Rothamsted Repository Download

G - Articles in popular magazines and other technical publications

The publisher's version can be accessed at:

- https://dx.doi.org/10.1111/j.1744-7348.2008.00301.x

The output can be accessed at: https://repository.rothamsted.ac.uk/item/8q0y8.

© 12 December 2008, Wiley.
EDITORIAL

Improving water use efficiency

P.J. Lea¹ & M.A.J. Parry²

1 Department of Biological Sciences, Lancaster Environment Centre, Lancaster University, Lancaster, UK
2 Department of Plant Sciences, Rothamsted Research, Harpenden, UK

Correspondence
M.A.J. Parry, Department of Plant Sciences, Rothamsted Research, Harpenden AL5 2JQ, UK.
Email: martin.parry@bbsrc.ac.uk

Received: 27 October 2008; revised version accepted: 27 October 2008.

The availability of water is a major determinant of crop yield worldwide. Agricultural yields are projected to fall as a result of the impact of global climate change on agricultural production as a consequence of increasing temperatures and lower, more erratic rainfall (Parry et al., 2005). The recent imbalance in supply and demand has led to large increases in the price of the three most important staple crops (rice, wheat and maize). The issues of food security and increasing agricultural production are now key priorities, and the need to breed new crops with improved yield (Reynolds et al., 2005; Foulkes et al., 2007; Parry et al., 2007), improved nutrient (Lea & Azevedo, 2006; Hirel et al., 2007) and water use efficiency (Parry & Reynolds, 2007) is widely recognised. Although there is genetic variability for all these traits, each is multigenic, the function of a series of component traits, which makes them difficult to breed for. The explosion of genomic sequence information and the availability of biotechnological tools provide the possibility to relate sequence information with trait (Morot-Gaudry et al., 2007; Talame` et al., 2008). However, the exploitation of genomic data is still a major challenge because of the complexity of agronomic performance (White et al., 2004; Vij & Tyagi, 2007). Nevertheless, molecular plant biotechnology has the potential to deliver high and stable yields. Once key genes are identified, they can be combined through gene pyramiding (Meiyalaghan et al., 2006) to improve crop performance. In addition, the potential of new germplasm will only be realised if agronomists and farmers not only adopt the new genotypes but also the latest developments in agronomic practice (Cantero-Martínez et al., 2007; Kirda et al., 2007; Saeed et al., 2008).

References

