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Abstract
The severe water scarcity (SWS) concept allows for consistent analysis of the supply and demand for
water sourced grain production worldwide. Thus, the primary advantage of using SWS is its ability to
simultaneously accommodate the spatial extent and temporal persistence of droughts using climatic
data. The SWS concept was extended here to drivers of global grain prices using past SWS events and
prices of three dominant grain crops: wheat, rice and maize. A signi�cant relation between the SWS-
affected area and the prices of wheat was con�rmed. The past price–SWS association was then used to
project future wheat prices considering likely climate change scenarios until 2050 and expected SWS
extent. The projected wheat prices increase with increasing SWS area that is in turn a function of
greenhouse gas emissions. The need to act to reduce greenhouse gas emissions is again reinforced
assuming the SWS-price relation for wheat is unaltered.

Introduction
Wheat, maize and rice account for 42% of the global societal dietary energy supply and 37% of the global
protein supply (Fig. 1a)1. Wheat is the main source of protein for humans (19%), and rice and wheat
combined remain the dominant sources of calories (37%, respectively)1. Thus, the prominence of cereals
in the global food system is not in dispute. The sheer scale of cereal production and land use
underscores this point. Some 35% of cropland where wheat is the most common crop accounts for
218 million hectares (Fig. 1a). Wheat and rice are also associated with the highest combined blue water
(i.e., fresh surface and groundwater) use and together with maize account for 51% of the global blue
water footprint2. Any change in the water availability (or lack thereof) will impact the production,
availability, and price of these crops.

By mid-century, the Food and Agriculture Organization (FAO) projects an increase of 40% in the food and
agricultural product demand when compared to 2020 levels. Wheat will be the most consumed cereal as
food (0.6 Gt), and maize will be the most consumed cereal as feed (0.97 Gt)3. The necessary increases in
the agricultural output driven by this demand will likely be achieved by yield increases rather than
cultivated land expansion. This change will primarily occur in emerging economies presumably by
improving various technologies and cultivation practices, including mobilizing production resources such
as irrigation water and fertilizer4. The challenge of maintaining a balance between the cereal demand and
supply under a changing climate is evident5–7 with a particular concern raised regarding available water
resources8,9 (quantity and quality).

Approximately 14% of the global cereal production is traded internationally, and 90% of these exports are
generated by ten producing countries. Global prices are assumed closely linked to the current
environmental conditions in these countries9. While the production of wheat, maize, and rice steadily
grew over the past 60 years, the prices of these cereals showed a marginal overall increase between 1960
and 2000 followed by signi�cant increases over the past 22 years. Among the three crops, wheat is a
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particularly volatile commodity10 exhibiting punctuated growth. During the grain price crises of 2007/08
and 2010/11, wheat prices increased by 137% and 72%, respectively, relative to the preceding years. In
comparison, rice prices changed by only 85% and 4%, respectively, and maize prices by 35% and 72%,
respectively*,11. Of far greater concern is the number of undernourished individuals. This number
increased from 848 million in 2005–2007 to 1023 million by 200912,13, which far exceeds the global
population increase during the same period

The growing demand for cereals and their high price volatility are only part of any future challenges to
food security. Crop models predict 1.5%, 15.5%, and 6.7% decreases in global rice, maize, and wheat
productivity levels, respectively, per 1°C of warming without adaptation14. These model projections of
cereal productivity consider key factors such as hydroclimatic variability such as air temperature and
vapor pressure de�cit, soil water conditions, irrigation, crop cultivar and management practices, and even
the effects of increasing atmospheric CO2 concentration levels on photosynthesis and water-use
e�ciency. However, these projections must be viewed as incomplete because they fail to account for
occurrences of large-scale adverse climate extremes8,15 that can be persistent over extended durations
coinciding with particular crop-growth stage. Although global warming is expected to increase the
frequency of extreme events, most projections of climate change impacts on agricultural commodity
prices consider only long-term yield trends based on multiyear means16,17.Thus, these projections remain
silent on the role of intensive, longer-lasting, larger-scale or co-occurring extreme events14. The
spatiotemporal relations of such events and their compound impact on grain prices continue to be a
formidable scienti�c challenge and a knowledge barrier. As a logical starting point to address these
challenges, the work here seeks to bridge the in�uence of climate change along with its resulting coherent
spatio-temporal extremes directly on cereal prices. This aim was achieved by �rst determining whether
soil water content anomalies expressed as severe water scarcity (SWS) events notably affected historic
cereal prices and then proceeding to estimate changes in 2050 price levels driven by expected water
scarcity increases as derived from climate projections. .

Results

Sensitivity of global rice, maize and wheat prices to SWS
To estimate the in�uence of SWS events (de�ned as an unusually low water availability in Table S1) on
grain prices, SWS was analyzed at three spatial scales by averaging over (i) the total arable land; (ii)
growing area for each crop; and (iii) crop-growing areas of the top ten global exporters (Fig. S1). The
analysis showed that for rice, none of these approaches yielded signi�cant results (Fig. 1b). The maize
price models explained up to 40% of the global price variability (p < 0.01), with the SWS extent in maize-
growing regions being the most e�cient predictor. These predictions were no less effective when only
SWS affected maize growing area of the top ten exporters was used (Fig. 1b). Regarding wheat, the
relation between the SWS-affected area and �uctuations in global prices was closer than that in the case
of maize (Fig. 1b and Table S2). The highest explained variance in the wheat grain price (65%) and the
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smallest root mean square error (RMSE) were achieved when considering the SWS area in the top ten
exporting countries.

The different sensitivities of rice, maize and wheat prices to SWS occurrence were at least partly
explained in Fig. 1c. Rice is predominantly grown in environments (Fig. 1c) where rainfall exceeds the
potential evapotranspiration (PET) during the critical part of the growing season de�ned as four months
prior to harvest. This is in direct contrast to wheat, which is grown in cooler environments under mostly
water-limited conditions. These areas are characterized by climates with higher PET levels than rainfall.
Maize is grown in transition zones between these two endmember situations. The SWS in�uence on rice
is also partially offset by irrigation, which covers 33% of the total harvested area of this grain and only
15% of that of wheat18. The overall results con�rmed the SWS rationale when the SWS–price responses
of all three crops were compared. As wheat is grown in areas with the least favorable water balance
(Fig. 1c) and is the least affected by irrigation, further analyses of the SWS effect on grain prices focused
on wheat.

Estimating the wheat price response to SWS variation
Five SWS–wheat price models were used to estimate the effect of the variation in the SWS-affected area
(Figs. 1b and S3) on wheat grain prices (Fig. 2a). These SWS–wheat price models individually explained
between 52% and 65% of the price variability (Fig. S4 and Table S2). However, all models underestimate
the impact of high SWS exposure on price variability. The �ve-model ensemble explained 72% of the
interannual wheat price variability from 2000 to 2021 with a relative RMSE of 27.6% for the wheat price
(Fig. 2a), expressed in terms of the wheat price index (WPI). The relation between SWS and global wheat
price remained statistically signi�cant (p < 0.001) even if the years of peak prices, namely, 2007/2008,
2010/2011, 2018/2019, and 2019/2020, were excluded. The results indicated not only that SWS
variations affect the global wheat grain price but also that wheat grain prices are closely related to SWS
events in the top-ten wheat exporting countries (Fig. S3).

Observed and expected shifts in the SWS extent and impact
on the wheat grain price
Between 1911 and 2020, 5.0% ± 4.2% of the global wheat-growing area was affected by SWS on average,
with the maximum extent exceeding 15% in 2000, 2010, 2012 and 2020 (Fig. S2). The average SWS-
affected area exhibited a signi�cant positive trend (p < 0.001) between 1911 and 2000, with a 0.5%
increase of the affected climate grid cells per decade. Between 2011 and 2021, the rate of SWS area
increase was even higher at some 2.2%.

Translating those changes in SWS to price changes used two indicators: the reported whole-sale price
index (WPI) and a closely related quantity that measures prices received by farmers for crop sale - the
farm price index (FPI). The reported WPI from 2001‒2020 and FPI from 1951‒2021 occurred within the
5‒95% con�dence interval of price estimates based on observed Climate Research Unit (CRU) data and
the historical runs of global circulation models (GCMs). The FPI, WPI and CRU-based price estimates also



Page 6/24

followed a similar pattern over the entire period (Fig. 2d). On average, the prices generated from the GCM
control run were ~ 13% lower than those estimated by the price models from observed climate data and
observed prices (Fig. 3a). From 1951‒2000 (i.e., the period for which the SWS–price models were not
calibrated), the �nal price model ensemble captured the changes in the mean FPI (1951‒2021) at ten-
year intervals (Fig. 3a, Fig. S4). On average, the prices estimated from the observed CRU gridded climate
data were higher than the reported prices prior to 1990 (Fig. 3a) and the mean of the GCM-based
estimates. This �nding could be explained by the Coupled Model Intercomparison Project Phase 6
(CMIP6)-GCM control run results yielding a lower percentage of the SWS-affected area than that obtained
based on the CRU data. Therefore, the mean prices estimated based on the GCM �ndings were lower than
those based on the CRU estimates. However, both the FPI and WPI values occurred within the 95%
con�dence intervals (Fig. 2d and 3a) of the CRU-based and the CMIP6-GCM control run-based wheat price
estimates.

A summary of the expected changes in wheat prices based on the CMIP6-based SWS projections is
shown in Figs. 3, S5 and S6. Wheat prices are likely to increase from a mean value of 190 ± 53% (WPI;
SSP1-2.6: 166 ± 23%; SSP5-8.5: 165 ± 24%) based on the period 2001‒2020 (Fig. 3a) to 274 ± 19%
(SSP1-2.6) and 309 ± 37% (SSP5-8.5) from 2031‒2050 (Fig. 3b). There were no signi�cant (p = 0.01)
differences among the price estimates obtained by the individual shared socioeconomic pathways
(SSPs) from 2011‒2040, but the divergence among the SSPs sharply increased in the late 21st century
(Figs. 3c, S4 and S5). The likelihood of widespread SWS events increased in some GCMs, and the upper
price estimates accordingly shifted. The modeled prices exhibited slower growth up to + 1°C of warming,
with a higher rate of increase between 1 and 2°C, followed by a slightly lower rate of price growth under
more intense warming (Fig. 3c). The increase in global mean temperatures by 2°C was estimated to
increase grain prices by 250% over present levels (Fig. S6). However, the projected grain prices
considering temperatures above 2°C over the baseline were associated with additional modeling
uncertainty, as they occurred outside the range for which the SWS-WPI models were developed and
tested.

Discussion
Despite its importance, the impact of changes in the climate variability on agricultural production and
food security remains limited19. Traditionally, the literature on agricultural production, consumption and
market impacts has concentrated on the analysis of global mean temperature changes due to climate
change by implementing 30-year moving averages of crop model outputs in partial and general
equilibrium economic models16,20. Fig. S7 features the effect of climate change on agricultural prices
obtained by such conventional economic analysis. The Global Economic Model Intercomparison Activity
of the Agricultural Model Intercomparison and Improvement Project (AgMIP) produced a range of price
projections by mid-century based on numerous combinations of climatic and socioeconomic factors. The
ensemble of participating models (9 models: 5 computable general equilibrium [CGE] models and 4
partial equilibrium [PE] models) projected a 3‒32% wheat price increase by 2050 under SSP2 and
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RCP8.5, with no signi�cant difference between the CGE and PE models relative to the baseline scenario16.
The most recent study16 projected an increase in cereal prices of 1‒29% across different SSPs and 3°C
warming using an ensemble of eight economic models (5 PE models, 2 CGE models and 1 integrated
assessment model). These studies have given little or no attention to the analysis of extremes in relevant
regions either from the viewpoint of major exporting or importing regions. This has led to a gap between
the increased understanding of the in�uence of long-term climate change on agricultural production and
the economy as a whole and a lack of knowledge regarding the immediate impacts of SWS events21.
Through a review of the effect of cereal price increases on food consumption in 162 countries, it was
found that a 1% increase in cereal prices (a deviation from its long-term trend) could lower food
consumption by approximately 0.61%22. Thus, according to the projections here, food consumption could
decrease by 27–38% by 2050 due to droughts. In general, households spending over 50% of their income
on food are at medium risk of food insecurity due to wheat price increases23. In low-income countries,
households typically spend close to 60% of their income on food (e.g., 56.4% in Nigeria), with more than a
third going toward staples such as vegetables and cereals12. Low-income households cannot switch to
less expensive foods and will be forced to spend more on basic staples, lower the quality of their diets, or
even limit the amount of the most inexpensive foods consumed while also reducing nonfood
expenditures24. The negative impacts are even worse among poor urban households who are typically
net buyers of food, while households that are net sellers of agricultural and food products would raise
their income12 unless the yields were reduced by SWS events. Considering the ongoing trend of
urbanization, with 68% of the global population projected to live in cities by 205025, the pool of
households that will be negatively affected by increased wheat prices will also continue to increase26,27.

The projected increased food price impacts of droughts and SWS events thus require urgent action in
terms of adaptation measures on the one hand and disaster-relief systems on the other hand. On the
adaptation side, adjusting sowing dates28, changing crops and/or growing regions29, upgrading and
expanding storage facilities30,31, and facilitating intra- and international trade activities appear to be
potential strategies. Trade was demonstrated to help reduce the number of people at risk of hunger
resulting from slow-onset climate change32, although increased specialization could lead to a
concentration in production locations, yielding more volatile world markets (e.g., price spikes due to SWS
events).

Clearly, the drought33 or SWS extent9 is a signi�cant but not unique factor affecting crop product prices.
Pests and diseases, such as fungal diseases34 or locust outbreaks35, and economic factors, such as
demand shocks, volatile oil prices and exchange rates36, political and military con�icts or policy
responses37, play a role and may coincide with drought events. The Ukraine–Russia con�ict illustrates
the response of the market and its instability as both countries are major exporters of wheat and other
cereals and non-cereal crops such as oilseed that is integral to many cereal based crop rotations.. The
war in Ukraine has signi�cantly impacted the price of food products38, leading to increasing exports from
other countries to partially compensate for the lacking supply39. In comparison to March 2021, the prices
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of wheat and maize rose by 58% and 38%, respectively,11 in 2022. This price increase exerts the same
order of magnitude of in�uence as changes that could partially be attributed to SWS events over the past
two decades (Fig. 2c, d). Obviously, the intensity and duration of military con�icts are inherently di�cult
to predict. In contrast, the increased occurrence of SWS events under future climate conditions is less
uncertain (Figs. 3 and S2).

Study assumptions
A series of assumptions that facilitated the analyses were necessary to bridge SWS to indices re�ecting
crop price variations. The assumptions were invoked to ensure that the SWS extent is primarily a function
of changing climate conditions. It was assumed that the current wheat-growing areas, their relative
weights and the top ten exporting countries will remain unchanged throughout the entire 21st century.
Thus, the potential bene�t of shifting wheat production to other agricultural land with a lower SWS
probability could lower the model reliability. However, there are two �ndings that suggest the conclusions
drawn here are less sensitive to this simpli�cation. First, two out of the �ve models in the �nal model
ensemble are based on the SWS occurrence across the entire arable land area, and thus, a change in the
wheat growing area would generate no effect. Second, the data showed that there is little to be gained
globally in terms of decreasing SWS exposure by shifting wheat-producing areas both within and outside
the present wheat-growing areas, as SWS exposure increases at a similar pace across all regions.

Numerous studies have argued that some or all of the negative global warming impacts on wheat yields
might be ameliorated by increasing atmospheric CO2 concentrations combined with adaptation

strategies40,41. Although water use is reduced under elevated CO2 levels42 and may alleviate moderate dry
spells, recent studies have also found that drought stress, when combined with severe heat, cannot be
compensated for by elevated CO2 concentrations43,44. These �ndings are not surprising. While the water
use e�ciency is proportional to the atmospheric CO2 concentration, it is inversely proportional to the
vapor pressure de�cit, which is projected to exponentially increase with increasing air temperature.
Additionally, some models45 compared future drying in model simulations with and without considering
plant physiology in response to increasing CO2 levels. They found that the plant physiological response
to increasing CO2 concentrations was secondary, suggesting that the impact of CO2 fertilization on the
future drought severity is limited. It was therefore assumed that the effects of SWS estimated here cannot
be alleviated by enhanced CO2 levels and that SWS represents a reliable indicator of drought irrespective
of CO2 levels.

It is also likely that increased temperatures will accelerate crop development, leading to earlier maturity,
which might lead to avoiding SWS events for wheat crops by shifting and/or shortening the crop-growing
season. Therefore, the effect of shifting the harvest earlier in the year was evaluated. While a signi�cant
reduction in the extent of the SWS-affected area was found, the advancement in the harvest date was
insu�cient in terms of reducing the SWS-affected areas to the levels from 1951‒1990, as already shown
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elsewhere9. In addition, signi�cant shifts in the cropping calendar would affect not only wheat crops but
also entire crop rotations, and there is high uncertainty in how these shifts will eventually occur in many
regions worldwide40.

The empirical makeup of the model assumes that the exporting countries in the future will not change
relative to the present (Fig. 1 and S1). In the case of wheat, North America, the European Union, and
Russia represent approximately 70% of global exports (Fig. S8). Notably, cereal yields are characterized
by large differences between high- and low-income countries3. In 2018, the average grain yield in high-
income countries was fourfold that in low-income countries. Closing the yield gaps across wheat-growing
areas could be an e�cient way to increase the resilience toward SWS-driven price increases. Major shifts
in the patterns of exporting countries will, however, require substantial infrastructure investment (storage,
port facilities, etc.) to allow these countries meaningful access to global markets. Interestingly, the
increase in the SWS-affected area under future scenarios is so widespread that increasing the resilience
of wheat to SWS by rearranging production among the top producing areas would generate only limited
bene�ts or would have to occur at the expense of other crops, i.e., maize and rice. In this study, a constant
�nal use of these crops was also intrinsically assumed. Dietary change toward more animal products in
low-income countries or more sustainable diets in the most developed countries was not considered.

It was further assumed that the extent and in�uence of irrigation will not signi�cantly change.
Importantly, the global extent of irrigated croplands increased roughly �vefold during the 20th century,
and the current global irrigated landscape continues to evolve 46. The three largest crop irrigators globally
are China (53.8 Mha), India (57.3 Mha), and the USA (27.9 Mha)47, with rice and maize as the primary
irrigated crops. However, these countries are among the regions that are projected to suffer increasing
freshwater limitations under the majority of the present climate change scenarios. Recent analyses have
estimated that a reversion of 20‒60 Mha of cropland from irrigated to rainfed management or from full
to supplementary irrigation is required by the end of the century in these three countries to balance the
irrigation water supply and demand. While there is potential to increase the irrigated area of wheat and
thus reduce SWS impacts, this increase must be accompanied by reductions in other current crops (e.g.,
rice, maize, and cotton) and/or increases in the irrigation e�ciency. Additionally, the alleviating effect of
irrigation on SWS event impacts is likely to be limited, as any SWS event intrinsically includes at least a
12-month drought period before the harvest. It may be assumed that during SWS events, the availability
of water resources for irrigation in many regions is more limited than in normal years.

Directly accounting for changes in energy prices, considered the second most important factor affecting
the cost of cereal production10,48 after climate was not explicitly considered here. Energy prices play a
fundamental role in the cost of agricultural inputs, as energy and fertilizer prices are highly correlated49.
However, both the globally increasing demand for energy and the efforts to curb the use of fossil fuels
will likely increase energy prices not decrease them. With ongoing political con�icts and sanctions on
major oil- and gas-producing countries, volatility in energy and crop prices is unlikely to decrease in the
short term50.
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The derived relation between SWS events and price hikes in wheat encompasses multiple causal factors
that may not be solely related to actual yield reductions. Since yield reporting is more prone to reporting
distortions compared to market prices, the yield analysis has been by-passed here in favor of a direct
relation between SWS and price indicators such as WPI and FPI less prone to reporting distortions.
However, market prices are undoubtedly in�uenced by speculations and uncertainties in the response of
cereal producing countries during SWS events even when yield reductions are minor.

Regardless of the above-listed assumptions, the SWS–wheat price relations could be considered robust
and warrant their inclusion in projected impacts of the SWS-affected area on crop prices. In light of the
2022 crop price volatility, the projected increase in space-time coherent SWS occurrence cannot be
overlooked in any estimates of future price levels, at least in the case of wheat. The sensitivity of wheat
prices to SWS occurrence stems from the fact that out of the three main cereal crops, wheat is grown
mostly under the least favorable soil moisture conditions (Fig. 1c) and cannot be readily replaced by
drought-resilient crops. The sensitivity of wheat prices to the SWS extent can bene�t from a systematic
research focus because wheat is the most important crop in terms of area, calorie supply and volume of
international trade (Fig. 1a).

Materials and Methods
The concept of SWS events9, which combines three time scales of the standardized precipitation
evapotranspiration index (SPEI)51 is used here to speci�cally target the critical water shortage time
frames for crop production (Table S1). An SWS event occurs when a negative soil moisture anomaly
satis�es three conditions: (i) simultaneously persists during most of the growing season for the speci�c
cereal, (ii) peaks during the critical yield-forming period, and (iii) occurs against the backdrop of a long-
term water anomaly that reduces regional water resources in general (Table S1). The concept of SWS
events enabled the determination of spatial and temporal extents of SWS (e.g., Fig. S2) from climate data
and the assessment of the functional relation between water scarcity and cereal prices. The total cereal
growing areas and global price response were aggregated here through a set of drought-cereal price
models. The main advantage of this method is the ability to consider SWS events as they occur across all
cereal-growing areas simultaneously.

The area of maize, rice and wheat production is unevenly distributed globally. However, well-de�ned
production regions within the global arable land (Fig. 1a) are present, as shown in Fig. S1. An increase in
SWS events in these regions may signi�cantly increase the probability of experiencing SWS in key
producing areas simultaneously (or near simultaneously), as has been shown in earlier case studies
targeting wheat9. The primary advantage of the SWS concept is that it allows the likelihood of multiple
rice‒maize–wheat-producing areas experiencing synchronized or/and sequenced SWS events to be
analyzed. In each region and for each crop, the water scarcity (as de�ned in Table S1) occurrence over the
four months preceding the typical local harvest date of the given crop was quanti�ed. The probability of
SWS events between 1861 and 2100 was based on the standardized precipitation evapotranspiration
index (SPEI). In climate studies, the SPEI accounts for both precipitation and potential evapotranspiration
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(PET) when assessing the onset and magnitude of a drought. A global 0.5° grid was used, and a given
location within the grid was de�ned as an area affected by water scarcity if both the short-term SPEI
impacting the target crop production and the long-term SPEI affecting the water resource availability
occurred in each grid cell with water scarcity conditions based on the above-prede�ned magnitudes
(Table S1). Occurrences of SWS during the 1901‒2021 period were �rst evaluated using the CRU
dataset52, which represents “observed” SWS events. Then, the annual SWS-affected area was considered
a predictor of crop prices, and SWS–price models were developed and evaluated (Fig. 1b). The SWS
probability from 1861 to 2100 was estimated using the outputs of 27 climate models from the �fth phase
and 31 models from the sixth phase of the Coupled Model Intercomparison Project—CMIP5 (Table S3)
and CMIP6 (Table S4), respectively. Both CMIP5 and CMIP6 data were used to determine how much the
�nal results depend on the climate model ensemble selected. The SWS occurrence was examined under
three emission pathways for CMIP6 (SSP1-2.6; 2-4.5 and 5-8.5) and corresponding representative
concentration pathways or RCPs (RCP2.6; 4.5 and 8.5) in the case of CMIP5: (i) SSP1-2.6 and RCP2.6
more or less correspond to the implementation of the 2015 Paris Agreement (26); (ii) SSP2-4.5 and
RCP4.5 correspond to the “average” pathway; and (iii) SSP5-8.5 and RCP8.5 correspond to a high-
emission world. This approach allowed us to estimate the effect of climate change mitigation on future
price levels.

Crop production areas

The total arable land was considered and SWS occurrences in grids where the target crop is grown53 (i.e.,
maize, rice, and wheat grids—Fig. S1) were �rst determined. Weights were assigned to each grid
according to the acreage of arable land, and each grid was then weighted based on its share of the total
area of the target crop. The area of the individual crop grids constituted areas where the crops have been
produced54. This area reached approximately 171 Mha for maize, 158 Mha for rice and 218 Mha for
wheat1. This approach facilitated estimates of how much of the global area for each crop was affected
by SWS in each harvest year. Weighting the speci�c crop area allowed the effect of water scarcity
changes on risk in the current primary production areas to be examined based on either the area or
production. To analyze changes in the SWS patterns in the top exporting regions, the cumulative SWS
probability in grids in the territories of the ten most important exporters of each crop was examined over
the 2010‒2020 period, and the grids were weighted according to their share of the entire production area
and the production quantity of each crop separately.

Price data
Price data for wheat, maize and rice were used based on the International Grain Council11 in the form of
the WPI, maize price index (MPI) and rice price index (RPI). For the given year, the mean value of any
given index was used. These price indices cover the 2000–2021 period with the index value in January
2000 set to 100. The FPI, also known as the agricultural price index, is a lagging indicator that has
broader economic signi�cance beyond this industry and was used for the 1951‒2021 period. The FPI is
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estimated monthly by the US Department of Agriculture’s National Agricultural Statistics Service (NASS).
The annual mean FPI, which closely corresponds to the WPI (Fig. 2c), was used in this study. Both the
primary International Grains Council (IGC) data and annual means are provided in the Data section.

Climate data
As mentioned, the simulations of 27 global climate models (Table S3) from the CMIP5 ensemble55 and
31 models from the CMIP6 ensemble (Table S4) were analyzed. These simulations included model runs
with speci�c historical, natural, and anthropogenic forcings from 1861 to 2005 in the case of CMIP5 and
1861‒2014 in the case of CMIP6 and included 21st century changes in anthropogenic aerosols and
greenhouse gases56. If a model was associated with multiple simulations, only the �rst run was
analyzed.

All the monthly modeled data (i.e., temperature, precipitation, wind speed, solar radiation, relative
humidity and sensible and latent heat �ux) were �rst spatially interpolated from the original model grids
to a common grid with a 0.5° resolution and then bias-corrected using the delta change method57. The
temperature and precipitation were bias-corrected based on the observed 1961‒1990 monthly
climatology developed by the Climate Prediction Center (CPC)58, while the other variables were bias-
corrected based on the observed 1961‒1990 monthly climatology data developed by the CRU of the
University of East Anglia59. This bias correction method ensured that the modeled variables were
associated with the same monthly climatology as the CPC or CRU observations during the 1961‒1990
period.

In addition to the model simulations, the 0.5° gridded monthly observed temperature, precipitation, and
PET datasets developed by the CRU (i.e., CRU-TS.4.05)52 were used. These datasets were based on
observations collected from thousands of weather stations globally from 1901 to 2020, providing a
baseline for validating the CMIP5 and CMIP6 model simulations.

Standardized precipitation and evapotranspiration index
(SPEI)
The SPEI51 was adopted, which is a multi-scalar drought index that quanti�es the drought intensity on
various time scales. The SPEI was computed based on 1, 3, 6 and 12 months of accumulated surface
water de�cits and surpluses (i.e., precipitation minus PET). The calculation then employed statistical
probability distributions to quantify the drought intensity, termed the 1-, 3-, 6-, 9- or 12-month SPEI. The 1-
month SPEI is closely related to the shallow-layer soil moisture and can be used to evaluate the short-
term drought variability. The 12-month SPEI is closely related to the deep-layer soil moisture and long-
term drought variability.

The PET was estimated using the FAO-56 Penman‒Monteith method for reference grass60 using air
temperature, relative humidity, wind speed and solar radiation as inputs. In addition to consistent
warming61, climate models are consistent in showing regional changes in the relative air humidity62 and
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vapor pressure de�cit. The roles of the wind speed and solar radiation in PET are secondary63 in the
future. Due to the notable impacts of the temperature and relative humidity, climate models routinely
project increasing PET levels64.

Values of the 1-, 3-, 6-, 9- and 12-month SPEI were calculated based on the monthly precipitation and PET.
The snow-melting module developed by Van der Schrier et al.65 was also assessed to quantify the impact
of snow on the water supply. However, the differences between SWS with and without considering snow
melt were non-signi�cant within the growing areas of the three analyzed crops. Therefore, a simpli�ed
scheme was implemented that did not account for snow melting. For a given climate model output, the
statistical probability distribution parameters51 used to calculate the SPEI were determined based on the
modeled monthly data from 1901‒2000. These parameters were subsequently used to calculate SPEI
values in each grid cell from 1860‒2005 for CMIP5 and 1860‒2014 for CMIP6 and under the different
future scenarios. The same procedures were applied to calculate the SPEI from 1901‒2021 based on the
CRU dataset.

De�ning severe water scarcity events and drought-sensitive
periods
SWS events (Table S1) were �rst de�ned to quantify the short- and long-term impacts of water shortages
on crops. A grid cell was considered affected by water scarcity only if both the short-term water scarcity
indicators (i.e., 1- and 3-month SPEI) and the long-term water scarcity indicators (i.e., 12-month SPEI)
reached prede�ned thresholds (Table S1). These thresholds were adopted based on prior studies66,
wherein the probability of drought impact occurrence was estimated based on the impacts of drought in
individual sectors. Since all three considered crops are grown during part of the year, the crop-speci�c
water scarcity sensitivity periods (SPs) were used. These were de�ned as the four months prior to the
usual crop harvest date (i.e., the period that includes both the peak vegetative stage (i.e., wheat heading
and maize and rice �owering) as well as grain �lling for each crop. Both stages are sensitive to soil
moisture de�cits. These four months constitute the time of the most intense growth, including the
formation of all yield components. For rice, only the �rst harvest date during a given season was
considered.

When the usual harvest date occurred on or later than the 20th day of the month, the drought index for
the harvest month and the three preceding months was used. When the crop was harvested before the
20th day of the harvest month, the drought index for the four months prior to the harvest month was
used. This offset was used because the crop harvest date, in practice, follows the physiological maturity
by several days or even weeks (in the case of wheat and maize), and the sensitivity of all three crops to
drought rapidly decreases at the end of the grain �lling stage and after maturity. In fact, drier conditions
during harvest are generally bene�cial for crop quality and could increase the harvest e�ciency. In all
calculations, calendar months were used.

Final weighting procedure
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For each crop-growing grid cell and year, it was �rst determined whether the cell and year were affected
by SWS (Di = 1) or not (Di = 0) during each crop-growing season based on the thresholds de�ned in Table
S1. For a 1-year window of water scarcity, only events during the harvest year were considered. For a two-
year SWS window, a grid was considered affected by water scarcity (Di = 1) if the SWS thresholds were
met either during the harvest year or during the previous harvest year. Similarly, a three-year window of
water scarcity categorized a grid as experiencing SWS if the conditions were met during the SPs of the
harvest year or during any of two preceding years. The use of 1-, 2- and 3-year windows allowed us to
examine the impacts of a sequence of severe (extreme) water scarcity events, as was, for example, the
case of wheat production and, to a certain extent, maize production caused by the 2010 droughts in
Russia and India and the 2012 drought in the USA. The area affected by severe or extreme drought was
then determined as follows:

Area affected by drought is given as , (1)

where wi is the share of the global wheat area (for wheat calculations). Variations in the grid size due to
the latitude were also accounted for.

Relating SWS to crop price models
The relation between SWS occurrence and price is complex. In the development of the SWS–crop price
model, values of the crop-speci�c price indices (i.e., WPI, MPI, and RPI) were used. A wide range of SWS
predictors was systematically explored and assessed in hierarchical order. This included the SWS extent
in arable land, the given cereal-growing area, and the given cereal-growing area within its 10 main
exporters. The effects of SWS events on prices can vary over time and can materialize with a signi�cant
time lag. To capture this complexity, different time lags were considered, including analysis of i) the SWS
extent window and ii) cereal price time lag. In any model, the SWS effect on price accumulated over three
windows was considered, i.e., the given season (n = 1 or w1), the given season and its preceding season
(n; n-1 = w2) and the given season and the two previous seasons (n + 1; n; n-1 = w3). The cereal price lag
accounted for the offset between SWS and price formation. In total, four time lags were considered with
lag0 indicating the annual price responding to SWS in the given year, while lag1 expects the cereal price
to lag the SWS extent by 1 year. At the same time, both the cereal price index and SWS values and the
�rst-order residuals were used. For each crop, 3 x 3 x 4 x 2 = 72 linear models were formulated and
evaluated, and the best performing models are shown in Fig. 1b, Fig. S3 and Table S2.

Combinations of SWS occurrence (non-trended and detrended), price lags of 0–3 years and different
sizes of SWS windows from 1–3 years were set. Roughly, the 3-year lag sets the upper bound to offset
any storage capacity for grains. Under each such combination, the Pearson correlation coe�cient (R),
Spearman rank coe�cient, Theil coe�cient and RMSE were calculated. The model performance was
captured for all three crops as shown in Fig. 1b. The Taylor diagrams provided justi�cation for only using
wheat in the analysis, as the rice models performed rather poorly, and the maize models explained less
than half of the price variability from SWS variability as expected.

100 ×
∑

n

i=1
Diwi

∑
n

i=1
wi
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In the case of wheat, the 15 best performing models were iteratively combined into the best performing
ensemble based on the highest R2 and lowest RMSE values (Fig. S3,4). The iterative process resulted in a
�nal ensemble of �ve models (Fig. 2a and Table S2). These �ve models based only on SWS were
individually evaluated using the Pearson correlation coe�cient by bootstrapping with 10000 repeats
(Fig. 2b).

A subset of 5 models was optimized by weights to improve R2. These weights were calculated by the
minimum least square method with positive results, namely, the weights conformed with the de�ned
combination of the models given in Table S3. The �nal model (M) applied these weights. The weighted
values are marked as black points in Fig. 2a and as time series in Fig. 3. Con�dence intervals of the linear
regression and WPI values are also presented.

The �nale 5-model subset was used to estimate the price levels between 1951 and 2021 using the CRU
dataset, resulting in control period benchmark values of the price index, and they were compared to the
FPI. Fig. S4 shows estimates of the FPI from 2000–2021 obtained with the model ensemble trained only
on the 1951–2000 period.

The grain prices were estimated over the control periods of both CMIP6 (31 runs in Fig. 2) and CMIP5 (27
runs in Fig. S5) as annual and 10-year means. The CMIP6- and CMIP5-based price estimates are
presented as the mean and con�dence intervals. The estimates of the price model based on the CRU data
were higher on average than the climate model-based estimates, as shown by the �ltered data given by
the 10-year running means in Fig. 3a. The uncertainty band is a composite of the 10%/90% uncertainty in
the linear regression and the 0.05/0.95 quantile of the 31 (27) model outputs based on the CMIP6
(CMIP5) GCMs.

Figure 3c shows the relation between the expected change in the global temperature and the estimated
wheat prices based on the 31 global climate model outputs. Figure 3c on the left shows estimates of all
changes in the mean annual temperature under all scenarios of all individual global models from the
entire ensemble for all years from 1951 to 2100 and the price estimates computed based on these values
by the �nal model M. The curves denote the 0.1, 0.5 (median) and 0.9 quantiles of the price estimates for
a given temperature change. The right-hand side panel of the graph shows the averages of the price
estimates from the entire ensemble of the global models for each individual year between 1951 and
2100.
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Footnotes
1. * The increase was calculated using the wheat, maize, and rice price index values in March 2007 and

2010 relative to March 2008 and 2011, respectively.
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Figure 1

a) Main areas of rice/maize/wheat production with the borders of the 10 top exporting countries
highlighted. The doughnut charts indicate the share of the three major crops in the global arable land
area, calorie supply and agriculture commodity trade. b) Results of the �t of severe water scarcity (SWS)
and price index to form crop price models in the form of Taylor diagrams, where different areas, lags (0‒
3 years) and time windows (1‒3 years) of SWS are considered. The diagram visualizes the Pearson
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correlation coe�cient (black), standard deviation (blue) and centered root mean square difference
(green). The black dot indicates the perfect �t model with a Pearson correlation R=1 and root-mean
squared error or RMSE=0. c) Basic climatological characteristics of the climate model grids growing rice,
maize and wheat showing their mean temperatures (X-axis or abscissa) and the sum of the differences
inprecipitation and PET during the 4 months before the harvest (Y-axis or ordinate).

Figure 2
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a) Comparison of the reported wheat price index (WPI) values on the X-axis and its estimates using the
ensemble of the 5 best performing linear models driven by the CRU derived SWS estimates on the Y-axis;
b) bootstrapping tests of the 5 models (Table S4); c) time series of the reported and estimated WPI values
using the 5 best performing models and their �nal ensemble for the 2000‒2021 period; d) reported WPI
and farm price index (FPI) annual mean values for the 1951‒2021 period compared to the CRU data and
CMIP6-based price estimates including con�dence intervals.
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Figure 3

a) Ten-year mean values of the reported wheat price index (WPI) for 2000‒2021 and farm price index
(FPI) for 1951‒2021 with the estimated values based on the CRU data for 1951‒2021 as well as the
results of the CMIP6 model ensemble for 1951‒2050; b) the same as (a) but showing annual values; c)
summary of the expected WPI related to the change in the global mean temperature estimated using the
CMIP5 and CMIP6 models.
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