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28 Summary

29 Plants exist in an environment of changing abiotic and biotic stresses. They have developed a 

30 complex set of strategies to respond to these stresses and over recent years it has become 

31 clear that sphingolipids are a key player in these responses. Sphingolipids are not universally 

32 present in all three domains of life. Many bacteria and archaea do not produce sphingolipids 

33 but they are ubiquitous in eukaryotes and have been intensively studied in yeast and 

34 mammals. During the last decade there has been a steadily increasing interest in plant 

35 sphingolipids. Plant sphingolipids exhibit structural differences when compared to their 

36 mammalian counterparts and it is now clear that they perform some unique functions. 

37 Sphingolipids are recognized as critical components of the plant plasma membrane and 

38 endomembrane system. Besides being important structural elements of plant membranes, 

39 their particular structure contributes to the fluidity and biophysical order. Sphingolipids are 

40 also involved in multiple cellular and regulatory processes including vesicle trafficking, plant 

41 development and defense. This review will focus on our current knowledge as to the function 

42 of sphingolipids during plant stress responses, not only as structural components of biological 

43 membranes, but also as signaling mediators.

44 Key words: sphingolipid, biotic stress, abiotic stress, programmed cell death, pathogens, 

45 plant defense

46

47 Introduction

48 The strategies plants employ to endure stressful conditions are varied and involve a multitude 

49 of molecular, metabolic and physiological adaptations. There is now a significant body of work 

50 to indicate that sphingolipids are an important part of the arsenal of tools the plant has at its 

51 disposal to respond to stress. Sphingolipids are an incredibly diverse group of compounds 

52 (Pata et al., 2010) with a vast array of physical properties which facilitate their function in a 

53 variety of cellular processes. Sphingolipids form a significant proportion of the lipids present in 

54 higher plants. Studies suggest sphingolipids constitute up to 40% of lipids in the plasma 

55 membrane of plant cells (Cacas et al., 2016) and are enriched in the endosomes and 

56 tonoplasts (Moreau et al., 1998). More comprehensive extraction techniques have been 

57 developed over recent years which when coupled with technological advances in mass 

58 spectrometry and chromatography have allowed improved sphingolipid identification and the 
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59 discovery of novel structures from smaller quantities of material (Cacas et al., 2016). This has 

60 enabled research to determine the contribution sphingolipid metabolites make in different 

61 cellular processes. 

62 An overview of the sphingolipid biosynthetic pathway is presented in Fig. 1. The term 

63 sphingolipid covers a class of lipids whose defining component is a long-chain or sphingoid 

64 base (LCB; for ease of reference, Table S1 lists the abbreviations used in this review). The 

65 LCB is a carbon amino-alcohol backbone most commonly of 18 carbons which is synthesized 

66 by the condensation of serine and palmitoyl-CoA catalysed by serine palmitoyl transferase 

67 (SPT) in the endoplasmic reticulum (ER) (Chen et al., 2006). The product of this reaction, 3-

68 ketosphinganine, is then reduced by the action of the 3-ketosphinganine reductase to 

69 sphinganine (d18:0) (Beeler et al., 1998). The LCB is considered the simplest functional 

70 sphingolipid and can have a range of modifications including phosphorylation, desaturation 

71 and hydroxylation. It is sometimes referred to as the free LCB. The LCB may be linked to a 

72 very long chain fatty acid via an amide bond to form a ceramide. The fatty acyl component is 

73 usually 16–26 carbons. This reaction is catalyzed by ceramide synthase. In Arabidopsis 

74 thaliana (hereafter Arabidopsis) three ceramide synthases have been identified, LOH1–3. 

75 Ceramidases catalyse the reverse reaction and are a component in regulating the ceramide 

76 pool and sphingolipid homeostasis (Pata et al., 2008). Ceramides can be phosphorylated in 

77 the ER by ceramide kinases (CerK) or ACD5 (accelerated cell death 5) or further modified to 

78 form the complex sphingolipids glycosylceramides (GlcCers) in the ER and glycosyl- 

79 inositolphosphorylceramides (GIPCs) by the addition of simple or multiple sugars on 

80 ceramide at the C1 position in the Golgi. These reactions are catalyzed by glucosylceramide 

81 synthase (GCS) and at least three functional IPC-synthases and several glycosyl or 

82 glucuronyl transferases (Wang et al., 2008; Mina et al., 2010; Rennie et al., 2014; Msanne et 

83 al., 2015). The complex sphingolipids can exhibit very high levels of sugar decoration. One 

84 study of 23 plant species identified at least 21 different patterns showing variation in number, 

85 type and order of glycan substitutions (Cacas et al., 2013). The biosynthesis of complex 

86 sphingolipids is tightly controlled and the GIPC pool is regulated by the hydrolysis of GIPC to 

87 phytoceramide-1 phosphate by the action of a phospholipase D (PLD) (Tanaka et al., 2013). 

88 Functional characterizations of enzymes of the sphingolipid biosynthetic pathway have also 

89 pointed to the controls on the pathway and the specific pool sizes and structures that are 

90 generated. This flexibility enables sphingolipids to constitute both a structural membrane 

91 component and a signaling molecule from the same basic lipid backbones. For more details 

92 about sphingolipid biosynthesis, see the recent reviews by Luttgeharm et al., 2016, 

93 Michaelson et al., 2016 and Mamode Cassim et al., 2019.

https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/serine-c-palmitoyltransferase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/ceramide-glucosyltransferase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/ceramide-glucosyltransferase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/glycosyltransferase
https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/glucuronosyltransferase
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94 In plants, the size of the different sphingolipid pools tends to vary in a species and tissue-

95 dependent manner. For example, the occurrence of the LCB d18:2 containing GlcCer in 

96 Arabidopsis is mainly confined to floral and pollen tissue (Michaelson et al., 2009) and 

97 sphingolipid distribution changes during fruit development and ripening (Ines et al., 2018). 

98 However outside of the Brassicaceae family d18:2 production, occurs throughout the plant, 

99 and in species such as tomato and soybean is the most abundant GlcCer (Markham et al., 

100 2006). Wheat was found to contain much higher levels of d18:1 in its LCBs when compared 

101 with rice (Goto et al., 2012). In addition, the different tissues in rice have been found to 

102 contain a similar quantity of sphingolipids but distribution across the lipid classes altered. A 

103 survey of 21 different plant species from different phylogenetic groups found d18:1 Δ4  to be 

104 present in non-seed land plants and monocots but absent from Arabidopsis and soybean 

105 (Islam et al., 2012).  

106
107 The functional significance of variations in sphingolipid chemical diversity and abundance is 

108 still in the early stages of investigation. The different classes and modifications offer a variety 

109 of differing solubility, charge, shape, and size. It is this array of properties which confer the 

110 potential of sphingolipids to function both as bio‐active components of cells involved in 

111 regulating cellular processes and as integral components involved in the structural integrity of 

112 the membranes. Regulation of sphingolipid metabolism enables plants to facilitate cell growth 

113 and to appropriately respond to stress, both biotic and abiotic, using different metabolites to 

114 modulate its response. 

115
116 Here, we summarize our current knowledge on the role of sphingolipids in plants in response 

117 to environmental cues and stress.

118

119 Signals in programmed cell death 

120 Recent work utilizing genetically altered plants and plants exposed to sphingolipid 

121 biosynthesis inhibitors have revealed that sphingolipids are regulators of programmed cell 

122 death (PCD) occurring either during plant development or immunity. Perception of a stress 

123 often occurs at the plasma membrane level. Therefore its integrity is essential for cell 

124 signaling and survival. Sphingolipids are major structural constituents of plant plasma 

125 membrane microdomains and their relationship with other components of the plasma 

126 membrane is crucial. Changes in sphingolipid biosynthesis thus impact the microdomain 

127 composition and this could affect protein content and distribution due to altered interactions 
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128 between plasma membrane components. For example, Bax-inhibitor-1 (AtBI-1, an inhibitor of 

129 Bax-induced cell death) interacts with both FAH1 and FAH2 (fatty acid 2-hydroxylase). Plants 

130 overexpressing AtBI-1 thus displayed enrichment in 2-hydroxy fatty acid-containing GlcCer in 

131 microdomains as well as a loss of two proteins usually specifically localized to microdomains 

132 (Ishikawa et al., 2015). These two proteins feature in plant defense, both being involved in 

133 cell death triggered by salicylic acid (SA) or oxidative stress. This reduction in protein content 

134 led to an enhanced tolerance to SA or oxidative stress in AtBI-1 overexpressing plants 

135 (Ishikawa et al., 2015). These data suggest that the integrity of microdomains is critical to cell 

136 death and sphingolipids are central to these structures.

137
138 Sphingolipids are involved in the control of PCD either as structural components of 

139 membranes but also as initiators in the cell death regulatory pathway. The existence of a 

140 rheostat between ceramides/LCBs and their phosphorylated counterparts already described 

141 in animal cells is thought to exist in plants and similarly to control cell fate. According to this 

142 model, ceramides and LCBs are able to trigger cell death whereas ceramide phosphates and 

143 LCB-Ps promote cell survival (Shi et al., 2007; Alden et al., 2011) (Fig. 2). The induction of 

144 PCD by LCB was based on the activation of protein kinases, MPK6 (Saucedo-Garcia et al., 

145 2011) or 14-3-3-regulated CPK3 (Lachaud et al., 2013). The spontaneous PCD observed in 

146 the acd5 mutant, defective in ceramide kinase and with enhanced levels of ceramides, was 

147 due to a strong accumulation of mitochondrial reactive oxygen species (ROS) (Bi et al., 

148 2014). This suggests that ROS are component of sphingolipid-induced PCD. The mycotoxin 

149 fumonisin B1 (FB1) has been widely used to study both sphingolipid biosynthesis and PCD. 

150 Indeed, FB1 is a strong inhibitor of ceramide synthase and has been shown to induce PCD. 

151 When applied to plants, FB1 also triggered the accumulation of LCBs and LCB-Ps (Shi et al., 

152 2007; Tsegaye et al., 2007; Saucedo-Garcia et al., 2011; Yanagawa et al., 2017). 

153 Overexpression of AtLCBK1 (Arabidopsis sphingoid- LCB kinase) in plant induced resistance 

154 to FB1 treatment and conversely, AtLCBK1 knockdown plants, exhibited a sensitivity to such 

155 a treatment (Yanagawa et al., 2017). Moreover, the authors demonstrated that transgenic 

156 alteration of proteins involved in the LCB/LCB-P homeostasis (AtLCBK1, AtSPP1 and 

157 AtDPL1) resulted in a positive correlation between the levels of free LCBs and the degree of 

158 FB1-induced cell death (Yanagawa et al., 2017).

159
160 Increase in SPT activity, by overexpression of AtssSPTa, (small subunit of SPT) resulted in 

161 an accumulation of LCBs and reduced tolerance to FB1 whereas AtssSPTa suppression 

162 lines displayed lower levels of LCBs but enhanced tolerance to FB1 (Kimberlin et al., 2013). 

163 It was recently demonstrated by two independent studies that orosomucoid-like proteins 

164 AtORM1 and AtORM2 physically interact with the core SPT complex and function as 
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165 repressor of SPT activity (Kimberlin et al., 2016; Li et al., 2016). ORM proteins thus regulate 

166 sphingolipid homeostasis by differently modulating functionally different ceramide synthase 

167 activities (Kimberlin et al., 2016). AtORM1 and AtORM2 overexpressing plants were more 

168 tolerant to FB1 treatment when compared to wild-type (WT) plants. This tolerance is 

169 accompanied by a lower accumulation of C16 ceramides, LCBs and their phosphorylated 

170 counterparts. Conversely, AtORM RNAi lines were more sensitive to such treatment, and 

171 displayed higher content of C16 ceramides, LCBs and LCB-Ps (Kimberlin et al., 2016). 

172 Similarly, the ceramide synthase LOH2 overexpressing lines resulted in the accumulation of 

173 ceramides containing C16 fatty acids and dihydroxy LCBs and had reduced accumulation of 

174 free LCBs and LCB-Ps in response to FB1. This overexpression also resulted in constitutive 

175 induction of PCD and increased resistance to FB1 (Luttgeharm et al., 2015). These findings 

176 suggested that FB1-induced PCD is primarily due to the accumulation of free LCBs rather 

177 than the accumulation of ceramides containing C16 fatty acids/dihydroxy LCBs. Curiously, 

178 growth and increased cell division were promoted in LOH1 and LOH3 overexpressing plants, 

179 which displayed enhanced production of ceramides with very long chain fatty acids (VLCFAs) 

180 and trihydroxy LCBs (Luttgeharm et al., 2015). These unexpected outcomes for growth and 

181 development could be due to a ceramide synthesis with a certain chain length fatty acid and 

182 quantity and in response to the correct stimuli. It is also known that VLCFA-ceramides are 

183 important for Golgi trafficking and cell plate or phragmoplast formation during cell division in 

184 Arabidopsis (Molino et al., 2014). It is thus possible that increased cell expansion could be 

185 due to a sphingolipid targeting to plant membranes that contributes directly to cell expansion. 

186 In addition, the fatty acid hydroxylase double mutant fah1/fah2 fails to form spontaneous 

187 lesions under standard culture conditions despite an accumulation of free trihydroxy LCBs, 

188 C16- and VLCFA-ceramides and SA (König et al., 2012). Moreover, the gonst1 (golgi 

189 localized nucleotide sugar transporter1, involved in glycosylation of GIPCs) mutant displayed 

190 spontaneous hypersensitive reaction (HR)-like lesions but did not accumulate ceramides or 

191 LCBs (Mortimer et al., 2013). One potential explanation for the differences that have been 

192 observed is that several different mechanisms could be responsible for inducing cell death.

193

194 Sphingolipids as structural components in response to abiotic stress

195
196 Several studies have recently reported a role of sphingolipids in response to a temperature 

197 stress. Acclimation capacity was correlated with changes in the content of TAGs 

198 (triacylglycerols), MGDG (monogalactosyldiacylglycerol), DGDG (digalactosyldiacylglycerol) 

199 and a GlcCer (Degenkolbe et al., 2012). Analysis of oat, rye and Arabidopsis lipid profiles 
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200 during cold acclimation demonstrated that GlcCer contents decreased in the plasma 

201 membrane whereas they were unchanged in microdomains (Minami et al., 2009; Takahashi 

202 et al., 2016). These changes could contribute to a greater hydration of the plasma membrane 

203 that could, in turn, increase membrane stability during cold stress. In a study focusing on 

204 grapevine leaves, it was found that high levels of t18:1 (8Z) in complex sphingolipids were 

205 correlated with freezing tolerance (Kawaguchi et al., 2000). The sphingolipid Δ8 long-chain 

206 base desaturases (SLD), which desaturate the LCB at the Δ8 position in both cis and trans 

207 orientation, appear to play a role in cold tolerance in Arabidopsis (Chen et al., 2012) and 

208 tomato (Zhou et al., 2016). In Arabidopsis, the sld1sld2 double mutant is sensitive to cold 

209 stress (Chen et al., 2012). Similarly, SlSLD knock-down tomato plants displayed greater 

210 membrane damage and physiological indicators of chilling damage after stress than WT 

211 plants. Chloroplasts are the main organelle impacted by cold and many studies have reported 

212 that chloroplast morphology is affected by changes in lipid unsaturation. Chloroplasts in 

213 SlSLD knockdown were more severely damaged than in WT and the surviving organelles 

214 were not surrounded by an extra-membrane (Zhou et al., 2016). GlcCers, believed to stabilize 

215 membranes, were detected in the envelope membrane of chloroplasts (Spassieva and Hille, 

216 2003), suggesting that sphingolipids are structurally important for chloroplast membrane for 

217 cold tolerance. This illustrated that disrupting SlSLD transcript accumulation reduced chilling 

218 tolerance of tomato. Lipid desaturation is a way for plants to mitigate the effects of chilling or 

219 freezing temperatures. The SlSLD knockdown plant sensitivity to chilling could thus be related 

220 to the membrane properties such as fluidity that is diminished due to depletion of 

221 sphingolipids with unsaturated LCBs. Another explanation for the decrease in cold tolerance 

222 could be a change in the formation and content of microdomains in the membrane. It is 

223 conceivable that activity of some microdomain-localized proteins important for cold tolerance 

224 could be modified in perturbed microdomains (Chen et al., 2012). There has been no 

225 characterized function for sphingolipids in tolerance of high temperature in contrast to the 

226 high concentration of trienoic fatty acids in the thylakoid membranes which have been shown 

227 to be involved in both chilling and high temperature tolerance (Murakami et al., 2000; 

228 Routaboul et al., 2012; Tovuu et al., 2016). 

229
230
231 Sphingolipids as structural components in response to biotic stress

232
233 The rice Osfah1/2 plants displayed similar SA levels to WT and a decreased tolerance to the 

234 hemibiotrophic fungus Magnaporthe oryzae. Nagano and colleagues demonstrated that 

235 products of these enzymes, 2-hydroxy-sphingolipids, were critical in the formation of 
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236 microdomains and disruption of OsFah1/2 activity disturbed organization of defense proteins 

237 localized in these microdomains, such as the NADPH oxidase RbohB, required for ROS 

238 production involved in rice immunity (Nagano et al., 2016).

239
240 Recent work has identified three genes involved in GIPC glycosylation: GONST1, IPUT1 

241 (inositol phosphorylceramide glucuronosyltransferase1) and GMT1 (GIPC mannosyl-

242 transferase1) (Mortimer et al., 2013; Fang et al., 2016; Tartaglio et al., 2017). These three 

243 mutants displayed high SA and ROS levels coupled to a constitutive HR and defense-gene 

244 induction, suggesting a constitutive biotic stress response. Interestingly, gmt1 also had a 

245 decrease in cellulose accompanied by an increase in lignin content, a well-known process in 

246 disease resistance. 

247
248 Eudicot plant-specific GIPCs appeared to act as NLP (necrosis and ethylene-inducing 

249 peptide 1-like protein) cytolysin receptors (Lenarcic et al., 2017). NLP are produced by 

250 bacterial, fungal, and oomycete plant pathogens. Monocots did not develop necrotic lesions 

251 upon challenge with NLP. The difference between the two clades resides in the length of 

252 terminal hexose residues in GIPCs (two for eudicots and three for monocots). The GIPC 

253 sugar moiety is exposed at the surface of the plasma membrane and is thus accessible to 

254 NLP binding. The presence of a third hexose unit in monocots impeded NLP insertion into 

255 the plasma membrane. The structural and molecular consequences for the plasma 

256 membrane that could occur downstream of this recognition requires further study. These 

257 studies demonstrate that GIPC glycosylation and the identity of the glycan headgroup are 

258 important for the plant immune response.

259

260 Sphingolipids as signaling messengers in abiotic stress 

261 The sessile nature of plants has driven them to develop a myriad of strategies to resist cell 

262 damage. Abiotic stress affects plant growth and development, resulting in loss of vigor and 

263 ultimately death. The altered physical and chemical composition of cell membranes under 

264 temperature, salt stress or hypoxia is a problem the plant must manage. As a major 

265 component of plasma membranes, sphingolipids are significant in mitigating abiotic stress, 

266 both in plasma membrane remodelling, and as signal transduction molecules (Ali et al., 

267 2018). A summary of the available data on the enzymes and genes of the sphingolipid 

268 pathway involved in response to both abiotic and biotic stress is presented in Table 1.

269
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270 Temperature stress 

271 Sphingolipids are involved in cold acclimation as structural components of membranes and 

272 also as signaling molecules. In Arabidopsis WT plants, low temperature triggers an 

273 accumulation of total sphingolipids, whereas the ratio of unsaturated LCBs is not increased 

274 by low temperature (Nagano et al., 2014). This suggests that sphingolipids containing 

275 unsaturated LCBs are potential candidates for natural resistance to low temperatures but not 

276 for induced tolerance to cold. The cell death suppressor AtBI-1 is involved in sphingolipid 

277 synthesis in response to cold by interacting with AtSLD1, AtFAH1, AtSBH2 (a LCB C-4 

278 hydroxylase) and AtADS2 (acyl lipid desaturase 2) through Arabidopsis cytochrome b5 

279 (Nagano et al., 2014). Moreover, chilling induced a decrease in LCB production (especially 

280 t18:1) (Guillas et al., 2013). An Arabidopsis mutant exhibiting low levels of nitric oxide (NO) 

281 displayed an accumulation of t18:1. A rapid and transient production of t18:0-P and 

282 ceramide-phosphates is induced by cold. This accumulation was negatively regulated by NO 

283 (Cantrel et al., 2011) and was specifically impaired in lcbk2 (but not in lcbk1) or acd5 

284 mutants, respectively (Dutilleul et al., 2012; Dutilleul et al., 2015). Whether NO is able to 

285 directly regulate enzymes involved in LCB/LCB-P and Cer/Cer-P rheostat or their substrate 

286 availability is still unknown. lcbk2 displayed a constitutive activation of a cold-responsive 

287 MAPK, AtMPK6, at 22°C. AtMPK6 activation was also stimulated by t18:0-P treatment 

288 (Dutilleul et al., 2012). The expression of some cold-responsive genes and phenotypical cold 

289 responses were impaired in lcbk2 mutant but not in acd5. In addition, acd5 seed germination 

290 was hypersensitive to cold and abscisic acid (ABA), however, gibberellic acid (GA) treatment 

291 reverted the acd5 germination phenotype at 4°C. Germination is regulated by ABA and GA, 

292 two hormones that function antagonistically. This suggests that defects in ABA/GA balance 

293 and CerK activity could be responsible for acd5 seed hypersensitivity (Dutilleul et al., 2015). 

294 Thus, some responses are regulated by phosphorylated sphingolipids, ABA and NO 

295 signaling during cold stress. Recent data reported a role of LCBK1 in Arabidopsis freezing 

296 tolerance (Huang et al., 2017). Typical responses including osmolyte accumulation, induction 

297 of cold- and membrane lipid-related genes occurring during this abiotic stress are all impaired 

298 in lcbk1 mutant. This suggested a fine-tuned regulation in which LCBK1 acts as a signal in 

299 response to freezing temperatures and LCBK2 in response to chilling temperatures. 

300
301 There are only a small number of studies indicating that sphingolipid metabolism is also 

302 involved in heat stress. It was shown that exogenous LCB-phosphate contribute to heat 

303 stress tolerance in Arabidopsis cell culture (Alden et al., 2011). Moreover, a recent 

304 transcriptome analysis showed that AtSLD1 expression is significantly decreased in 

305 response to a combination of heat wave and drought at ambient and elevated CO2, 

306 mimicking global changes in climate (Zinta et al., 2018). 
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307
308 Hypoxia and oxidative stress 

309 Hypoxia leads to an increase in ceramides, hydroxyceramides, GlcCers and GIPCs (Xie et 

310 al., 2015a; Xie et al., 2015b). In hypoxic conditions, GIPCs are elevated in Arabidopsis and 

311 increased further in Atacbp3 (acyl-CoA binding protein 3) whereas AtACBP3-overexpressors 

312 were hypersensitive to submergence (Xie et al., 2015b; Lung & Chye, 2019). Similarly, 

313 reduction of unsaturated VLC-ceramides in loh1, loh2 and loh3 mutants due to the disruption 

314 of ceramide synthase is accompanied by an enhanced sensitivity to dark submergence. The 

315 loh1-1 loh3-1 double mutant displayed a reduction of unsaturated very-long-chain (VLC)-

316 ceramides and impaired tolerance to dark and light submergence. Unsaturated VLC-

317 ceramides are therefore seen as defense molecules for plant tolerance to hypoxia (Xie et al., 

318 2015a). The mechanism underlying this tolerance involves the modulation of ethylene 

319 signaling. These molecules were shown to interact with constitutive triple response1 (CTR1; a 

320 negative regulator in ethylene signaling) and to inhibit its kinase activity (Xie et al., 2015a) 

321 and subsequent ethylene signaling. Furthermore, the hypersensitivity of loh mutants to dark 

322 submergence was rescued by introduction of the crt1-1 mutation that constitutively induces 

323 ethylene response. Overexpression of long-chain base kinase (OsLCBK1) in tobacco led to 

324 an increased tolerance to oxidative stress provoked by a treatment with either methyl 

325 viologen or H2O2, accompanied with an induction of oxidative stress-related gene expression 

326 (Zhang et al., 2013). orm1 amiR-ORM2 plants exhibited an early senescence phenotype 

327 accompanied by ROS production and they displayed higher survival rates to oxidative stress 

328 (Li et al., 2016). Measurement of sphingolipids showed an increase in LCBs and ceramides 

329 and an active vesicular transport that could contribute to the onset of the senescence 

330 phenotype and the resistance to oxidative stress. A homolog of human ceramidase, the 

331 neutral ceramidase nCer1, was recently characterized. ncer1 Arabidopsis plants accumulated 

332 hydroxyceramides and were more sensitive to oxidative stress. Conversely, nCer1 over-

333 expressing plants were more tolerant to oxidative stress (Li et al., 2015). Loss of AtACER, 

334 encoding an alkaline ceramidase, inhibited autophagy and its overexpression stimulated 

335 autophagy under oxidative stress (Zheng et al., 2018). Atacer mutant is highly sensitive to 

336 oxidative stress whereas the complementation line showed a similar tolerance to this stress 

337 as the WT (Zheng et al., 2018). This result suggests that AtACER improves adaptation to 

338 oxidative stress by regulating autophagy. 

339
340 Salt stress 

341 During the early stage of salt stress in Carex rigescens, an iTRAQ-based proteome study 

342 showed a reduction of the enzyme that catalyzes the second step of the biosynthesis of 
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343 phytosphingosine, 3-ketosphingosine reductase (KDSR) (Li et al., 2017). Based on work 

344 performed in yeast where 3-ketosphinganine reductase suppressed Ca2+ sensitivity (Beeler 

345 et al., 1998), the authors hypothesized that KDSR acts as a suppressor of the calcium signal 

346 during a salt stress. Seeds of Atgint1 (glucosamine inositolphosphorylceramide transferase1, 

347 responsible for the glycosylation of some GIPCs) mutants displayed a higher germination 

348 rate than WT in response to salt stress, though this difference disappeared at higher salt 

349 concentration (Ishikawa et al., 2018). The Atacer mutant and AtACER RNAi lines displayed 

350 high ceramide levels but reduced LCBs due to a disruption of an alkaline ceramidase gene 

351 (Wu et al., 2015a). Whereas these plants showed increased sensitivity to salinity, AtACER 

352 overexpression led to an increased tolerance to such a stress, highlighting the involvement of 

353 ceramides in response to salt stress. More precisely, it has recently been shown that 

354 AtACER regulates autophagy induced by high salt stress (Zheng et al., 2018). 

355 Overexpression of a rice S1P (sphingosine-1-phosphate) lyase gene in tobacco led to a 

356 decrease in tolerance to salt and changes in salt-stress related genes (Zhang et al., 2012). In 

357 contrast, overexpression of OsLCBK1 in tobacco plants triggered no alteration in expression 

358 of salt stress-related genes or tolerance/sensitivity phenotype compared to control plants in 

359 response to salt stress (Zhang et al., 2013), suggesting that this enzyme is not involved in 

360 salt stress responses in rice. Bioinformatic analysis supported the hypothesis that there are 

361 at least two OsLCBKs (Zhang et al., 2013). No sphingolipidomic analysis has been 

362 performed to reveal how the LCB content could vary between these two over-expressing 

363 plants. Previously published papers suggested that the sphingolipid metabolism could be 

364 adjusted, so that length chain, concentration, and threshold are important for the sphingolipid 

365 function. 

366

367  Interplay with ABA signaling pathway

368 ABA has a key function in cold/drought stress responses. Pioneering work on sphingolipids 

369 showed that d18:1-P and t18:0-P were rapidly induced by drought and were involved in ABA 

370 signaling pathway to control guard cell turgor and thus stomatal aperture (Ng et al., 2001; 

371 Coursol et al., 2003; Coursol et al., 2005). This sphingolipid signaling pathway involved Ca2+ 

372 mobilization, modification of ion channel activity, and heterotrimeric G-protein. Consistent 

373 with this, AtLCBK1 was reported to be induced by low-humidity or ABA treatments (Imai & 

374 Nishiura, 2005). Moreover, ABA also induces the accumulation of several LCB-Ps (Guo et 

375 al., 2012). SPHK1 is an enzyme that phosphorylates d18:1 and t18:0. Stomata of SPHK1-OE 

376 and of Atspp1 mutant (which accumulates d18:1-P) displayed a higher sensitivity than WT to 
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377 ABA (Worrall et al., 2008; Nakagawa et al., 2012). Thus, LCB-P content regulated by LCB 

378 kinases and phosphatases play a key role in the ABA signaling pathway.

379

380 Interplay with phospholipid metabolism

381 Similar to sphingolipids, phosphatidic acid (PA) is considered as a lipid messenger involved 

382 in plant response to both biotic and abiotic stress. Like sphingolipids, PA interacts with MPK6 

383 during salt stress response in Arabidopsis (Yu et al., 2010) and NADPH oxidase to regulate 

384 ROS production during ABA-regulated stomatal closure (Zhang et al., 2009). The PA 

385 biosynthetic pathway responds to temperature and salt stress and interacts with sphingosine 

386 kinases (Guo et al., 2011). Moreover, addition of exogenous PA induced LCB-P production 

387 and LCB-P levels are diminished in pldα1 in response to ABA (Guo et al., 2012). Over-

388 expression of sphingosine kinase increased PA accumulation. Altogether, the cross-talk 

389 between PA and sphingolipids should be a critical point to coordinate a stress response that 

390 needs to be elucidated (Fig. 3)  (Guo & Wang, 2012; Ng & Coursol, 2012). DAG is a by-

391 product of the IPC synthase and is known to promote stomatal opening (Lee & Assmann, 

392 1991; Peters et al., 2010). Although there is no direct evidence for a relationship between 

393 sphingolipids and DAG (Fig. 3), lipidome remodeling under stress could yet prove a link.

394

395 Signaling messengers in biotic stress 

396 Biotic stress caused by plant pathogens and insects are a major threat to both plant survival 

397 and productivity. Plants have developed a complex set of defenses when challenged by 

398 pathogens. A successful innate immune response depends on the capability of the plant to 

399 recognize its invader and then to translate the different stimuli to an adaptive response. As 

400 structural plasma membrane components, sphingolipids are important molecules on the front 

401 line of pathogen recognition. Sphingolipid disruption also has an impact on PCD and 

402 accumulation of several well-known defense molecules (such as ROS, MAPK, and 

403 hormones) and sphingolipids thus act as mediators in the defense signaling cascade. 

404
405 Very recently, metabolomic profiling identified changes in the sphingolipid pool after exposure 

406 to biotic stress. Xanthomonas campestris pv. campestris infection on Brassica oleracea 

407 triggered dynamic changes in sphingolipid metabolism including a reduction in the levels of 

408 ceramide N-palmitoylsphinganine (Tortosa et al., 2018). Treatment of tomato fruit with the β-

409 aminobutyric acid elicitor increased the detected levels of ceramide phosphatidylinositol 
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410 (Wilkinson et al., 2017). These metabolomic studies suggested that biotic stresses could 

411 impact sphingolipid metabolism.

412
413 Interplay with SA signaling pathway

414 Genetic and biochemical data suggests that sphingolipids are involved in the regulation of SA 

415 levels. Several mutants with altered sphingolipid metabolism displayed higher SA content 

416 and activation of SA-dependent responses. Conversely, both SA and its analogue 

417 benzothiadiazole affected sphingolipid metabolism (Shi et al., 2015). The Arabidopsis fah1/2 

418 mutant displayed SA accumulation in addition to an increase in ceramides but moderate 

419 changes in LCB accumulation (König et al., 2012). This suggests that elevated ceramide 

420 levels lead to an increase in salicylate levels. In contrast, the Arabidopsis loh1 mutant 

421 displayed an accumulation of C16-ceramides but no changes in SA levels (Ternes et al., 

422 2011). This discrepancy suggests the sphingolipid trigger for SA accumulation may be more 

423 complicated than initially expected. It is noteworthy that these mutants displayed other 

424 changes in sphingolipid homeostasis (for example fah1/2 also shows a decrease in 

425 glucosylceramides) that maybe have previously been overlooked. The induction of SA could 

426 thus be due to alterations in sphingolipid classes other than LCBs or ceramides. The link 

427 between sphingolipid metabolism and SA may rely on MPK6, ROS/NO and/or calcium 

428 accumulation but this is still unclear (Sanchez-Rangel et al., 2015). For example, 

429 overexpression of LCBK1 in tobacco cell culture triggered the accumulation of ROS in 

430 response to cryptogein. Loss of LCBK activity by using inhibitors resulted in a decrease in 

431 ROS production but had no effect on cytosolic calcium influx in elicited tobacco cells (Coursol 

432 et al., 2015).

433
434 In conjunction with activation of the SA pathway, several studies revealed that plants 

435 disrupted in sphingolipid biosynthesis are also affected in their ability to tolerate biotrophic 

436 pathogens. Whereas SA is considered essential for resistance to biotrophic and 

437 hemibiotrophic pathogens, it has been demonstrated that jasmonic acid (JA) and ethylene 

438 (ET) signaling pathways are important for resistance to necrotrophic pathogens in 

439 Arabidopsis (Thomma et al., 2001; Glazebrook, 2005). In Arabidopsis, it is now 

440 acknowledged that SA has a reciprocal antagonistic effect on JA signaling (Glazebrook, 

441 2005). Using orm1 amiR-ORM2 plants, Li et al. (2016) demonstrated that the loss of ORM 

442 function triggered a constitutive induction of SA-dependent gene and a tolerance to 

443 Pseudomonas syringae strain DG3 compared to WT plants. acd5, erh1 (enhancing RPW8-

444 mediated HR-like cell death) and fah1/2 mutants also exhibited a constitutive activation of SA 

445 pathway and enhanced resistance to powdery mildew. However, they had a similar 

446 phenotype to WT after challenge with the hemibiotrophic pathogens P. syringae pv. 
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447 maculicola or Verticillium longisporum (Wang et al., 2008; König et al., 2012). Similarly, 

448 overexpression of OsSPL1 in tobacco dramatically reduced SA-dependent gene expression 

449 and increased susceptibility to P. syringae pv. tabaci. Conversely, PDF1.2, a JA-dependent 

450 gene, expression is slightly enhanced (Zhang et al., 2014). SA-dependent pathogenesis-

451 related (PR) gene expressions were constitutively lower in Atacer-1 plants compared to WT 

452 plants. This profile was similar but enhanced when these plants were infected by the P. 

453 syringae strain DG3. As a consequence, Atacer-1 plants were found more susceptible to the 

454 biotrophic P. syringae strain DG3 (Wu et al., 2015a). In the light of the antagonistic 

455 relationship between SA and JA, it would be interesting to analyze SA and JA levels 

456 alongside JA-responsive genes in Atacer-1 plants. 

457
458 Few studies have analyzed the role of sphingolipids during plant/necrotrophic pathogen 

459 interaction. Tobacco plants where SPT was silenced accumulated SA, constitutively 

460 expressed SA-induced genes and showed an increased susceptibility to the necrotrophic 

461 fungus Alternaria alternata f. sp. lycopersici (Rivas-San Vicente et al., 2013). Similarly, the 

462 SA accumulating acd5 showed increased susceptibility to B. cinerea (Bi et al., 2014).

463
464 The role of sphingolipid metabolism in response to herbivory has been analyzed (Begum et 

465 al., 2016). Overexpression of OsLCB2a in Arabidopsis led to the accumulation of LCB and 

466 ceramides compared to WT. These transgenic plants also displayed increased callose and 

467 wax deposition, an induction of SA- and camalexin-dependent genes but a reduction of JA-

468 related genes, and inhibited aphid infestation (Begum et al., 2016). 

469
470 Interplay with JA signaling pathway

471 The Atdpl1 mutant displayed a sensitivity towards the hemibiotrophic bacterium 

472 Pseudomonas syringae pv. tomato but a tolerance when infected by the necrotrophic fungus 

473 Botrytis cinerea (Magnin-Robert et al., 2015). However, SA levels were similar or even 

474 reduced compared to WT whereas JA levels and JA-dependent gene expression were higher 

475 in the Atdpl1 infected mutant. This suggested a link between the sphingolipid and JA 

476 pathway. By using SPHK1 overexpressing plants, SA production was enhanced in response 

477 to FB1 treatment. Conversely SPHK1-KD plants displayed an increase in JA related 

478 transcripts and metabolites (Qin et al., 2017). Thus, it was suggested that the balance 

479 between LCBs and LCB-Ps modulated by the activity of SPHK1 acted as a signal upstream 

480 of the SA/JA signaling pathways during FB1-induced cell death (Qin et al., 2017).

481
482 Interplay with ethylene signaling pathway
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483 It was recently shown that sphingolipid metabolism has connections with not only SA and JA 

484 pathways but also with ethylene signaling. Ethylene or its precursor (1-aminocyclopropane 

485 carboxylic acid) inhibits sphingolipid biosynthesis. Mutants disturbed in ethylene biosynthesis 

486 or signaling displayed constitutive modifications in sphingolipid content (Wu et al., 2015b). 

487 For example, ctr1-1 mutants, which have enhanced ethylene signaling, contained lower 

488 levels of ceramides and hydroxyceramides compared to WT. Some constitutive ethylene 

489 response mutants displayed a higher tolerance to FB1 and mutants deficient in ethylene 

490 signaling exhibited more sensitivity to FB1, showing that enhanced ethylene signaling 

491 rescues FB1-induced cell death.

492

493 Conclusions and future directions

494
495 In the last few decades we have learned much about the role of sphingolipids during the plant 

496 stress response. Functional analyses have demonstrated that sphingolipids are involved in 

497 the response to environmental cues. The role of sphingolipids during PCD is well studied. 

498 Significant progress has been made but the precise identity of sphingolipids involved in this 

499 process is not clearly defined. It is clear that PCD is tightly regulated and further consideration 

500 should be given to the different stresses triggering PCD and also the plant species in 

501 question. The plasma membrane mediates contact with the environment and is the likely 

502 initial source of signal transduction. Recent evidence has shown that GIPC glycosylation 

503 involved different regulation processes in the plasma membrane. The composition, the 

504 distribution and the dynamic association of sphingolipids are thus of high importance for the 

505 plasma membrane function. It is essential to unravel the dynamic association between 

506 sphingolipids, plasma membrane lipids and proteins in order to better understand the 

507 recognition step of the immune response. While a body of evidence has revealed functions 

508 for LCBs/LCB-Ps, ceramides and GIPCs, the roles of GlcCers in plants have yet to be fully 

509 investigated, other than the observation that they are essential for normal plant growth and 

510 development. The relationship between sphingolipids and SA is long acknowledged and 

511 recent studies showed interconnections with other defense signaling pathways such as JA 

512 and ethylene. The regulation of stomatal aperture is of crucial importance during plant 

513 defense responses especially in response to foliar pathogens. ABA-mediated stomatal 

514 closure inhibits pathogen penetration to the apoplast. Since sphingolipid signaling pathway 

515 have some interconnections during this process in response to drought stress, the 

516 relationship between sphingolipids and ABA in response to foliar pathogens remains to be 

517 elucidated.

518
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519 Despite the range of different structures of sphingolipids and differing physical properties they 

520 exhibit, understanding of sphingolipid regulation and function is not comprehensive. The 

521 interactions with other cellular lipids are also yet to be fully resolved but there are known 

522 relationships with several other lipid classes. The wider lipidome is subject to remodeling 

523 when the plant is under stress and it is likely that sphingolipids form part of a coordinated 

524 response. The mechanisms for action and whether sphingolipids regulate stress responsive 

525 gene expression or are themselves regulated by stress responsive transcription factors are 

526 not yet fully understood. There is still a gap in understanding the role of sphingolipids in the 

527 plant stress response, but the advent of genome editing technology opens the possibility to 

528 develop crops with a greater ability to tolerate stress based on the manipulation of their 

529 sphingolipid biosynthetic pathway.
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828
829
830 Figure legends

831 Fig. 1 Schematic representation of the sphingolipid biosynthetic pathway in plants. 3-KSR, 3-

832 Ketosphinganine Reductase; ACD5, Accelerated Cell Death 5; ACER, Alkaline Ceramidase; 

833 Cer, Ceramide; Ceramide-P, Ceramide-Phosphate; coA, CoenzymeA; DAG, Diacylglycerol; 

834 DPL1, Dihydrosphingosine-Phosphate Lyase; ERH1, Enhancing RPW8-Mediated HR-like 

835 Cell Death; FA, Fatty Acid; FAH, Fatty Acid Hydroxylase; GC, Glucosylceramide; GINT1, 

836 Glucosamine Inositolphosphorylceramide Transferase 1; GIPC, Glycosyl Inositol Phospho 

837 Ceramide; GMT1, GIPC Mannosyl-Transferase 1; GONST1, Golgi Localized Nucleotide 

838 Sugar Transporter 1; IPCS, Inositol Phosphorylceramide Synthase; IPUT, Inositol 

839 Phosphorylceramide Glucuronosyltransferase 1; LCB1,2, Subunit of Serine 

840 Palmitoyltransferase 1 and 2; LCB, Long-Chain Base; LCB-P, Long-Chain Base Phosphate; 

841 LOH, Lag One Homolog; NCER, Neutral Ceramidase; ORM, Orosomucoid-like Protein; PI, 

842 Phosphoinositol; SBH, Sphingoid Base Hydroxylase; SL, Sphingolipid; SLD, Sphingolipid Δ8 

843 Long-Chain Base Desaturase; SPHK, Sphingosine Kinase; ssSPT, Small Subunit of Serine 

844 Palmitoyl Transferase; SPT, Serine Palmitoyl Transferase. 

845 Fig. 2 Sphingolipid rheostat. The equilibrium between ceramides/Long chain bases (LCBs) 

846 and ceramide-phosphates (Ceramide-Ps)/LCB-Ps defines cell fate. 
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847 Table 1 Enzymes and genes of sphingolipid metabolism involved in response to (a)biotic 

848 stress. 
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