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Abstract 

A study of the heterogeneity and conformation in solution (in 70 % (v/v) aq. ethanol) of gliadin 

proteins from wheat was undertaken based upon sedimentation velocity in the analytical 

ultracentrifuge, analysis of the distribution coefficients and ellipsoidal axial ratios assuming 

quasi-rigid particles, allowing for a range of plausible time-averaged hydration values has been 

performed.   All classical fractions (α, γ, ωslow, ωfast) show 3 clearly resolved components.  Based 

on the weight-average sedimentation coefficient for each fraction and a weight-averaged 

molecular weight from sedimentation equilibrium and/or cDNA sequence analysis, all the 

proteins are extended molecules with axial ratios ranging from ~10-30 with α appearing the most 

extended and γ the least.  

 

Keywords: gliadin, sedimentation coefficient, molecular weight, heterogeneity, axial ratio, 

extended conformation  



Introduction 

The seed storage proteins (prolamins) of wheat are the major determinants of the unusual and 

unique (among the cereals) properties of viscosity and elasticity exhibited by wheat doughs and 

gluten. This combination of properties determines the technological quality of wheat, and 

therefore uses, including bread making and pasta quality (Shewry and Tatham 1990). Whereas a 

large number of protein sequences are now available from cDNA libraries the structures of the 

prolamins are poorly understood (Shewry et al. 2008).  

 

The prolamins can be divided into two groups on the basis of their solubility, the gliadins which 

are soluble in aqueous alcohols and the glutenins which are soluble in aqueous alcohols on the 

addition of a disulphide reducing agent. Gliadins comprise about half the total prolamins of 

gluten, are monomeric with intramolecular disulphide bonds and contribute to the viscous nature 

of doughs. They have been traditionally divided into four groups on the basis of their 

electrophoretic mobility at acid pH into α-, β-, γ- and ω-gliadins (Woychik et al. 1961) and 

comprise complex heterogeneous mixtures. Comparisons of amino acid and DNA sequences 

show that the α- and β-gliadins are closely related and referred to as “α-type” gliadins, while the 

γ- and ω-gliadins are structurally distinct (Shewry and Tatham 1990). The α-type gliadins 

consists a short N-terminal domain of five residues, a repetitive domain of about 113-134 

residues and a C-terminal domain of about 144-166 residues, the latter domain containing two 

poly-glutamine regions. The repetitive domain consists of a repeat motif of five to eight residues 

of consensus sequence Pro.(Phe/Tyr).Pro.Gln.Gln.Gln.(Gln)(Gln) and differences in the length 

of the repetitive domain define the differences in molecular weight of the α-gliadins, which vary 

from about 30,000 to 34,000. The γ-type gliadins have a similar domain structure consisting of a 

twelve residue N-terminal domain, a repetitive domain of 78-161 residues with a consensus 

repeat consisting of Pro.Phe.Pro.Gln.Gln.(Gln).Pro.Gln.Gln.(Pro.Gln.Gln) and a C-terminal 

domain of 135-149 residues containing a single poly-glutamine region. Differences in the length 

of the repetitive domain account for the variation in the molecular weight range (about 26,000-

36,000) of the γ-type gliadins. There are few complete sequences available for the ω-gliadins, 

one consists of a short N-terminal domain of 11 residues, a repetitive domain of 238 residues and 

a short C-terminal domain of 12 residues, the consensus repeat consists of 6 to 11 residues 

Pro.Phe.Pro.Gln.(Gln).(Gln).Pro.Gln.(Gln).(Gln).(Gln) and is similar to the γ-gliadin repeat 



(Shewry et al. 2008; Tatham and Shewry 1995; Hsia and Anderson 2001; Matsui et al. 2005; 

Altenbach and Kothari 2007).       

 

The structures and/or sequences of the gliadin repetitive domains are implicated as being the 

causative factors in a number of human diseases. The immunodominant activating sequences in 

coeliac disease (gluten intolerance) are located in repetitive domains of the ω-gliadins (and 

homologous proteins in barley and rye), in wheat dependent exercise induced anaphylaxis 

(WDEIA) the immunodominant protein is an ω-gliadin (Matsuo et al. 2004) and ω-gliadins are 

implicated in wheat hypersensitivity (Palosuo et al. 2001). The unusual structures adopted by 

these domains may, in part, be responsible for their association with these diseases.  

 

A number of studies have reported the shape of gliadins. Krejci and Svedberg (1934) used 

analytical ultracentrifugation to analyse the gliadin fraction of wheat extracted with aqueous 

ethanol. This study first demonstrated the heterogenous nature of wheat gliadins, although they 

identified a principal component with a molecular weight of approximately 34,500 g/mol and 

calculated the dissymmetry factor which indicated the non-globular nature of these proteins.  

Lamm and Poulsen (1936) and Entrikin (1941) analysed the shapes of gliadins using 

translational diffusion and dielectric dispersion measurements (in terms of translational and 

rotational frictional properties respectively) both studies showed asymmetric molecules with 

axial ratios between 8:1 and 13:1. Later measurements based on intrinsic viscosity, however, 

indicated more globular structures (Taylor and Cluskey 1962; Wu and Dimler 1964; Cole et al. 

1984), although Field et al (1986) determined the intrinsic viscosity of C-hordein (the ω-gliadin 

homologue from barley) and described a rod-shaped molecule.  Thomson et al (1999) used small 

angle X-ray scattering to study the size and shape of α-, γ- and ω-gliadins and described prolate 

ellipsoids of varying axial ratio. Both intrinsic viscosity and x-ray scattering require relatively 

high concentrations of protein in contrast to analytical ultracentrifugation. At higher 

concentrations aggregation can become problematic and may, in part, account for the apparent 

disparity in the results. In this study of the solution conformation of the gliadins an assessment of 

the oligomeric state under the conditions employed was also undertaken. 

 



By contrast, advantage can be taken of recent developments in analytical ultracentrifugation 

procedures for the study of the size and shape of the different gliadins in dilute solution 

conditions. Although the principles of both sedimentation velocity and sedimentation 

equilibrium methodology in the ultracentrifuge are essentially the same as at the time of Krejci 

and Svedberg (1934), the instrumentation, data capture and analysis software have advanced 

enormously (see for example Scott and Schuck 2005).  

 

Materials and methods 

Gliadin sample preparation 

Total gliadins were extracted from chloroform defatted wheat flour cv. Mercia with 70% (v/v) 

aqueous ethanol and then dialysed against 1% (v/v) acetic acid and freeze-dried. Gliadins were 

then separated by ion exchange chromatography on carboxymethyl cellulose (CM) according to 

the procedure of Booth and Ewart (1969) using 3M urea, 0.01M glycine acetate buffer pH 4.6 

and eluted with a linear gradient of salt. The gliadin fractions were dialysed against 1% (v/v) 

acetic acid prior to freeze drying. Gliadin fractions were identified and assayed for purity by 

acid-PAGE (Clements 1987) and SDS-PAGE (Laemmli 1970). The four fractions were taken to 

correspond to α-, γ-, ωslow- and ωfast-type gliadins.  

 

Instrumentation 

Sedimentation experiments were performed on a Beckman Optima XL-A (Palo Alto, USA) 

analytical ultracentrifuge, equipped with UV absorption optics (280 nm). A four-hole titanium 

rotor was used with reference for the calibration of radial distance. Ultracentrifuge cells of 12 

mm optical path length were used, with aluminium alloy type double sector centrepieces 

containing the sample and reference solvent channels. Cell windows were of optical grade 

quartz. 

 

Sedimentation velocity 

Whole gliadin and gliadin fractions (α, γ, ωslow and ωfast) were prepared at different 

concentrations (0.25 – 2.0 mg/mL; 390 µL) and injected into the sample channel of the cell; the 

reference channel was filled with 70 % (v/v) aq. ethanol reference solvent (400 µL). Samples 

were centrifuged at 50000 rpm at 20.0 °C. Concentration profiles and the movement of the 



sedimenting boundary in the analytical ultracentrifuge cell were recorded using the UV 

absorption optical system and converted to concentration versus radial position.  The data was 

then analysed using the “c(s) model” incorporated into the SEDFIT (Version 9.4b) program 

(Schuck 1998).  This software based on the numerical solutions to the Lamm equation follows 

the changes in the concentration profiles with radial position and time and generates a 

distribution of sedimentation coefficients in the form of c(s) versus sT,b (Schuck 1998).   

 

The conversion of the sT,b value to standard solvent conditions (that of the density and viscosity 

of water at 20°C) gives s20,w (see for example van Holde 1985): 
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ηT,b and ρT,b are the viscosity and density of the experimental solvent (70 % (v/v) aq. ethanol) at 

the experimental temperature (20.0 ºC) and η20,w and ρ20,w are the viscosity and density of water 

at 20.0 ºC.   

 

The partial specific volume ( v ) was calculated from the amino acid composition of the gliadins 

using the “Traube rule” principle as encoded in the SEDNTERP algorithm (Laue et al. 1992). 

The partial specific volumes for α, γ and ω−gliadins were found to be 0.729, 0.724 and 0.723 

(mL/g) respectively.  To eliminate effects of solution non-ideality, the corrected s20,w  values 

were then plotted against concentration, to obtain the sedimentation coefficient at infinite 

dilution (s°20,w), from the linear extrapolation to zero concentration using the Gralén (1944) 

equation: 
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Where s°20,w is the sedimentation coefficient at infinite dilution and ks, the Gralén concentration 

dependence parameter (mL/g).  



Sedimentation equilibrium 

The sample solution (100 µL) and the reference solvent (105 µL) of 70% (v/v) aq. ethanol were 

injected into the relevant sectors of double sector 12mm optical path length cells. The 

sedimentation equilibrium runs were performed at 20000 rpm and 10.0 ºC (10.0 ºC was used in 

order to minimise potential sample degradation). Scans recorded every 4 h. After equilibrium 

was attained, the sample was run for a further 4 h at over-speed 55000 rpm to give an optical 

baseline (total run time ~36 h).. 

 

Concentration distributions at equilibrium (recorded as a function of radial displacement from 

the centre of rotation) were analysed using the MSTARA (MSTARA is the version of the 

MSTAR programme for use with UV absorption data) programme (Cölfen and Harding 1997), 

which provides model independent evaluation of sedimentation equilibrium data using the M* 

function (Cölfen and Harding 1997). In brief: MSTAR allows the evaluation of the apparent 

molecular weight, Mw,app, over the whole distribution (from meniscus to cell base) and also the 

point average molecular weight Mw,app, as a function of radial position, r, in the cell and also as a 

function of concentration c(r) (expressed in terms of absorbance A(r)). The function M*(r), at a 

given radial position, when extrapolated to the cell base, gives the M (over the whole 

distribution). Apparent weight-average molecular weights are calculated at different 

concentrations and extrapolated to zero concentration to eliminate effects of thermodynamic 

non-ideality to give 'ideal' weight-average molecular weight, Mw.     
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cDNA analysis  

Molecular weights for the gliadins were obtained from the NCBI GenBank sequence database 

(accessed December 2008) (with the omission, where necessary, of the signal sequences) using a 

search of all databases and the specific gliadin. Putative sequences, partial sequences and 

sequences containing stop codons were omitted.       

 



Results and discussion 

Heterogeneity and sedimentation coefficient distributions of gliadin 

The c(s) profile of whole gliadin (Figure 1 and Table 1) shows three resolved peaks; a major 

component at 0.7 S (66 %) and two minor components at 1.2 S (15 %) and 1.4 S (19 %). 

 

The c(s) profiles of the gliadin fractions (α, γ, ωslow and ωfast) also show three components 

(Figure 2 and Table 1).  In each case the major component has the lowest sedimentation 

coefficient (0.8 S, 1.2 S, 1.2 S and 0.9 S) for α, γ, ωslow and ωfast-gliadin fractions respectively.  

This leads us to estimate that the three components we see in the whole gliadin fraction are likely 

to be due to the four “major” components of each fraction, although upon extrapolation to 

infinite dilution the absolute values are slightly different and we are, therefore, unable to assign 

components directly. 

 

The weight-average molecular weights (the weight-averages over all components in that 

fraction) obtained for the α- and γ-gliadin fractions using the MSTARA programme (Cölfen and 

Harding 1997) are shown in Table 2.  It is seen the weight-averages molecular weights are in 

reasonable agreement with the cDNA sequence data values and imply little evidence of 

associative behaviour in 70 % (v/v) aq. ethanol solutions.  Due to lack of sufficient sample 

material we were unable to perform sedimentation equilibrium experiments on the ω-gliadin 

fractions and, therefore, the cDNA sequence data values have been used.   

 

Estimation of shape 

Estimates for shape (molecular asymmetry) of the gliadin fractions can, in principle, be obtained 

by combining their s°20,w values with their molecular weights (where possible the weight-average 

molecular weights from sedimentation equilibrium were used) by determining the translational 

frictional ratio f/fo. In order to be certain that we are comparing like-for-like we have used the 

weight-average sedimentation coefficient. After assigning hydration (in terms of grams of 

physically bound or entrained solvent per gram of protein) values (0.35 g/g, 0.5 g/g and 1.0 g/g) 

an estimate of the axial ratio of the equivalent prolate ellipsoid, commonly used to represent the 

average solution conformation of protein, can be obtained using the procedure ELLIPS1 

(Harding et al. 1997; Harding et al. 2005).  



The translational frictional ratio (ratio of the frictional coefficient of the gliadin molecule to the 

frictional coefficient of a spherical particle of the same anhydrous mass) was obtained from Mw 

and s°20,w via (see Tanford 1961): 
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This depends on shape and molecular hydration (chemically bound and physically entrained 

solvent associated with the protein). The Perrin shape parameter, P (or 'frictional ratio due to 

shape' (Tanford 1961), can then be calculated from f/fo by assigning a hydration value, δ, using 

the expression: 
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Therefore a greater (time-averaged) hydration will result in a lower value of the Perrin shape 

parameter and hence a lower axial ratio. 

 

Two factors have to be considered in interpreting ultracentrifuge data. Firstly, the assignment of 

the molecular weight for the subfractions, the sedimentation equilibrium values give only the 

weight-average Mw for the subfractions of a given gliadin fraction.  Secondly, the assignment of 

a value for the (time-averaged) molecular hydration parameter, δ, has been the subject of 

considerable discussion (see Harding 2001; Squire and Himmel 1979).  For proteins with little or 

no glycosylation, values between 0.35 and 0.5 are typical in aqueous solution, whilst 1.0 is an 

extreme estimate; these values were used, although we should consider the solution was 70% 

(v/v) aq. ethanol not a pure aqueous system.  

 

Since δ is not known a range of plausible values (from 0.35 to 1.0) (Harding 2001; Squire and 

Himmel 1979) were used to specify a range of P values for each (Table 2). Corresponding 



(prolate) ellipsoidal axial ratios were calculated using the ELLIPS1 routine (Harding et al. 1997; 

Harding et al. 2005) and visualised (Figure 3) using Ellips-draw (Harding et al. 2005).  

 

All classical fractions (α, γ, ωslow, ωfast) show 3 clearly resolved components.  Based on the 

weight-average sedimentation coefficient for each fraction and a weight-averaged molecular 

weight from sedimentation equilibrium and/or cDNA sequence analysis, all the proteins are 

extended molecules with axial ratios ranging from ~10-30 with α appearing the most extended 

and γ the least (Figure 3).  The treatment of the data does not however exclude the possibility of 

the gliadin molecules adopting other extended or flexible conformations in solution (e.g. rods or 

stiff coils).  

 

Conclusions 

The α-, γ- and ω-gliadins, some of the main determinants of the baking quality of wheat, consist 

of at least three discernible subfractions. Assigning solution conformations for these subfractions 

is, however, problematic due to difficulties in assigning the appropriate molecular weights for 

each. Sedimentation equilibrium gives only the weight-average for a particular fraction to 

overcome this we used the weight-average sedimentation coefficient.  In the case of all four 

gliadin fractions are found to be highly asymmetric with axial ratios varying in the approximate 

range from 10-30 depending on the estimate of the time-averaged hydration of these substances.  

The maximum hydration of estimate of 1.0 (g/g) is high for a typical globular protein but is quite 

conservative for macromolecules which appear to be polysaccharide-like in their conformation: 

therefore if their hydrations are higher than 1.0 g/g then the values of the Perrin shape parameters 

and axial ratios will be lower.   This is interesting since small angle x-ray scattering (SAXS) 

studies on α-, γ- and ω-gliadins have also suggested an extended structure but with lower axial 

ratio (Thomson et al. 1999).  Other reported structural studies of the gliadins are however 

limited. Structural prediction and circular dichroism studies indicate that the repetitive domains 

consist of a mixture of poly-L-proline II and β-reverse turn structures and that the non-repetitive 

domains are rich in α-helical structure (Shewry et al. 2008; Tatham and Shewry 1995; Hsia and 

Anderson 2001; Matsui et al. 2005; Altenbach and Kothari 2007). Limited studies of the ω-

gliadins and homologous C hordeins from barley indicate a mixture of β-reverse turn and poly-



L-proline II structures forming an extended rod-like structure in solution, consistent with the 

results of this study (I’Anson et al. 1992) 

 

Non-covalent interactions between the repetitive domains, predominantly hydrogen bonding, 

molecular entanglement, van der Waals etc, etc., contribute to the viscous nature of gluten, 

hydrated ω-gliadins forming highly viscous materials (Wellner et al. 2001). Extended rod-like 

structures would allow extensive hydrogen bonding and non-covalent interactions between 

protein molecules, contributing to gluten viscosity.  Within the elastic-polymeric glutenin 

network homologous proteins to the gliadins are found, with additional cysteine residues 

allowing the formation of a disulphide bonded polymers (Shewry and Tatham 1997). The 

repetitive domains of the gliadins and polymeric glutenins could interact and, in part, contribute 

to the viscoelastic behaviour associated with wheat flours. Although the precise molecular bases 

for the viscoelastic properties of gluten are unknown, highly asymmetric repetitive protein 

domains would provide higher levels of contact between protein molecule surfaces, than for 

example, globular or ellipsoidal molecules. Whatever the precise bases for the properties are they 

are doubtless related to the molecular structure and interactions between the constituent proteins 

(Shewry and Tatham 1997). 
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Legends to Figures 

 

Figure 1 – c(s) profile for whole gliadin at a nominal total loading concentration of 2.0 mg/mL.  

 



Figure 2 – c(s) profiles for gliadin fractions: α-gliadin (-); γ-gliadin (-); ωs-gliadin (-) and ωf-

gliadin (-) at nominal total loading concentrations of 0.25, 0.25, 0.25 and 0.75 mg/mL, 

respectively.   

 



 

Figure 3 – schematic representation for gliadin fractions: α-gliadin; γ-gliadin; ωs-gliadin and ωf-

gliadin in terms of prolate ellipsoids (x, y and z represent the orthogonal axes in which the 

ellipsoid lies and a, b and c are ellipsoid semi-axes (a ≥ b ≥ c) in the x, y and z directions with, c 

= a for an oblate ellipsoid and c = b for a prolate ellipsoid).  The axial ratio is shown is median 

value from Table 2 (a/b ~ 30, 11, 23 and 20, respectively).  



Table 1. Sedimentation coefficient s°2200,,ww    values (in Svedberg units, S) for whole, α−, 

γ−, ω−gliadins and approximate percentage by weight (in parentheses).  

 

Gliadin fraction Subfraction s
o

20,w  (S) 
Proportion in 

fraction (%) 

s
0

20,w 

(weight-average) 

Whole gliadin 

F1 0.7 66 

0.9 F2 1.2 15 

F3 1.4 19 

αααα    

α1 0.8 62 

1.3 α2 1.9 18 

α3 2.5 20 

γγγγ    

γ1 1.2 83 

1.6 γ2 2.8 13 

γ3 4.6 5 

ωωωωs 

ωs1 1.2 65 

1.6 ωs2 1.8 27 

ωs3 4.2 8 

ωωωωf 

ωf1 0.9 75 

2.1 ωf2 2.1 12 

ωf3 9.1 13 

 

 



Table 2. Weight-average molecular weights (Mw), polypeptide chain molecular weight (M1), 

translational frictional ratio (f/fo), Perrin shape parameter (P), and estimated axial ratio (a/b) for 

differing plausible hydrations (δ), for α-, γ- and ω-gliadins in 70 % (v/v) aq. ethanol solutions.  

  

Gliadin 

fraction 
Mw

a
 (g/mol) M1

b 
(g/mol) f/fo

c
 P

d
 a/b

d
 

αααα 33400 ± 1000 30-36000 2.9 2.2-2.5 25-34 

γγγγ 24600 ± 1000 27-32000 2.0 1.5-1.7 9-13 

ωωωωs     30-43000e 2.6 1.9-2.3 18-28 

ωωωωf     52000 2.5 1.8-2.2 15-25 

 
afrom sedimentation equilibrium 
bfrom cDNA sequences 
ccalculated from sedimentation equilibrium values where possible  

drange based on (time-averaged) hydration values δ ranging from 0.35 g/g - 1.0 g/g 
emean value of 36500 g/mol used for the estimation of f/f0 

 

 


