Rothamsted Repository Download

A - Papers appearing in refereed journals

The publisher's version can be accessed at:

- https://dx.doi.org/10.1016/j.pestbp.2016.02.006

The output can be accessed at: https://repository.rothamsted.ac.uk/item/8v353/mutation-g275e-of-the-nicotinic-acetylcholine-receptor-alpha-6-subunit-is-associated-with-high-levels-of-resistance-to-spinosyns-in-tuta-absoluta-meyrick-lepidoptera-gelechiidae.

© 2016. This manuscript version is made available under the CC-BY license.
Mutation (G275E) of the nicotinic acetylcholine receptor α6 subunit is associated with high levels of resistance to spinosyns in Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae).

AUTHORS
Silva, WM; Berger, M; Bass, C; et al.

JOURNAL
Pesticide Biochemistry and Physiology

DEPOSITED IN ORE
13 October 2016

This version available at
http://hdl.handle.net/10871/23887

COPYRIGHT AND REUSE
Open Research Exeter makes this work available in accordance with publisher policies.

A NOTE ON VERSIONS
The version presented here may differ from the published version. If citing, you are advised to consult the published version for pagination, volume/issue and date of publication.
Running title: mechanisms of spinosad resistance in *Tuta absoluta*

Mutation (G275E) of the nicotinic acetylcholine receptor α6 subunit is associated with high levels of resistance to spinosyns in *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae)

Wellington M. Silva¹, Madeleine Berger², Chris Bass², Martin Williamson², Danielle M. N. Moura³, Lílian M. S. Ribeiro¹ and Herbert A. A. Siqueira ¹*

¹Departamento de Agronomia - (Entomologia), Universidade Federal Rural de Pernambuco, 52171-900, Recife, PE, Brazil

²Department of Biological Chemistry and Crop Protection, Rothamsted Research, Harpenden AL5 2JQ, United Kingdom

³Departamento de Microbiologia, Aggeu Magalhães - FIOCRUZ, 50732-970, Recife, PE, Brazil

Word count: 7811

*Correspondence to:

Herbert Álvaro A. de Siqueira
Universidade Federal Rural de Pernambuco
Departamento de Agronomia (Entomologia)
Rua Dom Manoel de Medeiros S/N
Bairro Dois Irmãos
Recife, PE – CEP 52171-900
Brazil
Ph: +55 (81) 3320-6234
Fax: +55 (81) 3320-6205
Email: herbert.siqueira@pq.cnpq.br.
Abstract
The tomato leafminer, *Tuta absoluta*, now a major pest of tomato crops worldwide, is primarily controlled using chemical insecticides. Recently, high levels of resistance to the insecticide spinosad have been described in *T. absoluta* populations in Brazil. Selection of a resistant field-collected strain led to very high levels of resistance to spinosad and cross-resistance to spinetoram, but not to other insecticides that target the nicotinic acetylcholine receptor (nAChR). In this study the mechanisms underlying resistance to spinosad were investigated using toxicological, biochemical and molecular approaches. Inhibition of metabolic enzymes using synergists and biochemical assessment of detoxification enzyme activity provided little evidence of metabolic resistance in the selected strain. Cloning and sequencing of the nAChR α6 subunit from *T. absoluta*, the spinosad target-site, from susceptible and spinosad-resistant strains was done to investigate the role of a target-site mechanism in resistance. A single nucleotide change was identified in exon 9 of the α6 subunit of the resistant strain, resulting in the replacement of the glycine (G) residue at position 275 observed in susceptible *T. absoluta* strains with a glutamic acid (E). A high-throughput DNA-based diagnostic assay was developed and used to assess the prevalence of the G275E mutation in 17 field populations collected from different geographical regions of Brazil. The resistant allele was found at low frequency, and in the heterozygous form, in seven of these populations but at much higher frequency and in the homozygous form in a population collected in the Iraquara municipality. The frequency of the mutation was significantly correlated with the mortality of these populations in discriminating dose bioassays. In summary our results provide evidence that the G275E mutation is an important mechanism of resistance to spinosyns in *T. absoluta*, and may be used as a marker for resistance monitoring in field populations.
Keywords: Tomato leafminer, insecticide resistance, nACh receptor, target-site
alteration, metabolism
The tomato leafminer, *Tuta absoluta* is a global threat to tomato production because of its great damage potential, short life cycle and high reproductive capacity [1-3]. *T. absoluta* originated in South America and was introduced to Brazil sometime between 1979 – 1980, after which it quickly spread nationwide causing serious damage to tomato crops [4, 5]. This pest arrived in Europe in 2006 and then subsequently spread to North Africa and the Middle East, and is now a serious problem for tomato cropping in a large number of countries [2].

The main method of *T. absoluta* control is through the application of chemical insecticides, however, the reliance on insecticides for control has led to the evolution of resistance [6]. The intensive use of organophosphates, carbamates, pyrethroids, benzoyleuramides, avermectin, indoxacarb and diamides has led to reports of resistance in *T. absoluta* populations in Brazil, Chile, Argentina, Greece and Italy [3, 7-13].

The insecticide spinosad was commercially introduced for pest control in 1997 [14]. The active ingredient of spinosad is a mixture of two compounds, spinosyn A and spinosyn D, produced by the microorganism *Saccharopolyspora spinosa* [15]. Spinosad acts on the nicotinic acetylcholine receptor (nAChR) causing a change in receptor conformation, leading to the opening of ion channels to the conduction of nerve stimulation, causing tremors, paralysis and death of the insect [16-18]. The nAChR is composed of five subunits, arranged symmetrically around a central pore with each subunit containing four transmembrane (TM1-TM4) domains and an extracellular N-terminal domain that includes the acetylcholine binding site [19]. Most insect genomes contain around 10-12 genes encoding nAChR subunit subtypes [20, 21]. Of these spinosad appears to specifically target the α6 subunit as studies on a number of insect
species have described an association between modification of this subunit subtype and
spinosad resistance. For example, in the fruit fly, *Drosophila melanogaster* a strain with
a Da6 knockout was shown to be highly resistant to spinosad [22]. In the crop pests, the
diamondback moth, *Plutella xylostella* and the oriental fruit fly *Bactrocera dorsalis*
spinosad resistance was linked to mutations in the nAChR α6 subunit that result in
truncated transcripts [23, 24]. Recently, spinosad resistance in western flower thrips,
Frankliniella occidentalis, and melon thrips, *Thrips palmi*, was reported to be
associated with a single nucleotide change in the nAChR α6 subunit, resulting in the
replacement of a glycine (GGG) residue in susceptible insects with a glutamic acid
(GAG) in resistant insects [25, 26] at position 275, which is located in a conserved
region towards the top of TM3.

In *T. absoluta*, high levels of resistance to spinosad were recently described in a field
population from Brazil [27]. Further selection led to a strain which exhibited extremely
high levels of resistance to spinosad [28]. The resistance of this strain was autosomal,
recessively inherited, monofactorial, and showed strong cross-resistance to spinetoram
(spinosoid) but not to thiamethoxam (a neonicotinoid) suggesting resistance is mediated
by a target-site mechanism [28]. Despite this finding, the underlying mechanisms of
resistance to spinosyns in *T. absoluta* remain to be characterized.

The aim of the current study was to investigate the molecular and biochemical
mechanisms underlying resistance to spinosyns in resistant strains. The possible
involvement of detoxification enzymes such as cytochrome P450-dependent
monooxygenases (P450s), glutathione S-transferase (GSTs) and carboxylesterases (CEs)
was examined using insecticide synergists and enzymatic assays. To explore the role of
a target-site alteration in resistance the *T. absoluta* nAChR α6 subunit (*Taα6*) was PCR
amplified, cloned and sequenced from resistant and susceptible strains. Finally, a
molecular diagnostic tool was developed that allowed sensitive detection of a resistance-associated mutation in individual *T. absoluta* and used to screen 17 field populations collected from different geographical regions of Brazil.

2. Material and Methods

2.1 Chemicals

Spinosad (Tracer 480 g AL/l concentrated suspension) was obtained from Dow AgroSciences industrial Ltda, Franco da Rocha, SP, Brazil. The insecticide synergists used in this study were dimethyl maleate (DEM - 99%, Sigma, Milwaukee, WI, USA), S,S,S triphenyl phosphate (DEF - 93%, Sigma, Milwaukee, WI, USA) and piperonyl butoxide (PBO - 90%, Sigma, Milwaukee, WI, USA). The reagents and solvents used in enzyme assays were purchased from Sigma-Aldrich (Milwaukee, WI, USA), except for the protein assay kit which was purchased from Pierce Chemical Co. (Rockford, IL, USA).

2.2. Insects

The susceptible strain of *T. absoluta* (Pelota – RS, named here as PLT-Sus) was collected and maintained in the laboratory without exposure to insecticide. A strain of *T. absoluta* from Iraquara-BA, previously reported as resistant to spinosad [27], was divided into two cultures: one without exposure (named as IRA-Unsel) and the other (named as IRA-Sel) subjected to further selection with spinosad and maintained indefinitely under selection with 500 mg Al/l of spinosad under laboratory conditions [28]. For phenotyping and genotyping, 15 other populations collected from different geographical regions of Brazil were used as detailed in Table 1.

2.3 Bioassays
Full dose response toxicological bioassays were conducted using the PLT-Sus, IRA-Unsel, and IRA-Sel strains using a completely randomized design with two replications per treatment, with the whole bioassay repeated twice. Seven to eight concentrations of spinosad that resulted in mortality between 0 and 100% were used, with bioassays performed as described previously [29]. The spinosad solutions were diluted in water containing 0.01% Triton X-100. Control solution consisted of diluent minus insecticide. Spinosad-treated (or diluent treated in the case of controls) tomato leaflets were placed in Petri dishes (80 mm diameter) with ten 2nd instar larvae of *T. absoluta* and bioassays were maintained under controlled environmental conditions (25 ± 1 °C temperature, 65 ± 5% relative humidity and 12:12 (L:D) photoperiod. Larval mortality was assessed 48 hours after exposure by prodding the insects with a fine paintbrush. Larvae were considered dead if they were unable to move the length of their body. Discriminating dose bioassays were performed using the doses identified previously by Campos et al. [28]. To discriminate heterozygous and homozygous resistant insects the doses 0.25 and 5 mg AI/l of spinosad prepared as above were used respectively. Five replicates each comprising ten 2nd instar larvae of *T. absoluta* + a control treatment were used. Mortality was assessed 48 hours after exposure.

2.4 Synergism bioassays

Second instar larvae of spinosad susceptible (PLT-Sus), unselected (IRA-Unsel) and selected (IRA-Sel) strains were exposed to spinosad + PBO, + DEF or + DEM in concentration-mortality bioassays to determine if metabolism is involved in the resistance. The bioassays were performed essentially as described for the concentration-mortality bioassays, but with all larvae topically treated (0.2 µL larvae⁻¹) with 1.0 mg AI/ml of either PBO, DEM, or DEF before exposure to spinosad. The selected synergist concentrations caused no mortality when used alone on *T. absoluta*.
2.5 Sample extraction for enzyme assays

For enzyme assays, 10 L2 larvae of each population were transferred to a microfuge tube with three replicates for each assay. For esterase and glutathione S–transferase assays, each sample was homogenized in 200 µL of sodium phosphate buffer at 0.02 M, pH 7.2 or sodium phosphate buffer (0.1 M, pH 7.5), using a Potter-Elvehjem homogeniser. Homogenates were centrifuged at 15,000 g and 4°C for 15 min and supernatants harvested and stored at −20°C. For cytochrome P450-dependent monooxygenase assays, samples were homogenised in 500 µL sodium phosphate buffer (0.1M, pH 7.5) + glycerol at 20% and microsomes were prepared in the same buffer. Homogenates were centrifuged at 15,000 g and 4°C for 15 min to separate cell debris and the supernatant was ultra-centrifuged at 100,000 g for 60 min in an OptimaTM L-80 XP ultracentrifuge (Beckman Coulter, Palo Alto, CA) to obtain microsomes with the resulting microsomal pellet resuspended in homogenization buffer containing 20% glycerol [30]. Quantitation of protein was determined by the bicinchoninic acid method using bovine serum albumin (BSA) as standard [31].

2.6 Esterase assays

Esterase activity was measured with a method adapted from van Asperen [32]. Stock solutions (250mM) of α-naphthyl acetate and β-naphthyl acetate were prepared in acetone. For esterase analysis using α-naphthyl acetate as substrate each reaction consisted of 2 µL α-naphthyl acetate, 10 µL of sample diluted to 1:100 and 188 µL of sodium phosphate buffer (0.02M, pH 7.2). The same procedure was carried out for esterase analysis using β-naphthyl acetate as substrate, however the samples were diluted to 1:10. Samples were then incubated at 30°C for 15 minutes and reactions stopped using 33.2 µL of 0.3% FAST Blue B. Absorbance was read at 595 nm on a microtiter plate reader (Elx800, BioTek®, Winooski, VT, USA). Each sample was
analysed in triplicate. A standard curve was prepared with α-naphtol and β-naphtol.

Esterase activity was expressed as mmol min$^{-1}$ µg$^{-1}$ of protein$^{-1}$.

2.7 Glutathione S-transferase assays

Conjugation activity of reduced glutathione was determined using CDNB (1-chloro-2,4-dinitrobenzene) substrate in the presence of glutathione S-transferase, forming 2,4-dinitrophenyl-S-glutathione [33]. CDNB solution (150 mM) was prepared in ethanol and reduced glutathione (10 mM) was dissolved in sodium phosphate buffer (0.1M, pH 7.5). For each reaction, 138 µL of sodium phosphate buffer (0.1 M, pH 7.5), 10 µL of sample containing 1 µg of protein and 150 µL of reduced glutathione (10 mM) were mixed. The mix was incubated in a water bath at 30°C for 5 minutes before 2 µL of CDNB (150 mM) was added to the reaction. The formation of 2,4-dinitrophenyl-S-glutathione was immediately measured using a biophotometer (Eppendorf) at 340 nm with the reaction monitored for 5 minutes with read intervals of 30 sec. Each sample was analyzed in triplicate, and measurements comprised a total of nine replicates.

Absorbance data was analysed as function of reaction time after addition of CDNB. The slope of the line (absorbance/min) was transformed using the extinction coefficient of CDNB (9.6 mM$^{-1}$ cm$^{-1}$).

2.8 Cytochrome P$_{450}$-dependent mono-oxygenase (O-demethylase) assays

Activity of cytochrome P$_{450}$ was determined through O–demethylation by monitoring the conversion of substrate p–nitroanisole ($O_2N–C_6H_4–O–CH_3$) to nitropheno[34].

The activity of cytochrome P$_{450}$-dependent monooxygenase was measured by mixing 178.8 µL of sodium phosphate resuspension buffer (0.1M, pH 7.5), 56.2 µL of sample, 2.5 µL p–nitroanisole (150 mM in ethanol) and 12.5 µL of reduced NADPH (9.6 mM) in each well and in this order. The mix was incubated for 15 min at 37°C before HCl (1M) was added to stop the reaction. Subsequently the mix was centrifuged at 14,000g
for 10 min, and 200 μL of supernatant was transferred to microtiter plate wells and read at 405 nm on a microplate reader. Each sample was analysed in triplicate, and measurements comprised a total of nine replicates. Activity of cytochrome P₄₅₀–dependent monooxygenases per sample was determined based on a standard curve of p-nitrophenol in nmoles min⁻¹ μg⁻¹ of protein⁻¹.

2.9 RNA extraction and cDNA synthesis

Total RNA was isolated from three independent pools of 10 larvae of susceptible and resistant *T. absoluta* strains, using Trizol reagent (Invitrogen® Life Technologies) following the manufacturer’s protocol. SuperScript® III First Strand Synthesis Kit for RT-PCR system (Invitrogen® Life Technologies) was used for cDNA synthesis. Reactions comprised 200 ng of RNA, 1μL of random hexamers (50 ng μL⁻¹) and 1 μL dNTPs (10mM). Samples were incubated at 65°C for 5 min placed on ice for 1 min and the following reagents added: 4 μL 10X RT buffer, 1 μL 25 mM MgCl₂, 1 μL DDT, 1 μL of RNase Out, 1 μL SuperScript III (200 U/μL), samples were then incubated for 25°C for 10 min, 50°C for 50 min and 85°C for 15 min. Any remaining RNA was then removed from cDNA preparations by adding 1 μL of RNA H to each reaction and heating at 37°C for 20 min.

2.9.1 Molecular cloning of the *T. absoluta* nAChR α6 subunit (Taα6)

Nested PCR was used to amplify the α6 subunit of the nAChR receptor in two amplicons using cDNA prepared from susceptible, unselected and selected *T. absoluta* strains. Specific primers were based on a nAChR α6 sequence from a *de novo* assembled transcriptome of *T. absoluta* (unpublished). Primary PCR reactions were performed with 1 μL of cDNA containing 10 pmol of each primer pair: Spod_a6_F3 (TGC CCG TRT CGG AGC AAG) and Tuta_nachr_mid_R1 (GAG TCT GGT GGC AGT GTA) were used to amplify the first half of the subunit and Tuta_nachr_mid_F1 (TGCG TRT CGG AGC AAG) and Tuta_nachr_mid_R1 (GAG TCT GGT GGC AGT GTA) were used to amplify the second half of the subunit.
(GGA GGC GAT TTA TCA GAC T) and Tuta_nachr_R1 (AAT AGT GTG AAC
ACG AAC AGG) to amplify the second half. In secondary reactions, 1μL of the
primary PCR product was used, containing the primers Spod_a6_F3 and
Tuta_nachr_QPCR_R1 (AACACATGGCAGCTGATCAGGT) for the first half and
Tuta_nachr_mid_F2 (TGG CGA ATG GTA TTT GAT AGG) and Tuta_nachr_R2
(ACC TGT CAA CAA CCA TCG C) for the second half. PCR reactions also contained
5 μL of 10X AccuPrime™ PCR Buffer II, 0.2 μL of AccuPrime™ Taq DNA
Polymerase High Fidelity (Invitrogen® Life Technologies) and 41.8 μL of nuclease-
free H2O. The amplification profile consisted of the following steps: initial denaturation
at 94° C for 2 min followed by 35 cycles (94°C / 30 s, 52°C / 1min and 72°C / 2 min,
followed by a final extension step at 72° C for 5 min. PCR products (~800 bp) were run
on 1.5% agarose gels pre-stained with SYBR Safe DNA stain (Invitrogen® Life
Technologies), and products purified from gel slices using the Wizard® SV Gel and
PCR Clean-Up System (Promega, USA) according to the manufacturer’s
recommendations. Amplified fragments were cloned into pCR® 2.1-TOPO® TA vector
(Invitrogen® Life Technologies) and sequenced on a ABI 3500 sequencer (Applied
Biosystems, Cleveland, Ohio, USA). Analysis of the sequencing results was performed
using Geneious R7.1 (Biomatters Ltd., New Zealand).

2.9.2 DNA extraction

Insects were placed in liquid nitrogen and homogenized individually in a 1.5 ml
microfuge tube using a mini pestle. After the addition of 200 μl of DNAzol®
(Invitrogen® Life Technologies) homogenates were centrifuged at 15,000 g at 4°C for
15 min. 100μl of 100% ethanol was then added to precipitate DNA and samples were
centrifuged at 15,000 g at 4°C for 20 min. Pellets were washed with 70 % ethanol, air-
dried for 5 min at room temperature and dissolved in 30 μl of nuclease-free H2O. The
quality and quantity of DNA was assessed using a spectrophotometer (NanoQuant
Infinite 200, Tecan, Switzerland).

2.9.3 *Intron amplification*

To facilitate the development of a DNA-based diagnostic assay long PCR enzyme mix
(Thermo Scientific, USA) was used to amplify intronic sequence upstream of exon
nine/downstream of exon 8. The primers Ta_a6_ex8_761F (TCT CGC TGA CGG TGT
TTT TGA ACC TG) and Ta_a6_ex9_934R (GCA TCT CAT GAA TGT CCG CCG
TTC GAT) were designed for this purpose. PCR reactions consisted of 2.5 μl of 10X
Long PCR (Fermentas, Life Sciences) buffer with 15 mM MgCl₂, 1 μl of dNTP mix
(10mM), 18 μl of nuclease-free water, 1 μl of forward primer (10 μM), 1 μl of reverse
primer (10 μM) and 0.5 μl of Long PCR Enzyme Mix per reaction. Genomic DNA (50
ng) was added to each sample. A 16 hour programme (94°C 2 min, 35 cycles of: 94°C/
10 seconds, 55°C/20 seconds, 68°C /25 minutes, with a final extension of 68°C/ 20
min) was performed. PCR products were cleaned using the Wizard® SV Gel and PCR
Clean-Up System (Promega, USA). The purified PCR products were sequenced by
Eurofins Genomics, Germany.

2.9.3 *TaqMan diagnostic assays*

Forward and reverse primers and two probes were designed using the Custom TaqMan
Assay Design Tool (Applied Biosystems). The primer G275E_F ACA CTG TAA GCA
CAA TAC TGTTGATCTAAT and G275E_R- GCC ACC ATA AAC ATG ATG CAA
TTGA, were used to amplify the region encompassing the G275E mutation site. For all
assays the probe labelled with VIC (TGG CAG GGA CTTAC), was specific for the
wild-type allele, while a second probe, labelled with FAM (TGG CAG AGA CTT AC)
was specific for the mutant allele. Each probe also carried a 3’ non-fluorescent
quencher. PCR reactions (15 μl) contained 2 μL of genomic DNA extracted from
individual insects using DNAzol reagent, 7.5 μl of SensiMix DNA kit (Quantace), 800 nM of each primer and 200 nM of each probe. Samples were run on a Rotor-Gene 6000 (Corbett Research) using the temperature cycling conditions of: 10 min at 95°C followed by 40 cycles of 95°C for 10 s and 65°C for 45 s. The increase in fluorescence of the two probes was monitored in real time by acquiring each cycle on the yellow (530 nm excitation and 555 nm emission) and green channel (470 nm excitation and 510 nm emission) of the Rotor-Gene respectively.

2.9.4 Data analysis
Mortality data obtained from concentration–response bioassays were corrected with the mortality observed in the control treatment [35] and analysed by probit analysis at P > 0.05 [36] using the program Polo-Plus ® [37]. Resistance ratios were calculated through the “lethal ratio test” and were considered significant if 95 % confidence interval (CI) did not include the value 1.0 [38]. Data on the activity of esterases, glutathione S-transferases, and cytochrome P450-dependent monooxygenases were analysed using SAS [39]. The assumptions of normality and homoscedasticity were tested using PROC UNIVARIATE and PROC GLM [39]. The activity data were subjected to an analysis of variance (ANOVA) using PROC ANOVA and the Tukey’s test (HSD) at P < 0.05 for grouping the means [39]. The R allele frequency from genotyping data was subjected to correlation analysis with the mortality data from discriminating dose bioassay of each population, using PROC CORR [39].

3. Results
3.1 Bioassays
Diagnostic bioassays detected low levels of resistance in Brazilian populations of T. absoluta, except in Iraquara-BA where significantly higher levels of resistance were observed. Mortality ranged from 7 ± 3 to 100 % using a concentration of 0.25 mg
spinosad L$^{-1}$ and when a concentration of 5mg spinosad L$^{-1}$ was used only 2 populations showed any survivorship (Table 1). In the dose-response bioassays the PLT-Sus population had an LC$_{50}$ of 0.020 mg spinosad L$^{-1}$ and the IRA-Unsel population had an LC$_{50}$ of 5.8 spinosad L$^{-1}$, while the IRA-Sel population presented an LC$_{50}$ of 1001 mg spinosad L$^{-1}$ (Table 2). The IRA-Unsel population had a resistance ratio of 284-fold, while the population subjected to selection pressure showed a resistance ratio of 48,900-fold (Table 2).

3.2 Synergism Assays

The synergistic ratio of PBO, DEF and DEM for spinosad was 1.1-, 3.5- and 1.6-fold respectively in the PLT-Sus population, and 2.4-, 3.3- and 4.1-fold in the IRA-Unsel population (Table 3). Synergism of spinosad was statistically significant for all three synergists for the unselected population but only for DEF in the PLT-sus population. In the IRA-Sel population, synergistic ratios were 0.5- 0.6- and 0.6-fold for PBO, DEF and DEM respectively, which were not statistically significant suggesting no involvement of metabolism in resistance to spinosad.

3.3 Enzyme Assays

Biochemical assays of esterase activity differed significantly among populations of T. absoluta using both α-naphthyl acetate and β-naphthyl acetate as substrates. The α-esterase activity was 0.02 ± 0.004 mmol/ min/µg$^{-1}$, 0.05 ± 0.005 mmol/min/µg$^{-1}$ and 0.03 ± 0.008 mmol/min/µg$^{-1}$ for the PLT-Sus, IRA-Usel and IRA-Sel strains respectively (Table 4). While the β-esterase activity varied from 0.050 ± 0.010 mmol/min/µg$^{-1}$ (IRA-Sel) to 0.09 ± 0.010 mmol/min/µg$^{-1}$ (PLT-Sus) (Table 4). Assays of glutathione S-transferase (GST) activity showed significant differences between the strains with variation of 2.4-fold observed. The IRA-Sel strain had the greatest GST activity (72.6 ± 1.1 µmol/ min/µg$^{-1}$) while the PLT-Sus strain had the lowest activity (30
The activity of cytochrome P450–dependent monooxygenases differed significantly between the strains tested with variation of 3-fold. Activity of cytochrome P450–dependent monooxygenases mediated by O-demethylase, ranged from $0.02 \pm 0.004 \, \text{nmol/min/\mu g}^{-1}$ for the susceptible population to $0.06 \pm 0.002 \, \text{nmol min/\mu g}^{-1}$ for the selected population (Table 4).

3.4 Cloning the nAChR alpha 6 subunit of T. absoluta (Taα6)

The nAChR α6 subunit of the PLT-Sus, IRA-Unsel and IRA-sel populations was PCR amplified, cloned, sequenced and deposited with Genbank under accession number KP771859. Comparison of the sequence obtained from the resistant IRA-Unsel and IRA-sel strains with that of the susceptible strain revealed the presence of a single point mutation in the unselected and resistant populations resulting in an amino acid substitution of glycine (GGG) to glutamic acid (GAG) at position 275 in exon 9 of the α6 subunit (see figure 1). The codon for the mutated amino acid was found to span exon 9 and exons 8a/8b, with the resistance-associated mutation being at the start of exon 9.

A TaqMan diagnostic assay was developed (see below) and used to determine the exact frequency of the mutation in the IRA-sel strain (69%) and IRA-Unsel strain (67.5%).

3.5 TaqMan diagnostic assays

After optimization the TaqMan assay allowed sensitive detection of the G275E mutation in individual insects (see figure 2). The assay uses two probes, one specific for the resistant (mutant) allele labelled with FAM and the other specific for the susceptible (wild-type) allele labelled with VIC. A homozygous resistant individual produced a strong increase in FAM fluorescence, whilst a homozygous wild-type individual produces a strong increase in VIC fluorescence. Heterozygous individuals produce an intermediate increase in both channels (Fig. 2). The TaqMan assay was used to screen
340 T. absoluta individuals collected from different regions in Brazil. This revealed that the frequency of the G275E allele is present at only low frequency in populations of T. absoluta in Brazil (Table 1). The resistant allele was only observed, exclusively in the heterozygous form, in populations of Anápolis - GO, Brasília - DF, Gameleira II - DF, João Dourado I - BA, João Dourado III - BA, Lagoa Grande - PE, Paulínia - SP e Sumaré – SP ranging in frequency from 2.5-12.5%. However, the Iraquara-BA population was the exception to this trend where the mutation was detected at high frequency (67.5%) and in the homozygous form (Table 1). The frequency of the resistant allele was found to correlate strongly with the level of mortality observed for each population in discriminating dose bioassay with increasing R allele frequency correlated with a decrease in mortality in bioassays (DD$_1$, r= -0.835, P<0.0001, N=17) and (DD$_2$, r= -0.958, P<0.0001, N=17).

4. Discussion

The indiscriminate use of insecticides in Brazil for the control of T. absoluta has resulted in the rapid emergence of resistant populations [10, 11, 27]. The loss of efficacy of traditional, cheaper products to resistance has in turn caused an increase in the use of newer chemistry such as spinosad. As a result resistance to this compound has now been described in T. absoluta, with a recent study describing high levels of spinosad resistance in certain T. absoluta populations from Brazil [27]. Furthermore, laboratory selection of a spinosad resistant field strain from Brazil led to a rapid increase in resistance to this insecticide [28]. The primary objective of the current study was to characterize the molecular and biochemical basis of spinosad resistance in T. absoluta with the aim of developing a mechanism-specific molecular diagnostic that can be used to rapidly screen populations across the country.
The three enzyme systems we analyzed in the present study are those most commonly involved in resistance to several insecticides in a range of different insect species [40-43]. Increased monooxygenase (O-demethylase) activity has been associated with resistance to spinosad in *S. exigua* and *H. armigera* [44, 45]. In the case of *T. absoluta* Reyes et al. [46] showed that resistance to spinosad in Chilean populations was associated with increased cytochrome P450-dependent monooxygenases. However, we did not find enhanced P450 activity or synergism of spinosad using a P450 inhibitor in the IRA-Sel population, which would explain the very high level of resistance, suggesting metabolism may be associated with lower levels of resistance. However, significant synergism of spinosad was observed in the IRA-Unsel founder population using all three inhibitors. Campos et al. [28] observed a decreased activity of cytochrome P450-dependent monooxygenases and esterases following the selection course of the IRA-Unsel colony. Other studies report that the synergists DEF and PBO did not enhance the toxicity of spinosad in *P. xylostella, M. domestica, S. exigua* and *F. occidentalis* [47-49].

Cloning and sequencing of the spinosad target-site, the nAChR α6 subunit revealed a single non-synonymous change in the IRA-sel and IRA-Unsel strain compared to the susceptible strain that results in an amino acid substitution, G275E, predicted to lie at the top of the third α-helical transmembrane domain. This amino acid substitution has been previously reported in two thrip species, *F. occidentalis* and *T. palmi* where it was also associated with resistance to spinosad [25, 26]. In *F. occidentalis* the G275E substitution was identified in a laboratory-selected strain displaying high levels of resistance (resistance ratio > 350,000) to spinosad that was selected from a field population collected in Almeria, Spain, that had been subjected to intensive treatment with spinosad [47]. Resistance to spinosad in this strain was reported to be autosomal,
almost completely recessive and controlled by a single locus [50]. The effect of this
mutation on nAChR function was characterized through the expression of the analogous
mutation (A275E) in the human nAChR α7 subunit in *Xenopus oocytes* where it was
found to abolish the modulatory effects of spinosad but had no significant effect upon
activation by the natural ligand acetylcholine [26]. The G275E mutation has also been
recently associated with spinosad resistance in two strains of *T. palmi* collected from
Japan, although synergist bioassays provided evidence that metabolic mechanisms may
also contribute to resistance in at least one of these strains [25].

In *P. xylostella* resistance to spinosad has been associated with a truncated nAChR α6
subunit sequence in resistant individuals [23]. Rinkevich et al. [51] also reported that
resistance to spinosad in this species is associated with mutations that generate
premature stop codons shortly after TM3. Truncated nAChR α6 subunits were also
associated with resistance to spinosad in *B. dorsalis* and *D. melanogaster* [24, 52]. In
contrast to these studies our findings represent an example of spinosad resistance in a
lepidopteran species resulting from a point mutation that may not lead to receptor loss
of function as found for *F. occidentalis*.

The G275E mutation was identified in this study in two spinosad resistant lab strains of
T. absoluta and its presence also associated with resistance in field strains (see below).
However, it is unlikely to fully explain the extreme resistance phenotype exhibited by
the spinosad-selected IRA-sel strain as the frequency of the G275E mutation in this
strain was essentially the same as that of the unselected IRA-Unsel strain, suggesting
additional mechanisms contribute to resistance in the IRA-sel strain. One potential
alternative mechanism is metabolic resistance. However, as detailed above bioassays
using inhibitors of the three main enzyme systems frequently involved in resistance and
biochemical assessment of enzyme activity failed to provide evidence of metabolic
resistance in the IRA-sel strain. Furthermore, no additional mutations or indels were consistently observed in the gene encoding the nAChR alpha 6 between the IRA-Unsel and IRA-sel resistant strain. Further molecular characterisation of the resistance observed in this strain is therefore required with investigation of alternative xenobiotic detoxification systems and reduced insecticide penetration two possible areas of future research.

To determine the current frequency of the G275E mutation in populations of *T. absoluta* in Brazil and its association with resistance we developed a high-throughput DNA-based diagnostic assay that can be used to screen individual insects for the presence of the mutation. This platform has been used previously to screen global populations of *T. absoluta* for *kdr* mutations associated with pyrethroid resistance [53, 54]. In the current study the TaqMan assay was used to screen 17 field-collected populations for the G275E mutation and the results obtained were compared with the observed mortality of these strains in two discriminating dose bioassays. Overall the monitoring revealed that the frequency of the resistance-associated mutation is low or zero in most populations of *T. absoluta* in Brazil. In populations where it was found it was usually observed in the heterozygous form. The exception to this was the population collected from Iraquara where 45% of the insects tested were homozygous for the G275E mutation. It is also noteworthy that this strain was the only population to display low levels of mortality in discriminating dose bioassays using 5mg/L spinosad. Although the mutation monitoring and discriminating dose bioassays reveal that resistance to spinosad is currently low in *T. absoluta* populations in Brazil, the results for the Iraquara population provide a worrying demonstration that mutation frequency and resistance can reach much higher levels in local hotspots where selection pressure is higher. Furthermore, it has recently been demonstrated that much higher levels of spinosad resistance can be selected in *T.*
T. absoluta after just a few generations of selection [28]. Previous research has also demonstrated that spinosad resistance in *T. absoluta* is associated with cross-resistance to other spinosyns [27].

To avoid the development of spinosad resistance in populations of *T. absoluta* across Brazil it is now paramount that a resistance management strategy be developed based on rotation of spinosad with insecticides of different modes of action that currently retain efficacy, such as the diamides and chlorfenapyr. It will also be important to regularly monitor the distribution and frequency of resistance in national populations. In this regard the use of diagnostic concentration bioassays, to detect novel resistance, in combination with high-throughput diagnostic assays can allow resistance to be detected at an early stage and help guide the implementation of informed control and resistance management strategies.

Acknowledgements

Thanks to CAPES for the scholarship granted to the first author and to Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq for the financial support to the project (Universal 484240/2011-0, H.A.A.S.). The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/ under REA grant agreement PIRSES-GA-2012 – 318246. This work was in part funded by a fellowship grant (BB/G023352/1) from the Biotechnology and Biological Sciences Research Council of the UK to Dr. Chris Bass and a PhD studentship award from the BBSRC which funded Madeleine Berger.

References

Table 1. Corrected mortality, R-allelic and genotype frequencies of *Tuta absoluta* larvae exposed to spinosad diagnostic doses.

<table>
<thead>
<tr>
<th>Population</th>
<th>DD<sup>a</sup> 0.25 mg Al/l</th>
<th>DD<sup>b</sup> 5 mg Al/l</th>
<th>R-Allele Freq (%)</th>
<th>Gen Freq - SS(%)</th>
<th>Gen Freq - RS(%)</th>
<th>Gen Freq - RR(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>América Dourada – BA</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Anápolis – GO</td>
<td>97 ± 3</td>
<td>100</td>
<td>2.5</td>
<td>95</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Brasília – DF</td>
<td>83 ± 9</td>
<td>100</td>
<td>2.5</td>
<td>95</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Gameleira 2 – BA</td>
<td>83 ± 7</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gameleira 1 – BA</td>
<td>61 ± 21</td>
<td>100</td>
<td>10</td>
<td>80</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Guaraciaba do Norte - CE</td>
<td>71 ± 14</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Iraquara – BA</td>
<td>7 ± 3</td>
<td>21 ± 4</td>
<td>67.5</td>
<td>10</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>João Dourado - BA I</td>
<td>54 ± 33</td>
<td>97 ± 3</td>
<td>10.5</td>
<td>78.9</td>
<td>21.1</td>
<td>0</td>
</tr>
<tr>
<td>João Dourado - BA II</td>
<td>69 ± 7</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>João Dourado - BA III</td>
<td>93 ± 3</td>
<td>100</td>
<td>12.5</td>
<td>75</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Lagoa Grande – PE</td>
<td>97 ± 3</td>
<td>100</td>
<td>5</td>
<td>90</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Paulínia – SP</td>
<td>100</td>
<td>100</td>
<td>12.5</td>
<td>75</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Pelotas – RS</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pesqueira – PE</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sumaré – SP</td>
<td>100</td>
<td>100</td>
<td>7.5</td>
<td>85</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Tianguá – CE</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Venda Nova – ES</td>
<td>83 ± 7</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

^a Diagnostic doses – 0.25 mg Al/l. ^b diagnostic doses-5 mg Al/l *: susceptible allele - S; resistant allele - R
Table 2. Susceptibility of *Tuta absoluta* strains to spinosad.

<table>
<thead>
<tr>
<th>Population</th>
<th>N<sup>a</sup></th>
<th>Slope ± SE<sup>b</sup></th>
<th>LC<sub>50</sub> (CI95%)<sup>c</sup></th>
<th>LC<sub>80</sub> (CI95%)<sup>c</sup></th>
<th>χ<sup>2</sup> DF<sup>d</sup></th>
<th>RR<sub>50</sub> (CI95%)<sup>e</sup></th>
<th>RR<sub>80</sub> (CI95%)<sup>e</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>PLT-Sus</td>
<td>338</td>
<td>2.16 ± 0.20</td>
<td>0.020 (0.016 – 0.026)</td>
<td>0.05 (0.04 – 0.07)</td>
<td>7.6 (7)</td>
<td>1.0 (0.8 – 1.3)</td>
<td>1.0 (0.7 – 1.4)</td>
</tr>
<tr>
<td>IRA-Unsel</td>
<td>209</td>
<td>1.12 ± 0.21</td>
<td>5.87 (2.82 – 9.52)</td>
<td>29 (19 – 60)</td>
<td>3.7 (5)</td>
<td>284 (151 – 533)</td>
<td>672 (340 – 1328)</td>
</tr>
<tr>
<td>IRA-Sel</td>
<td>210</td>
<td>2.12 ± 0.30</td>
<td>1001 (729 – 1311)</td>
<td>2488 (1865 – 3706)</td>
<td>3.2 (6)</td>
<td>48900 (34500 – 69500)</td>
<td>49700 (32500 – 75900)</td>
</tr>
</tbody>
</table>

^a Total number of larvae bioassayed.
^b Standard error.
^c Milligrams spinosad per liter water.
^d Chi-squared and Degree of Freedom.
^e Resistance ratio: ratio between LC₅₀ resistant and LC₅₀ susceptible and confidence of interval at 95%, calculated through Robertson at al., (2007) method.
* Resistance ratio non-significant if the confidence interval brackets the value 1.0.
<table>
<thead>
<tr>
<th>Population</th>
<th>Treatment</th>
<th>N</th>
<th>Slope ± SE</th>
<th>LC50 (CI95%)</th>
<th>χ^2</th>
<th>DF</th>
<th>SR50 (CI95%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLT-Sus</td>
<td>Spinosad</td>
<td>338</td>
<td>2.16 ± 0.20</td>
<td>0.020 (0.016 – 0.026)</td>
<td>7.7 (7)</td>
<td>1.0 (0.7 – 1.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ PBO</td>
<td>266</td>
<td>1.70 ± 0.17</td>
<td>0.018 (0.012 – 0.030)</td>
<td>10.2 (7)</td>
<td>1.1 (0.8 – 1.6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ DEF</td>
<td>225</td>
<td>1.22 ± 0.19</td>
<td>0.006 (0.003 – 0.009)</td>
<td>5.3 (6)</td>
<td>3.5 (2.0 – 6.1)*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ DEM(†)</td>
<td>213</td>
<td>1.55 ± 0.24</td>
<td>0.26 (0.11 – 0.41)</td>
<td>5.1 (5)</td>
<td>1.6 (0.9 – 3.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spinosad</td>
<td>209</td>
<td>1.12 ± 0.21</td>
<td>5.87 (2.82 – 9.52)</td>
<td>3.7 (5)</td>
<td>1.0 (0.5 – 2.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ PBO</td>
<td>320</td>
<td>1.19 ± 0.19</td>
<td>1.96 (0.88 – 3.14)</td>
<td>2.1 (5)</td>
<td>2.4 (1.1 – 5.3)*</td>
<td></td>
</tr>
<tr>
<td>IRA-Unsel</td>
<td>Spinosad</td>
<td>375</td>
<td>0.84 ± 0.12</td>
<td>1.42 (0.40 – 2.90)</td>
<td>7.6 (7)</td>
<td>3.3 (1.4 – 8.1)*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ DEF</td>
<td>221</td>
<td>0.78 ± 0.17</td>
<td>1.42 (0.21 – 3.47)</td>
<td>4.8 (6)</td>
<td>4.1 (1.1 – 15.7)*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ DEM</td>
<td>210</td>
<td>2.12 ± 0.31</td>
<td>1001 (729 – 1311)</td>
<td>3.2 (6)</td>
<td>1.0 (0.7 – 1.4)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spinosad</td>
<td>316</td>
<td>1.53 ± 0.16</td>
<td>1941 (1369 – 2710)</td>
<td>7.1 (6)</td>
<td>0.5 (0.4 – 0.8)</td>
<td></td>
</tr>
<tr>
<td>IRA-Sel</td>
<td>+ DEF</td>
<td>226</td>
<td>0.73 ± 0.15</td>
<td>1806 (260 – 4337)</td>
<td>9.8 (6)</td>
<td>0.6 (0.3 – 1.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>+ DEM</td>
<td>319</td>
<td>1.42 ± 0.17</td>
<td>1583 (776 – 2503)</td>
<td>7.5 (5)</td>
<td>0.6 (0.4 – 1.0)</td>
<td></td>
</tr>
</tbody>
</table>

*a Total number of larvae bioassayed. * Standard error. * Milligrams spinosad per liter water. * Chi-squared and Degree of Freedom. * Synergism ratio: ratio between LC50 non synergized and LC50 synergized for each population and confidence of interval at 95%, calculated through Robertson a† al., (2007) method. * Synergism ratio non-significant if the confidence interval brackets the value 1.0. (†) This response line was compared with the response line without diethyl maleate [LC50= 0.41 (0.24 – 0.62)], using a different lot of spinosad.
Table 4. Mean (± SE) activity of detoxification enzymes in three *T. absoluta* strains.

<table>
<thead>
<tr>
<th>Population</th>
<th>α esterase mmol/min/µg⁻¹</th>
<th>β esterase mmol/min/µg⁻¹</th>
<th>GST µmoles/min/µg⁻¹</th>
<th>CypO ηmoles min/µg⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTL-Sus</td>
<td>0.02 ± 0.004 b*</td>
<td>0.09 ± 0.010 a</td>
<td>30 ± 3.6 a</td>
<td>0.02 ± 0.004 c</td>
</tr>
<tr>
<td>IRA-Unsel</td>
<td>0.05 ± 0.005 a</td>
<td>0.06 ± 0.001 b</td>
<td>67 ± 4.4 b</td>
<td>0.04 ± 0.005 b</td>
</tr>
<tr>
<td>IRA-Sel</td>
<td>0.03 ± 0.008 ab</td>
<td>0.05 ± 0.003 b</td>
<td>72 ± 13.5 b</td>
<td>0.06 ± 0.002 a</td>
</tr>
</tbody>
</table>

*Means followed by the same letter within column are not statistically different by Tukey's test at 5% probability.
Figure 1. Alignment of nAChr alpha six (Taα6) subunit sequences from the IRA-Sel (spinosad resistant) and Pel (spinosad susceptible) strains of *T. absoluta* showing the presence of an amino acid substitution (G275E) in the resistant strain.
Figure 2. Real-time TaqMan detection of the G275E in *Tuta absoluta*. The top graph shows the FAM-labelled probe specific for the mutant allele, and the bottom graph shows the VIC-labelled probe specific for the wild-type allele. S: wild-type allele; R: resistant allele.