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ABSTRACT 

van den Bosch, F., McRoberts, N., van den Berg, F., and Madden, L. V. 
2008. The basic reproduction number of plant pathogens: Matrix 
approaches to complex dynamics. Phytopathology 98:239-249. 

The basic reproduction number, R0, is defined as the total number of 
infections arising from one newly infected individual introduced into a 
healthy (disease-free) host population. R0 is widely used in ecology and 
animal and human epidemiology, but has received far less attention in the 
plant pathology literature. Although the calculation of R0 in simple sys-
tems is straightforward, the calculation in complex situations is challeng-
ing. A very generic framework exists in the mathematical and biomathe-

matical literature, which is difficult to interpret and apply in specific 
cases. In this paper we describe a special case of this general framework 
involving the use of matrix population models. Leading by example, we 
explain the existing mathematical literature on this subject in such a way 
that plant pathologists can apply the method for a wide range of 
pathosystems. 

Additional keywords: Beet necrotic yellow vein virus, comparative epi-
demiology, cultivar mixture, landscape, nursery, propagator tree, Plum 
pox virus. 

 
This paper describes a systematic method, originally developed 

by Diekmann et al. (8), to calculate the basic reproduction 
number from knowledge of the pathogen’s life-cycle and its 
interactions with the host plant (i.e., from knowledge of the 
disease cycle). The basic reproduction number, R0, is defined as 
the total number of infections arising from one newly infected 
individual introduced into a healthy population. Rephrasing this 
definition, R0 is also the generation-to-generation multiplication 
factor of the pathogen population at infinitesimally low pathogen 
density (i.e., at a density when propagules produced by the 
pathogen will not come in contact with host individuals previ-
ously infected by the pathogen). 

R0 is widely used in ecology and animal and human epidemi-
ology for several reasons. (i) The basic reproduction number 
defines the threshold, R0 = 1, between an epidemic (increase in 
pathogen density), R0 > 1, and no epidemic, R0 < 1. When each 
‘mother’ infection causes, on average, more than one ‘daughter’ 
infection, R0 exceeds 1, so the pathogen or disease population 
density will increase. (ii) It is a useful parameter in comparative 
epidemiology, summarizing the life-cycle components and the 
interactions with the host into one metric signifying the patho-
gen’s reproduction capacity. (iii) In many models (but not all), R0 

can be used to determine the ultimate or steady-state value of 
disease or pathogen density in a host population (10,21,23, 
26,27,34), and (iv) R0 is a simple tool to evaluate different disease 
control methods within one coherent framework. 

The concept behind the basic reproduction number goes back at 
least to Ross (33), who studied malaria epidemics. Vanderplank 
(36,37) introduced the metric into the plant pathology literature. 
In Vanderplank’s model, the corrected basic infection rate, Rc, is 
the number of new infections caused per time-unit by one infec-
tive infection, the parameter i is the length of the infectious 
period, which has the dimension of time. As discussed by 
Vanderplank, the product of these two, iRc, thus has the dimension 
of numbers and is equal to the basic reproduction number, R0. 
Vanderplank uses this quantity, which he terms the progeny-
parent ratio as a basis for assessing disease control strategies. 
Although the work of Vanderplank dates back to the sixties and 
seventies, R0 is still not widely used by plant pathologists, in 
general, despite the intuitive interpretation and application of the 
parameter. Several studies in botanical epidemiology have ad-
dressed the use of R0 in recent years (13,14,15,22,26,28,30,34), 
and the recent book by Madden et al. (27) discusses the calcu-
lation of R0 for a range of epidemic models. The present paper 
seeks to extend the range of techniques available to plant 
pathological research in this regard. 

The calculation of R0 in cases with complex dynamics is not 
straightforward. Examples of systems with complex dynamics 
include: (i) the presence of more than one host cultivar; (ii) large 
spatial scales (e.g., regions) with multiple fields; and (iii) propa-
gator-tree-nursery systems. A procedure used to calculate R0 in 
most cases in the plant pathology literature (13,14,15,28), is to: (i) 
develop a nonlinear model for pathogen dynamics (usually con-
sisting of a system of nonlinear differential equations); (ii) calcu-
late the steady-state where the pathogen is present (the internal 
steady-state); and (iii) from the steady-state expression derive a 
criterion (i.e., an inequality) showing the combination of model 
parameters in which the pathogen population density is larger 
than zero. This method, however, does not guarantee that the 
expression derived actually is R0. That the expression is the basic 
reproduction number can only be ascertained by retrospectively 
finding a biological interpretation for the components of the ex-
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pression that convinces the researcher that it is R0. In Box 1, we 
give a specific example clarifying the pitfalls of this approach. 

A very generic framework exists in the mathematical and 
biomathematical literature (8,16) for the calculation of R0 for 
virtually any biologically relevant case. Though brilliant in its 
generality, this framework is abstract and difficult to interpret and 
apply in specific cases, and has, so far, not been used in plant 
pathology studies. In this paper, we explain how this approach 
can be used to derive R0 for a wide range of applications in plant 
pathology. This matrix based approach has been used in animal 
and human epidemiology (7,9,11,32). Motivated by plant disease 
examples, the main text introduces and generalizes, as appro-
priate, the matrix-based methods. Some interesting insights from 
these examples, which can be obtained using the methodology, 
are discussed in the Boxes. Technical issues on the use of 
computer packages are described in the Appendix. 

We will use the discrete time step of one pathogen (or disease) 
generation to model the dynamics. The connection between this 
time step and the basic reproduction number is that the time step 
of one generation precisely coincides with the interpretation of R0 
as the generation-to-generation multiplication factor. It will be 
shown that exactly this use of generation as time step enables us 
to calculate the basic reproduction number. Generation will be 
denoted with subscript n. So the density of the pathogen (or 
density of the number of infections) in generation n is denoted by 
In. The life-cycle parameters can have the dimension day, month, 
or year, as appropriate, for the example under discussion. For 
example, the latent period modeled in example 1 would be 
measured in days, and the spore production rate in number of 
spores per day. 

SETTING THE SCENE 

Consider the simple case of a foliar plant pathogen causing 
discrete lesions on wheat leaves, such as, for example, the wheat 
leaf rust pathogen, Puccinia triticina. In a crop consisting of a 
single cultivar, the pathogen has a basic reproduction number R0. 
If the number of lesions (pustules) in a host population is low (so 

that there is zero probability that a produced and disseminated 
spore is deposited on a previously formed lesion), the density of 
lesions in generation n+1, In+1, is given by 

nn IRI 01=+  (1) 

This is because, by definition, each mother lesion produces during 
its entire infectious period (i.e., lifetime), on average, R0 daughter 
lesions in the next generation. For the remainder of the current 
article, we assume that the density of lesions (or any other units of 
infection) is low enough that there is no pathogen-imposed limita-
tion to pathogen increase (i.e., that spores or other units of infec-
tion do not come in contact with previously formed infections). 

This model can easily be solved numerically. Simply start with 
an initial density of lesions I0, substitute this number in equation 1 
to find the density of lesions in the first generation, I1 (for a given 
R0). Iterating this process n times (for n = 2,3,4…N) will produce 
the lesion population density for generation n. Figure 1 shows the 
solutions, with I0 = 1, for different values of R0; the graph makes 
clear that R0 is the generation-to-generation multiplication factor. 
Given a time series of lesion density values (where we note again 
that time is measured in generations), the basic reproduction 
number can be calculated from R0 = In+1/In. This simple example 
shows that the basic reproduction number, R0, can be found from 
(i) deriving a model that connects the density of infections in 
generation n to the density in generation n+1; (ii) solving the 
model numerically; (iii) calculating the basic reproduction num-
ber as the quotient of the density of infections of two successive 
generations. With one modification, this recipe is also applicable 
in more complex situations to calculate R0. We will however show 
that the generation-to-generation multiplication factor can be 
calculated easily from life-cycle components using computer 
packages, and in some special cases can be calculated explicitly. 

It should be noted that equation 1 can also be solved analyti-
cally (27), and the solution is given by 

( ) 00 IRI n
n =  (2) 

This solution again shows the role of R0 as a generation-to-gen-
eration multiplication factor. Depending on additional assump-
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tions, R0 of equation 2 can then be explicitly linked to (and 
predicted from) disease cycle components such as the mean 
infectious period, sporulation rate, and probabilities of spores 
contacting the host (27). For instance, in a simple situation, R0 can 
be estimated by: αργτH, where α is the spore production per unit 
time of a lesion, ρ is the probability that a produced spore is 
deposited on a susceptible site, γ is the probability that a de-
posited spore causes an infection, τ is the length of the infectious 
period of a lesion, and H is the density of susceptible sites in a 
host population. For the complex cases to be discussed in this 
paper, the model equations can also be solved analytically, but 
this will only in very special cases lead to an explicit expression 
for R0. 

EXAMPLE 1: MIXTURES OF CULTIVARS 

We continue the example of lesion forming foliar pathogens but 
will include cultivar mixtures. A crop is grown from a random 
mixture of seeds of two cultivars. A fraction, q, of the seeds is 
cultivar 1, with a fraction 1 – q being cultivar 2. Both cultivars are 
susceptible to the fungal pathogen, but they have different effects 
on one or more life-cycle parameters. We consider the following 
epidemic conditions.  
• A sporulating lesion on cultivar i produces, on average, αi 

spores per time unit.  
• The probability that a spore is deposited on a susceptible 

site (site is an area of leaf that can contain a lesion) equals 
ρ (this probability will depend on crop density, spore 
transport mechanisms, and environmental circumstances). 
Given that the spore is deposited on a susceptible site in the 
crop, a fraction q is deposited on cultivar 1 and a fraction  
1 – q on cultivar 2. Total site density is denoted by H. 

• A spore deposited on a susceptible site of cultivar i will 
germinate and infect with probability γi. 

• A lesion on cultivar i has an infectious period of τi time 
units. 

• The disease has a negligible latent period. (see the note at 
the end of this section). 

From this description of the life-cycle components, it is not 
immediately obvious what the basic reproduction number in the 
cultivar mixture is in terms of the parameters. What is simple to 
calculate, however, is the number of daughter lesions on cultivar i 
(i = 1,2) resulting from one mother lesion on cultivar j (j = 1,2), 
which we will denote by Rij (Fig. 2A). That is, new lesions on a 
given cultivar have been caused by previously existing lesions on 
either cultivar. For example, to calculate R11, one should realize 
that the total number of spores produced by a lesion on cultivar 1 
equals α1τ1, a fraction ρqH of these spores is deposited on a leaf 
of cultivar 1, and a fraction γ1 of these deposited spores germinates 
and forms a daughter lesion. Therefore R11 = γ1α1τ1ρqH. Similar 
reasoning gives R22 = γ2α2τ2ρ(1 – q)H, R21 = γ2α1τ1ρ(1 – q)H, and 
R12 = γ1α2τ2ρqH. Note that the latter two expressions account for 

 

Fig. 1. The density of lesions, In, as a function of the pathogen generations, n, elapsed since the start of the experiment for three values of the basic reproduction
number, R0. Left graph, ordinary scale; right graph, log-scale. 

 

Fig. 2. Schematic representation of the three examples of pathosystems used in the paper. 
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new lesions developing on the ‘opposite’ cultivar to the one where 
the spores were produced. 

Using these four elements we build a model for the dynamics 
of the lesion density on leaves of cultivar 1 in generation n, I1,n, 
and on cultivar 2, I2,n. If there are I1,n lesions on cultivar 1 in 
generation n these lesions will cause R11I1,n lesions on cultivar 1 in 
generation n+1. Similarly I2,n lesions on cultivar 2 will cause 
R12I2,n lesions on cultivar 1 in pathogen-generation n+1. Our 
model equation relating lesion numbers in successive pathogen-
generations on cultivar 1 thus reads I1,n+1 = R11I1,n + R12I2,n. Similar 
arguments can be used to derive the model equation for lesion 
numbers on cultivar 2. Our model for the development of lesion 
numbers thus reads 

I1,n+1 = R11I1,n + R12I2,n 

I2,n+1 = R21I1,n + R22I2,n 
(3) 

A more compact notation of such models is the matrix-vector 
notation 

nn IAI
rr

=+1  (4) 

where 
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Some further information about matrix vector notation can be 
found in, for example, the books by Bretcher (3) and Caswell (4, 
pages 652-668). 

The model can be solved numerically in the same way as we 
solved equation 1. Figure 3 shows results for a specific set of 
parameter values and initial conditions. These graphs show that, 
exactly as for equation 1, the density of lesions on each of the 
cultivars increases from generation to generation, with a constant 
multiplication factor. This increase is the same factor for I1 and I2 
(see Discussion) after a few generations. The deviation from this 
pattern for the first few generations, in this specific case n < 3, is 
due to the chosen initial conditions, whose influence quickly 
disappears. The multiplication factor, λd, is calculated from λd = 
Ii,n+1/Ii,n (i = 1,2) for non-small values of n, so that the influence of 
the initial conditions does not affect λd. Now note that since our 
model has a time step of one generation, λd is the generation-to-
generation multiplication factor and is thus the basic reproduction 
number, R0. 

We conclude that the recipe in the previous section also applies 
to model equations 3, but that the multiplication factor has to be 
calculated at values of n for which the effects of the initial condi-
tion have disappeared. Box 2 gives some elaborations of the re-
sults of this example using the numerical recipe. In the Discus-

sion, we explain in more detail why the solutions are affected by 
the initial conditions for small values of n. 

Models of the structure of equation 4 can be solved analytically 
(2–4). Given the results above and Figure 3, for large values of n 
it is not surprising that the solutions are given by 

2,2

1,1

CI

CI
n

dn

n
dn

λ=

λ=
 (6) 

where the constants C1 and C2 are related to the initial densities of 
infection. The λd can directly be calculated from matrix A in 
equation 4 (3,4,12), and is called the dominant eigenvalue of A, 
which is 

( ) ( )
2

4 12212211
2

22112211 RRRRRRRR −−+++
=λ  (7) 

Substituting the expressions for Rij and some algebraic manipu-
lation we find that 

( ) ( )HqHqR ρταγ−+ρταγ= 2221110 )1(  (8) 

Equation 6 shows that the dominant eigenvalue is the growth 
factor for the density of lesions in each time step. Since the time 
step equals one generation, this dominant eigenvalue is the gen-
eration-to-generation multiplication factor and thus the basic 
reproduction number. 

Box 2 gives some notes on and elaborations of this expression. 
Note that in cases where the matrix is larger than 2 × 2, analytical 
solutions for the eigenvalue are not generally available, except in 
very special cases; however, algorithms for finding them are 
included in many statistical and mathematical packages, as well 
as in some spread-sheet programs (Appendix). 

For two-component systems, we can state that (as illustrated 
here) the model for the generation-to-generation dynamics of 
lesion density can be used to calculate R0. Subsequently, the ex-
pression for R0 can be used to study the effect of parameter values 
(relating to the process under study, such as infectious period and 
sporulation rate) on the basic reproduction number, either 
numerically or explicitly using equations 7 and 8. 

Note on the assumption of negligible duration of the latent 
period. The method described above is easily extended to include 
nonnegligible duration of the latent period. Each of the matrix 
entries Rij then needs to take account of the probability that a 
lesion survives through the latent period and enters the infectious 
period. In many models for animal and human pathogens, this 
probability equals 1, for plant pathogens, however, the probability 
to survive the latent period can be less than 1, for example due  
to plant defense responses and/or leaf necrosis/leaf shedding. 

 

Fig. 3. Pathogen dynamics in a cultivar mixture. The density of lesions on cultivar 1, I1,n, and on cultivar 2, I2,n, as a function of the pathogen generations, n, 
elapsed since the start of the epidemic. These are calculated using equation 3, with parameter values R11=0.8, R12 = 0.5, R21 = 0.5, R22 = 1.5, and initial conditions 
I1,n=0 = 1.0 and I2,n=0 = 0.1. Left graph, ordinary scale; right graph, log-scale. 
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Throughout the paper we assume a negligible duration of the 
latent period because this simplifies the presentation. We note 
however again that extensions to include a nonnegligible latent 
period duration are easily done. 

EXAMPLE 2: PATHOGEN DISPERSAL  
IN A LANDSCAPE 

Consider a soilborne pathogen invading a system of fields in a 
region. The pathogen is dispersed between fields in soil on tractor 
wheels, farmer boots, etc. As a specific example, one can think of 
the invasion of Polymyxa betae, a soilborne protist that infects 
fibrous roots of sugar beet plants. The pathogen itself does not 
cause major damage, but the virus it transmits, Beet necrotic 
yellow vein virus (BNYVV), does cause severe damage to sugar 
beet crops (2,17,31,35,38). Assume we are interested in the effect 
of the spatial arrangement of the fields in the region on R0. For the 
sake of simplicity here (although the approach is easily general-
ized), we assume that all fields are identical and that dispersal 
depends only on the distance between fields. We model the 

density of infected plants, Ii,n, in each field i in generation n. The 
epidemic conditions are as follow. 
• Each infected plant produces α infectious propagules per 

time unit. 
• A fraction d of these infectious propagules is dispersed in 

soil on tractor wheels and farmer boots. 
• An infectious propagule is dispersed from field j to field i 

with probability cij; cij will be called the connectivity be-
tween field j and field i. 

• An infectious unit has a probability γH to infect a plant, 
where H is the crop density and γ the infection parameter. 

• A plant is infectious for τ time units. 
Consider an infected plant in field 1, and assume here there are 

five fields. During its entire infectious period this plant produces 
ατ infectious propagules, of which a fraction 1 – d stays in field 
1; thus, in the next generation, each infection causes γH(1 – d)ατ 
daughter infections. A fraction d is dispersed, and of these pro-
pagules, a fraction c21 reaches field 2. The total number of 
daughter infections in the next pathogen generation in field 2 
from a mother infection in field 1 thus is γHdc21ατI1,n. Following 
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the same reasoning for the assemblage of fields shown in Figure 
2B, where no arrows between fields means no dispersal, we find 
the model equations: 

nnnnnn
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nnnnnn
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or in matrix vector notation nn II
rr

A1 =+ , where 

⎟⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

n

n

n

n

n

n

I

I

I

I
I

I

,5

,4

,3

,2

,1

r  

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

ατ−γατγατγατγατγ
ατγατ−γατγατγατγ
ατγατγατ−γατγατγ
ατγατγατγατ−γατγ
ατγατγατγατγατ−γ

=

)1(

)1(

)1(

)1(

)1(

54535251

45434241

35343231

25242321

15141312

dHcHdcHdcHdcHd

cHddHcHdcHdcHd

cHdcHddHcHdcHd

cHdcHdcHddHcHd

cHdcHdcHdcHddH

A
 

(10) 

Finally, we calculate R0 by numerically solving model equation 9 
and, for large values of n, calculate R0 = Ii,n+1/Ii,n. Box 3 gives 
some elaborations of this example. 

As mentioned above, in principle, R0 can be determined 
analytically as the dominant (first) eigenvalue of the 5 × 5 matrix 
A in equation 10. Despite the fact that, no simple formula exists, 
in general, for the eigenvalues of 5 × 5 matrices, the dominant 
eigenvalue can be easily calculated with the use of a mathematical 
software package. This avoids the necessity of performing the 
tedious exercise of (i) numerically solving the model system in 
equation 9, (ii) looking through the output to determine when the 
effects of the initial conditions on disease dynamics have dis-
appeared, and (iii) calculating R0 for pairs of generations. The 
Appendix discusses methods to calculate the dominant eigenvalue 
of a matrix using Excel, Maple, MATLAB, MATHEMATICA, 
and Mathcad. In some exceptional cases, useful approximations 
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to the dominant eigenvalue can be developed, as exemplified in 
Box 3. 

EXAMPLE 3: PROPAGATOR TREES AND 
NURSERIES: COPING WITH TYPE CHANGE 

Introduction. We first generalize our terminology and call an Ij 
plant in examples 1 and 2 ‘an individual of type j’. That is, in 
example 1, a type 1 individual is a lesion on a plant of cultivar 1, 
and in example 2, it is an infected plant in field 1. In both ex-
amples infected plants do not change type during their infectious 
period. An infected plant of cultivar 1 (or in field 1) remains so 
during its entire infectious period. Obviously there are many 
circumstances in which infected individuals can change type. For 
example, garden plants are often grown in a nursery, then dis-
tributed to garden centers and subsequently sold for planting in 
homeowner gardens. A plant that becomes infected in the nursery 
(a type 1, I1, individual) changes type when transported to a 
garden center (and becomes a type 2, I2, individual), and changes 
type again (into type 3, I3) when sold to a garden owner. 

We introduce a system with one type-change and derive the 
equations for this specific example. Next we generalize and allow 
for any type change to occur. We will see that this generalization 
actually simplifies the model derivation through the introduction of 
a matrix describing the pathogen transmission rates from type j to 
type i, and a matrix describing the amount of time an individual in-
fected while type j spends being type i during its infectious period. 

The special example. Fruit trees, such as plum, are multiplied 
by taking cuttings from propagator trees and growing them for 
some time in a nursery. The majority of the established cuttings 
are sold to orchard/garden owners, and a small fraction is used to 
establish new propagator trees. We consider here, as an example, 
the pathogen Plum pox virus (PPV), a member of the genus 
Potyvirus, causing plum pox disease (Sharka) in plum and some 
other tree species (5,25). This virus is transmitted by aphids and 
through cuttings taken from infected propagator trees. 

Denote the density of infected propagator trees in generation n 
by I1,n and the density of infected cuttings in the nursery by I2,n. 
The ‘type change’ that occurs in this system is that individuals of 
type 2 can change into individuals of type 1, when they are used 
to establish a new propagator tree. The life-cycle components in 
this pathosystem are (Fig. 2C) as follows. 
• Cuttings stay τc time units in the nursery, after which a 

fraction f is used to establish new propagator trees. The 
remaining fraction, 1 – f, is sold to orchards/garden owners. 

• Before selling or being used as new propagator trees, the 
cuttings are screened and an infected tree is detected and 
discarded with probability q. 

• A propagator tree is used for τp time units and then removed. 
• In each time unit, γ cuttings are taken from each propagator 

tree. 
• Before planting in the nursery the cuttings are screened and 

infected cuttings are detected and discarded with prob-
ability p. 

• Due to insect-vectored transmission, an infected propagator 
tree causes α1N1 new infected propagator trees per time 
unit, where N1 is the density of healthy propagator trees 
and α1 is the transmission coefficient. 

• Due to vectored transmission, an infected cutting in the 
nursery causes α2N2 new infected cuttings in the nursery 
per time unit, where N2 is the density of healthy cuttings in 
the nursery and α2 is the transmission coefficient. 

We refer to equations 3, 4, and 5 for the model structure, and 
develop the matrix elements Rij. To this end, we follow a freshly 
infected propagator tree and calculate how many daughter infec-
tions it causes in the field with propagator trees and in the nursery 
during its entire infectious period; the process is repeated for a 
freshly infected cutting in the nursery. 

• An infected propagator tree causes α1N1 new infected 
propagator trees per time unit and does this for τp time 
units giving R11 = α1N1τp. From an infected propagator tree, 
cuttings are taken (per time unit) and after screening, a 
fraction (1 – p) is planted in the nursery. This is done for τp 
time units giving R21 = (1 – p)γτp for infections in the 
nursery arising from infected propagator trees. 

• An infected cutting in the nursery causes α2N2 new infected 
cuttings per time unit and does this for τn time units, giving 
a total of α2N2τc daughter infections. In addition, after 
screening, a fraction, f(1 – q), of the infected cuttings 
changes type by being used to establish new propagator 
trees, and from these propagator trees (1 – p)γτp infected 
cuttings are taken and planted in the nursery. The two 
sources of infected cuttings together give us R22= α2N2τc + 
f(1 – q)(1 – p)γτp. Note that the (1 – p)γτp term of R22 is the 
same as R21. 

• For the final matrix element, R12, the multiplication factor 
for infected propagator plants arising from infected nursery 
plants, again realize that a cutting is used to establish a new 
propagator tree with probability f(1 – q), and that an in-
fected propagator tree causes α1N1τp new infected propa-
gator trees. This gives us R12 = f(1 – q) α1N1τp. 

The matrix A in equation 5 thus has the form 
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and the basic reproduction number can be calculated by substi-
tuting the matrix elements in equation 6. Box 4 discusses the 
effect of disease control efforts in the propagator trees and in the 
nursery on the basic reproduction number. 

Generalization. The two matrix components affected by type 
change of infected cuttings in the nursery into infected propagator 
trees are R12 and R22, the top right and bottom right element of the 
matrix, respectively. First consider R12. As required, the dimen-
sion of R12 is number (i.e., number of new infected individuals of 
type 1 arising from infected individuals of type 2) because the 
parameter combination α1N1 is a rate (number of new infections 
per time unit) and it is multiplied by f(1 – q)τp, which has the 
dimension of time. What exactly is the interpretation of f(1 – 
q)τp? The term relates to infected cuttings in the nursery that 
change type and become infected propagator trees. A fraction f(1 – 
q) of the infected cuttings actually change type, the others, 1 – f(1 – 
q), are removed (sold or detected infected) from the system. One 
could say that this last group spends 0 time units as an infected 
propagator tree and the first group spends τp time units as infected 
propagator trees. This means that, on average, an infected cutting 
in the nursery will change type and spend 0⋅(1 – f(1 – q)) + τpf(1 – 
p) = τpf(1 – q) time units as an infected propagator tree. We can 
thus write 
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The matrix element R22 has a similar structure with α1N1 and (1 – 
p)γ being rates (vectored transmission between cuttings within the 
nursery and vertical transmission with cuttings taken from 
propagator trees) and τc and f(1 – q)τp being time units. This term 
can thus be interpreted as 
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In the most general case, all possible pathogen transmissions 
between types and all possible type-changes would be possible.  
In that case, we can define: rij as the number of infected 
individuals of type i caused by infected individuals of type j, per 
time unit; and Tij as the amount of time an individual that became 
infected being type j spends being infectious as type i. We can 
then write 
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TrTrTrTr
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In general, equation 14 is not necessarily directly intuitive, but its 
structure can be derived by considering each term individually 
and constructing the equation from the logical interconnection of 
terms. For the specific example, some of the terms are zero, for 
example r12 equals zero because cuttings in the nursery do not 
infect propagator trees via vectored disease transmission and T21 
equals zero because propagator trees do not change type (i.e., they 
are not transferred to a nursery). 

Readers familiar with matrix multiplication will recognize that 
equation 14 can be written as 
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Equation 15 can also be written in the more compact form A = 
RT, with R and T denoting the matrices of rates and times, 
respectively. Readers not familiar with matrix multiplication can 
either take equations 14 and 15 as defining matrix multiplication 
or consult, for example, the books by Bretcher (3) and Caswell 
(4) or any other text book about linear algebra. Developing a 
model to calculate the basic reproduction number is, thus, using 
equation 15, a matter of finding expressions for all rij and Tij in 
terms of the life-cycle components of the pathogen in the 
pathosystem under consideration. Equations 14 and 15 of course 
generalize to systems with three or more types. 

DISCUSSION 

The value of R0 in understanding and quantifying population 
dynamic processes is well documented in various fields (13,16, 
19,27,32). Even though Vanderplank (36,37) nicely related dis-
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ease control strategies to R0, utilization of this metric has remained 
uncommon in plant disease epidemiology, apart from several 
exceptions. Models formulated in terms of nonlinear differential 
equations are useful for many purposes, but as demonstrated in 
Box 1, thresholds derived for epidemics from such models may 
not, in fact, be equivalent to R0. For simple systems (e.g., one host 
population, one pathogen strain), it is relatively straightforward to 
derive an expression for R0 based on first principles (27). How-
ever, for more complex systems, such derivations also become 
complex. The methods originally developed by Diekmann et al. 
(8) and Heesterbeek (16) provide the framework for dealing with 
complexity of pathosystems in the derivation of the metric. 

In this paper, we built on the work of Diekmann and Heesterbeek 
to derive R0 for several complex scenarios of relevance in plant 
pathology. We need to stress that the methods introduced in this 
paper are not meant to be a means of simulating epidemic 
progress curves. The only reason we showed some epidemic 
progress curves (Figs. 1 and 3), and discussed the curves, was to 
help make a convincing argument of how to calculate R0 from a 
model that has the time step of a pathogen generation. We 
encourage investigators to apply the matrix methods to obtain R0 
by either using one of the computer programs discussed in the 
Appendix, or in the 2 × 2 case, to calculate the largest eigenvalue 
of the matrix (which then equals R0), by using equation 7. 

In most applications of the methods, the final step will be to 
plot graphs of R0 as a function of life-cycle parameters. This can 
only be done by assigning numerical values to all parameters in 
the model. This implies that these parameter values need to be 
estimated from published or unpublished data. While parameter 
estimation is an important topic and potentially challenging in 
practice, it is outside the scope of this paper. Some of the methods 
that are used are introduced in Madden et al. (27), where refer-
ences for further reading are suggested. Caswell (4) and the 
literature cited therein provide a good introduction to the issues of 
estimation for life cycle parameters in matrix models. 

Several issues related to the applicability of the methodology in 
this paper, not discussed so far in an effort to avoid unnecessary 
complexity, are covered individually below. First, the methods 
apply to pathogens with discrete generations as well as to patho-
gens with overlapping generations. Although the methods using 
matrix approaches introduced in this paper use the pathogen 
generation time as basic time step, they are not only applicable to 
pathogens with generations that are separated in time (so that at 
each point in time only one generation of the pathogen is alive or 
active). The methods are equally well applicable to pathogens 
where a (large) number of generations occur in overlapping time-
windows. This follows from the general theory (8). Recall that R0 
is the number of secondary infections from one mother infection 
at infinitesimally low pathogen density. At such low densities, so-
called density-dependent interactions between pathogen indivi-
duals (e.g., lesions) are negligible. Thus, each pathogen individual 
produces offspring without any interaction with other pathogen 
individuals, and the sum of the number of offspring produced is 
not affected by whether the pathogen generations are separated in 
time or overlapping. 

Second, formulation of the matrix on a generation-to-genera-
tion basis is essential for proper derivation of R0. It is very 
important to bear in mind that we have been able to equate the 
largest eigenvalue of the matrix A to R0 because the time step in 
the models was the same as the generation time. If a model is 
constructed that calculates the densities of infected individuals in 
the various categories using a time step not equal to the patho-
gen’s generation time, the largest eigenvalue of the matrix does 
measure the growth of the population over the time step, but the 
eigenvalue is not equal to R0. 

Third, although matrices have more than one eigenvalue the 
largest eigenvalue is the basic reproduction number, R0. Solutions 
of models of the form of equations 3 and 4 and 9 and 10 are sums 

of terms of the form of equation 6. For example the full solution 
of equation 3 is 
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where λd is the largest eigenvalue of A and is given by equation 7, 
and λ2 is the other eigenvalue of this matrix and is given by 
equation 7 when we replace the + sign in the square root by  
a – sign. The λd components of this solution grow faster than the 
λ2 components and therefore for larger values of n the contribu-
tion of λ2 is negligible, leading to the conclusion that λd is the 
generation to generation multiplication factor. The contribution to 
the solution of the eigenvalue λ2 causes the deviations at small n 
as discussed above. (For those familiar with complex eigenvalues: 
the largest eigenvalue will always be real because the number of 
offspring cannot be a complex number.) 

Fourth, multiple infection transformations are not a component 
of the basic reproduction number. The above mentioned infinite-
simally low pathogen density has another effect on methods sim-
plifying the construction of the model to calculate R0. Consider a 
lesion-forming, spore-producing, fungal leaf pathogen. At in-
finitesimally low pathogen density, the probability that a spore 
lands on an existing lesion is negligible, and thus its probability to 
germinate, infect, and form a lesion is not affected by other 
lesions. Thus, no corrections are needed for the build-up (in-
crease) in density of infections. Besides the use of R0 as a gen-
eration to generation multiplication factor, it also has some uses 
in situations where density dependence does play a role. In many 
models (but not all!), R0 can be used to determine the ultimate or 
steady-state value of disease or pathogen density in a host 
population (10,21,23,26,27,34). 

Fifth, initial conditions do not affect R0. As we have shown 
from the numerical approach (Fig. 3), the density of the various 
types of infected individuals can increase or decrease in the first 
few generations, depending on the initial conditions. This is be-
cause the early population dynamics depend on the initial (i.e., in 
generation n = 0) density of individuals in different categories and 
on the matrix structure. However, R0 determines whether in the 
long run the pathogen density will increase, R0 > 1, or the patho-
gen will die out, R0 < 1. In other words, R0 is only dependent on 
the matrix structure and not on the initial conditions (i.e., R0 is 
defined strictly from the matrix of parameters and not from the 
initial conditions involving infection density). 

Sixth, R0 is a number and not a rate, by definition. However, it 
might be confusing to see in, for example, Caswell’s book that the 
largest eigenvalue (λd) is often called the “population growth rate” 
(4). The models Caswell discusses usually have time steps of a 
length other than the generation time of the organism under 
consideration. In the methods explained in this paper, the time 
step is one generation and the largest eigenvalue measures the 
growth of the density of infected individuals per this generation 
step. This choice of time step provides the direct link between the 
largest eigenvalue and the generation-to-generation multiplica-
tions factor, R0 (a number). 

To conclude, the aim of this paper was to translate some of the 
existing mathematical framework (8) for the calculation of R0 into 
a language palatable to plant epidemiologists. The key reason for 
this is that using the framework, it is possible to calculate R0 in a 
relatively simple way based on a description of the life-cycle 
components and the interactions with the host in complex situa-
tions. Virtually any level of detail deemed necessary for the 
specific case under consideration can be incorporated in the 
approach. In contrast, the calculation of R0 for such complex 
situations from a model formulated as a set of nonlinear differ-
ential (or difference) equations can easily lead to a threshold 
expression which is not equal to R0. Although nonlinear differ-
ential equations are invaluable tools for studying epidemics, they 
should not serve as the primary basis for the determination of R0. 
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APPENDIX 

Numerical recipes to calculate the dominant eigenvalue. 
This appendix provides programming scripts for finding the 
dominant or maximum eigenvalue of an n × n matrix and some 
other software tips for starting to use matrix projection models. 
Scripts are available for several commonly used programming 
languages.  

The specific numerical values of the matrix entries used in this 
appendix do not relate to the examples discussed in the main text. 
They are only given so that the reader can check whether he/she 
finds the correct eigenvalue when using one of the programs. 

Excel. The data analysis tools included in Excel do not include 
eigenvalue calculations. However, a number of freeware and 
commercial add-ins to Excel do include these functions. Here we 
highlight one of these which has been developed specifically to 
add tools for matrix population modeling to Excel. This is the 
PopTools add-in developed by Greg Hood at CSIRO, Australia. 
Instructions for obtaining and installing PopTools can be found at 
http://www.cse.csiro.au/poptools/. Once PopTools is loaded, an 
extra menu item appears on the Excel menu bar allowing the user 
to call the various Poptools functions. The steps required to obtain 
the value of R0 are as follow. 

1. Enter the values of the projection matrix into a suitable n × 
n grid of cells. 

2. Highlight the matrix. 
3. From the PopTools menu choose Matrix tools: eigen-

analysis (symmetric). 
4. A dialogue box appears with the cell range specifying the 

matrix already entered. 
5. Enter a suitable cell reference for the output. 
6. Click Go. 
7. The eigenvalues and eigenvectors for the matrix will be 

entered into the worksheet. The eigenvectors are printed on 
the left in an n × n block. The eigenvalues are printed on 
the right of the output with a different cell background 
color. The eigenvalues are printed in descending order; the 
first one is the estimated value of R0. 

Mathcad template. Although Mathcad includes programming 
controls, its user interface is in the form of a WYSWIG 
mathematics notebook. The steps required to obtain the value of 
R0 are as follows. 

1. Define the projection matrix, A, containing the multipli-
cation and transfer rates. 

⎟⎟
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⎞
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2. Use the built in “eigenvals” function to get the numerical 
values of the eigenvalues of A. 

A)eigenvals(A =λ :  

3. Print the eigenvalues of A by using the = key. 
4. Mathcad automatically sorts the eigenvalues with the 

largest first. 
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MATLAB script. The code given below can either be run 
directly as separate lines or in its entirety when collated into an .m 
file. Note that the file name cannot contain spaces. The steps 
required to obtain the value of R0 are as follows. 

1. Define matrix, A. The letters within the matrix structure 
represent the matrix elements, whereby matrix rows are 
separated by “;”. 

A = [a b c ; ... 
                                   d              e               f ; ...    
   g h i ]; 

2. Calculate the eigenvalues of A and store them in “lambda” 
lambda = eig(A)  

3. Determine the number of elements in vector “lambda” 
[a,b] = size(lambda)  

4. Determine which elements of “lambda” are noncomplex 
and return 1 to “NonComplex” if the element is not com-
plex and 0 when the element is complex 

for i = 1:a 
NonComplex(i) = isreal(lambda(i))  

end 
 

5. Determine the maximum real eigenvalue 
MaxLambda = max(NonComplex'.*lambda)  
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