article, we will not 
try to account for the contribution of crops on the accumulation of soil 
organic matter during this stage. 

In the subsequent cropping stage (1987–1994), organic amendments 
were discontinued on the plots, which were each split into 6 sub-plots to 
test five rates of nitrogen fertiliser and nil (0, 50, 100, 150, 200, 250 
kgN/ha). In terms of crops, the winter wheat cultivar Mercia was grown 
(almost) continuously for 8 years over the four blocks. The year 1987 
was a hybrid in its experimental design because only two replicates 
(blocks i, iii) were ploughed for the first test crop (winter wheat), while 
the other replicates kept the design of the build-up phase with plots of 
leys and winter oats. For the period 1988–1991, crops alternated in each 
block between winter wheat and other crops (potato, winter bean) so in 
each year there were two replicates sown to wheat. This therefore 
formed a gapless time series of wheat. We are thus neglecting the effects 
on yield of this rotation of crops with a sub-set of yield data restricted to 
blocks (i,iii), using blocks (ii,iv) for 1988 and 1990 only. The wheat 

yield data from the four blocks are however used for the three final years 
1992–1994 as explained below. 

2.3. Nutrient response curves 

To assess the simultaneous response of crops to organic matter and to 
nitrogen fertiliser a combined response curve is needed. A response 
curve based on inverse polynomials was tested in the evaluation of 
yields from experimental plots receiving organic amendments and a 
range of fertiliser N treatments. 

2.3.1. Inverse polynomials 
Response curves relate crop yields to levels of applied nutrients such 

as from fertiliser. Here we follow the semi-empirical theory for fertiliser 
response developed in Greenwood et al. (1971). This theory proposes 
that the relation between yield and nutrient supply can be expressed as 
an inverse polynomial of the form 

1
Y(N,…)

=

[
1
A
+

1
B(Ns + N)

+ ⋯
][

1
1 − (Ns + N)∕α

]

(2)  

where Y represents yield and N the total amount of applied nitrogen 
from inorganic fertiliser. The three dots ellipsis refers to possible addi-
tional terms related to other nutrients such as phosphorus and potas-
sium, which we disregard in this article. Note however that the 
developments to follow can be extended easily to these nutrients. The 
parameters A, B and Ns represent respectively: the theoretical maximum 
yield obtainable before adverse effects of excess nitrogen take effect (i.e. 
Y ~ Y(N∕Ns ≫ 1)), the maximum crop response rate (i.e. the slope of the 
response curve for no application B ∼ Y′(N = 0) and the indigenous soil 
nitrogen prior to fertiliser application. The parameter α corresponds to a 
growth inhibitor coefficient associated with the osmotic pressure in-
crease in the root zone determined by the nitrogen level, leading to the 
response curve downturn commonly observed (Greenwood et al., 1971). 

Mechanistically, the parameter B can be related to the mass flow 
transport of nitrogen within the soil, which establishes a nitrate con-
centration gradient decreasing away from the root surface (Greenwood 
et al., 1971). As soil organic matter and carbon turnover are key to 
determining soil structure and its ensuing water flow and nutrient 
transport properties (e.g. Neal et al., 2020), this suggests that B may vary 
with the soil carbon content, say C. Actually, because plants do not use 

Fig. 2. ‘Dynamic fitting’: example of decay of the extra yield following the discontinuation of organic amendments (FYM). Dataset: Winter wheat yield from Woburn 
Organic Manuring experiment (period: 1987–1994). (a) Yield: the predicted response curves (lines) for the period 1987–1991 are calculated using the reciprocal 
response curve Eq. (3) combined with the yield-enhancing carbon decay Eq. (6) and the parameter values in Table 1. Legend: 1987 (black), 1988 (blue), 1989 
(green), 1990 (magenta), 1991 (cyan), Control: no OM (red); the symbols ( + , × , *, …) correspond to the observed mean yield. (b) Time dependence of the extra 
yield Δ for different N rates (dotted lines with symbols): the predicted extra yield (smooth lines, p) is given for three nitrogen rates (0, 100, 250 kg N/ha). 
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soil carbon directly, we shall model the yield-enhancing effect of organic 
amendments with a dimensionless proxy variable, say y. For simplicity, 
we assume that amendments modify B linearly via this proxy variable, i. 
e. B → B(1 + y), to consider the bi-variate response curve 

1
Y(N, y)

=

[
1
A
+

1
B(1 + y)(Ns + N)

][
1

1 − (Ns + N)∕α

]

(3) 

Eq. (3) keeps the structure of the response curve (2) and does not 
need the introduction of an additional parameter at this stage. Note that 
(2) is recovered when no organic matter is applied, which corresponds to 
y ≡ 0. Eq. (3) forms the two-dimensional response curve equation that 
we use throughout this article. The link between the y and C is described 
in the section below. Alternatives to Eq. (3) are proposed and discussed 
in B. 

Here we are neglecting the effect of additional nutrients provided by 
the organic amendments. Note that the exogenous nitrogen from FYM 
applications can only move the response curve horizontally. This is not 
sufficient for explaining the diagonal shift of the response within the 
north-west corner of the response (N, Y)-plane (Fig. 2) caused by the 
organic amendments. We will show that the idea of introducing the 
carbon proxy variable y to modify the slope of the response curve at low 
N rates suffices to capture the effect of FYM applications. Including 
nutrients in the amendment, the applied organic N in particular, is not 
straightforward and needs considering in terms of the dynamical pro-
cesses of mineralisation, immobilisation and leaching; we leave this for 
future work. Yet, in the context of the Woburn experiment, the C/N ratio 
of the FYM applications was about 15 kg N/kg C, which suggests that 
significant mineralisation may have occurred during the experimental 
build-up stage. Because the soil at Woburn is sandy and poorly struc-
tured, and because the FYM is applied in the autumn, most of this 
mineralised organic N may have been leached during this stage of the 
experiment and little of this ‘applied N′ remained prior to cultivation 
during the experimental phase 1–6 years after application. Hence we 
may hypothesise that this residual nitrogen from FYM (in 1987) is taken 
into with the native Ns parameter included in our response curve. Pro-
vided that this remains true every season, the validity of our optimal 
control theory will not be impeded. 

2.3.2. Parameter identification: a dynamic response accounting for fertility 
decay 

We use the set of yield data of the Woburn Organic Manuring long 
term experiment when winter wheat was grown continuously over the 
1987–1994 period (Sec. 2.2). Over the eight years of data, yields of 
winter wheat varied greatly from year to year, almost certainly as a 
result of the different weather in each year. Van der Pauw (1962) 
demonstrated the relationship between the loss of N from leaching and 
reduction in yield in certain crops resulting from winter rainfall, but 
other factors such as solar radiation, temperature, and disease are also 
almost certainly responsible for the interannual variability (Addy et al., 
2020, 2021; Putelat et al., 2021). 

However, we can avoid this difficulty by looking at the time variation 
of the extra yield gained from the organic matter applications. We define 
the extra yield Δ as the difference between the yield observed from plots 
which have received some OM treatments in phase 1 and the yield 
measured from the control plots which have not received any OM 
amendments. In this way we isolate the change in yield that results from 
the decline in OM alone, which we can track from assuming that the 
proxy variable is time dependent yt. Here the subscript t denotes the 
season number or cultivation year. That is 

Δ(N, yt; t) = Y(N, yt; t) − Y(N, 0; t). (4) 

This experiment clearly shows that, during cultivation, the extra 
yield gained by the OM applications in the first stage of the experiment 
decreases with time (Fig. 2). This feature may reflect the slow decay of 
the yield-enhancing soil carbon content. Here we discuss a possible 

method to estimate the carbon decay rate from yield data, as well as 
determining the parameters of the response curve. 

Our identification method splits the data into two components. The 
first component consists of a subset of data which received no organic 
matter, but distinguishing between six nitrogen doses: the observed 
yield without applied carbon Ŷ(N, 0; t) of the two control plots (Fd, Fs). 
As shown below, this component is used against the theoretical yield in 
Eq. (3) with y ≡ 0, which in effect will smooth out the interannual 
variability in our nonlinear regression. The second component corre-
sponds to the observed extra yield data Δ̂ computed for each year and 
each N treatment and the two control plots. These two components are 
then combined together into a vector F̂ = [Ŷ , Δ̂]

T used in the nonlinear 
regression procedure below. The symbol T denotes the transpose oper-
ation. In this paper, we restrict the analysis to OM inputs in the form of 
FYM only. Fig. 2 presents the means for each N rate of these two datasets 
of 261 data points each. 

Now, the novelty in our methodology is to account for the time 
evolution of the soil carbon content which yield responds to in the form 
of the proxy variable yt. We emphasise that this is not necessarily the 
whole carbon content of the soil, but a component that is active in some 
way relevant to yield, as we are going to show. This component may 
reflect the water-holding capacity for soil or the hydraulic conductivity, 
for example. For simplicity, we assume that the carbon content decays 
via the proxy variable yt according to the simple homogenous linear 
recurrence equation 

yt = κ yt− 1 + vt, (5)  

where the decay constant κ ≤ 1 represents the proportion of carbon that 
remains active in season t from the previous season. Note that this 
proportion also gives the characteristic timescale of this process, which 
can be estimated from the half-life period defined as t1∕2 =

ln(1∕2)∕ln(κ). As shown below, the forcing variable vt will represent the 
dimensionless amount of yield-enhancing carbon from organic matter 
amendments in season t. 

At Woburn, winter wheat was grown each year from 1987 (although 
on alternating blocks until 1990), while organic matter amendments 
were stopped in 1986, i.e. vt ≡ 0, t ≥ 1987. As a result, according to (5) 
we expect the carbon proxy yt to decay as 

yt = y86κt− 1986, (6)  

y86 being the value (to be determined) of the carbon proxy variable 
resulting from the yield-enhancing carbon accumulated from the first 
stage of the experiment over 1981–1986. 

We substitute this expression into Eq. (4), using expression (3), to fit 
the extra yield data in combination with ‘zero carbon’ yield data and 
identify at once the four response curve parameters p = (A, B, Ns, α) 
together with the values y86 and κ. This is numerically performed from 
defining the vector-valued function 

F(p, κ, y86; t;N) =

[
Y(p;N, 0)

Δ
(
p;N, y86κt− 1986)

]

, (7)  

which is used with the R nonlinear least-squares routine NLS against the 
observational data F̂. Note that the regression is performed with respect 
to the nitrogen rates N seen as independent variables, whilst the seasons 
t are being treated as imposed parameters setting the level of decay of 
the carbon proxy yt. 

In this article, the link with carbon is achieved from assuming a 
specific form for yt and vt such as the ratios 

yt ≡
Ct

Cs
, vt ≡

Vt

Cs
. (8)  

Here we explicitly suppose that yt and vt represent the carbon content of 
the soil, say Ct, and the organic amendments, say Vt, with respect to a 
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reference value of yield-enhancing carbon Cs, which needs to be deter-
mined from the data as we show in Sec. 3.1. 

We emphasise that other interpretations for the proxy variable yt 
could be envisaged if the right motivations to do so would become 
available. Without any such incentives at hand, we use Ockham’s razor 
to select the simplest reasonable hypothesis. The formal developments 
to follow will be done with respect to the carbon content Ct, instead of yt, 
both being related by the change of variable above. 

2.4. Static analysis using classical optimisation techniques 

In this section, we show how the break-even ratio condition arises 
naturally from classical optimisation and how it generalises to more 
than one nutrient. 

2.4.1. One-dimensional analysis along nitrogen 
It is quite natural to identify the response curve as a production 

function whose output is the yield Y as a function of the inorganic ni-
trogen input N due to fertiliser applications. Denoting p and c the price of 
the crop and the cost of inorganic fertiliser respectively, the profit is 
defined by the nonlinear function 

J(N) = pY(N) − cN. (9)  

Without any additional constraint to satisfy, the optimum nitrogen input 
N+ maximising the profit corresponds to a critical point of J(N), which 
solves J′(N+) = 0 by definition. We denote with a prime the derivative of 
a function. Therefore, the unconstrained maximisation of profit leads 
directly to the BER (break-even ratio) condition 

Y ′(N+) = c∕p, (10)  

giving the optimum rate of fertiliser application to obtain maximum 
economic yield. Economists call the derivative Y′ of the production 
function Y with respect to the resource variable the ‘marginal physical 
product’ (Samuelson, 1980; Chiang, 1984). Note that we can define the 
metric 

γ(N) = pY ′(N) − c (11)  

which characterises a distance to optimality as the difference between 
the crop ‘marginal revenue product’ pY′(N) and the fertiliser marginal 
cost c (in £/kg N). For conciseness, we will speak of marginal product for 
terms like pY′ in what follows. As long as γ > 0, the BER condition is not 
met, and profit could be increased by adding more nitrogen until γ = 0. 
In Economics, such a quantity is usually interpreted as a ‘shadow price’, 
which has the physical dimension of price (or value) per unit of resource 
(i.e., £/kg N). If we denote δN an increment of nitrogen fertiliser, this 
price γ multiplied by δN represents exactly the increment in profit δJ 
gained from the ensuing increase in yield δY = Y′δN, i.e. 

γδN = pY ′(N)δN − cδN = pδY − cδN = δJ. (12) 

In other words, γ indicates how much profit changes whenever the 
quantity of resource (N) available changes by one unit. This is nothing 
but formalising mathematically the intuitive reasoning behind the BER 
approach. If γ < 0, the value of the extra yield obtained (i.e., the crop 
marginal product) is less than the cost of the extra N (i.e., the fertiliser 
marginal cost) to grow it; money is being wasted and so profit declines. 
Maximum profit is reached when both balance, that is γ = 0. This is a 
well-known condition for maximizing profit in Economics (Samuelson, 
1980, p. 508). 

2.4.2. Two-dimensional analysis along nitrogen and carbon 
The static optimisation of fertiliser application can be generalised to 

more than one nutrient. Expression (9) remains valid but needs to be 
interpreted as a function of several variables. Although organic matter is 
not directly a plant nutrient, a yield response curve can still be deduced 

in which yield depends on the carbon content (or amount applied) using 
inverse polynomials as we showed in the previous section. 

To be explicit, the two-dimensional interpretation of (9) reads 

J(N,C) = pY(N,C) − cN − qC, (13)  

where q is the cost of applying organic matter. The unconstrained op-
timum rates (N×, C×) of inorganic nitrogen and carbon from organic 
matter amendments then correspond to the critical point of J(N, C) now 
solving the system 

YN(N,C) = c∕p, YC(N,C) = q∕p, (14)  

where we denote YN = ∂Y∕∂N and YC = ∂Y∕∂C the partial derivatives of 
Y with respect to N and C. We interpret this system of two equations as 
the two-dimensional BER condition. As in the one-dimensional case, we 
can define the nitrogen and carbon shadow prices 

γ(N,C) = pYN(N,C) − c, η(N,C) = pYC(N,C) − q. (15)  

2.5. Dynamic analysis using optimal control theory 

Here we aim at computing the optimal application rates of inorganic 
nitrogen and organic matter to apply every year over a cultivation 
period of T years in order to maximise the overall profit. We follow a 
nonlinear programming approach to solve the discrete-time optimal 
control problem defined below. 

2.5.1. Formulation 
Our formulation relies on the key assumption according to which 

both the soil nitrogen and carbon evolve in time season after season. 
Importantly this implies that we need to distinguish the nitrogen and 
carbon content in the soil, Nt and Ct say, from the nitrogen and carbon 
content in the inputs, Ut and Vt say. Note that this distinction is irrele-
vant in the static analyses developed above. In terms of optimal control, 
the former set of variables correspond to state variables, while the latter 
set of variables represents control variables. 

Now we need to assume that crops respond to the state rather than 
control variables, because the former characterises the soil. In this sense, 
we shall refer to ‘field or soil fertility’ in this article. More specifically, by 
fertility, we shall mean the combined effect of both the fertiliser and 
organic matter applications together with the internal dynamics (gain or 
loss) of the yield-enhancing nitrogen and carbon in the soil (Nt, Ct). 

In contrast to the static approach, the dynamics between state and 
control variables must indeed be considered. Modelling the processes 
governing the (spatio)temporal evolution of the soil nitrogen and carbon 
is fraught with difficulties and is still a matter of intense research. For 
the problem at hand, however, some useful insights are gained from 
treating this multitude of complex processes as simple recurrence 
equations. 

For simplicity we suppose that the dynamics of the soil nitrogen and 
carbon is linear and uncoupled and that their respective concentrations 
in season t result from the sum of a carry-over proportion from the 
previous season t − 1 with the actual nitrogen input and organic matter 
amendment in season t, t ∈ [1, T]. Mathematically this translates into the 
two recurrence equations 

Nt = kNt− 1 + Ut, Ct = κCt− 1 + Vt. (16)  

They can be integrated once initial conditions describing the level of pre- 
existing fertility conditions at t = 0 

N0 = Ni, C0 = Ci, (17)  

and a sequence of inputs (Ut, Vt) are known. 
The optimal control theory (Pontryagin, 1987; Intriligator, 1971; 

Clark, 1976; Sage and White, 1977; Sethi, 2019) is a mathematical 
optimisation technique which determines the optimal temporal 
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trajectories (sequence) for the control variables to maximise (or mini-
mise) some objective function, J say, subject to a set of constraints such 
as the two recurrence equations above. Here we seek to maximise profit 
over a finite period of T years, our objective function being 

J(Nt,Ct;Ut,Vt) =
∑T

t=1
[pY(Nt,Ct) − cUt − qVt]. (18)  

In this article, inflation is disregarded, and no discount factor is intro-
duced for simplicity and because infinite cultivation horizon problems 
are not considered. 

In contrast to the static analysis developed above, we now deal with a 
discrete-time dynamical system corresponding to a deterministic 
multistage decision process (Bellman, 2013; Intriligator, 1971; Sage and 
White, 1977; Sethi, 2019). The time dependence involved by the 
recurrence equations needs a specific treatment that we explain now. 

2.5.2. Necessary conditions for optimality 
The presence of (time-dependent) constraints in optimisation prob-

lems such as Eq. (16) requires variables, called Lagrange multipliers, 
equal in number to the number of constraints. The Lagrange multipliers 
ensure that the constraints are satisfied at all times. In broad terms, these 
multipliers estimate how much the objective function changes due to a 
unit change in the value of a constraint. That is, in our case, a change in 
the increment of fertility Nt − Nt− 1 and Ct − Ct− 1. These multipliers 
generalise the BER concept in the sense that they reflect the change in 
profit that results from a unit increment of the soil fertility. In economic 
terms, these multipliers are shadow prices giving a monetary value to 
the increase (or loss) of fertility. Our analysis thus generalises the BER 
concept to all aspects of fertility (if the yield response is well- 
understood) (i) in the current year and (ii) future years (in terms of 
today’s outlook) and for (iii) for multiple inputs. 

In contrast to the unconstrained static optimisation (Sec. 2.4), it is 
not simply the objective function that needs to be differentiated with 
respect to the variables but the so-called Lagrangian function, L say. 
Such a function is defined as a linear combination of the objective 
function and the constraints, which reads in our case 

L =
∑T

t=1
{[pY(Nt,Ct) − cUt − qVt]+λt(kNt− 1 +Ut − Nt)+μt(κCt− 1 +Vt − Ct)}

+λ0(Ni − N0)+μ0(Ci − C0)+
∑T

t=0
(νtNt +υtCt)+

∑T

t=1
(ζtUt +ξtVt).

(19) 

We denote λt and μt the Lagrange multipliers associated with the two 
recurrence equations governing the dynamics of nitrogen and carbon 
respectively (the multipliers associated with the initial conditions are 
denoted λ0 and μ0). The variables νt, υt, ζt, ξt are Lagrange multipliers 
needed to ensure that Nt, Ct, Ut, Vt are all non-negative quantities. We 
will see later that ζt becomes key to the analysis once organic amend-
ments stop. Note that all these multipliers are time dependent neces-
sarily. Hence, one of the first tasks is to determine their equations of 
evolution. This is object of optimal control theory. 

Without entering into the mathematical details, taking the partial 
derivatives of L with respect to the state variables (Nt, Ct) leads to the 
recurrence equations that we are seeking, 

k λt+1 = λt − pYN(Nt,Ct) − νt, κ μt+1 = μt − pYC(Nt,Ct) − υt. (20)  

A similar calculation at the initial and terminal times, T, gives the 
associated boundary conditions 

λT = pYN(NT ,CT) + νT , μT = pYC(NT ,CT) + υT , (21)  

and 

λ0 − ν0 = kλ1, μ0 − υ0 = κμ1. (22)  

Eqs. (20) and (21) suggest λt and μt should be interpreted as the shadow 

prices of nitrogen and carbon whose evolution is determined by com-
parison to the respective marginal products of fertility. They provide us 
with the price of the marginal (extra) value gained from the increase in 
yield generated by an increment in fertility, in terms of either nitrogen 
or carbon contents. The derivatives with respect to the control variables 
(i.e., the inputs) yield two important relations, namely 

λt = c − ζt, μt = q − ξt. (23)  

Finally, we have the complementary slackness conditions (Sethi, 2019) 

νt ≥ 0, νtNt = 0; υt ≥ 0, υtCt = 0;
ζt ≥ 0, ζtUt = 0; ξt ≥ 0, ξtVt = 0, (24)  

which close the system of equations governing the optimal trajectory 
that one must follow to maximise profit over T seasons. 

The Lagrange multipliers ζt, ξt are of a particular interest. For each 
season t, conditions (24) imply that these multipliers are zero if the 
control variables are strictly positive. In the next section, we will see that 
this is important as this shows that λt and μt are constants equal to the 
costs of fertiliser and organic matter amendments as long as the input 
rates are non-zero (Ut > 0, Vt > 0 implies ζt = ξt = 0). This means that a 
dynamic BER is reached in such a case for season t. Alternatively, if these 
Lagrange multipliers (e.g., ξt > 0) become non-zero, the inputs must 
cease (e.g., Vt = 0). One then understands that relations (23), expressed 
as − ζt = λt − c and − ξt = μt − q, represent the dynamic version of the 
static metrics γ and η in Eq. (15) (Sec. 2.4.2). In other words, inputs must 
be stopped when their marginal cost (e.g. q) exceeds the fertility shadow 
price (e.g., μt < q). This is very reminiscent of the classical BER approach 
advocated in the AHDB guidance RB209, (2022). We interpret ζt and ξt 
as the shadow prices of fertility loss in terms of nitrogen and carbon, 
respectively. A similar reasoning stands for νt, υt, but is less crucial in this 
paper. They represent the marginal products of fertility when the soil is 
depleted in nitrogen or carbon. 

Finally, we remark that it is a specificity of the optimal control theory 
to show that optimal trajectories are actually not only determined by the 
initial conditions but also by a set of terminal conditions, whose 
importance is clearly demonstrated in the subsequent sections. This 
leads to a so-called two-point boundary value problem, bounding the 
system state between two instants in time. For discrete-time problems, 
however, it is more effective to turn this around by reformulating this 
approach in terms of nonlinear programming. It makes the numerical 
solution of the above equations also more amenable in practice. 

2.6. Computation of an optimal trajectory 

The optimal trajectory leading to optimal inputs maximising profit 
solves the nonlinear dynamical system formed by the recurrence Eqs. 
(16) and (20) associated with the boundary conditions (17) and (21), 
subjected to the additional conditions (22)–(24). 

This nonlinear system has the steady-state (N*, C*, U*, V*, λ*, μ*), 
which is obtained from solving 

(1 − k)c = pYN(N∗,C∗), (1 − κ)q = pYC(N∗,C∗), λ∗ = c, μ∗ = q.
(25)  

We call this the dynamic BER equilibrium. The associated values of the 
inputs (U*, V*) follow from the solution of the linear system (16) with 
(Nt, Ct) = (N*, C*) for all t, given by 

U∗ = (1 − k)N∗, V∗ = (1 − κ)C∗. (26)  

Because we allow fertility to build up with time, these two equations 
show that the nitrogen and carbon inputs each year can be reduced, 
compared to what would be expected from the static BER analysis. Note 
that the steady-state (N*, C*, U*, V*) represents the optimal control so-
lution of our problem for the infinite horizon case T → ∞ . 

We emphasise that these formulae are reminiscent of equations (14) 
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from the two-dimensional static analysis in Sec. 2.4.2 but clearly 
modified by the decay constants. This is not a surprise as the dynamics of 
nonlinear dynamical systems tend to be controlled by attractors such as 
equilibria. In the numerical results presented later, we will see that this 
steady-state is very important as it governs the levels of soil fertility and 
inputs along any optimal trajectory until a critical season at t = t* years 
from which the organic amendments must be reduced and then stopped 
if maximum profit is to be obtained. 

Note finally that this steady-state is characterised by Lagrange mul-
tipliers whose values are set by the cost of inputs, i.e. (λ*, μ*) = (c, q) 
(Sec. 2.5.2). Here we see a clear example of the interpretation given to 
the Lagrange multipliers as shadow prices. Once the steady-state is 
reached, they must equal the cost of the inputs, as is the case with the 
classical BER concept for nitrogen. 

For the full computation of an optimal trajectory, as we hinted in the 
previous section, we found that it is numerically much easier to refor-
mulate our discrete-time optimisation problem as the search of a con-
strained minimum of a function of several variables as is done in 
nonlinear programming (Mangasarian, 1969; Sage and White, 1977). 
We then need simply to minimise − J defined as a scalar function of an 
unknown vector, say z, whose components are made of the state and 
control variables of every season. Specifically, we defined z =

[N0,C0,…,Nt ,Ct ,…,NT ,CT,U1,V1,…,Ut ,Vt ,…,UT,VT]
T, where the 

symbol T denotes the transpose operation.fn1 Numerical solution can be 
obtained from using a constrained optimisation routine such as the 
MATLAB FMINCON routine, for which the objective function is given by 
the T-year profit function (18) subject to the (linear) constraints repre-
sented by the nitrogen and carbon dynamics (16) with initial conditions 
(17), imposing the inequality constraints z≥ 0. Analytically, the neces-
sary conditions for optimality (Sec. 2.5.2) are derived within this 
framework from Kuhn-Tucker’s conditions (Mangasarian, 1969; Sage 
and White, 1977. 

3. Results 

3.1. Response curve parameter identification 

In this article, we focus on FYM amendments, leaving the study of the 
other organic treatments (straw, leys) to future work. The results of 
fitting the inverse polynomial response curve described in Sec. 2.3.1 are 
presented in Table 1. Regarding the carbon proxy dynamics, we found 

κ = 0.748, y86 = 2.14. (27) 

The value of κ gives t1∕2 = 2.39 years. A word of caution though. 
Given that the data are variable to within one tonne or so, some values of 
the mean extra yield are likely to be negative if on average the expected 
value of the extra yield becomes small but it would lead to error in the 
estimates of κ and y86 if we excluded these data. For the Woburn dataset 
of interest, over the 261 extra yield estimates Δ (Eq. (4)), 49 of these 
were negative and occurred at all nitrogen treatments. Fig. 2(b) shows 
however that the mean extra yield is well-behaved (i.e. ≥0) despite saw- 
tooth fluctuations, whose understanding is left for future work. A less 
noisy dataset, with access to four replicates of data for the whole period 

of interest in particular, would increase the precision of our 
methodology. 

Despite this, we think that our identification method has the great 
advantage to allow the determination of a single set of parameters for 
the response curve, valid for a wide range of nitrogen and organic matter 
application rates. Besides, the power of using a proxy variable is to 
recognise that the processes driving the yield-enhancing property of 
organic amendments remain unclear and takes advantage of the 
abstraction that mathematics can bring to this knowledge gap. Never-
theless, our method and formalism pave the way for integrating carbon 
dynamics or any other driver into the response of crops to inputs. 

As explained in Sec. 2.3.2, the proxy variable yt is assumed to be a 
dimensionless metric of soil carbon relying on the reference value of 
yield-enhancing carbon Cs, which we identify using first stage of the 
Woburn experiment of interest. For simplicity, we make the drastic 
assumption that the carbon inputs from FYM amendments were constant 
over the 1981–1986 period. That is vt ≡ v, Vt ≡ V for 1981 ≤ t ≤ 1986. It 
follows that the analytical solution of (5) reads 

yt =
1 − κt− 1980

1 − κ
v, 1981 ≤ t ≤ 1986. (28) 

In 1986, we then have y86 = v(1 − κ6)∕(1 − κ), which yields an es-
timate of v = 0.654 from the values of κ and y86 identified above 
(Table 1). The yield-enhancing carbon of reference Cs = V∕v is calcu-
lated from the organic amendments carbon content V, which can be 
measured from OM chemical analysis. In the experiment, the rate of 
fresh matter application of FYM was indeed constant equal to 50 t/ha 
every year in stage 1. The mean measured percentage of dry matter (% 
DM) was 24.3%, which then corresponds to an average rate of 12.2 t/ha 
of applied dry matter each year. The averaged value of carbon input 
from FYM amendments amounts for V = 3.89 t C/ha, assuming a typical 
value of 32% of dry matter for the carbon content (Eklind and Kirch-
mann, 2000; Powlson et al., 2012). Hence, we have Cs = 5.95 t C/ha, 
which yields C86 = 12.7 t C/ha. 

The parameter values that we find using this two-step identification 
procedure are all collected in Table 1. Fig. 2 shows that our procedure 
predicts well, on average, the reduction in yield associated with the 
yield-enhancing carbon decay. The statistical details of the fitting per-
formance are reported in B and can be compared with the ‘lexp’ response 
curve. Both the reciprocal and ‘lexp’ response curves give good fitting 
results. The study (not presented here) of the residuals showed that they 
are normally distributed with an acceptable homogeneity of variance. 
However, the reciprocal model minimises the value of Akaike’s Infor-
mation Criterion (AIC) (Burnham and Anderson, 2002) and hence is 
selected (see B) for the application of the optimal control theory 
developed in Sec. 2.5. 

3.2. Optimal trajectories and input rates 

Unless otherwise stated, the numerical results presented in Sec. 3.2 
are performed with the reciprocal response curve (3),(8) whose pa-
rameters (Table 1) are identified with the methodology described in Sec. 
2.3.2 and 3.1. We recall that the rate of loss of yield enhancement due to 
organic amendments is κ = 0.748 in this instance. Based on previous 
observations (Addiscott and Whitmore, 1987; Bradbury et al., 1993), we 
set the decay rate of nitrogen arbitrarily to k = 0.15 (t1∕2 = 0.37 yr), 
mimicking the observed rapid loss of mobile nitrogen. 

According to Beattie (2020), we use typical orders of magnitude for 

Table 1 
Parameter values of the inverse polynomial response curve (3) using the Woburn organic manuring long term experiment. See Sec. 2.3.2 for the identification method 
and Fig. 2.  

Parameters A B Ns α κ y86 v Cs C86 

Units t/ha t/kg N kg N/ha kg N/ha — — — t C/ha t C/ha 
Values 12.2 0.0705 29.3 1050 0.748 2.14 0.654 5.95 12.7  

1 The 4T + 2 components of z are thus related to the state and control vari-
ables by Nt ≡ z2t+1, Ct ≡ z2t+2, Ut ≡ z2(T+1)+2t− 1, and Vt ≡ z2(T+1)+2t for t ∈ [1, 
T]. 
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the crop price, the cost of nitrogen and organic matter set to p = 100 
£ /t, c = 1 £ /kg N, q = 80 £ /t C. Note that the profit functions (13), (18) 
can be normalised with respect to the crop price p. In turn all our nu-
merical calculations remain valid for costs of inputs such that 
c∕p = 0.01 t/kg N and q∕p = 0.8 t/t C. 

3.2.1. Static analysis 
Fig. 3 illustrates the calculations and concepts presented in Sec. 2.4. 

In the one-dimensional case (Sec. 2.4.1), solving Eq. (10) for the 

parameter values listed Table 1 yields the 1D BER nitrogen rate N+ =

135 kg N/ha for the case of no organic amendment (y = 0).fn2 The 
corresponding maximum of profit is J = 366 £ /ha. In Fig. 3(a), the locus 
of the one-dimensional BER optimum is highlighted with a (red) circle 
symbol. We point out that this N+ rate corresponds by definition to the 

Fig. 3. (a) One-dimensional static profit analysis calculated for the OM free yield response Y(N, 0). Left hand axis and red line plot the increase in profit expected 
with applied N (lower horizontal axis). Right hand axis and blue line display the change in Lagrange multiplier with normalised cost:price ratio (top horizontal axis) 
and (b) two-dimensional static profit maximisation. Axes plot rate of carbon applied (v, vertical axis) against amount of N applied (u, horizontal axis). Lines give the 
rates of C and N applied that are consistent with optimum rate of application of C (black) or N (blue), see Eq. (15). This divides the plotted area into 4 sections. It is 
only where both Lagrange multipliers (γ, η) > 0 that it is profitable to increase applications (region Ω). 

Fig. 4. (a) Nitrogen and (b) carbon optimal trajectory for C0 = 0 t C/ha. The time schedule for nitrogen and carbon amendments divides into three successive 
portions. First, the inputs in season 1 (N1, C1) = (N*, C*) compensate for the initial depleted fertility so that the second phase corresponds to the dynamic BER 
equilibrium. The third and final phase is associated with the reduction and arrest of organic amendments over three years. This discontinuation in carbon inputs is 
associated with a slight decrease in yield; however, profit is still maximised over T years of cultivation. Parameter values: T = 10 yr, q = 80 £ /t C, c = 1 £ /kg N, 
p = 100 £ /t, k = 0.15, κ = 0.748, N0 = C0 = 0. 

2 This value is closed to a BER rate of 140 kg N/ha recommended in the 
AHDB guidance RB209 for light sandy soils subject to moderate annual rainfall. 

T. Putelat and A.P. Whitmore                                                                                                                                                                                                                



European Journal of Agronomy 143 (2023) 126713

9

rate at which the 1D nitrogen shadow price γ = 0. A decreasing shadow 
price γ (blue dashed line) for the domain of profitability N < N+ is of 
course associated with increasing profit (red solid line). 

These features readily translate to the two-dimensional case (Sec. 
2.4.2, Fig. 3(b)). The landscape of profit is still concave but now looks 
like a hill with a relatively flat summit located at the 2D BER rates N× =

131 kN/ha and C× = 1.02 tC/ha; J× := J(N×, C×) = 369 £ /ha (red 
circle). Note that for an N application rate 20% below this optimum, 
profit is only reduced by about 1.3%. In Fig. 3(b), we use an iso-contour 
plot to show the variation in profit with changing nitrogen and carbon 
inputs. Such a landscape is structured around the two curves defined 
implicitly by expressions (17). The first curve (blue) is designated as the 
N-line where γ(N, C) = 0; the second curve (black) as the C-line where 
η(N, C) = 0. They intersect at the two-dimensional BER point (red cir-
cle). As in the one-dimensional case, only a limited domain of the (N, C)- 
input plane is profitable in the sense that an increase in the input rates 

can generate more profit. This is the domain Ω in Fig. 3(b) in which both 
the shadow prices γ and η are non-negative. Outside this region, 
applying fertiliser and organic matter becomes too costly with respect to 
the ensuing yield increase. Note that, if one were limited in the amount 
of organic amendment, the optimum rates would be given by the solid 
blue line (Fig. 3(b)). If one were limited in terms of nitrogen, the solid 
black line would give the optimum rates to apply. 

We remark that such a profit landscape is only possible provided that 
the cost of organic matter q is low enough. That is why, in Fig. 3(b), 
computations are done with q = 37 £ /t C, which is the cost of OM 
application that corresponds to a trailerful (12 t/ha of fresh matter) of 
FYM to reach the carbon BER rate C×. When the cost of OM is too 
expensive and above a critical value of qc = 43.2 £ /t C, there is no 
carbon BER rate (i.e. C× < 0).fn3 In other words, the BER point (red 
circle) crosses the carbon input axis (v = 0) in Fig. 3, which means that 
organic amendments have become uneconomical in this static view of 
the problem. 

Finally, note that this analysis combining nitrogen and organic 

matter clearly suggests that nitrogen rates can be reduced thanks to 
organic amendments (blue line Fig. 3(b)). In the static analysis, this shift 
is modest. The gains in profit are also not very significant. We will see in 
Sec. 3.2.2 that these conclusions are misleading because the dynamics of 
nitrogen and carbon has been disregarded. 

3.2.2. Dynamic analysis 

3.2.2.1. Description of typical optimal trajectories. We present two typical 
optimal trajectories computed with the MATLAB routine FMINCON to 
maximise total profit over a 10-year period, but which differ from their 
initial yield-enhancing carbon content C0. In both cases, we take the 

Fig. 5. Typical optimal organic matter amendments schedule. Over a cultiva-
tion period of T years, organic matter amendments follow a three-step time-
table. After an initial input in year 1 whose level depends on the concentration 
of active carbon C0 prior to the start of the cultivation period, organic matter is 
applied at a constant dynamic BER rate V* (i.e. see dynamic equilibrium Eqs. 
(25)–(26)) for t* − 1 consecutive years. Applications are then reduced and 
stopped over a final phase of T − t* years. 

Fig. 6. (a) Nitrogen and (b) carbon optimal trajectory for C0 = 10 t C/ha. In contrast with Fig. 4, the initial high level of yield enhancing carbon C0 allows a gradual 
input of carbon over the first three years. The rest of the optimal trajectory is like Fig. 4. Parameter values: T = 10 yr, q = 80 £ /t C, c = 1 £ /kg N, p = 100 £ /t, 
k = 0.15, κ = 0.748. 

3 The critical cost is given by qc = pYC(No
×,0) where No

× solves YN(No
×, 0) =

c∕p. 
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initial nitrogen N0 = 0 so as to consider the extreme but reasonably 
realistic case of a degraded soil depleted in nutrients, since even fertile 
soils may lose much N during a winter and before applications of fer-
tilizer in spring. 

We start with the worst-case scenario where N0 = C0 = 0, Fig. 4 
Because of these initial conditions, the trajectory starts at 

(N1,C1,U1,V1) = (N∗,C∗,N∗,C∗). (29)  

Interestingly, we see that the initial depletion can be compensated by the 
second season if we provide the soil with inputs equal to the dynamic 
equilibrium (N*, C*) defined by Eq. (25). From year two already, the 
nitrogen inputs and organic amendments can then drop to their equi-
librium values (U*, V*) given by Eq. (26). In turn the soil nitrogen and 
carbon remain at their dynamic BER values until reaching year t* = 5. 
Fig. 5 presents a generic and schematic schedule for organic matter 

Fig. 7. (a) Effect of the cultivation period T for an OM price q = 80 £ /tC on the OM free period T − t*. (b) Effect of the OM price for T = 10 years on the OM 
discontinuation time t*. Note the stepwise decreasing nature of the relation t*(q): the more expensive is the OM, the less is applied. Parameter values: c = 1 £ /kg N, 
p = 100 £ /t, k = 0.15, κ = 0.748, N0 = C0 = 0. 

Fig. 8. (Left, a,c) Effect of the cultivation period T for an OM price q = 80 £ /t C. (Right, b, d) Effect of the OM price for T = 10 years. Note the diminishing returns in 
profit as cultivation period increases. The effect of q is the reverse because the more expensive is the OM, the less is applied, which in turn reduces profit. Parameter 
values: c = 1 £ /kg N, p = 100 £ /t, k = 0.15, κ = 0.748, N0 = C0 = 0. 
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applications under the optimal control theory developed in Sec. 2.5. 
For the case with a higher level of initial yield enhancing carbon C0 

= 10 t C/ha (Fig. 6), the nitrogen behaves in a similar way because the 
initial level of nitrogen is the same in both cases. This results from our 
formulation in which the recurrence equations for the dynamics of ni-
trogen and carbon are uncoupled. However, the behaviour for carbon is 
very different initially. Because C0 is large (C0 > C*), the optimal tra-
jectory requires a gradual input of carbon over 3 years, starting from 
none. From the third year, Ut = U*. This initial behaviour is a direct 
consequence of the slow decay of the active carbon, reminiscent of the 
Woburn data we have described in Sec. 2.3.2, 3.1. 

After a short period, dependent on the initial conditions as we just 
saw, the optimal trajectory tends to the equilibrium point of our system, 
Eqs. (25)–(26). This dynamic equilibrium is characterised by the soil 
nitrogen and carbon levels and associated dynamic BER rates N* =

122 kg N/ha, C* = 6.01 t C/ha, U* = 104 kg N/ha, V* = 1.52 t C/ha for 
these two examples. Over the 10-year period, the mean nitrogen inputs 
and organic amendments are U = 110 kg N/ha and V = 1.28 t C/ha 
(resp. U = 109 kg N/ha, V = 0.568 t C/ha) in the first case C0 = 0 t C/ha 
(resp. second case C0 = 10 t C/ha). Note that the nitrogen input values 
contrast strongly with those calculated under the static two-dimensional 
analysis (N× = 131 kg N/ha, C× = 1.02 t C/ha), even for a high cost of 
organic matter. We see that adding organic matter following optimal 
trajectories can then lead to both a significant reduction in nitrogen 
inputs U of about 19% and an increase in (average annual) profit of 
about 15% (or more if C0 > 0) compared to the BER recommendation 
used in nitrogen fertiliser guidance (N+ = 135 kg N/ha) (Fig. 8(a)). We 
expect these gains to increase with the reduction in the cost of appli-
cation of organic amendments. This conclusion differs sharply from that 
in the static analysis case (Sec. 3.2.1.). 

These two examples clearly show that the dynamics of the optimal 
trajectory may differ initially depending on the state of the soil prior to 
cultivation. But both tend to the dynamic equilibrium of the system very 
quickly. Hence the memory of the soil initial state is rapidly forgotten 
along these optimal trajectories once the dynamic equilibrium is 
reached (in our simple description). As a result, the optimal trajectories 
evolve identically in time during the final years: here for the final T − t* 
= 5 years. From the sixth season, the nitrogen inputs increase to partly 
compensate, whilst the organic amendments decrease, reaching zero for 
the final four years. 

We can understand the organic matter application schedule from the 
dynamics of the Lagrange multipliers μt and ξt determined by Eqs. (20) 
and (23), which we prefer to write here as 

μt+1 − μt = (1 − κ)μt+1 − pYC(Nt,Ct), − ξt = μt − q. (30)  

The left-hand side equation represents the rate of depreciation of field 
fertility associated with its degradation. The right-hand side equation 
corresponds to the loss in marginal profit for the system not to operate 
along the dynamic BER, i.e., deviate from equilibrium. The fact that 
there exists a discontinuation time t* of OM amendments along an 
optimal trajectory is caused by the boundary condition (21), μT 
= pYC(NT, CT). Numerically, we find that μT < q, which implies that OM 
inputs must be discontinued (Sec. 2.5.2). During this second phase (t* 
< t ≤ T), the marginal product of carbon decays (μt+1 < μt). Interpreting 
(1 − κ)μt+1 as the effective marginal cost of the loss in yield-enhancing 
carbon, we see that the optimal trajectory keeps this cost less than the 
actual marginal product of fertility pYC(Nt, Ct) from one season to the 
next. 

In conclusion, when an optimal trajectory is followed, the equation 
above must be satisfied at all times, as well at the end boundary con-
ditions Eq. (21). This means that the level of organic matter amendment 
must be adjusted to avoid wastage. One can see the dynamics of an 
optimal trajectory as a sequence of quasi-static two-dimensional BER as 
we have described in Sec. 2.4.2. However, the numerical values of inputs 
must be adapted to their equilibrium values governed by Eq. (25) in Sec. 

2.6 and the decay constants involved in the recurrence equations (16). 
Note finally that, when organic matter amendments stop, a drop in yield 
is observed. We then attribute the increase in nitrogen inputs over the 5 
final years as a way to compensate this yield loss, which would be more 
pronounced otherwise. 

3.2.2.2. Effects of the cultivation period and organic matter price (T, q). 
Numerical simulations for different T and q showed that the time to 
discontinue organic amendments is T − t* = 5 years before the end of the 
cultivation period, taking into account the transition year t* + 1 of 
reduced organic amendments before ceasing application. This is a gen-
eral feature for a range of organic matter application prices, Fig. 7. For 
the parameter values in Table 1, we found 

63 ≤ q ≤ 92 [£∕tC]. (31) 

Fig. 7 shows that the relation of the discontinuation time t* with q is a 
decreasing step function: e.g. when organic amendments are more 
expensive q > 92 £ /tC applications must be stopped one year sooner. 
Conversely if amendments are cheaper (q < 63 £/t C) they can be 
applied one more year. Given the current range of price of organic 
matter applications, we can take the stop time for organic applications as 
the final six years as a rather general rule for the κ value identified from 
the Woburn dataset, that is for soils with similar properties and envi-
ronmental conditions. Note that, short cultivation horizons such that 
T ≤ 5, i.e. implying t* ≡ 0, organic amendments are localised in the first 
season only. Thus, T − t* is the characteristic timescale over which 
economic benefits of organic amendment can be expected for a given 
cost of application q and a specific (yield-enhancing) carbon turnover 
rate, κ. Essentially where OM is relatively inexpensive the economic 
benefits accrue over a longer time frame than can be collected because 
the horizon is so short. 

Our numerical calculations also show that the rate of organic matter 
application in the sixth year before last must be reduced, i.e. 0 ≤ VT− t∗− 1. 
This result, combined with the carbon recurrence equation (14.2) with 
VT− t∗ = ⋯ = VT− 1 = VT = 0, implies that the final season yield- 
enhancing carbon level CT cannot exceed a given proportion of its dy-
namic BER equilibrium counterpart C* set by the decay rate κ, as defined 
in Sec. 2.5, Eqs. (25)− (26). Calculation shows that we have 

κn ≤ CT∕C∗ ≤ κn− 1, (32)  

where n − 1 is the number of seasons with no organic matter applica-
tion, n = T − t*. It should not be a surprise as this arises from the geo-
metric (exponential) decay ensured by (20)b. 

Numerically, for the decay rates of the yield-enhancing carbon that 
we expect, κ ~ 0.75, the terminal fertility due to organic matter 
amendments is then bounded according to 

24% ≤ CT∕C∗ ≤ 32%. (33)  

This is a rather stark condition, which states that fertility, in Woburn, 
cannot be maintained beyond a third of what could be accumulated (C*) 
from continuous amendments. This loss in fertility illustrates the 
important role of the internal dynamics of carbon and the economics of 
this problem, both governing the dynamic equilibrium of carbon C* 
determined in Sec. 2.5 by Eq. (25). 

Fig. 8 shows the percentage increase in the (10-year) average profit J 
relative to the (zero carbon) BER profit J+, denoted ΔJ = 100(J∕J+ −

1), and the average rates of nitrogen and carbon inputs (U,V) as T or q 
are varied. We note diminishing returns in profit as the cultivation ho-
rizon T increases. For cultivation horizons from 5 to 15 years, say, 
organic amendments can generate about 5–15% increase in profit 
compared the classical (1D) BER recommendation. Similar rapid varia-
tions for horizons T ≤ 15 years can be seen in terms of inputs (Fig. 8(c)). 
This suggests that a modest amount of amendments about 1 t C/ha can 
result in significant savings ( > 10%) in terms of artificial fertiliser with 
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significant economic benefits. The effect of q is the reverse because the 
more expensive is the OM, the less is applied, which in turn reduces 
profit and requires more inorganic fertiliser. The limit of large q corre-
sponds to the 1D BER recommendation. When organic matter is cheap, 
increase in profit will be limited by practical limitations of applying 
large amounts of OM. 

4. Discussion 

Our methodology describes a means to put the multi-year response of 
crops to more than one input on a sound rational basis. The extension of 
the well-known break-even ratio to the economic response of crops to 
applications of organic matter during several years as well as to appli-
cations of N is a valuable addition to the farmer’s and agronomist’s 
recipe book. A second input such as organic matter as well as an 
extended time-frame bring still more factors into play such as the year- 
to-year change in the price of the OM. For these reasons it is difficult to 
present a simple table of BER values that suggest how more or less N a 
farmer should apply in relation to the price of wheat or fertiliser as it is 
done in fertiliser guidance such as the AHDB guide. The cost of OM and 
the time-frame also need to be taken into account. 

In practice, progress may be made if we assume that there exists a 
kind of equilibrium that can be achieved dynamically by adding OM to 
soils leading to a soil carbon build-up. In the framework developed here, 
this equilibrium of yield-enhancing carbon is determined by Eqs. (25)−
(26). To reach this equilibrium state, our analysis suggests applying the 
equilibrium amounts (U*, V*) of fertiliser and OM amendments. As 
shown in A where we study the consequences of bounded input rates 
(Figs. A.1, A.2, A.4), the profit maximising optimum trajectory (Sec. 
3.2.2, Fig. 4) can be approximated by applying the amount U* of fer-
tiliser every year for the whole cultivation period T, whilst applying 
amendments at the V* level for t* years. This is the rule-of-thumb 
strategy that we propose (Fig. A.4). Disregarding year to year varia-
tion in weather, the ‘exact’ amounts (U*, V*) and timetable of applica-
tion of amendment depend on the decay constants (k, κ), which are soil 
(and crop) properties but can be determined in principle using the 
methodology described in Sec. 2.3. It may be possible that such a steady- 
state is related to the equilibrium level of the amount of organic matter 
that can be built up in soil. But this requires further research. 

The analysis and procedure presented in this article is intended to 
build on the existing guidance that is based on economic optima. 
However, at the time of writing the economics of organic amendment in 
terms of consistent pricing is unclear. Prices can vary from zero to 
considerably more than we suggest. Our prices factor in transport and 
spreading costs which are considerable because most amendments 
contain substantial amounts of water that bulks up the product and 
which also costs money to transport. Acquisition prices and spreading 
costs are not normally included in the nitrogen costs. Fertiliser is a dry 
product so that delivery can be factored into a price uniformly around 
the country. In general application costs are not included in current 
fertilizer guidance. 

There can be little doubt that measuring the increase in yield that 
comes about as a result of amending soil with organic matter is difficult. 
Hijbeek et al. (2017) went as far as to conclude that there was no or little 
increase in yield on amending soil over and above what could be 
accounted for by the extra minerals the amendments contained. That is 
not the case in the WOM experiment. Here, nutrients including N were 
carefully accounted for and in earlier work (Mattingly, 1974) used 
explicitly to adjust the response curve N axis and so eliminate any effect 
of added mineral N from the amendment on yield response. There is 
little doubt that the yields are variable, however, and even under the 
carefully controlled conditions in the WOM experiment this variability 
makes it difficult to fit models and so extract important parameters of 
interest such as the rate of build-up and decline of the yield-enhancing 
effect of added OM. The data from the second phase of the WOM 
experiment (Fig. 2(b)) have been useful in this respect. As more data is 

collected this should become possible to refine the methodology pro-
posed here. We do not know why Hijbeek et al. (2017) found little 
response of crops to OM. It may that their otherwise extensive survey of 
crops did not include crops from the UK. The UK’s maritime position and 
growing season that continues through the winter or that starts early in 
spring may in some ways account for the different observations. 

The methodology developed here allows a rationale for pricing field 
fertility from the concept of the Lagrange multipliers interpreted as the 
shadow prices of nitrogen and carbon, namely λt and μt. In statics, as 
hinted in Sec. 2.4, the Lagrange multipliers represent the price of a unit 
increment in fertility, quantified in terms of yield-enhancing power of 
soil nitrogen and carbon, that corresponds to an increment in profit. At 
the BER, the cost of a unit increase in fertility just balances the marginal 
(revenue) product from the resulting increase in yield as is well-known. 
In dynamics (Sec. 2.5), we found that optimal trajectories are governed 
by a dynamical equilibrium resulting from the balance between inputs 
and annual losses assumed from the recurrence equations (16). The 
system adapts itself automatically to the internal dynamics of fertility 
such that the shadow prices marginal products of nitrogen and carbon, 
namely λt and μt, are equal to their respective marginal costs (c, q) as 
long as fertiliser inputs and organic amendments are supplemented at 
the rates (U*, V*). However, amendments must be stopped towards the 
end of the cultivation horizon so that the OM shadow price of carbon μT 
is equal to the marginal product for carbon allowed by the state of 
fertility in the final year T (i.e. the boundary conditions in Eq. (21)). We 
propose to define the value of the residual of field fertility from the 
terminal shadow price of carbon μT, which our methodology computes. 
Alternatively, the cost of fertility could be evaluated from ξT = q − μT 
(Sec. 3.2.2, (30)). All in all, along an optimal trajectory, the shadow 
prices of fertility (N or C) never exceed the marginal costs of fertiliser 
and organic amendments, the schedule and level of amendments being 
optimised so that fertility remains at its optimum value to maximise the 
overall profit. This contrasts with the constrained case where fertiliser 
and organic amendment applications are limited as explained in A. 

5. Conclusion 

Using the idea of a nutrient response curve seen as a production 
function, we have demonstrated how to compute time-dependent 
optimal strategies for organic matter applications that take account of 
how yields depend on the evolution of organic amendments and how 
long the associated benefits persist. It seems clear that, apart from the 
first and final six years (for Woburn) of a cultivation period, it makes 
sense to apply a constant rate of organic amendment to soil determined 
by the dynamic equilibrium of the yield-enhancing carbon provided by 
the amended soil organic matter. This rate will depend on the nature of 
the material, its longevity in soil and the economics of its acquisition and 
spreading. 

We have showed that the fertility levels and inputs scheduled along 
such optimal trajectories are strongly governed by the rate of loss, 1 − κ, 
of the yield-enhancing carbon (Figs. 2, 4). This is no surprise, since this is 
a key assumption underlying our approach. However, despite the 
simplicity of our ‘soil fertility dynamical model’ (uncoupled linear 
recurrence Eq. (16)), our approach captures the essence and reveals the 
complexity of the dynamics of fertility. It clearly demonstrates that the 
change in time of fertility cannot be overlooked in developing optimal 
guidance in the application of fertilisers that persist in soil and organic 
amendments to crops. 

Key to our analysis is the assumption that there exists an equilibrium 
that is dynamically achieved by adding organic matter to soils leading to 
a soil yield-enhancing carbon build-up. The optimal control methodol-
ogy takes advantage of this accumulation of fertility and its relatively 
slow decay, compared to the dynamics of applied nitrogen. Combined 
with our extension of the concept of nutrient response curve to organic 
matter, we can describe organic amendments as a long-term investment 
in soil fertility whose associated shadow price allows a rationale for its 
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economic valuation. With this respect, the method also lends itself to the 
valuation of land in relation to any residual fertility remaining should a 
farmer needs to sell land or give up a tenancy part way through a tra-
jectory such as illustrated in Figs. 4 and 5. Calls have been made for land 
— especially rental land — to carry a kind of passport. Our optimal 
control methodology suggests a way of quantifying any residual value in 
land that result from management practices such as the application of 
FYM during tenancy. 
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Appendix A. Effect of bounded input rates 

Formulation 

The optimal trajectory that we described in the main body of the article (Fig. 4) is specific to the case where there is no additional constraint on the 
control variables Ut, Vt, apart from being non-negative. By contrast, interesting cases of practical importance arise when fertiliser and organic 
amendments applications are limited, for instance because of environmental regulations (NVZ rules) or practical reasons. Mathematically, this means 
that the domain of admissible controls is bounded. A simple example of such domains is the rectangular domain 

Ω(U,V) =
{(

Ut,Vt) ∈ R2
+∣Ut ≤ U,Vt ≤ V

}
, (A.1)  

where U and V represent the maximum input rates of nitrogen and carbon which are permitted to be applied each season. (Note that these maximum 
rates could be made time-dependent for more generality if necessary.) The domain Ω is often referred to as the control set and the conditions 0 ≤Ut≤U 
and 0 ≤Vt≤V as inequality constraints. A boundary of the control set is said to be active whenever a control variable is equal to one of the endpoints of 
the intervals defining Ω. Typical problems to solve are to find critical times at which an optimal trajectory hits or leaves the boundaries of the control 

Fig. A.1. Low carbon input: comparison of an input-limited optimal trajectory (red, □) with the unconstrained optimal trajectory (blue, ∘) (as in Fig. 4) for inputs 
limited to U = 80 kg N/ha, V = 1.0 t C/ha. Note that the input-limited trajectory has inputs locked on the limits of the control set Ω = [0,80] × [0,1]. Parameter 
values: T = 10 yr, q = 80 £ /t C, c = 1 £ /kg N, p = 100 £ /t, k = 0.15, κ = 0.748, N0 = C0 = 0. 
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set. In our case, such times correspond to switches between applying or withholding OM. 
Mathematically, the two inequality constraints must be associated with two Lagrange multipliers and must be included into the Lagrangian 

function (19) defined in Sec. 2.5.2 by adding the term 
∑T

t=1[γt(U − Ut)+ ηt(V − Vt)]. In turn, this modification of the Lagrangian function implies that 
expressions in (23) become 

γt = λt − c + ζt, ηt = μt − q + ξt, (A.2)  

while the slackness conditions 

γt ≥ 0, γt(U − Ut) = 0, ηt ≥ 0, ηt(V − Vt) = 0, (A.3) 

Fig. A.2. Moderate carbon input: comparison of an input-limited optimal trajectory (red, □) with the unconstrained optimal trajectory (blue, ∘) (as in Fig. 4) for 
inputs limited to U = 80 kg N/ha, V = 3 t C/ha. Note that the input-limited trajectory has inputs not locked on the limits of the control set Ω = [0,80] × [0,3]. The 
level of amendments allows for reaching the equilibrium. The input-limited trajectory tends to the unconstrained dynamics. Parameter values: T = 10 yr, q = 80 £ /t 
C, c = 1 £ /kg N, p = 100 £ /t, k = 0.15, κ = 0.748, N0 = C0 = 0. 

Fig. A.3. Normalised (relative) profit (ΔJ) iso-contours for input-limited optimal trajectories. The x and y axes express the maximum (constrained) inputs for N and C 
respectively. The iso-lines with percentages highlight the distance to achieving maximum profit, which is given by the unconstrained optimal trajectory. The blue 
symbol * highlights the location of the equilibrium input rates (U*, V*). The red symbol □ corresponds to the location of the first year input rates in the unconstrained 
optimal trajectory. If the point (N*, C*) belongs to the control set Ω defined in (A.1), the input-limited trajectory corresponds to the unconstrained optimal trajectory 
discussed in Sec. 3.2.2. The dashed line reactangular domain Ω* represents the control set of the input-limited ‘rule-of-thumb’ optimal trajectory. Parameter values: 
T = 10 yr, q = 80 £ /t C, c = 1 £ /kg N, p = 100 £ /t, k = 0.15, κ = 0.748, N0 = C0 = 0. 
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must be added to the complementary slackness conditions (24). From (24), we recall that the multipliers ζt, ξt are zero if the fertiliser and amendments 
are applied (Ut ∕= 0, Vt ∕= 0). 
Conditions for application 

It follows from (A.3) that expressions (A.2) reduce to 

γt = λt − c > 0, ηt = μt − q > 0, (A.4)  

whenever the boundaries of the control set are active with Ut = U, Vt = V. That is fertiliser and organic amendments are applied at their maximum 
permitted rates. Inequalities (A.4) imply that the nitrogen and carbon shadow prices λt and μt become larger than the nitrogen and carbon prices c and 
q. This contrasts strongly with the unbounded optimal trajectory shown in Figs. 4 and 6 for which the shadow prices are at their dynamic BER values λt 
≡ c, μt ≡ q for seasons t ≤ t*. The constrained case (A.4) is reminiscent of the two-dimensional static case (15) where inputs belong to the profitability 
domain Ω and γ, η > 0 (Fig. 3(b)). In this case, the profit could be increased further if one were to increase the rates of inputs (Secs. 2.4.2, 3.2.1). In the 
input-limited dynamic case, we expect that a constrained optimal trajectory (while still maximising profit under the constraint of limited inputs) will 
not lead to the absolute maximum of profit pertaining to the system, which would be the profit associated with the unconstrained optimal trajectory 
described in Sec. 3.2.2. The Lagrange multipliers γt, ηt quantify dynamically how far an input-limited optimal trajectory is from the unconstrained 
optimal trajectory we described at length in this article. The multipliers γ, η play the same role in statics, once inputs are limited. The same reasoning 
applies for nitrogen (see below). 

Discontinuation of amendments 

When organic amendments are stopped Vt = 0, we have ξt > 0 and ηt = 0 necessarily from (24) and (A.3). In turn the carbon shadow price is μt = q 
− ξt < q, as for the unconstrained dynamics (23). As μt is below its dynamic BER value, there is no margin left to organic matter applications, which 
have become too expensive. This shows as a decreasing profit for the subsequent seasons (Figs. A.1, Figs. A.2). 

Examples 

Figs. A.1 and A.2 show input-limited optimal trajectories both with U = 80 kg N/ha but with different maximum organic matter input rates V = 1 
and V = 3 t C/ha (□ lines). The unconstrained optimal trajectory (∘ lines) is shown for comparison. Here nitrogen must still be applied for the whole 
period of ten years, but its input rate is locked at its maximum allowed value U. When V≤V* (Fig. A.1), organic matter is also applied at its constant 
maximum rate V until the amendments discontinuation-time is reached. Note that, in this instance, it is two more years than for the unconstrained case 
(i.e. t* = 7 years instead of 5). By contrast, because amendments are bounded to a value less than the dynamic equilibrium V*, the soil carbon cannot be 
topped-up to its dynamic equilibrium value from year one with a large initial amendment. Instead, the yield enhancing soil carbon increases gradually 
towards a new dynamic equilibrium C+ = V∕(1 − κ) < C*. As the soil carbon rises, yield increases and the organic matter shadow price μt decreases as a 
result. The discontinuation of organic matter amendments is then associated with its shadow price μt crossing the dynamic BER value q. It has become 
too expensive to add carbon compared to the revenue generated from the extra yield, as would be the case for the unconstrained trajectory. The OM 
boundary of the control set becomes inactive, and amendments are discontinued. When V≥V* (Fig. A.2), similar dynamical effects are observed. 

Fig. A.4. Rule of thumb strategy: comparison of an input-limited optimal trajectory (red, □) with the unconstrained optimal trajectory (blue, ∘) (as in Fig. 4) for 
inputs limited to U = U* kg N/ha, V = V* t C/ha. The equilibrium input values (U*, V*) are defined in Sec. 2.6, Eqs. (25)–(26). Parameter values: T = 10 yr, q = 80 £ /t 
C, c = 1 £ /kg N, p = 100 £ /t, k = 0.15, κ = 0.748, N0 = C0 = 0. 
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However, the increase of the soil carbon towards its equilibrium is faster because more carbon is available to be put into the system. In Fig. A.2, the OM 
boundary is active for two years, then amendments are slightly reduced to reach V* until the discontinuation time t*. Interestingly, we see that μt 
decays towards its dynamic BER value q after this initial phase of two years. The rest of this input-limited trajectory is very close to the unconstrained 
optimal trajectory and behaves in a similar fashion. Note that in this situation, the soil carbon can overshoot the unlimited-input equilibrium C*. The 
soil carbon equilibrium is different because the nitrogen U < U* does permit the soil nitrogen to reach its unlimited equilibrium N*. Regarding ni-
trogen, for all seasons, λt > c and nitrogen is applied at the maximum permitted rate Ut ≡ U. Because the dynamics of nitrogen are fast (k ≪ 1), the soil 
nitrogen quickly reaches the dynamic equilibrium N+ = U∕(1 − k) < N*. The unlimited-input dynamic equilibrium N* cannot be attained as U < U*. 
Note however that the scheduling of nitrogen inputs is much simpler in the input-limited case: a constant rate should be applied each year, compared 
to the unconstrained case in which rates increase towards the end of the cultivation horizon. 

Profit iso-contour map 

With the two examples described previously, we saw that input-limited optimal trajectories strongly depend on the boundaries of the control set. In 
our case, these boundaries are simple and determined by the bounds U, V of the control set Ω(U, V). Looking at any such optimal input-limited 
trajectories as parameterised by these bounds, we computed the total profit for a total period of T = 10 years while varying these bounds. Fig. A.3 
shows in the (U, V)-plane the relative profit (ΔJ = 100(J∕J+ − 1)) iso-contour map synthesising the 10-year profit that is achievable for a given set of 
the economic parameters p, c, q relatively to the 1D BER profit with no OM input. Compared to the iso-contour map for the static profit optimisation 
problem (Fig. 3), the profit iso-lines have an elbow shape and do not close up to form a well identified apex of profit. Instead, the profit saturates 
towards the top-right corner of the diagram in Fig. A.3 and the topography of the profit landscape flattens when the control set limits U, V are large 
enough. This is because, as we saw in the simulation presented in Fig. A.2, the input-limited optimal trajectories converge towards the unconstrained 
optimal trajectory as the bounds U, V become larger and larger. In turn, the profit generated converges to the absolute maximum given by the un-
constrained optimal trajectory. We recall that the unconstrained trajectory is characterised by input rates in the first year equal to the dynamic 
equilibrium values of nitrogen and carbon, i.e. (U1, V1) = (N*, C*). When the limits of the control set Ω exceed this level, input-limited trajectories have 
fully converged to the unconstrained optimal trajectory. In this situation, the control set can be seen to be unbounded. This behaviour also explains the 
right-angle elbow shape of the profit iso-contours. In the situation where U ≫ N* (resp. V ≫ C*), the iso-contours are horizontal (resp. vertical) because 
the nitrogen inputs (resp. organic amendments) tend to the corresponding unconstrained optimal trajectory. From this, we can conclude that stringent 
limitations imposed on nitrogen applications can be compensated by organic matter amendments, still allowing similar orders of magnitude in profit. 
Conversely, at high nitrogen inputs that approximate the guidance (AHDB) BER rate, significant gains in profit ( > 10%) could be achieved from 
moderate applications of organic matter ( < 2 t C/ha). In Fig. A.3, we highlight five iso-lines (dotted black lines) representing a profit reduction of 
0.01%, 0.1%, 1%, 5% and 10% from the absolute maximum profit in unconstrained dynamics. This shows that a large corner of the (U, V)-plane, is 
delimited by the 1% iso-line. In this region, input-limited trajectories are all equivalent in terms of profit; only marginal gains of less than 1%, can be 
generated. Interestingly, numerical calculation shows that the input-limited optimal trajectory corresponding to the control set Ω* = Ω(U*, V*) defined 
by the dynamical BER rates (∘-blue line in Fig. A.4) reaches a profit that is only about 2% less than the absolute maximum. For practical reasons, it 
seems to us that this optimal trajectory is the simplest and the best to follow because the fertiliser application rate is constant and fixed to U* every 
year, while the amendments rate is fixed to V* until the discontinuation time is reached (Fig. A.2). This strategy would generate an increase in profit 
about 14% more than a BER recommendation with no OM inputs. 

B. Linear-plus-exponential response curve and model selection 

The idea of modifying the maximum crop response rate B to B(1 + y) to include the yield-enhancing power of farmyard manure into a nitrogen 
response curve (Sec. 2.3) can be done for a ‘lexp’ response curve in a very similar fashion, assuming for simplicity 

Y(N, y) = a
[
1 − e− b(1+y)(Ns+N)

]
− c1N. (B.1)  

As for the reciprocal model (3), the slope of the response for low N rates changes because of the level organic amendments via the proxy variable y. The 

Table B.2 
Reciprocal model (3) with downturn.  

Parameters Estimate Std. Error t value Pr ( > ∣t∣) 

A 1.219E+ 01 3.024E+ 00  4.033 6.35E-05 * ** 
B 7.045E-02 1.076E-02  6.546 1.43E-10 * ** 
Ns 2.926E+ 01 7.341E+ 00  3.985 7.71E-05 * ** 
α 1.050E+ 03 4.197E+ 02  2.501 0.0127 * 
κ 7.484E-01 4.303E-02  17.391 < 2E-16 * ** 
y0 2.142E+ 00 8.573E-01  2.498 0.0128 * 
df 516     
RSE 1.511     
AIC 1920.528      

Table B.1 
Parameter values for the linear-plus-exponential model (B.1) (FYM).  

Parameters a b Ns c1 κ y86 v Cs C86 

Units t/ha t/kgN kgN/ha t/kgN — — — tC/ha tC/ha 
Values 10.8 0.00599 30.8 0.0131 0.755 1.29 0.387 10.0 12.9  
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Table B.3 
Reciprocal model (3) without downturn.  

Parameters Estimate Std. Error t value Pr ( > ∣t∣) 

A 7.945E+ 00 5.562E-01  14.284 < 2E-16 * ** 
B 7.671E-02 1.261E-02  6.083 2.3E-09 * ** 
Ns 2.867E+ 01 7.702E+ 00  3.723 2.18E-04 * ** 
κ 7.2012E-01 4.827E-02  14.919 < 2E-16 * ** 
y0 4.030E+ 00 1.559E+ 00  2.584 0.010031 * 
df 517     
RSE 1.516     
AIC 1922.633      

Table B.4 
Linear-plus-exponential model (B.1) with downturn.  

Parameters Estimate Std. Error t value Pr ( > ∣t∣) 

a 1.077E+ 01 1.465E+ 00  7.349 7.85E-13 * ** 
b 5.994E-03 7.795e-04  7.690 7.51E-14 * ** 
Ns 3.079E+ 01 6.875e+ 00  4.479 9.25E-06 * ** 
c1 1.306E-02 4.305E-03  3.033 0.00254 * * 
κ 7.553E-01 4.010E-02  18.835 < 2E-16 * ** 
y0 1.289E+ 00 3.892E-01  3.312 0.00099 * ** 
df 516     
RSE 1.519     
AIC 1925.531      

Table B.5 
Linear-plus-exponential model (B.1) without downturn.  

Parameters Estimate Std. Error t value Pr ( > ∣t∣) 

a 7.365E+ 00 4.520E-01  16.295 < 2E-16 * ** 
b 5.290E-03 8.261E-04  6.403 3.42E-10 * ** 
Ns 6.033E+ 01 1.182E+ 01  5.104 4.68E-07 * ** 
κ 7.463E-01 4.436E-02  16.822 < 2E-16 * ** 
y0 2.137E+ 00 6.470E-01  3.303 0.00102 * * 
df 517     
RSE 1.532     
AIC 1933.562      

Table B.6 
Akaike’s model performance estimates (Burnham and Anderson, 2002).  

Model AIC difference δi Likelihood L i Akaike weight wi Evidence ratio w1∕wi 

1. Reciprocal model (3) with downturn 0 1  0.698 — 
2. Reciprocal model (3) without downturn 2.105 0.3491  0.244 2.9 
3. lexp model (B.1) with downturn 5.003 0.0820  0.057 12.3 
4. lexp model (B.1) without downturn 13.034 0.0015  0.001 698  

Fig. B.1. Response curve and extra yield for the linear-plus-exponential model (B.1).  
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fitted parameter values are given in Table B.1. 
The full results of the nonlinear least-squares analysis with the R routine NLS of the reciprocal (3) and ‘lexp’ (B.1) models, with or without 

downturn, are summarised in Tables B.2, B.3, B.4, B.5. All candidate models performed well for the Woburn dataset. Model selection based the Akaike 
information criterion (AIC) (Burnham and Anderson, 2002 is however in favour of the reciprocal response curve (3) with a downturn (Table B.2) 
because its AIC is the smallest. 

When comparing the performance of models with this criterion, it is the relative values of AICs quantified by the differences δi = AICi − AICmin that 
matter. Given the data and a set of models, the plausability of each model of being the (Kullback-Leibler) best model follows from the relative strength 
of evidence for each model i, which is estimated by the likelihood L i∝exp( − δi∕2). The model probabilities are then given by the Akaike weights wi =

L i∕
∑

jL j. From these estimates (Table B.6), we can conclude that the ‘lexp’ models lose some amount of information, and hence, fail to capture some 
explainable variation in the Woburn data. By contrast, from its Akaike weight (Table B.6), we find that there is about 70% chance that the reciprocal 
response curve (3) with a downturn is the best model of the four, given the data that we use here. 

Fig. B.1 

C. Definition of the key variables and parameters 

See Table C.1. 
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