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33 Abstract

34 BACKGROUND: Recent studies have shown that microorganisms emit volatile 

35 compounds that affect insect behaviour. However, it remains largely unclear whether 

36 microbes can be exploited as a source of attractants to improve biological control of insect 

37 pests. In this study, we used a combination of coupled gas chromatography-

38 electroantennography (GC-EAG) and Y-tube olfactometer bioassays to identify attractive 

39 compounds in the volatile extracts of three bacterial strains that are associated with the 

40 habitat of the generalist aphid parasitoid Aphidius colemani, and to create mixtures of 

41 synthetic compounds to find attractive blends for A. colemani. Subsequently, the most 

42 promising blend was evaluated in two-choice cage experiments under greenhouse 

43 conditions. 

44 RESULTS: GC-EAG analysis revealed 20 compounds that were linked to behaviourally 

45 attractive bacterial strains. A mixture of two EAG-active compounds, styrene and 

46 benzaldehyde applied at a respective dose of 1 µg and 10 ng, was more attractive than the 

47 single compounds or the culture medium of the bacteria in Y-tube olfactometer bioassays. 

48 Application of this synthetic mixture under greenhouse conditions resulted in significant 

49 attraction of the parasitoids, and outperformed application of the bacterial culture 

50 medium. 

51 CONCLUSION: Compounds isolated from bacterial blends were capable of attracting 

52 parasitoids both in laboratory and greenhouse assays, indicating that microbial cultures 

53 are an effective source of insect attractants. This opens new opportunities to attract and 

54 retain natural enemies of pest species and to enhance biological pest control.
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55 Keywords: Aphidius colemani; Bacillus; electroantennogram; multitrophic interactions; 

56 natural enemy; VOCs
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57 1 INTRODUCTION

58 Biological control using natural enemies such as arthropod predators and parasitoids has 

59 become an important alternative method of pest management,1 but the efficacy of 

60 biological pest control can be seriously hampered when naturally occurring enemies are 

61 not sufficiently abundant or effective. To increase the efficacy of biological control, 

62 naturally occurring parasitoids and predators are often complemented with the release of 

63 commercially reared natural enemies.1,2 While this temporarily increases the local density 

64 of natural enemies, a major challenge in biological pest control remains to attract and 

65 retain beneficial insects within the crop so that they maintain high population densities in 

66 the longer term and sufficiently reduce the local abundance of pests.2,3 

67 Insect- and plant-derived semiochemicals can be manufactured and deployed to 

68 manipulate the behaviour of natural enemies. Examples include volatiles produced when 

69 plants are attacked by herbivores (herbivore-induced plant volatiles, HIPVs), and alarm, 

70 sex or aggregation pheromones of pests or natural enemies.4,5 These chemicals can be 

71 sprayed onto crops or deployed in dispensers at regular intervals in the crop.4 While most 

72 research in this field has focused on cues derived from plants and insects,3,6 there is 

73 mounting evidence that microorganisms emit volatile compounds (mVOCs, microbial 

74 volatile organic compounds) that also play a role in insect behaviour.7,8 In some cases, 

75 mVOCs strongly attract insects by signalling the presence of appropriate resources such 

76 as food sources and oviposition sites,9-11 whereas others have been found to deter 

77 insects.12

78 Despite an increased understanding of the role of microbial volatiles as insect 

79 semiochemicals,7,8,13 little is still known whether they can be exploited as a source of 
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80 attractants of pest natural enemies. In most cases, insects respond to complex mixtures of 

81 volatile compounds in specific ratios.14,15 However, other studies have shown that insects 

82 may also respond to single compounds.16,17 Additionally, there are examples indicating 

83 that simplified blends of synthetic volatiles, representing only a limited set of the volatiles 

84 from a natural blend, can be as attractive as the natural blends.18,19 This suggests that, 

85 despite the rich plethora of volatiles that is generally available from natural resources, 

86 only a select number of compounds evoke a behavioural response in the insects. So far, 

87 identification of active microbial compounds affecting parasitoid foraging behaviour, or 

88 mixtures thereof, and study of their performance under field conditions remain largely 

89 unexplored. Such studies would allow to fully grasp the potential of microbial volatiles 

90 to develop new semiochemical-based strategies to improve biological pest control 

91 efficacy. 

92 In previous research using laboratory assays with Aphidius colemani Viereck 

93 (Hymenoptera: Braconidae) we showed that parasitic wasps are attracted to volatile 

94 blends emitted by bacteria isolated from the parasitoids’ habitat.20 Preliminary analyses 

95 of the volatile blends showed that bacteria that significantly attracted the parasitoids 

96 produced blends that contained significantly lower amounts of esters, organic acids, 

97 aromatics and cycloalkanes than repellent strains.20 In this study, we tested the 

98 behavioural and electrophysiological responses of A. colemani females to the volatile 

99 blends of three bacterial strains producing attractive mVOCs. Subsequently, five EAG-

100 active compounds were selected and tested individually, as well as in blends, for their 

101 effects on parasitoid olfactory responses under laboratory conditions. Finally, two-choice 

102 cage experiments with plants treated with the behaviourally most active synthetic blend 
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103 versus control plants were performed to assess their attractive potential under greenhouse 

104 conditions. As a comparison, the cell-free cultivation medium of one of the bacterial 

105 strains was included. 

106

107 2 MATERIALS AND METHODS

108 2.1 Study organisms

109 Three bacterial isolates that produce volatile blends that are attractive to A. colemani20,21 

110 were used in this study (Table S1, Supporting Information). Strains were isolated from 

111 different sources from the parasitoid’s habitat. They included an isolate from the aphid 

112 Macrosiphum euphorbiae (ST18.16/150), an isolate from an Aphidius wasp 

113 (ST18.16/133), and an isolate from Dendrocerus aphidum, which is an hyperparasitoid 

114 of Aphidius (ST18.16/043). Based on sequencing of the rpoB gene, isolates were assigned 

115 to Bacillus circulans (ST18.16/150), Bacillus pumilus (ST18.16/133) and Bacillus sp. 

116 (ST18.16/043) (Table S1, Supporting Information). Strains were stored at −80°C in 

117 tryptic soy broth (TSB, Oxoid, Hampshire, UK) containing 25% (v/v) glycerol. Insect 

118 responses were investigated using adult females of A. colemani. Parasitoids were obtained 

119 in the form of parasitized aphid mummies from Biobest (Westerlo, Belgium) (Aphidius-

120 system®). Mummies were placed inside a nylon insect cage (20×20×20 cm, BugDorm, 

121 MegaView Science Co., Ltd., Taichung, Taiwan) and kept under controlled conditions 

122 (22°C, 70% relative humidity and a 16:8-h light:dark photoperiod) until parasitoid 

123 emergence. All experiments were performed with food- and water-inexperienced females 

124 that were <24 hours old.

125
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126 2.2 Production of mVOCs

127 For production of mVOCs, the procedure by Goelen et al.20 was used. Briefly, bacterial 

128 strains were plated on tryptic soy agar (TSA, Oxoid, Hampshire, UK) and incubated at 

129 25°C for 24h. Next, bacterial cells were inoculated in 10 mL TSB and incubated overnight 

130 at 25°C with agitation at 120 rpm. Bacterial cells were then washed and diluted to a cell 

131 suspension with an optical density (OD 600 nm) of 1. Next, 1.5 mL of the obtained 

132 suspension was inoculated in a 250 mL Erlenmeyer flask containing 150 mL GYP25 

133 medium20. Erlenmeyer flasks were sealed with silicone plugs and incubated at 25°C at 

134 120 rpm. Each strain was cultivated in triplicate, and non-inoculated, blank medium was 

135 included as a control. After 48h of incubation, the media were centrifuged at 10,000 g for 

136 15 min and filter-sterilized to obtain cell-free supernatants. The samples were then stored 

137 in small aliquots in sterile, amber glass vials at -20°C until further use.

138

139 2.3 Identification of physiologically active mVOCs

140 In order to determine which mVOCs elicited an electrophysiological response in A. 

141 colemani, first microbial volatiles were collected by dynamic headspace collection (air 

142 entrainment).22 Specifically, volatiles were collected for 1h from 150 µL cell-free 

143 cultivation medium inside a 4 mL glass screw top GC vial (Thermo Scientific, Waltham, 

144 USA). In- and outlet ports were created by fitting Swagelock ports onto 19Gx2” syringe 

145 needles (AganiTM, Terumo®, Leuven, Belgium) which were pierced through the 12 mm 

146 polytetrafluorethylene (PTFE)/silicone septum (Supelco, Bellefonte, USA) of the GC 

147 vial. Activated charcoal filtered air was supplied through the inlet port at a rate of 400 

148 mL/min. Air subsequently passed over the medium in the GC vial and headspace volatiles 
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149 were adsorbed on Porapak Q filters (0.05 g, 50/80 mesh; Supelco, Bellefonte, USA) that 

150 were fitted on the outlet port through which air was drawn at a rate of 300 mL/min. Prior 

151 to entrainment, Porapak Q filters were washed with diethyl ether and conditioned by 

152 heating to 132°C in an activated charcoal-filtered nitrogen stream for 2h. Air entrainment 

153 of 150 µL of blank GYP25 medium was included as a control. All connections in the air 

154 entrainment setup were made using PTFE tubing. Entrained volatiles were eluted in 750 

155 µL diethyl ether and were stored in 1.1 mL glass microvials at -20°C until further use. 

156 GC-FID analysis yielded highly similar mVOC profiles across the biological replicates 

157 for each treatment. Therefore, all remaining experiments were performed with only one 

158 of the three replicates. 

159 After air entrainment, coupled gas chromatography-electroantennography (GC-

160 EAG) was performed using antennal preparations of female parasitoids. Before analysis, 

161 air entrainment samples were concentrated to 50 µL under an activated charcoal-filtered 

162 nitrogen stream. GC-EAG analyses were performed three times, and for each replicate a 

163 new antennal preparation was used. The GC-EAG system was equipped with a 6890N 

164 GC machine (Agilent Technologies, Santa Clara, USA) fitted with a cold on-column 

165 injection system and a non-polar HP-1 capillary column (50 m; 0.32 mm internal 

166 diameter; 0.52 μm film thickness), and used a flame ionization detector (FID).23 The 

167 carrier gas was helium. The oven temperature was initiated at 30°C and was maintained 

168 there for 2 min before being raised to 250°C at a rate of 5°C/min. The GC column effluent 

169 was split equally between the FID and the heated transfer line which delivered the 

170 separated compounds into an activated charcoal filtered, humidified air stream that flew 

171 towards the antennal preparation. Antennal preparations were made by chilling the 
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172 parasitoid in ice for 1 min, excising the head, removing one entire antenna, and then 

173 removing the tip of the last antennal segment to ensure good contact with the recording 

174 electrode. The antenna was then brought into contact with the Ag-AgCl ground electrode 

175 by inserting the antennal base into a glass capillary housing the electrode and filled with 

176 saline solution (composition as in Maddrell24, but without the glucose). The distal end 

177 was brought into contact with the recording electrode in a similar way. Detected signals 

178 were amplified by a high impedance amplifier (UN-06; Ockenfels Syntech GmbH, 

179 Kirchzarten, Germany) and analysed using customized Syntech software. Outputs from 

180 the FID and the EAG amplifier were analysed simultaneously with custom software. Only 

181 volatiles with a consistent electrophysiological response peak in all three replicates were 

182 considered as EAG-active.

183 Next, EAG-active mVOCs were tentatively identified by coupled GC-MS using 4 

184 µL of the concentrated air entrainment samples on a Waters Autospec Ultima mass 

185 spectrometer (Manchester, UK) coupled to an Agilent 6890 GC (Agilent Technologies, 

186 Santa Clara, USA; cold on-column injector, 50 m × 0.32 mm internal diam, 0.52 μm film 

187 thickness HP-1- column). Ionization was performed by electron impact at 70 eV and 

188 220°C. The GC oven temperature was initiated at 30°C and maintained for 5 min and 

189 then raised to 250°C at 5°C/min. Helium was the carrier gas. Peak identities were 

190 tentatively determined by manually comparing mass spectra with those from mass 

191 spectral databases using NIST MS Search v2.0 software with the NIST 2011 library, and 

192 by comparison of GC retention indices (Kováts index = KI).

193

194
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195 2.4 Y-tube behavioural assays

196 In order to test the attractiveness of the microbial volatile blends and EAG-active volatiles 

197 or blends thereof, a Y-tube olfactometer bioassay was performed as described by Goelen 

198 et al.20 For each bacterial strain, 150 µL of the cell-free cultivation medium was loaded 

199 on a filter paper (37 mm; Macherey-Nagel, Düren, Germany) and subsequently put in one 

200 of the olfactometer odour chambers. The second chamber received another filter on which 

201 150 μL blank medium was loaded as a control. For assessing parasitoid response to EAG-

202 active compounds, benzaldehyde (≥99.5%), butyl acetate (99.7%), 1,3-diacetyl benzene 

203 (97.0%), styrene (≥99.0%) (all purchased from Sigma-Aldrich, Saint Louis, USA) and 

204 1,2-dimethyl benzene (o-xylene) (≥99.0% Fluka, Bucharest, Romania) were used. 

205 Compounds were dissolved in diethyl ether prior to loading 10 µL of the mixture on a 

206 filter paper. After 30 seconds (which allowed the diethyl ether to evaporate), the filter 

207 paper was placed in one of the odour chambers of the olfactometer setup, while in the 

208 other chamber another filter paper was placed on which 10 μL diethyl ether had been 

209 added as a control. In a first experiment, the different test compounds were diluted in 

210 diethyl ether in different concentrations, resulting in seven different doses, i.e. 1, 10, 50 

211 and 100 ng, and 1, 10 and 50 µg, which were then each tested in the Y-tube olfactometer. 

212 In a second experiment, two synthetic volatile blends were tested, which are further 

213 referred to as “Blend 1” and “Blend 2”. Blend 1 consisted of two compounds to which A. 

214 colemani showed significant preference in the first experiment, i.e. benzaldehyde and 

215 styrene. The blend was produced by combining both compounds in their most attractive 

216 dose as determined in the first experiment (i.e. 10 ng for benzaldehyde and 1 µg for 

217 styrene). In addition, four other doses of the blend were tested with the same ratio of both 
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218 compounds (Table S2, Supporting Information). Blend 2 consisted of five EAG-active 

219 compounds and was created by adding the different compounds at relative amounts 

220 resembling the ratios in the mVOC blend of one of the bacterial strains (ST18.16/133), 

221 and was tested at five different doses (Table S3, Supporting Information).

222 All experiments were conducted with 60 female individuals, which were released 

223 in twelve cohorts of five individuals, and olfactory response was evaluated 10 min after 

224 their release. Parasitoids that did not make a choice within 10 min after release were 

225 considered as non-responding individuals and were eliminated from statistical analysis. 

226 Parasitoid olfactory response was analysed using a Generalized Linear Mixed Model 

227 (GLMM) based on a binomial distribution with a logit link function (logistic regression) 

228 using bacterial isolate, compound or blend as fixed factor (performed in R with the 

229 ‘glmer’ function from the lme4 package). Each release of one cohort of five individuals 

230 served as a replicate. To adjust for overdispersion and to prevent pseudoreplication, the 

231 release of each cohort (n = 12) was included in the model as a random factor. The number 

232 of parasitoids choosing for the control or treatment side in each cohort was entered as 

233 response variable. To examine the preference of the investigated parasitoids, we tested 

234 the null hypothesis (H0) that the parasitoids showed no preference for any olfactometer 

235 arm (i.e. 50:50 response) by testing H0: logit = 0, which equals a 50:50 distribution. 

236 Results were presented by calculating the Preference Index (PI), which is the difference 

237 between the number of parasitoids choosing for the volatile compounds and the 

238 parasitoids choosing for the control divided by the total number of responding insects.

239

240
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241 2.5 Cage experiments

242 Following the laboratory bioassays, the most promising blend was tested in a two-choice 

243 cage experiment in a greenhouse compartment (average temperature 22 ± 4°C, day light). 

244 As a comparison, the cell-free cultivation medium of one of the bacterial strains was 

245 included. Experiments were performed in a 2×3×2 m cage that was closed at all sides 

246 with a fine mesh. Nine-week-old sweet pepper plants (Capsicum annuum cv. IDS) were 

247 placed onto elevated platforms (height: 40 cm) in each corner of the cage (Fig. S1, 

248 Supporting Information). Using a vaporizer, plants were treated by spraying them with 

249 either the synthetic blend of 1 ng/µL benzaldehyde and 100 ng/µL styrene (Blend 1) or 

250 the cell-free cultivation medium of strain ST18.16/133 (“Treatment”; two plants), or a 

251 control solution (diethyl ether or non-inoculated GYP25 medium) (“Control”; two 

252 plants). Specifically, the leaves of the plants were sprayed with 20 puffs by which on 

253 average 2.5 mL was deposited onto the leaves of each plant. Treatment and control plants 

254 were always placed diagonally relative to each other. To evaluate the ability of the volatile 

255 mixtures to affect the behavioural response of A. colemani, 60 females were released from 

256 an elevated platform (height: 40 cm) in the centre of the cage 30 min after the plants had 

257 been sprayed (Fig. S1, Supporting Information). To record the parasitoids’ responses, a 

258 transparent, non-odorous glue plate (40×25 cm; Biobest, Westerlo, Belgium) was placed 

259 directly behind each plant to trap the parasitoids that visited this part of the cage (Fig. S1, 

260 Supporting Information). Forty-eight hours after parasitoid release, traps were removed 

261 and trapped parasitoids were counted. The experiment was replicated eight times on four 

262 different experimental days. For each replicate, plants were renewed, and the positions of 

263 treatment and control plants were switched. Parasitoid behavioural response was analysed 
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264 as mentioned earlier using a GLMM based on a binomial distribution with a logit link 

265 function (logistic regression), but using blend (synthetic blend vs. bacterial culture 

266 medium) as fixed factor. Each release of 60 individuals served as a replicate. The total 

267 number of parasitoids choosing for the control or treatment plants in each replicate was 

268 entered as response variable. 

269

270 3 RESULTS

271 3.1 Electrophysiological responses of A. colemani to mVOCs

272 In total, 20 EAG-active compounds were found in the mVOCs released by the bacteria 

273 (Fig. S2, Supporting Information), nine of which were tentatively identified by GC-MS 

274 and KI comparison (Table 1). While most of the EAG-responses were elicited by 

275 compounds unique to a certain strain, five EAG-active compounds originated from the 

276 mVOCs of more than one strain (Table 1). Specifically, the EAG-active compounds 

277 styrene and o-xylene were found in the volatile extracts of three strains, while 

278 benzaldehyde, 1,3-diacetylbenzene and a so far unknown compound were found in the 

279 volatile blends produced by two strains (Table 1).

280

281 3.2 Olfactory responses to EAG-active compounds and blends thereof

282 Behavioural assays with five selected EAG-active compounds revealed that parasitoids 

283 showed a significant behavioural response to two compounds: styrene and benzaldehyde 

284 (Fig. 1). Compound dose significantly affected parasitoid response (styrene: χ² = 23.33, 

285 df = 6, P = 0.003; benzaldehyde: χ² = 18.73, df = 6, P = 0.016). Parasitoids had a 

286 significant preference for styrene at 1 µg dose (PI = 0.38, P = 0.005), and for 
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287 benzaldehyde at 50 ng (PI = 0.29, P = 0.035) and 10 ng (PI = 0.31, P = 0.011) doses (Fig. 

288 1). Olfactory response to 10 or 50 ng benzaldehyde was comparable with the response to 

289 the bacterial cultivation medium (PI = 0.30 - 0.33), while the response to 1 µg styrene 

290 was more pronounced (Fig. 1). Results for benzaldehyde also suggest that doses equal or 

291 higher than 1 µg elicit a negative response in A. colemani. Furthermore, results revealed 

292 that 10 ng of butyl acetate was significantly repellent to A. colemani (PI = -0.36; P = 

293 0.011) (Fig. 1).

294 Of the two synthetic blends tested, parasitoids were significantly attracted to 

295 Blend 1 (χ² = 21.15, df = 4, P <0.001), while the effect of Blend 2 was not significant in 

296 any of the doses tested (χ² = 5.90, df = 4, P =0.207) (Fig. 2). Parasitoid females had a 

297 significant preference for the 0.75× (PI = 0.32; P = 0.043), 1× (PI = 0.50, P < 0.001) and 

298 1.5× dose (PI = 0.28, P = 0.022) of Blend 1, while they were significantly deterred by the 

299 2× dose (PI = -0.28, P = 0.046) (Fig. 2). A combination of 1 µg styrene and 10 ng 

300 benzaldehyde elicited a considerably stronger response (PI = 0.50) in comparison to the 

301 responses to the individual compounds (PIstyrene = 0.38, PIbenzaldehyde = 0.31) and the 

302 mVOCs of the bacterial cell-free media (PI = 0.30 - 0.33).

303

304 3.3 Parasitoid behavioural response under greenhouse conditions

305 Parasitoid behavioural response in the two-choice cage experiment varied significantly 

306 between synthetic Blend 1 and the cell-free cultivation medium of strain ST18.16/133 (χ² 

307 = 5.75, df = 4, P =0.016). Plants treated with Blend 1 were visited by significantly more 

308 parasitoids than the control plants (PI = 0.35, P < 0.001). Specifically, 50 to 80% of the 

309 total number of trapped individuals were caught near the treatment plants across the 
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310 different replicates (Fig. 3). Plants treated with the cultivation medium of ST18.16/133 

311 elicited no significant response relative to the control plants (PI = 0.03, P = 0.677). In the 

312 experiment with Blend 1, on average 20 out of the 60 released insects (33.0%) were 

313 caught on the sticky plates, whereas this was considerably lower in the experiment with 

314 the cultivation medium of ST18.16/133, where on average 11.5 insects (19.2%) were 

315 trapped. It has to be noted that our method used to evaluate insect response may have 

316 underestimated the number of responding parasitoids as only individuals trapped on the 

317 glue plates behind the plants were taken into account.

318

319 4 DISCUSSION

320 Our results showed that A. colemani females were able to detect several, but not all, 

321 mVOCs produced by the bacteria. This suggests that only certain mVOCs play a role in 

322 parasitoid olfactory behaviour, which is in agreement with previous research on plant- or 

323 host-associated volatiles.14 Although GC-EAG analyses allow the determination of 

324 electrophysiologically active compounds, an EAG response does not necessarily indicate 

325 behavioural activity.25 In our study, only two of five tested EAG-active compounds 

326 (benzaldehyde and styrene) evoked an innate behavioural response in the Y-tube 

327 bioassays. Further, the olfactory response varied in a dose-dependent manner, ranging 

328 from no or negative responses to positive responses. This has previously been observed 

329 for HIPVs in braconid parasitoids.18,26 Interestingly, styrene at a dose of 1 µg and 

330 benzaldehyde at 10 ng or 50 ng doses elicited a similar or even stronger preference in A. 

331 colemani than the cell-free cultivation medium of the bacteria. Similar findings have been 

332 reported for Psyttalia parasitoids, which were more or equally attracted to individual 
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333 synthetic Ceratitis capitata-induced fruit volatiles than to the odour of infested fruits 

334 themselves.27 The higher sensitivity to benzaldehyde compared to styrene suggests it is a 

335 more ecologically relevant compound. Benzaldehyde is widely emitted by plants, and 

336 flowers in particular,28 which may explain the high preference observed for this 

337 compound. Bacterial VOC blends are generally composed of typical fermentation 

338 products like methylated, low molecular weight alcohols and corresponding aldehydes 

339 and organic acids.13,29 However, some compounds emitted by microbes are also 

340 commonly reported as plant volatiles or insect pheromones.20 It is therefore possible that 

341 the parasitoids were attracted to benzaldehyde in the context of it being a floral volatile 

342 rather than coincidental production by bacteria as side-products of their primary and 

343 secondary metabolism.30 However, recent findings have shown that many mVOCs are 

344 not simply side-products, but display certain biological activities, e.g. to aid microbial 

345 dispersal by insect vectors.31 Further research is needed to unravel the ecological role of 

346 volatiles produced by bacteria. 

347 Although no behavioural responses were observed for a number of EAG-active 

348 compounds, or specific concentrations of EAG-active compounds, it has to be noted that 

349 these compounds or concentrations may still exert an effect within a blend of volatiles. 

350 Previous research has demonstrated that insects that are attracted to a specific blend can 

351 be unaffected by or even repelled by the individual compounds of that blend.15,32 In 

352 addition, it has to be considered that the parasitoids used in this study had not been 

353 previously exposed to the mVOCs tested. It is possible that compounds that did not elicit 

354 an innate response in our studies, may elicit a conditioned response as a result of 
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355 associative learning, when parasitoids experience these volatiles in association with 

356 feeding or oviposition events.33

357 Parasitoids were not only attracted by individual compounds, but also by mixtures 

358 of synthetic mVOCs. Specifically, a strong positive response was observed for a synthetic 

359 mixture of styrene and benzaldehyde when combined at a ratio of 100/1. Moreover, at a 

360 dose of 1 µg styrene and 1 ng benzaldehyde, parasitoid preference for the blend was 

361 considerably higher than for the individual compounds. At these amounts, the blend 

362 attracted 75% of the responding individuals (PI = 0.50), which is comparable to levels of 

363 positive response obtained with synthetic plant volatiles and volatiles from aphid-infested 

364 plants in Aphidius species.26,34 Additionally, A. colemani response to our two-component 

365 blend was also stronger than to a bacterial cultivation medium, which suggests that the 

366 latter may contain compounds that have a masking or inhibitory effect on the key 

367 compounds responsible for the attractiveness of the blend.35,36 These findings could also 

368 be interpreted as an indication that parasitoids had an innate response to simple blends 

369 with typical floral volatiles like benzaldehyde.28 Several examples exist where the 

370 response to a blend containing a select number of synthetic compounds exceeded the 

371 response to the natural blend.35,37

372 By contrast, the synthetic mixture of EAG-active compounds mimicking the 

373 behaviourally active cultivation medium of bacterial strain ST18.16/133 did not induce a 

374 positive behavioural response in A. colemani, despite the presence of styrene and 

375 benzaldehyde in the mixture. However, the amounts and proportions of styrene and 

376 benzaldehyde in this blend were different compared to the active two-compound blend. 

377 It is also possible that one or more key compounds that were present in the bacterial 

378 cultivation medium were absent in the synthetic mixture of five compounds. Previous 
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379 research has shown that removing key compounds from an attractive volatile blend can 

380 disrupt attraction to that blend.38 It is therefore possible that one or more of the 

381 unidentified EAG-active compounds in the bacterial volatile emissions have been 

382 essential in eliciting the attractive response in A. colemani. Additional research is required 

383 to identify these EAG-active compounds and assess their effects on parasitoid olfactory 

384 response, both individually and in mixtures.

385 In contrast to the laboratory assays, the cell-free cultivation medium of strain 

386 ST18.16/133 did not show significant attraction of A. colemani in the cage experiments. 

387 This confirms previous research showing that results from laboratory experiments cannot 

388 always be extrapolated to more realistic environments and over longer distances.37,39 

389 Under natural conditions, there are more complex background odours originating from 

390 diverse sources which can compete or interact with attractants, thereby reducing the 

391 signal-to-noise ratio and disturbing the insect’s response.37,40 In contrast, application of 

392 the two-component mixture of styrene and benzaldehyde resulted in significant attraction 

393 of the parasitoids to the treated plants. Parasitoid responsiveness to the synthetic blend 

394 was also significantly higher compared to the cell-free cultivation medium, further 

395 demonstrating the attractiveness of the two-compound blend. However, additional 

396 research is needed to establish whether the observed effects were directly caused by the 

397 applied blend of synthetic volatiles, or whether they were the result of an interaction 

398 between the applied compounds and the plants, inducing the production of attractive 

399 volatiles.40

400

401

402
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403 5 CONCLUSIONS

404 In conclusion, this study demonstrated that mVOCs emitted by bacteria elicited 

405 behavioural and electrophysiological responses in A. colemani parasitoids. The olfactory 

406 response of A. colemani to synthetic blends based on bacterial volatile emissions was 

407 largely dependent on the dose and ratio of the different compounds. Moreover, synthetic 

408 volatile blends were able to attract A. colemani parasitoids under greenhouse conditions, 

409 while this was not the case for the more complex bacterial cell-free cultivation medium. 

410 This opens opportunities to construct simple synthetic blends to attract or retain natural 

411 enemies of pest species at the greenhouse or field scale. Future research is needed to 

412 assess whether attracting natural enemies with such compounds will also enhance 

413 biological control efficacy.
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536 Table 1. Compoundsa identified by coupled GC-EAG, using female Aphidius colemani antennae, in volatile extracts collected from the cell-free cultivation 
537 medium of three bacterial strains that are attractive to A. colemani and the blank medium

Neutral Attractive
EAG responseb RT (min)c RId Compound Blank medium ST18.16/133 ST18.16/043 ST18.16/150
A1, D1 4.28 705 heptane 33.1 53.6

C1 4.57 727 unknown 1 15.4

B1 4.72 738 unknown 2 1.7

A2 4.77 741 2,4-dimethyl hexane 1.4

A3 5.35 780 unknown 3 0.8

B2 5.66 798 butyl acetate 4.2
D2 6.17 837 ethyl cyclohexane 1.1

D3 6.58 868 cyclohexanone 18.9

B3, C2, D4 6.92 890 styrene 1.2 0.8 1.3
B4, C3, D5 7.02 896 o-xylene 2.2 3.2 6.0
C4 7.09 901 unknown 4 0.9

B5 7.42 929 unknown 5 1.0

B6, D6 7.50 935 benzaldehyde 1.3 1.6
B7, D7 7.75 956 unknown 6 4.6 11.3

D8 8.02 976 unknown 7 0.7

A4 10.30 1175 unknown 8 2.7

B8 11.21 1263 unknown 9 1.1

C5 11.91 1335 unknown 10 0.9

B9, C6 12.53 1399 1,3-diacetylbenzene 1.2 3.4
A5 12.95 1447 unknown 11 1.2

538 aPeak areas of each compound that elicited a EAG-response are shown for each strain as determined by an HP-1 equipped GC. Compounds indicated in bold were selected for further experiments.
539 bLetter and number combinations refer to the different panels and marked EAG-active peaks in Fig. S2 (Supporting Information).
540 cRetention times of associated compounds as identified in the GC-EAG analyses.
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541 dRetention indices (Kováts index) relative to retention times of C7-C22 n-alkanes on an HP-1 GC column.
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542 FIGURE LEGENDS

543 Figure 1. Olfactory responses of adult Aphidius colemani females when given the choice 

544 between one of seven different doses ranging from 1 ng to 50 µg of five synthetic volatile 

545 compounds (i.e. butyl acetate, styrene, o-xylene, benzaldehyde and 1,3-diacetylbenzene) 

546 and a diethyl ether blank in a Y-tube olfactometer bioassay. Parasitoid response is 

547 expressed as Preference Index (PI), calculated by dividing the difference between the 

548 number of parasitoids choosing the synthetic volatiles and the parasitoids choosing the 

549 control by the total number of responding insects. In total, 60 individuals were tested (12 

550 releases of 5 females; n = 12) for each dose. Non-responders were excluded from the 

551 statistical analysis. Olfactory response of A. colemani to the mVOCs of the bacterial 

552 strains ST18.16/133, ST18.16/043 and ST18.16/150 were included as a reference. Grey 

553 bars indicate non-significant olfactory responses (P > 0.05), green bars indicate 

554 significant attractive responses (P ≤ 0.05) and red bars indicate significant repellent 

555 responses (P ≤ 0.05) when compared to a theoretical 50:50 distribution within a choice 

556 test (Generalized Linear Mixed Model). ** 0.001 ≤ P < 0.01; * 0.01 ≤ P ≤ 0.05; ns, non-

557 significant. Overall parasitoid responsiveness was higher than 67%.

558

559 Figure 2. Olfactory responses of adult Aphidius colemani females when given the choice 

560 between one of five different doses of a synthetic volatile blend and a diethyl ether blank 

561 in a Y-tube olfactometer bioassay. Synthetic blends tested included (A) Blend 1, 

562 consisting of two compounds (benzaldehyde and styrene) and (B) Blend 2, consisting of 

563 five compounds (butyl acetate, o-xylene, benzaldehyde, styrene, and 1,3-

564 diacetylbenzene). For Blend 1, dose 1× was composed of 1 µg styrene and 10 ng 
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565 benzaldehyde; for Blend 2, dose 1× consisted of 3.40 µg butyl acetate, 1.81 µg o-xylene, 

566 1.07 µg benzaldehyde, 1.00 µg styrene, and 0.98 µg 1,3-diacetylbenzene. Blends were 

567 tested at a volume of 10 µl. The volatile composition of the synthetic blends tested is 

568 illustrated by the pie charts. Parasitoid response is expressed as Preference Index (PI), 

569 calculated by dividing the difference between the number of parasitoids choosing the 

570 volatile blend and the parasitoids choosing the control by the total number of responding 

571 insects. In total, 60 individuals were tested (12 releases of 5 females; n = 12) for each 

572 dose. Non-responders were excluded from the statistical analysis. Olfactory response of 

573 A. colemani to the mVOCs of the bacterial strains ST18.16/133, ST18.16/043 and 

574 ST18.16/150 is included as a reference. Grey bars indicate non-significant olfactory 

575 responses (P > 0.05), green bars indicate significant attractive responses (P ≤ 0.05) and 

576 red bars indicate significant repellent responses (P ≤ 0.05) when compared to a theoretical 

577 50:50 distribution within a choice test (Generalized Linear Mixed Model). *** P < 0.001; 

578 * 0.01 ≤ P ≤ 0.05; ns, non-significant. Overall parasitoid responsiveness was higher than 

579 80%.

580

581 Figure 3. Responses of adult Aphidius colemani females under greenhouse conditions 

582 when given the choice between two sweet pepper plants treated with a volatile blend and 

583 two control plants. Experiments included application of (A) Blend 1 and diethyl ether as 

584 a control, and application of (B) the cell-free cultivation medium of ST18.16/133 and 

585 blank GYP25 medium as a control. The volatile composition of the blends tested is 

586 illustrated by the pie charts. Blend 1 was composed of 100 ng/µL styrene and 1 ng/µL 

587 benzaldehyde. Plants were sprayed with a vaporizer (20 puffs) by which on average 2.5 
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588 mL was deposited onto the leaves of each plant. Parasitoid response is expressed as the 

589 mean Preference Index (PI) (±SE) of eight replicates (n = 8). For each replicate, 60 

590 individuals were released, and parasitoid response was evaluated 48h after insect release 

591 by counting the number of trapped wasps on transparent, odourless glue plates behind the 

592 plants. The green bar indicates an average significant attractive response (P ≤ 0.05), while 

593 the grey bar indicates an average non-significant olfactory response (P > 0.05) when 

594 compared to a theoretical 50:50 distribution within a choice test (Generalized Linear 

595 Mixed Model). *** P < 0.001; ns, non-significant. Average responsiveness for Blend 1 

596 was 33.0%, for the ST18.16/133 culture medium it was 19.2%.
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Figure 1. Olfactory responses of adult Aphidius colemani females when given the choice between one of 
seven different doses ranging from 1 ng to 50 µg of five synthetic volatile compounds (i.e. butyl acetate, 

styrene, o-xylene, benzaldehyde and 1,3-diacetylbenzene) and a diethyl ether blank in a Y-tube 
olfactometer bioassay. Parasitoid response is expressed as Preference Index (PI), calculated by dividing the 
difference between the number of parasitoids choosing the synthetic volatiles and the parasitoids choosing 
the control by the total number of responding insects. In total, 60 individuals were tested (12 releases of 5 

females; n = 12) for each dose. Non-responders were excluded from the statistical analysis. Olfactory 
response of A. colemani to the mVOCs of the bacterial strains ST18.16/133, ST18.16/043 and ST18.16/150 
were included as a reference. Grey bars indicate non-significant olfactory responses (P > 0.05), green bars 
indicate significant attractive responses (P ≤ 0.05) and red bars indicate significant repellent responses (P ≤ 

0.05) when compared to a theoretical 50:50 distribution within a choice test (Generalized Linear Mixed 
Model). ** 0.001 ≤ P < 0.01; * 0.01 ≤ P ≤ 0.05; ns, non-significant. Overall parasitoid responsiveness was 

higher than 67%. 
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Figure 2. Olfactory responses of adult Aphidius colemani females when given the choice between one of five 
different doses of a synthetic volatile blend and a diethyl ether blank in a Y-tube olfactometer bioassay. 

Synthetic blends tested included (A) Blend 1, consisting of two compounds (benzaldehyde and styrene) and 
(B) Blend 2, consisting of five compounds (butyl acetate, o-xylene, benzaldehyde, styrene, and 1,3-

diacetylbenzene). For Blend 1, dose 1× was composed of 1 µg styrene and 10 ng benzaldehyde; for Blend 2, 
dose 1× consisted of 3.40 µg butyl acetate, 1.81 µg o-xylene, 1.07 µg benzaldehyde, 1.00 µg styrene, and 

0.98 µg 1,3-diacetylbenzene. Blends were tested at a volume of 10 µl. The volatile composition of the 
synthetic blends tested is illustrated by the pie charts. Parasitoid response is expressed as Preference Index 
(PI), calculated by dividing the difference between the number of parasitoids choosing the volatile blend and 
the parasitoids choosing the control by the total number of responding insects. In total, 60 individuals were 
tested (12 releases of 5 females; n = 12) for each dose. Non-responders were excluded from the statistical 

analysis. Olfactory response of A. colemani to the mVOCs of the bacterial strains ST18.16/133, ST18.16/043 
and ST18.16/150 is included as a reference. Grey bars indicate non-significant olfactory responses (P > 
0.05), green bars indicate significant attractive responses (P ≤ 0.05) and red bars indicate significant 
repellent responses (P ≤ 0.05) when compared to a theoretical 50:50 distribution within a choice test 

(Generalized Linear Mixed Model). *** P < 0.001; * 0.01 ≤ P ≤ 0.05; ns, non-significant. Overall parasitoid 
responsiveness was higher than 80%. 
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Figure 3. Responses of adult Aphidius colemani females under greenhouse conditions when given the choice 
between two sweet pepper plants treated with a volatile blend and two control plants. Experiments included 

application of (A) Blend 1 and diethyl ether as a control, and application of (B) the cell-free cultivation 
medium of ST18.16/133 and blank GYP25 medium as a control. The volatile composition of the blends 

tested is illustrated by the pie charts. Blend 1 was composed of 100 ng/µL styrene and 1 ng/µL 
benzaldehyde. Plants were sprayed with a vaporizer (20 puffs) by which on average 2.5 mL was deposited 
onto the leaves of each plant. Parasitoid response is expressed as the mean Preference Index (PI) (±SE) of 

eight replicates (n = 8). For each replicate, 60 individuals were released, and parasitoid response was 
evaluated 48h after insect release by counting the number of trapped wasps on transparent, odourless glue 

plates behind the plants. The green bar indicates an average significant attractive response (P ≤ 0.05), 
while the grey bar indicates an average non-significant olfactory response (P > 0.05) when compared to a 

theoretical 50:50 distribution within a choice test (Generalized Linear Mixed Model). *** P < 0.001; ns, non-
significant. Average responsiveness for Blend 1 was 33.0%, for the ST18.16/133 culture medium it was 

19.2%. 
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Identification and application of bacterial volatiles to attract a generalist 

aphid parasitoid: from laboratory to greenhouse assays

Tim Goelen,a József Vuts,b Islam S. Sobhy,a,c Felix Wäckers,d,e John C. Caulfield,b Michael 

A. Birkett,b Hans Rediers,a Hans Jacquemynf and Bart Lievensa

aLaboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), 

Department of Microbial and Molecular Systems, KU Leuven, B-3001 Leuven, Belgium.

bDepartment of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 

2JQ, UK.

cDepartment of Plant Protection, Faculty of Agriculture, Suez Canal University, 41522 

Ismailia, Egypt.

dBiobest, B-2260 Westerlo, Belgium.

eLancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, UK.

fLaboratory of Plant Conservation and Population Biology, Biology Department, KU Leuven, 

B-3001 Leuven, Belgium.
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laboratory to greenhouse assays. Goelen et al. 2020

Table S1. Bacterial isolates used in this study

Phylogenetic affiliation based on rpoB sequence similaritycIsolate 
identifier
(GenBank 
Accession 
N°a)

Olfactory 
response of 
A. colemanib Phylum Family Closest match in GenBank Identity 

(%)d

Source of 
isolation

ST18.16/133 
(MN232849)

Attractive Firmicutes Bacillaceae Bacillus pumilus 100.00 Aphidius ervi

ST18.16/043 
(MN232830)

Attractive Firmicutes Bacillaceae Bacillus sp. 80.24 Dendrocerus 
aphidum

ST18.16/150 
(MN232831)

Attractive Firmicutes Bacillaceae Bacillus circulans 92.20 Macrosiphum 
euphorbiae

aAccession number of  rpoB sequences deposited in GenBank.
bOlfactory response of A. colemani parasitoids to the mVOCs produced by the strains in a Y-
tube olfactometer bioassay.
cBased on a Blast search against GenBank (July 2019).
dFragment length was 1102 bp.

Table S2. Composition (µg) of the five different doses of Blend 1a tested in the Y-tube 
olfactometer bioassay

CompositionTested dose
Styrene Benzaldehyde Total

2x 2.000 0.020 2.020
1.5x 1.500 0.015 1.515
1xb 1.000 0.010 1.010
0.75x 0.750 0.008 0.758
0.5x 0.500 0.005 0.505

Relative amount 99.0% 1.0% 100%
aBlend 1 consisted of two volatile compounds which elicited a significant EAG-response in the 
GC-EAG analysis.
bThe 1x dose contains the sum of doses of styrene and benzaldehyde at which they were most 
attractive individually in the Y-tube olfactometer bioassay. For all doses tested relative 
composition of the compounds was kept constant, i.e. 1.0% benzaldehyde and 99.0% styrene.
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Table S3. Composition (µg) of the five different doses of Blend 2a tested in the Y-tube 
olfactometer bioassay

Compositionb

Tested dose
o-Xylene Styrene Benzaldehyde Butyl 

acetate
1,3-
Diacetylbenzene Total

10x 18.10 10.00 10.74 34.05 9.75 82.64
5x 9.05 5.00 5.37 17.02 4.88 41.32
1x 1.81 1.00 1.07 3.40 0.98 8.26
0.1x 0.18 0.10 0.11 0.34 0.10 0.83
0.01x 0.018 0.010 0.011 0.034 0.010 0.083
Relative 
amount 21.9% 12.1% 13.0% 41.2% 11.8% 100%

aBlend 2 consisted of five volatile compounds which elicited a significant EAG-response in the 
GC-EAG analysis.
bThe relative amount of each of the five compounds of Blend 2 resembled the headspace 
composition of these compounds in the ST18.16/133 cell-free medium as detected by the GC.

Figure S1. Experimental setup of the cage experiments under greenhouse conditions. (A) 
Schematic diagram of the experimental setup used in the cage experiments, which were 
performed in a 2x3x2 m cage fitted with a fine mesh. Nine-week-old pepper plants were placed 
on elevated platforms in each corner of the cage. Plants were treated by spraying them with a 
synthetic mVOC solution or bacterial culture medium (Treatment; 2 plants), and a control 
solution (Control; 2 plants). Control and treatment plants were placed diagonally relative to 
each other inside the cage. Directly behind each plant a transparent glue plate was placed to 
catch visiting parasitoids. In each replicate of each experiment, 60 Aphidius colemani females 
were released from a central release point on an elevated platform. (B) Photograph of the 
experimental setup.
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Figure S2. Coupled GC-EAG with female Aphidius colemani antennae on volatiles entrained 
from the cell-free cultivation medium of the three tested bacterial strains and the blank medium. 
Upper trace: result of the GC analysis; lower trace: EAG-response. Only EAG-active peaks that 
are found in all three replicates tested are marked with a number and associated retention times 
(min) on the GC chromatogram (for more details, see Table 1). The colour of the 
electroantennogram indicates the effect of the volatile blend of the tested strain on the olfactory 
response of Aphidius colemani, i.e. grey = neutral and green = attractive in a Y-tube 
olfactometer bioassay.
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