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Secondary plant metabolites are potentially of great value for

providing robust resistance in plants against insect pests. Such

metabolites often comprise small lipophilic molecules (SLMs),

and can be similar also in terms of activity to currently used

insecticides, for example, the pyrethroids, neonicotinoids and

butenolides, which provide more effective pest management

than the resistance traits exploited by breeding. Crop plants

mostly lack the SLMs that provide their wild ancestors with

resistance to pests. However, resistance traits based on the

biosynthesis of SLMs present promising new opportunities for

crop resistance to pests. Advances in genetic engineering of

secondary metabolite pathways that produce insecticidal

compounds and, more recently, SLMs involved in plant

colonisation and development, for example, insect

pheromones, offer specific new approaches but which are

more demanding than the genetic engineering approaches

adopted so far. In addition, nature also offers various

opportunities for exploiting induction or priming for resistance

metabolite generation. Thus, use of non-constitutively

expressed resistance traits delivered via the seed is a more

sustainable approach than previously achieved, and could

underpin development of perennial arable crops protected by

sentinel plant technologies.
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Introduction to the concept of creating robust
insect resistance by genetic engineering of
plant secondary metabolism
Pesticides, and particularly insecticides, serve agriculture

well, with the currently registered compounds presenting
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an extremely low risk to the environment and to human

health, when used in crop protection under legally enforced

protocols. However, seasonal application of pesticides to

the crop is unsustainable in terms of the carbon footprint

particularly associated with application. In addition, the

readiness by which selection for insecticide resistance

occurs via target site modification, often involving only

one non-synonymous single nucleotide polymorphism

(SNP), or via upregulation of a particular gene associated

with metabolism [1], aggravates the problem of the

inherent unsustainability of this type of intervention

against pests. Breeding delivers resistance to crop plants

via the seed and, by definition, is more sustainable, but has

not produced sufficiently durable insect control for repla-

cement of insecticides in mainstream food production.

This is also true of weed control with regard to herbicides,

but is less the case for pathogen control, although without

current fungicides there would be unacceptable losses in

food production [2]. Delivery of insecticides is extremely

inefficient, with a very small percentage applied to the crop

reaching the target insect and even less so the target site,

but such compounds are robust in terms of stability and,

provided delivery ensures sufficient bioavailability for

effective toxic effects and does not lead to environmental

contamination, selectivity is based mostly in unique

aspects of the target insect physiology. Secondary plant

metabolites can be small lipophilic molecules (SLMs) with

similar physicochemical properties and toxicities to pesti-

cides, and many have provided the lead structure or inspi-

ration for synthetic insecticides, for example, pyrethrum for

the pyrethroids [3], nicotine and other nicotinic acetyl-

choline receptor agonists for the neonicotinoids [4��] and

stemofoline for the very recently introduced butenolides

[4��]. Some insecticides are natural products, for example,

spinosad, which comprises the natural spinosyns A and D.

Thus, genes for the biosynthesis of the natural insecticidal

SLMs are available in nature for exploitation by genetic

engineering. The potential of doing this has been demon-

strated by pioneering groups led originally by Gierl [5] and

Moller [6], who established, respectively, the enzymology

for the secondary plant metabolism that produces insecti-

cidal SLMs, the hydroxamic acids [benzoxazinoids, e.g.

DIMBOA (I), R1 = OCH3, R2 = H] (Figure 1), and the

precursors, the cyanogenic glucosides (II) and glucosino-

lates (III) for the toxicants hydrogen cyanide (HCN) and

organic isothiocyanates (RNCS). Compound I can also be

stored as a glucoside, which then also releases the toxic

product upon tissue damage, for example, caused by insect

feeding. Together with storage tissue location, in situ
release can confer selectivity to insects. With the demon-

stration that non-producing crop plants can be genetically

engineered in the laboratory to express these defence
Current Opinion in Plant Biology 2014, 19:59–67
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Naturally occurring insect toxicants (e.g. I) are small lipophilic molecules like commercial insecticides (e.g. V) or lead compounds (e.g. VI) for these.
pathways [7] comes the prospect for developing this

approach to insect control [8��]. There is further evidence

from the long term success of engineering plants to produce

proteins derived from Bacillus thuringiensis (Bt) [9�] against

lepidopterous pests. Here, although not SLMs, the protein

structures are unique in providing high levels of toxicity

against lepidopterous larvae. However, ingestion of the

protein is required and certain gut conditions have to be

present for activity. No similarly valuable related structures

have become available. Although the enzymology for pro-

ducing insecticidal secondary metabolites can be substan-

tially more complicated than for Bt related proteins, it is

evident that the discovery of metabolic gene clusters will

provide less demanding routes for this type of genetic

engineering [10��]. Non-target toxicity is dealt with by risk

analysis before registration, but there are considerable

concerns expressed in the media, particularly regarding

neurophysiologically active insecticidal components but,

also more importantly, the problem of rapid selection for

resistance to toxicants where deployment is widespread.

Both of these problems can be alleviated by targeting
Current Opinion in Plant Biology 2014, 19:59–67 
pheromones and other semiochemicals, another group of

natural SLMs that affect insect behaviour and develop-

ment. Here, much more complicated genetics are associ-

ated with the response by the pest to these compounds and

so selection for resistance is more physiologically demand-

ing for the pest. These SLMs, being highly specific signals

that act at extremely low levels, are also intrinsically more

benign than insecticidal SLMs. Indeed, the high volatility

and chemical instability of many semiochemicals that

contribute to their low risk also present problems of deploy-

ment, but such problems can be overcome by genetic

engineering of plants for production on release, and this

can indeed be achieved [11]. An alternative is to use

genetically engineered plants as a factory for synthesis of

pheromones otherwise only available by expressive chemi-

cal synthesis [12��]. Besides genes for pathways for the

insect toxicants and semiochemicals being available for

engineering insect resistance, there are phytopheromones

that can induce or prime production so that the defence is

only activated when the pest arrives, or the plant is primed

to produce a greater activation when insect colonisation
www.sciencedirect.com
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begins for which there are evolutionary trade-offs [13,14��].
Thus, the scene is set for robust non-constitutive insect

resistance to be engineered into crop plants, opening

opportunities for further advances in sustainable agricul-

ture, including perennial arable crop protection by sentinel

plant technology .

Following on from molecular pathology
The relative success of controlling fungal and other plant

pathogens by breeding and via more conventional genetic

engineering, without targeting secondary metabolites

such as the phytoalexins, provides lessons for exploiting

secondary metabolites. Firstly, there is an advanced un-

derstanding of pathogen/plant interactions [15] that

underpins these successes. It may also be that the

advanced level to which molecular pathology has

ascended has not uncovered the acute need for, as with

insect control, the role of SLMs. However, there are

differences between the pest and disease-causing king-

doms and their respective modes of plant resource exploi-

tation. Insects, as comprising a class of animals, have

highly developed sensory systems which, together with

mobility, determine interactions with plants, particularly

with respect to host plant acceptability. Pathogens,
www.sciencedirect.com 
except for the zoospores of oomycetes, are not so mobile,

relatively sessile, and have generally a more intimate

molecular interaction with the plant. As insects become

closer to this model, there appears to be more opportunity

to develop molecular recognition-based approaches to

management. This is potentially true for the sucking

insects (e.g. aphids [Aphididae, Homoptera]) [16], and

we await realisation of opportunities here but certainly, in

terms of insect/plant recognition processes, there are

analogies with pathogens [17]. Nonetheless, fungicides

remain in heavy use, even with resistant cultivars [18],

and their use can help preserve resistance mechanisms.

Therefore, the lessons of value may eventually divert

work to genetic engineering of plants in relation to SLMs

against pathogens involved as elicitors and in recognition,

but will relate to the main thrust of engineering based on

secondary metabolite targets.

Constitutively expressed toxicants
Constitutive toxicants, having evolved from the so-called

‘arms race’ between plants and organisms at the second

trophic level employing these as a food resource, encom-

pass all secondary biosynthetic pathways. Some are

weakly toxic and only effective when in the necessary
Current Opinion in Plant Biology 2014, 19:59–67
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tissues and at high expression rates. Polyphenolic com-

pounds, biosynthesised from phenylalanine and related to

the structural plant components such as lignin, are often

weakly active inhibitors of digestive enzymes and are

typical of the defence of highly apparent plants such as

long lasting trees [19]. Essential oils, usually comprising

isoprenoids, although naively popular targets for devel-

oping alternative secondary metabolite based pest man-

agement, also usually comprise weakly active

compounds. However, where components of essential

oils act specifically as semiochemicals, for example, the

nepetalactones (IV) [20��], there may be particular value

in their use.

Alkaloids are biosynthesised widely in plants and involve

various biosynthetic pathways, with the essential nitrogen

arising from amino acid primary metabolism. These

compounds can be highly toxic, for example, as neuro-

toxins acting as agonists of acetylcholine or inhibitors of

acetylcholine esterase activity [4��]. As lead compounds

for commercial pesticides such as the neonicotinoid imi-

docloprid (V), pest resistance may be aggravated by their

natural ecological presence [21��]. Although pyrethrin I

(VI), the lead compound for the pyrethroid insecticides

targeting the insect voltage gated sodium channel, is

found in the pyrethrum daisy, Tanecetum cinerariifolium,

its location within the acenes removes this compound

largely from the defence of the parent plant (Figure 1).

Prominent targets for engineering insect resistance in-

clude avenacins, which are steroidal lectins [22], and

although many biosynthetic enzymes are involved, co-

genomic location to an extent simplifies the task [10��].
The pyrethrins are targeted [23��] and also the acylsugars

[24��], but studies are ongoing regarding mode of action.

Inducible and primed defence
Compounds that are broadly active and which also cause

phytotoxicity are commonly associated with insect

defence. However, storage as an inert precursor is also

common, for example, as N-oxides for alkaloids, as gly-

cosides, mostly glucosides, for many toxicants such as the

hydroxamic acids, for example I, and as cyanogenic

glycosides (II) and the glucosinolates (III) that, by chemi-

cal rearrangement and catabolism of the aglycones, give

HCN or RNCS. All are under consideration as genetic

engineering targets and production can be induced by

insect attack. This may simply involve the action of

glycosidases brought into contact with the glycoside iso-

lated within storage vacuoles or trichomes. Alternatively,

induction of precursor production can occur. This may be

a direct process via elicitors (see later) or a primed effect.

Priming is an even more economic evolutionary solution

than induction and could involve a primed production

with release of the toxicant via later damage, or priming of

much earlier processes involving epigenetic or other

regulatory events [25–27]. A dramatic upregulation of a
Current Opinion in Plant Biology 2014, 19:59–67 
specific glucosidase gene on local feeding by the bird-

cherry-oat aphid, Rhopalosiphum padi, can rapidly release I
from the respective glucoside [28]. This could be

exploited in insect control, if the biosynthetic pathway

of I can be enhanced by genetic engineering of one or

more of the genes, mainly cytochrome P450s that are co-

located in the genomes of crop plants such as rye, Secale
cereale, maize, Zea mays and wheat, Triticum aestivum.

Indeed, a mutant lacking the gene for the first committed

biosynthetic step in this pathway that involves the dedi-

cated generation of indole from indole glycerol phosphate

is highly susceptible to caterpillars and aphids [29].

Plant genetic engineering for insect
pheromones
Secondary metabolism was highly evolved before the

appearance of the more advanced kingdoms, and parsi-

mony in pathways between plants and animals can be

exploited. As for plant toxicants, all pathways are found in

insects and so there is a very wide range of options. For

isoprenoids, the aphid alarm pheromone, common for

most pest aphid species, which naturally causes dispersal

of aphids when attacked and recruits foraging by pre-

dators and parasitoids, (i.e. parasitic organisms that kill

their host), is a simple sesquiterpene hydrocarbon, (E)-b-

farnesene (VII), biosynthesised directly from farnesyl

diphosphate (pyrophosphate). A gene causing production

of VII has been overexpressed constitutively in the model

plant, Arabidopsis thaliana, to produce VII sufficiently

pure for alarm activity [30] and which repels aphids

and increases foraging by the parasitic wasp Diaeretiella
rapae, which lays its eggs in aphids that feed on plants in

the family Brassicaceae [11]. Together with a plastidial

locating peptide sequence this, as a synthetic gene with

codon usage optimised for expression in the Poaceae, has

been overexpressed in wheat with similarly dramatic

results in the laboratory. The engineered wheat, compris-

ing the elite hexaploid cultivar Cadenza with and without

increased expression of the synthetic gene for generating

the precursor farnesyl diphosphate is currently being

tested in the field in comparison with the unengineered

commercial cultivar, with full containment, under ACRE

(the Advisory Committee on Releases in the Environ-

ment), sown as spring and winter crops.

The aphid sex pheromones comprise specific isomers of

iridoid nepetalactones, for example IV, and their biosyn-

thesis in the Madagascan periwinkle, Catharanthus roseus
(Apocynaceae), has recently been elucidated [31��].
Although some aspects remain under investigation, the

discovery of a novel reductive cyclisation in nepetalac-

tone biosynthesis provides a bioinformatics-based route

to identification of the corresponding synthetic genes in

the full genomic sequence now published for the pea

aphid, Acyrthosiphon pisum [32]. This is being investigated

to provide new genes for plant genetic engineering to
www.sciencedirect.com
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avoid co-production of other compounds apparently

associated with the biosynthetic pathway in plants.

The sex pheromones of moths (Lepidoptera) have

attracted considerable biosynthetic and genetic investi-

gations. Although also involving simple SLMs mostly

derived from fatty acids by desaturation, chain shortening

and altered functional groups, these can be expensive to

produce by chemical synthesis particularly with sufficient

purity. Therefore production in plants in chemical fac-

tories is under development [12��] with the products

converted, by cheap green technologies, into the final

pheromones for deployment in crops after appropriate

formulation.

Plant genetic engineering for other insect
semiochemicals
Plants produce a diverse array of semiochemicals that

affect insect behaviour and development. Repellents and

attractants can be deployed in a push–pull system and the
Figure 2
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prospect for genetic engineering of plants for these func-

tions has been reviewed [33]. Numerous attractants

(Pull), already identified as simple polyunsaturated

fatty acids oxidation products such as (E)-2-hexenal

[34,35��,36�], could easily be targeted. For repellency

(Push), either specific SLMs or mixtures characteristic

of plants unsuitable as hosts could be utilised. These

could comprise SLMs specific to non-host taxa, for

example, the monoterpenoid (1R,5S)-myrtenal which is

typical of plants in the Lamiaceae that are non-hosts for

the black bean aphid, Aphis fabae, and which is repellent

even in the presence of the host [37]. However, by

modifying the characteristic mixtures of SLMs from

the host plant, the common bean Vicia faba, this plant

can be rendered unattractive [34]. The latter could pre-

sent a highly economic approach simply by altering

upwards or downwards expression of the synthetic gene

for just one SLM [20��,38]. Perhaps the most promising

approach currently investigated is the engineering of

the biosynthesis of homoterpenes, or more correctly,
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or prime, naturally or in GM plants, the production of insect pheromones

X).
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tetranorterpenes, for example, VIII and IX, which are

synthesised by oxidative cleavage of isoprenoid second-

ary alcohols (E)-nerolidol and (E,E)-geranyllinalool,

respectively [39,40��]. These compounds are both volatile

and highly unstable; thus biosynthesis in plants would

solve the practical problems of their deployment which

would provide both repellency of herbivorous pests and,

at the same time, attraction of their enemies [41].

Switching on engineered genes by
phytopheromones and other elicitors
(Figure 2)
When insects feed, the plant can respond to a range of

compounds generated by this process, including proteins

derived from the insect, as well as catabolites derived

from the plants themselves. The elicitor volicitin (X),

isolated from caterpillar regurgitate, induces indirect

defence involving the homoterpenes [42], but requires

insect feeding in order to enter a plant vascular system

[43]. However, on damage, plants can release volatile

SLMs that cause neighbouring plants to undergo induc-

tion of defence involving toxicants as well as semiochem-

ical based indirect defence [44��]. Initially, the volatile,

and thereby externally acting, component methyl jasmo-

nate, of the jasmonate hormone pathway, showed

promise, but effects were erratic [45�] and could be

phytotoxic. However, cis-jasmone (XI), which signals

differentially from methyl jasmonate and is also volatile,

by having lost the carboxylic acid function, elicits upre-

gulation of defence associated genes, for example, At
Cyp81D11 [46�,47�], and others, without the negative

effects associated with jasmonate induction [48]. There

are now several examples of cis-jasmone inducing defence

by repelling pests and attracting beneficial insects,

particularly as a consequence of upregulation of homo-

terpenes [49,50�]. cis-Jasmone also induces production of

I [51] and has a positive effect on barley, which must

involve other inducible defence chemistry as barley is

without the hydroxamic acid pathway. Aphids also cause

elicitation of effects during feeding [16] and the aphid

Lipaphis erysimi, specialising on Brassicaceae, suppresses

floral volatile production in the mustard plant, Sinapis
alba, as opposed to generalist aphid feeding [52��]. Since

the discovery of X, the same group has identified other

novel insect associated elicitors [53]. Commercial GM

programmes have sought elicitors but not apparently

exploiting the natural elicitors, even though IP can be

secured as was done for cis-jasmone. Use of such tools

could provide a route to securing non-constitutive expres-

sion of currently commercialised insect control genes, for

example, those related to Bt endotoxin expression.

Modifications of plant secondary metabolism place only a

relatively low burden on diverted photosynthate [14��].
Nonetheless, priming, because of an even lower burden,

could be more valuable and yet has produced few routes

to exploitation. The main SLM studied as a priming agent
Current Opinion in Plant Biology 2014, 19:59–67 
is b-aminobutyric acid (BABA) (XII), but associated

phytotoxicity is a problem and suitable analogues have

not yet been identified. Recently, cis-jasmone has been

shown to prime maize for a stronger response when later

attacked by the leafhopper Cicadulina storeyi [54] and

shows promise for this approach for the future.

Induction via the rhizosphere also shows promise, and in

the ecosystem, novel semiochemical based processes are

being developed, for example, attraction of insectivorous

nematodes to maize roots damaged by the rootworm,

Diabrotica virgifera virgifera [55��]. In the same way as

through the air, signals from stressed plants can pass to

intact plants and induce defence [56]. In addition, a

powerful ‘highway’ for signalling is established via arbus-

cular mycorrhizal hyphae, which causes dramatic induc-

tion in the indirect defence chemistry of undamaged

plants [57��].

Conclusions and further ways forward
The few practical examples, and the many proven oppor-

tunities, demonstrate value for genetic engineering of

plant secondary metabolite based insect resistance. Where

this involves volatile SLMs acting as pheromones and other

semiochemicals, resistance to these processes would be

encountered when widely adopted in agriculture. None-

theless, by using highly sophisticated techniques, such as

insect peripheral neuroelectrophysiology, developed

originally to identify the semiochemical targets, we can

quickly identify new semiochemicals arising as alternative

signals through resistance. Already, there is evidence for

this evolutionary strategy [58�,59�] being associated with

development of resistance to pheromones and other semi-

ochemicals, and arising where, if the insect ceases to use

semiochemical cues, it will as a consequence become

evolutionarily disadvantaged. Signalling from one plant

to another, whether through the air or the rhizosphere,

facilitates the development of sentinel plants that by

causing upregulation of visual marker genes, could warn

of attack and other problems. Such sentinel plants could

also be developed to switch on defence in the main crop

after initial attack on the sentinel plants.
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