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A B S T R A C T

The effectiveness of rice-straw incorporation to alleviate environmental deterioration and increase soil fertility is
widely accepted, whereas, the effect of this management on stimulating soil nitrogen (N) transformation is not
fully understood. This study was conducted to investigate the effect of rice-straw incorporation on soil N
transformation. An incubation experiment was conducted with rice-straw incorporated at rates of 0 (RS0), 1.67
(RS1), 3.33 (RS2) and 6.67 g kg−1 soil (RS3). Tracing experiments with 15NH4NO3 and NH4

15NO3 was conducted
in the first (Week 1) and tenth week (Week 10) after straw incorporation, and a numerical model was used to
calculate gross rates of N transformations. Incorporation of rice-straw increased gross rates of soil organic N
mineralization, ammonium (NH4

+) and nitrate (NO3
−) immobilization and oxidized organic-N to NO3

−, by
0.2–1.7 times, 4.6–11.6 times, 20.4–74.9 times and 6.2–20.3 times, respectively. However, the stimulation of soil
N transformation via rice-straw incorporation was insignificant by week 10. Over the incubation period, the
stimulation of soil inorganic N production pathways (organic N mineralization and oxidized organic-N to NO3

−)
via rice-straw incorporation was less than on consumption pathways (NH4

+ and NO3
− immobilization), leading

to soil inorganic N supply capacity decreasing with straw incorporation rates. Dissimilatory NO3
− reduction to

NH4
+ was stimulated by rice-straw incorporation, as observed in both the first and tenth week. Compared with

RS0, autotrophic nitrification decreased by 14%, 25% and 46% in RS1, RS2 and RS3, respectively, but this effect
disappeared by week 10. However, nitrification capacity (NC, the ratio of autotrophic nitrification rate to total
mineralization rate) was constrained following rice-straw incorporation both in the first and tenth weeks.
Decreasing autotrophic nitrification was the most important factor contributing to decreased NO3

− content with
straw incorporation, followed by increasing NO3

− immobilization. The gross rate of autotrophic nitrification
was negatively correlated with NH4

+immobilization, indicating that autotrophic nitrification inhibition may be
attributed to increased NH4

+ immobilization. Therefore, based on the observations of this study, rice-straw
incorporation is recommended for reducing nitrification capacity and reducing risks of N losses in subtropical
acid soil.

1. Introduction

To meet increasing grain demand, chemical fertilizers are used to
improve productivity in agricultural ecosystems (Wang et al., 2018).
However, overuse of chemical fertilizers can lead to multiple environ-
mental issues, such as soil acidification, low fertilizer use efficiency,
and groundwater contamination (Ju et al., 2006; Wang et al., 2018). To

alleviate environmental deterioration and improve soil fertility, in-
corporating crop straw to cultivated soils has been widely adopted in
China in recent years (Gai et al., 2019). This is due to a new policy of
reducing chemical fertilizers by partial replacement with organic fer-
tilizers. Previous studies have reported the effects of straw incorpora-
tion on soil organic N mineralization (Takahashi et al., 2003; Thomsen
and Sørensen, 2006), NH4

+ immobilization (Corbeels et al., 2000; Cao
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et al., 2018), nitrification (Liu, 2002; Thomsen and Sørensen, 2006),
dissimilatory NO3

− reduction to NH4
+ (Lu et al., 2015), or NO3

− im-
mobilization (Shindo and Nishio, 2005). However, few studies have
been conducted to investigate the simultaneous N transformations
which drive soil N availability following straw incorporation, which are
required to understand the mechanisms behind straw incorporation
effects on N availability and loss risk.

Straw incorporation may change microbial community composition
and influence N transformation dynamics and N availability (Bird et al.,
2003; Ryals et al., 2014). As a main pathway of NH4

+ production, N
mineralization would be improved by the incorporation of exogenous
materials (Thomsen and Sørensen, 2006). Additionally, because of the
positive effect of straw incorporation, the mineralization of native soil
organic matter would be promoted (Muhammad et al., 2007). Soil N
availability are governed by soil N mineralization and immobilization
processes (Huygens et al., 2007). Generally, incorporation of straw with
a large C:N ratio would improve N immobilization and cause N lim-
itation (Bhogal et al., 1997; Beaudoin et al., 2005; Zhao et al., 2018a).
However, most studies focus on the net rates of soil N transformation
after straw incorporation (Khalil et al., 2005; Muhammad et al., 2007;
Cao et al., 2018; Gai et al., 2019), which does not provide a good un-
derstanding about the gross rates of N transformation. The gross rates of
N transformation, associated with individual processes, can elucidate
the mechanisms involved in the soil N cycling (Whitehead, 2000;
Müller et al., 2007).

In subtropical regions of China, which are characterized by high
precipitation, NO3

− leaching losses occur readily, while NH4
+ is less

mobile due to inhibition of ammonia volatilization caused by low soil
pH (Zhang et al., 2013) and it is charged making it more susceptible to
soil adsorption processes. Thus, NO3

− is more difficult to immobilize
than NH4

+ (Nishio et al., 2001). However, crop straw incorporation can
accelerate the assimilation of NO3

− at soil water holding capacity
(WHC) of 35–46% (Nishio et al., 2001). Additionally, as a main
pathway of NO3

− production in agricultural soil, autotrophic ni-
trification may be inhibited by straw incorporation (Zhang et al., 2012;
Wang et al., 2015). Thus, adjusting the soil C:N ratio and increasing the
soil microbial biomass C via straw incorporation could help reduce
NO3

− losses (Said-Pullicino et al., 2014). Others have reported that
straw incorporation could reduce NO3

− leaching losses from soil (Yang
et al., 2018; Wang et al., 2019). However, it has been reported that
organic matter has a positive stimulatory effect on the community and
function of ammonia-oxidizers (Kalvelage et al., 2013; He et al., 2007),
and that the increased dissolved organic C concentration associated
with straw incorporation could increase the potential nitrification rates
(Liu et al., 2016), which could improve the risk of NO3

− loss. There-
fore, to explain this phenomenon, the effects of straw incorporation on
soil NO3

− production and consumption should be considered.
We hypothesized that rice-straw incorporation influences soil in-

organic N availability and its loss risk by affecting soil N transformation
rates. Thus, a 15N incubation experiment was conducted with rice-straw

incorporation at different rates, and a 15N tracing method was applied
to quantify gross N transformation rates. The aims of this study were:
(1) to investigate the effects of rice-straw incorporation on inorganic N
production and consumption; and (2) to identify the effects of rice-
straw incorporation on nitrification for risk of NO3

− loss estimations.
The results will help guide the recommendations of suitable practices
for straw incorporation in subtropical acid soils.

2. Materials and methods

2.1. Soil samples

Soils were collected from a paddy site of the Fujian Academy of
Agricultural Sciences, Fuzhou China (26°13′31″N, 119°04′10″E). The
mean annual temperature and precipitation (thirty years average) in
this region is 19.5 °C and 1350 mm. According to World Reference Base
for Soil Taxonomy (Nachtergaele et al., 2000), the soil is an Anthrosol
developed from granite. Topsoil (to a depth of 15 cm) was collected
before fertilization in May 2018. Plant residues and roots in soil were
removed after sampling. The soil was sieved to < 2 mm and air dried to
30% H2O (g g−1 dry basis). Soil samples were stored in the dark (at
4 °C) prior to use and soil properties measured before the incubation
experiment began (Table 1).

2.2. 15N tracing experiment

In this study, rice-straw was incorporated with soil at the following
rates: 0, 1.67, 3.33 and 6.67 g kg−1 dry weight equivalent soil (DWE;
incorporation rates were equal to straw additions of 0, 3.76, 7.52 and
15.03 t ha−1), henceforth referred to as RS0, RS1, RS2, and RS3 re-
spectively. The C, N, phosphorus (P), and potassium (K) concentrations
of the rice-straw were 232.0, 5.1, 1.6 and 20.8 g kg-1, respectively.
Moist soil (∼30% moisture; equivalent to 30 g DWE) was weighed into
48 flasks, and rice-straw was incorporated (fully mixed) into soil after
grinding and sieving. It has been reported that the effects of straw in-
corporation on inorganic N availability was focused in the first three
months after its application (Nagarajah et al., 1989; Lou et al., 2007; Fu
et al., 2012). Therefore, in this study, N transformation rates were
measured in the first (24 flasks) and tenth (the other 24 flasks) week
after straw incorporation.

The soil water content was adjusted to 60% of WHC and the soils
were incubated in the dark at 25 °C. Samples were weighed every two
days and water added as required. To allow aeration of the soil the
incubation vessels were unsealed for one hour every two days. The
procedure of Müller et al. (2007) was used to determine the gross rates
of N transformation. 15N solutions (1 ml) were added to the soil in
weeks 1 and 10, this solution was accounted for in determining the soil
water requirements. In brief, ammonium nitrate (NH4NO3) was applied
to 12 flasks (comprising 30 mg NH4

+-N kg−1 DWE soil and 30 mg
NO3

−-N kg−1 DWE soil); 15NH4NO3 (9.75 atom% excess) was applied

Table 1
Soil properties before and after incubation.

Before incubation After incubation (Week ten)

RS0 RS1 RS2 RS3

pH 5.31 4.93 ± 0.05c 5.01 ± 0.10c 5.18 ± 0.17b 5.48 ± 0.11a
SOC (g kg−1 soil) 13.0 13.3 ± 0.08c 13.7 ± 0.13b 14.1 ± 0.39b 14.6 ± 0.03a
TN (g kg−1 soil) 1.05 1.03 ± 0.00a 1.04 ± 0.01a 1.05 ± 0.02a 1.10 ± 0.02a
NH4

+ (mg kg−1 soil) 23.8 2.60 ± 0.55a 2.91 ± 0.04a 3.55 ± 0.56a 2.24 ± 0.56a
NO3

− (mg kg-1 soil) 28.5 42.9 ± 2.72a 33.3 ± 3.18b 23.4 ± 2.36c 9.29 ± 0.56d
Olsen P (mg kg−1 soil) 126 122 ± 4.33ab 129 ± 4.28a 126 ± 6.01a 112 ± 4.83b
Av. K (mg kg−1 soil) 118 150 ± 9.41d 165 ± 13.9c 208 ± 6.48b 335 ± 0.12a

Where, Av. K is available potassium, SOC is soil organic C, and TN is total N. Letters indicate significant differences between plants within soils (p< 0.05; ANOVA
with Duncan’s test, PASW Statistics 18.0). RS0, RS1, RS2 and RS3 are rice-straw incorporated at 0.00, 1.67, 3.33 and 6.67 g kg−1 soil (DWE).
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to 12 flasks for each treatment, and NH4
15NO3 (9.88 atom% excess) was

applied to the other 12 flasks. Destructive sampling was conducted at
0.5, 48, 96, and 144 h following NH4NO3 application. Six flasks of each
treatment (three 15NH4NO3 and three of NH4

15NO3) were selected
randomly to measure the concentration of NH4

+ and NO3
− and their

15N enrichments.

2.3. Soil properties

Soil pH was determined on a soil:water mix of 1:5 (v:v) using a pH
detector (DMP-2 mV, GW 1996). Soil organic C (SOC) was analyzed via
wet digestion with H2SO4-K2Cr2O7, total N was measured using a semi-
micro Kjeldahl digestion with catalysts (Se, K2SO4 and CuSO4), and soil
available potassium (Av. K) was determined by the 1 M CH3COONH4

extraction method (Lu, 2000). Exchangeable NH4
+ and NO3

− were
extracted using 2 M KCl and shaken at 250 rpm for 60 min. After fil-
tering, the concentration of NH4

+ and NO3
− were measured using a

segmented-continuous flow analyzer (Skalar, Breda, The Netherlands).
The isotopic composition of NO3

− and NH4
+ was determined according

to the modified micro-diffusion method (Zhang et al., 2017).

2.4. Data and statistical analyses

Gross N transformation rates were calculated according to the
model of Müller et al. (2007). The processes in this model are: (1) labile
organic-N mineralization (MNlab); (2) recalcitrant organic-N miner-
alization (MNrec); (3) immobilized NH4

+ to labile organic-N (INH4_Nlab);
(4) immobilized NH4

+ to recalcitrant organic-N (INH4_Nrec); (5) oxidized
NH4

+ to NO3
− (autotrophic nitrification, ONH4); (6) oxidized organic-N

to NO3
− (heterotrophic nitrification, ONrec); (7) dissimilatory NO3

−

reduction to NH4
+ (DNRA); (8) immobilized NO3

− to organic-N (INO3);
(9) adsorption of NH4

+ on cation exchange sites (ANH4); (10) release of
adsorbed NH4

+ from cation exchange sites (RNH4). The gross rates of N
transformations were calculated for the first and tenth weeks and the
average rates from these sampling periods were used for this study.

Curve-fitting and bivariate correlation analyses methods were used
to examine the correlations between N transformation rates, soil
properties, and rice-straw incorporation rates. Because of the high
number of iterations in the 15N tracing model, statistical tests were
inappropriate for results comparison (Yoccoz, 1991). Therefore, the
parameter results were analyzed via standard deviations (Müller et al.,
2009). In brief, there are three cases of 95% confidence intervals to
distinguish: 1) the parameters are not different when standard devia-
tions overlap; 2) there is no overlap between standard deviations,

whereas, 95% confidence intervals overlap, which indicates no sig-
nificantly difference between parameters; 3) there are significant dif-
ferences between parameters if 95% confidence intervals do not
overlap. Duncan’s test was used for multiple comparisons between
different treatments (and differences noted as significant where
p< 0.05).

The total rates of organic N mineralization (TM) and total im-
mobilization of NH4

+ (TI) rates were calculated as:

TM=MNrec + MNlab (1)

TI= INH4_Nrec + INH4_Nlab (2)

The nitrification capacity (NC, the ratio of autotrophic nitrification
rate to total mineralization rate) was calculated as:

NC=ONH4 / (MNrec + MNlab) (3)

The gross rates of inorganic N production (NP), consumption (NI)
and the net rate of inorganic N supply (NS), were calculated as:

NP=MNrec+ MNlab+ ONrec (4)

NI= INH4_Nrec+ INH4_Nlab+ INO3 (5)

NS=NP–NI (6)

3. Results

3.1. Soil properties

Following incorporation of rice-straw by the tenth week, there was a
positive relationship between increased pH and greater rice-straw in-
corporation, particularly for RS2 and RS3, with significantly greater pH
than the other treatments (Table 1). Compared to RS0, SOC was in-
creased by 3.2, 5.7 and 9.4% in RS1, RS2 and RS3, respectively. Al-
though a general trend for increased TN concentration with greater
rates of rice-straw incorporation was observed, this was not significant
(Table 1). Soil NO3

− decreased by 22.5, 45.5 and 78.4% in RS1, RS2
and RS3 relative to RS0, respectively. After the incubation NH4

+ con-
centrations were much reduced relative to the background soil con-
centration prior to the incubation (Table 1).

3.2. Concentrations and enrichment of NH4+ and NO3− during incubation

During the first week after rice-straw incorporation and NH4NO3

addition, NH4
+ concentrations in all treatments decreased with

Fig. 1. Nitrogen pools in the first and tenth
week following straw incorporation at different
rates of straw addition, RS0 (a, e), RS1 (b, f),
RS2 (c, g) and RS3 (d, h). Where, RS0, RS1, RS2
and RS3 are rice-straw incorporated at 0.00,
1.67, 3.33 and 6.67 g kg−1 soil (DWE). Data
points present average values (n= 6) ± SE,
under 15NH4NO3 and NH4

15NO3 treatments.
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incubation time, and the slope increased with straw incorporation rates
(Fig. 1a–d). Nitrate concentration increased with incubation time in
RS0 and SR1, and decreased with incubation time in SR3, with no
marked changes observed for RS2 (Fig. 1a–d). These results suggest that
the net rates of mineralization and nitrification decreased with straw
incorporation rates. The 15N enrichment of NH4

+ following addition of
the 15NH4NO3 decreased with incubation time and the slope of 15NH4

+

enrichment increasing with straw incorporation rates (Fig. 2a–d). This
indicates that the gross rate of mineralization increased with straw
incorporation rates. During the tenth week, the same trends of NH4

+

and NO3
− concentrations were observed in all treatments over in-

cubation time, while the initial concentrations of NO3
− (at 0.5 h) de-

creased with rice-straw incorporation rates (Fig. 1e–h). The same trends
of 15N enrichment of NH4

+ and NO3
− following addition of the

15NH4NO3 or NH4
15NO3 were observed between different treatments

(Fig. 2e–h), suggesting that gross rates of mineralization and nitrifica-
tion were not markedly different in various treatments.

3.3. Gross N transformation rates

The numerical model analysis showed that, in the first week, rice-
straw incorporation increased TM, TI, INO3 and ONrec by 0.2–1.7 times,
4.6–11.6 times, and 20.4–74.9 times, respectively; with significantly
greater transformation rates observed for RS3 than for other treatments
(Fig. 3a–d). However, these differences were reduced by week 10
(Fig. 3a–d). Rice-straw incorporation stimulated DNRA as observed in
both the first and tenth week, although its rate was low (Fig. 3f). There
was a significant positive relationship between the rate of mineraliza-
tion and NH4

+ immobilization (p < 0.01, Fig. 4). Oxidation of NH4
+

to NO3
− was inhibited by straw incorporation in the first week, de-

creasing by 14, 25 and 46% in RS1, RS2 and RS3 relative to RS0, re-
spectively (Fig. 3e), although there was not significant difference
among different treatments for ONH4 was in week 10. However, the NC
declined relative to RS0 in the first and tenth weeks, decreasing ex-
ponentially with increasing rates of rice-straw incorporation (p< 0.01,
Fig. 5a). The ratio of autotrophic nitrification to NH4

+ immobilization
(N/I) decreased with increasing rates of rice-straw incorporation in
both the first and tenth weeks (p< 0.05 for both, Fig. 5b). Additionally,
a significant negative linear relationship between ONH4 and TI was
found in this study (p < 0.01, Fig. 6).

To explain the variation of inorganic N concentrations during the
ten weeks incubation, average gross rates of N transformations were

calculated according to the rates derived in the first and tenth week.
There were positive correlations between TM and soil pH, SOC and TN
concentrations (r2 = 0.997, 0.966 and 0.993, respectively). A sig-
nificant positive linear relationship was found between average ONH4
and the NO3

− concentration in soil after ten weeks incubation (p <
0.01, Fig. 7a). A negative linear relationship was found between
average INO3 and NO3

− concentration in soil after ten weeks incubation
(p < 0.05, Fig. 7b). The slope of average ONH4 relative to soil NO3

−

concentration was 60.5, which was greater than that of average INO3
(24.3, Fig. 7), indicated that decreasing soil NO3

− concentration fol-
lowing rice-straw incorporation was attributed firstly to ONH4 de-
creasing and subsequently INO3 increasing. Additionally, both the rates
of inorganic N production (NP) and consumption (NI) increased with
increasing rates of rice-straw incorporation and NS decreased with the
increasing rates of rice-straw incorporation (Fig. 8). Consequently, the
concentration of inorganic N in soil decreased significantly with the NS
(p< 0.01, Fig. 9).

4. Discussion

4.1. Mechanisms of soil N available affected by rice straw incorporation

The concentration of inorganic N decreased with increasing rates of
rice-straw incorporation (Table 1), in accordance with previous studies
of Zhao et al. (2018b), who suggested that organic material in-
corporation reduced net mineralization rates. The reduction of soil in-
organic N concentration following rice-straw incorporation indicates
that soil N supply may be reduced, which may have a negative impact
on crop growth in the early stages (Chapman, 1997). However, the two
main pathways of inorganic N production in soil, mineralization and
oxidization of organic-N to NO3

−, were stimulated by rice-straw in-
corporation in the first week (Fig. 3a, d). Whilst, the gross rates of both
NP and NI increased linearly with rice-straw incorporation, during the
incubation (Fig. 8). The slope of NI related to rice-straw incorporation
was much greater than that of NP (Fig. 8), indicating that the stimu-
lation of rice-straw on NIwas greater than that on NP. Consequently, NS
decreased with increasing rates of rice-straw incorporation (p < 0.01,
Fig. 8). The concentration of inorganic N in soil increased significantly
with the NS (p < 0.01, Fig. 9), leading to reductions in inorganic N
availability decreasing with increasing rates of rice-straw incorporation
(Table 1). These results indicated that the incorporation of rice-straw
stimulated greater NI than NP, which is an important factor in the

Fig. 2. Measured atom% of 15N excess of NH4
+

and NO3
− pools of RS0, RS1, RS2 and RS3 in

week 1 (a, b, c, d) and week 10 (e, f, g, h) after
rice-straw incorporation. Where, RS0, RS1, RS2
and RS3 are rice-straw incorporated at 0.00,
1.67, 3.33 and 6.67 g·kg-1soi.The atom% of 15N
excesses were the average 15N enrichment of
NH4

+ or NO3
− in soils under 15NH4NO3 or

NH4
15NO3 treatments (n= 3).
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dynamics of N availability. Thus, to alleviate N limitation, straw in-
corporation would need to be applied alongside additional N fertilizer.
This finding is in agreement with Zhao et al. (2018a), who reported that
rice-straw incorporation leads to N becoming a limiting factor for mi-
crobial population growth due to the increased C:N ratio caused by
straw incorporation.

After incubation with rice-straw for ten weeks, average TM rates
increased with soil pH and the concentrations of SOC and soil TN in-
creasing. This indicates that the increases in TM following rice-straw
incorporation could be ascribed to the associated increases in soil pH,

SOC and TN concentrations (Vervaet et al., 2002; Yan et al., 2008).
These results are consistent with those of Zhao et al. (2018b), who
suggested that incorporation of rice-straw accelerated both TM and
ONrec in acidic and purple soils. In our study, a significant positive re-
lationship was found between the rate of TM and TI (p< 0.001, Fig. 4),
indicating that the rate of mineralization is a key factor for NH4

+ im-
mobilization. Bengtsson et al. (2003) reported a similar phenomenon,
and suggested that gross immobilization of NH4

+ was dependent on
gross mineralization.

4.2. Mechanisms of autotrophic nitrification inhibited by rice-straw
incorporation

Our investigation showed that the rate of ONH4 was inhibited by
rice-straw incorporation in the first week (Fig. 3e). These results are
consistent with those of Zhao et al. (2018a), who reported that rice-
straw incorporation inhibited ONH4 both in acidic and alkaline soils.
There was a significant negative correlation between the gross rate of
ONH4 and TI (Fig. 6), suggesting that competition for NH4

+ between
NH4

+ immobilization and autotrophic nitrification processes is the key
factor inhibiting ONH4 when rice-straw was incorporated. Deni and
Penninckx (1999) suggested that this is most likely attributed to the
competition between hydrocarbons in rice-straw and ammonia as
substrates for ammonia monooxygenase, leading to reduced ONH4.
Khalil et al. (2005) suggested that this may be attributed to the slow
decomposition and immobilization of N released when materials high
in C are incorporated. Immobilization and nitrification are important

Fig. 3. Temporal variation of gross N transformation rates in
soil simulated by the 15N trace model. Where, RS0, RS1, RS2
and RS3 are rice-straw incorporated at 0.00, 1.67, 3.33 and
6.67 g kg−1 soil, Week 1 and Week 10 are first week and tenth
week after rice-straw incorporation. TM is mineralization of
organic N to NH4

+, TI is immobilization of NH4
+ to organic N,

INO3 is immobilization of NO3
− to recalcitrant organic N, ONrec

is oxidation of recalcitrant organic N to NO3
−; ONH4 is oxi-

dation of NH4
+ to NO3

−, DNRA is dissimilatory NO3
− re-

duction to NH4
+. Error bars show the standard error of the

treatment mean (n= 3) and letters represent significant dif-
ferences between values within time (p < 0.05).

Fig. 4. The relationship between soil NH4
+ immobilization rates (TI) and mi-

neralization rates (TM). Data points represent mean values (n= 3).
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pathways of NH4
+ consumption in soil. The high C availability derived

from rice-straw incorporation can support active microbial populations
(Fontaine and Barot, 2005). Due to the large C:N ratio in rice-straw,
microbes need to assimilate more inorganic N from the soil to meet
their N demand during rice-straw decomposition (Zhao et al., 2018a).
Therefore, NH4

+ immobilization was accelerated with increasing rates
of rice-straw incorporation, and nitrification is expected to be con-
strained due to NH4

+ assimilation and immobilization(Chapman, 1997;
Khalil et al., 2005).

Although the inhibition of ONH4 following rice-straw incorporation
had disappeared by the tenth week, NC decreased with increasing rates
of rice-straw incorporation both in the first and tenth week (p< 0.01,
Fig. 5a). Additionally, the ratio of ONH4 to TI (N/I), which has been used
as an index to investigate the likelihood for soil N losses (Stockdale
et al., 2002), decreased with increasing rates of rice-straw incorpora-
tion both in the first and tenth week (p< 0.05, Fig. 5b). These suggest
that rice-straw incorporation could reduce the risk of NO3

− loss via
leaching or runoff up until ten weeks after incorporation. In fact, our
previous study found that rice-straw could reduce the rate of ONH4

almost until one year after incorporation, based on samples from a long-
term experiment which had rice-straw incorporated into the soil every
year from the previous crop at the rate of 5.2 t ha-1 (Zhang et al.,
2015b). Similarly, Khalil et al. (2005) suggest that N losses can be re-
duced in acidic soils when treated with materials high in C. Therefore,
incorporating straw may potentially act as a biological nitrification
inhibitor and may present a promising strategy for mitigating N losses
as NO3

− (Subbarao et al., 2007; Zhao et al., 2018a).
Our observations indicated that soil NO3

− concentration was de-
creased during incubation with rice-straw incorporation (Table 1). Soil
NO3

− concentration increased with the rate of ONH4 and decreased with
increasing rate of INO3 during incubation (Fig. 7), indicated that the
decreasing ONH4 and increasing INO3 were the main factors leading to

Fig. 5. The relationship between the rates of rice-straw in-
corporation and nitrification capacity (NC, a) and the ratio of
autotrophic nitrification to NH4

+ immobilization (N/I, b).
Where, NC was calculated by ONH4/TM, Week 1 and Week 10
are first and tenth week after rice-straw incorporation. Data
points represent mean values (n= 3).

Fig. 6. The relationship between soil NH4
+ immobilization rates (TI) and au-

totrophic nitrification rates (ONH4). Data points represent mean values (n= 3).

Fig. 7. The relationship between the concentration of NO3
− in

soil after rice straw incorporation ten weeks and the rates of
autotrophic nitrification (ONH4, a) and NO3

− immobilization
(INO3,b). Where, ONH4 and INO3 were the mean rates of auto-
trophic nitrification and immobilization of NO3

− in first week
and tenth week. Data points represent mean values
(n= 6) ± SE.

Fig. 8. The relationship between the rates of rice straw incorporation and the
gross rate of NP, NI and NS. Where, NP is inorganic N production capacity,
calculated by TM + ONrec; NI is inorganic N consumption capacity, calculated
by TI + INO3; NS is inorganic N supply capacity, calculated by (TM + ONrec)-(TI
+ INO3). TM is mineralization of organic N to NH4

+, TI is immobilization of
NH4

+ to organic N, INO3 is immobilization of NO3
− to recalcitrant organic N,

ONrec is oxidation of recalcitrant organic N to NO3
−. NP, NI and NS were the

mean rates in first week and tenth week. Data points represent mean values
(n= 6).
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reduced NO3
−. The slope of ONH4 was greater than that of INO3 (Fig. 7),

indicating that the ONH4 was more important than INO3 for soil NO3
−

concentration. Additionally, the ONrec was stimulated by rice-straw in-
corporation in the first week (Fig. 3d), which is attributed to organic N
provided by the rice-straw (Zhang et al., 2015a). While, the stimulation
of ONrec following straw incorporation had disappeared in the tenth
week (Fig. 3d). The relationship between rice-straw incorporation and
ONrec is not fully understood. Additionally, our study was conducted
under temperature and moisture (25 °C and 60% WHC) conditions op-
timized for microbial activity, which will differ from in-situ conditions.
Soil N dynamics after rice-straw incorporation in-situ with intact soils
needs further research.

5. Conclusion

Rice-straw incorporation stimulated N mineralization, NH4
+ im-

mobilization, oxidization of organic N to NO3
−, NO3

− immobilization,
and dissimilatory NO3

− reduction to NH4
+ within the first week.

Inorganic N concentration in soil was driven by soil inorganic N supply
capacity, which decreased with increasing rates of rice-straw in-
corporation, because inorganic N consumption was greater than pro-
duction. Autotrophic nitrification was inhibited by rice-straw in-
corporation in the first week, with no effect observed in the tenth week.
However, nitrification capacity was constrained following rice-straw
incorporation both in the first and the tenth week. Decreasing rates of
NH4

+ oxidation to NO3
− was the most important factor for reduced

NO3
− concentrations, which declined with increasing rates of rice-

straw incorporation, followed by immobilization of NO3
− to organic N.

The gross rate of NH4
+ oxidation to NO3

− was negatively correlated
with immobilization of NH4

+ to organic N, indicating that inhibition of
autotrophic nitrification following rice-straw incorporation may be at-
tributed to NH4

+ immobilization, stimulated by rice-straw incorpora-
tion. However, further studies are needed to quantify the contribution
of all factors on autotrophic nitrification inhibition.
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