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Abstract

Invasive insects threaten ecosystem stability, public health, and food security. Documenting newly 
invasive species and understanding how they reach into new territories, establish populations, 
and interact with other species remain vitally important. Here, we report on the invasion of the 
South American leafhopper, Curtara insularis into Africa, where it has established populations in 
Ghana, encroaching inland at least 350 km off the coast. Importantly, 80% of the specimens 
collected were intercepted between 160 and 190 m above ground. Further, the fraction of this 
species among all insects collected was also higher at altitude, demonstrating its propensity to 
engage in high-altitude windborne dispersal. Its aerial densities at altitude translate into millions of 
migrants/km over a year, representing massive propagule pressure. Given the predominant south-
westerly winds, these sightings suggest an introduction of C. insularis into at least one of the Gulf 
of Guinea ports. To assess the contribution of windborne dispersal to its spread in a new territory, 
we examine records of C. insularis range-expansion in the USA. Reported first in 2004 from central 
Florida, it reached north Florida (Panhandle) by 2008–2011 and subsequently spread across the 
southeastern and south-central US. Its expansion fits a “diffusion-like” process with 200—300 km 
long “annual displacement steps”—a pattern consistent with autonomous dispersal rather than 
vehicular transport. Most “steps” are consistent with common wind trajectories from the nearest 
documented population, assuming 2—8 hours of wind-assisted flight at altitude. Curtara insularis 
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has been intercepted at US ports and on trucks. Thus, it uses multiple dispersal modalities, yet its 
rapid overland spread is better explained by its massive propagule pressure linked with its high-
altitude windborne dispersal. We propose that high-altitude windborne dispersal is common yet 
under-appreciated in invasive insect species.

Key words: Africa, high-altitude windborne dispersal, invasive species, leafhopper, range-expan-
sion, vehicular transport

Introduction

Invasive insect species pose extreme threat to biodiversity, ecosystem stability, and 
human welfare, as many invasives impact public health (e.g., Aedes aegypti, Yellow 
Fever virus, Anopheles stephensi), and food security (e.g., Ceratitis capitata, Helicov-
erpa armigera; (Elton 1958; Mack et al. 2000; Lounibos 2002; Hulme et al. 2008; 
Jones et al. 2019; Takken and Lindsay 2019; Li et al. 2020; Pysek et al. 2020; 
Sinka et al. 2020; Turner et al. 2021; WHO 2023). Documenting invasive species 
and understanding how they reach new territories, establish populations, and in-
teract with other species remain vitally important despite limited success in revers-
ing invasions after establishment of populations in new regions (Elton 1958; Mack 
et al. 2000; Lounibos 2002; Hulme et al. 2008; Anderson et al. 2010; Lehmann 
et al. 2023). Typically, dispersal of invasive species is divided into (i) long-range 
movements, e.g., between continents (ii) long-range spread post-arrival in a new 
territory, and iii) local short-range spread within and between adjacent habitats. 
Most attention is focused on cross-continent movements (i) because prevention at 
this stage would be most effective, yet the ‘secondary spread’ (ii) determines wheth-
er the species remains stable near its introduction site (“alien” or “naturalized”) 
vs. “invasive.” High dispersal capacity is a key trait for invasive species (Mack and 
Occhipinti 1999; Hulme et al. 2008; Tsoar et al. 2011; Jones et al. 2019). In most 
insects, these dispersal modalities are believed to be mediated by vehicular trans-
port, especially via the maritime trade (Elton 1958; Lounibos 2002; Hulme et al. 
2008; Renault et al. 2018; Turner et al. 2021). However, apart from a few major 
pests, the dearth of information concerning the majority of introduced insects and 
inherent bias in our methodologies and expectations may limit understanding of 
dispersal modalities in invasive species.

Sampling of insects at altitude has often been focused on particular pests such as 
the desert locusts, the brown planthopper, armyworm moths, and malaria mosqui-
toes, yet these studies revealed surprising diversity and abundance of insects (Glick 
1939; Riley et al. 1995; Reynolds et al. 1996; Riley and Reynolds 1996; Chapman 
et al. 2004; Anderson et al. 2010; Drake and Reynolds 2012; Hu et al. 2016; 
Florio et al. 2020; Wu et al. 2021; Yaro et al. 2022 ; Huang et al. 2024). Many of 
these windborne-migrant insects have been implicated to cover tens, hundreds and 
thousands of kilometers in their journey (Ghauri 1983; Drake and Reynolds 2012; 
Fu et al. 2014; Chapman et al. 2015; Hu et al. 2016; Wu et al. 2021).

The interception of the leafhopper Curtara insularis (Caldwell, 1952; Suppl. ma-
terial 2: fig. S1) flying at altitude, representing a new continental record for Africa, 
suggests that high-altitude windborne dispersal plays a key role in the species’ rapid 
spread post-arrival into the continent. A member of a genus that is endemic to the 
Western Hemisphere, C. insularis was originally known from Argentina, Paraguay, 
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and Brazil (Zahniser and Nartey 2024). It has expanded across the Americas since 
the early 2000s (Kittelberger et al. 2021; Zahniser and Nartey 2024). Unlike cer-
tain members of its family, C. insularis is not known to vector plant pathogens 
or impact any crop. Nonetheless, as it feeds on new host plants in its new range, 
it might play a new role as a vector of local pathogens. An example of such a 
case is the glassy-winged sharpshooter (Homalodisca vitripennis (Germar)) that has 
changed transmission patterns of local strains of the plant-pathogenic bacterium, 
Xylella fastidiosa, in its new range, i.e., the Western USA, resulting in epidemics 
of oleander leaf scorch and Pierce’s disease in southern California (Almeida and 
Nunney 2015; Pysek et al. 2020).

Typically, the rapid spread of invasive insects is attributed to vehicular transport, 
which is often involved to some or great extent (below). However, here, we assess 
the role of high-altitude windborne dispersal in the spread of an invasive insect 
over a new territory. We present results from our aerial and ground-level surveil-
lance in Africa as well as an analysis of a new compilation of distributional records 
of C. insularis in the US based on multiple data sources including citizen-science 
databases. We offer a descriptive, semiquantitative framework to ascertain the rel-
ative contribution of windborne spread versus vehicular spread using spatio-tem-
poral records and data on wind patterns. Based on our results, we propose that 
high-altitude windborne dispersal is especially common in many invasive insect 
species, in the hope it would be subject to a rigorous test in the near future.

Methods

Sampling sites

Aerial collection stations were established in rural open areas in Ghana and Mali 
(Fig. 1A). In southern Ghana two stations were set up in the moist-semi-deciduous 
forest near the town of Agogo (6.961, -0.960), and in the Guinea woodland eco-
zone near the town of Wenchi (7.781, -2.162). In southern Mali one station was 
set in the Sudano-Guinean ecozone near the village Kenieroba (12.112, -8.332). 
Agogo, Wenchi, and Kenieroba receive 1200–1400, 1000–1200, and 900–1000 
mm of rain annually, respectively. However, in Kenieroba, the rainy season is con-
fined to May-November whereas the Ghanian sites receive rains most months of 
the year (Siebert 2014). These areas are interspersed with farmland along rivers and 
grassland. The main crops grown near Agogo are cocoa, coffee, oil palm, citrus, 
cashew, mango, cassava, yam, among others. The main crops in Wenchi are corn, 
rice, sorghum, yam, plantain, groundnuts, and cowpea, among others. In Keniero-
ba, farmers grow mainly rice, sorghum, millet, corn, beans, among other crops; 
cereals are grown during the wet season (May-October) and vegetables in smaller 
plots during dry season (November-April).

Aerial and ground-level insect collection and specimen processing

The aerial collection methods were described in detail previously (Huestis et al. 
2019; Florio et al. 2020), Briefly, insect sampling was conducted using sticky nets 
(panels, each 1 m wide × 3 m long) attached to the tethering line of 3 m diameter 
helium-filled balloons. Each balloon typically carried three panels, set at 120 m, 
160 m, and 190 m agl (above ground level). Balloons were launched around 17:30 



176NeoBiota 96: 173–189 (2024), DOI: 10.3897/neobiota.96.130615

Rita Nartey et al.: The role of high-altitude windborne migration in invasive insects

before sunset and retrieved around 07:00, after sunrise the following morning. To 
control for insects trapped near the ground as the panels were raised and lowered, 
comparable control panels were raised up to 100 m agl and immediately retrieved 
during each balloon launch and retrieval operation. Following panel retrieval, in-
spection for insects was conducted in a dedicated clean area. Individual insects 
were removed from the nets with forceps, counted, and stored in vials containing 
80% ethanol. Concurrent samples were collected from a 1 m2 panel mounted 1 m 
above ground to represent ground insects. This net was attached to a line from a 
frame in such a way that allowed it to orient perpendicular to the wind direction 
like the nets suspended from the helium balloon.

Taxon identification

Using a dissecting microscope, African specimens were identified morphologically 
to order and to morphospecies, counted, and recorded. Specimens of the selected 
morphotypes were identified by expert taxonomist who narrowed the identifica-
tion down to species or genus. All African specimens of C. insularis were confirmed 
by Dr. James Zahniser (USDA-APHIS, National Museum of Natural History 
[USNM], Smithsonian Institution, Washington, DC, USA). Voucher specimens 
are deposited at USNM.

Distribution data in the USA

Publicly available records of observations of C. insularis from BugGuide.net (n = 22; 
(BugGuide 2024)), iNaturalist (n = 827; (iNaturalist 2024)) that met “Research 
grade” standard (verified by SVH) were downloaded and added to records avail-
able from the Florida Department of Agriculture and Consumer Services, Division 
of Plant Industry (FDACS-DPI) (N = 266) after the specimens were identified 
by FDACS-DPI hemipterists. Vouchers for FDACS-DPI specimens are depos-
ited in the Florida State Collection of Arthropods. The data from Florida also 
included 3 interception records in trucks that originated from Arizona (2) and 
Mexico (1). Border interception records of C. insularis (since 2019) from ports of 
entry in the USA (identified by Dr. James Zahniser, USDA) were provided from 
USDA/APHIS (N = 9) included the port of entry and date of collection. Of 1,124 
observations collected until December 31, 2023, from the USA, 11 represented 
insects during transit, and thus were excluded from distribution data that were 
used to plot C. insularis range in the USA. This compilation of data is included in 
Suppl. material 1.

Data analysis

Subsamples of the Mali collections from March to December 2019 and the Gha-
na collections from May to October 2021 were evaluated for the presence of 
C. insularis. Every month of collection at each study site was represented by at 
least 6 panels at altitude and at least 4 panels at ground level. The total number of 
insects per panel represents the ‘panel density’. Aerial density was estimated as the 
panel density of the species divided by the total air volume that passed through 
that net that night (i.e., aerial density = panel density/volume of air sampled, and 
volume of air sampled = panel surface area × mean nightly wind speed × sampling 
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duration). The panel surface area was 3 m2. Wind-speed data were obtained from 
the atmospheric re-analyses of the global climate (ERA5). Hourly data consistent 
of the eastward and northward components (horizontal vectors) of the wind were 
available at 31-km surface resolution at 2 and 300 m agl (1000 and 975 mbar pres-
sure levels). Overnight records (19:00 through to 06:00) were averaged to calcu-
late the nightly mean direction and mean wind speed over each African sampling 
station and select locations in the USA (below) based on standard formulae using 
code written in SAS (SAS software 2019).

The intensity of migration was expressed as the expected number of migrants 
crossing a line of 1 km perpendicular to the wind direction at altitude, which 
reflect their direction of movement (Drake and Reynolds 2012; Hu et al. 2016; 
Reynolds et al. 2017; Florio et al. 2020). We used the mean wind speed at altitude 
during the migration season (Table 1) and assumed that the leafhoppers fly in a 
layer depth of 200 m above ground level (Florio et al. 2020). The nightly migration 
intensity was computed across the flight season (including sampling nights during 
which no migrants were captured). The corresponding annual index was estimated 
by multiplying the nightly index by the period of migration, estimated from the 
first and last month that the species was captured.

To assess the likelihood of windborne movement to a new locations in the USA, 
we identified new sites where C. insularis was observed for the first time outside 
its previous year’s range, defined by connecting all the extreme points of its cumu-
lative distribution in the previous year. For each new site, we consider its nearest 
known site—where C. insularis was previously reported—as a putative source. Un-
derlying our approach is the assumption that the missing data due to low sampling 
in certain localities and/or certain years would generate noisier data-patterns rather 
than as systematic pattern. Therefore, finding a consistent biological trend (signal) 
in these data, relevant to the process in question is likely produced by a biological 
process rather than by variation in sampling intensity. Virtually all datasets on geo-
graphic expansion at these scales of time and space would present similar “imper-
fections”, inviting inquiries to better assess and address their limitations. However, 
large Citizen-Scientist databases provide compelling advantages as pointed out by 
(Kittelberger et al. 2021).

The annual distributions of nightly (19:00–06:00) winds during the year of the 
new record were plotted as vectors pointing to the direction the insects would be 
carried if they flew 8 hours from that site on that night’s wind at 300 m agl. The 
self-propelled flight speed of leafhoppers does not typically exceed 1 m s−1 (Zhou 
et al. 2003) and therefore at altitude with winds exceeding 4 m/s, the direction 
of the movement of the insects will be determined primarily by the wind. Only 
nights with at least 8 hours when temperatures were > 16 °C at altitude and on the 
ground were included (assuming no flight occurred below 16 °C (Shields and Testa 
1999). The total flight duration of tethered leafhoppers reached over 7 h (Zhou et 
al. 2003) and additionally, inferences about windborne leafhoppers in the US trav-
eling hundreds of kilometers per night (or tens of kilometers/night over successive 
nights) have been made based on their phenology (Carlson et al. 1992; Shields 
and Testa 1999; Reynolds et al. 2017). Thus, we assumed that C. insularis could fly 
at altitude between 2 and 8 h per night. The wind trajectories were projected on 
maps based on the wind direction, speed, and 8 hours of flight using SAS 9.4 (SAS 
software 2019). Windborne dispersal from the putative source to its destinations 
was assessed based on visual inspection of the trajectory distributions.
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Table 1. Mean panel and aerial densities of C. insularis at altitude and ground levels across study sites with average temperature, humidity, 
wind speed, and direction during the migration period (May-August).

Agogo (panels: 66/19) a Wenchi (panels: 57/26) Kenieroba (panels: 47/0)

Altitude (26)b Ground (21)b Altitude (19) Ground (12) Altitude (35)
Kenieroba 

(panels: 47/0)

Panel density C. insularis c 0.23 (0–0.47) 0.05 (0–0.15) 0.40 (0.0–0.84) 0.17 (0–0.53) 0 0

Total C. insularis / total insectsd 0.26 (6/2314) 0.06 (1/1662) 0.21 (8/3852) 0.17 (2/1193) 0 (0/3348) 0% (0/549)

Aerial density C. insularise 0.41 (0–0.83) nd 1.0 (0–2.08) nd 0 0

Dispersal mass (n/[km night]f 17,004 (0–34,422) nd 35,424 (0–73,682) nd 0 0

Wind speed (m/s)g 4.75 (4.6–4.9) 1.86 (1.8–1.9) 4.07 (3.96–4.18) 1.85 (1.8–1.9) 1.91 (1.8–2.0) 1.91 (1.8–2.0)

Wind direction (°)g 244 (243.7–244.2) 246.3 (246.1–246.6) 244.2 (244.0–244.5) 246.8 (246.5–247.2) 229.2 (229.0–229.4) 229.1 (229.0–229.4)

Temperature (°C)g 23.9 (23.8–24.1)
[19.3]

25.3 (25.1–25.4)
[20.7]

24.9 (24.7–25.1)
[19.9]

26.4 (26.2–26.5)
[21.3]

28.0 (27.6–28.4)
[17.6]

29.5 (29.1–29.9)
[19.5]]

Relative humidity (%)g 85.0 (84.1–85.8) 84.1 (83.2–84.9) 80.2 (79.2–81.2) 80.8 (79.8–81.8) 75.6 (73.5–77.7) 75.6 (73.5–77.7)

a Total number of panels/control panels inspected.
b Number of panels.
c Mean (95%CI) panel density of C. insularis /panelr during May-September (zeros replace negative lower 95%CL).
d Percentage of C. insularis from total insects (% total C. insularis/total insects).
e Mean (95%CI) aerial density of C. insularis /106 m3 of air during May-September (zeros replace negative lower 95%CL).
f Estimated number of C. insularis crossing an imaginary 1 km line perpendicular to the wind direction between 50–250 m above ground level.
g Nightly hourly averages and 95%CL (over May-August; N = 2,706) [minimum temp].

Results and discussion

African aerial and ground surveillance

Overall, 25,431 insect specimens collected in West Africa on 308 panels (157 
panels at 120–290 m agl, 84 panels at 1 m agl, and 67 control panels) were sorted 
and evaluated for the presence of Curtara insularis. Interception of C. insularis at 
altitude and at ground level occurred between May and August (Fig. 1) but not 
in September and October (sampling in other months were only performed in 
Mali). Although we cannot rule out high-altitude flights in the rest of the year, we 
consider the period between May and August as its migration period and unless 
otherwise stated, confined the summary statistics to this period (Table 1, Fig. 1). 
A total of 18 specimens of C. insularis were identified among samples collected 
in Agogo and Wenchi (Ghana) during May to August (9,113 insect specimens, 
Table 1), but none was found in Kenieroba (Mali) during these months (3,897 
insect specimens, Table 1) or throughout the year (6,151 insect specimens). Most 
C. insularis (N = 14) were intercepted at altitude (160–190 m agl), 3 were collect-
ed at ground level, and 1 on a control panel (Table 1). A single specimen on the 
control panels (N = 45 control panels) as opposed to 14 specimens intercepted in 
these locations at altitude (N = 61 panels, Table 1) indicate that “contamination” 
near the ground (<50 m agl) is unlikely to account for the capture of so many 
specimens at altitude. At altitude, similar numbers of males (8) and females (6) 
were collected, indicating that both sexes equally engage in high-altitude flight 
unlike mosquitoes, in which females consist of > 80% from the aerial collection 
(Huestis et al. 2019; Yaro et al. 2022). All specimens were macropterous (having 
fully formed fore- and hindwings), albeit no polymorphism in wing development 
has been noted for this species.

The higher numbers of C. insularis at altitude and its relative larger fraction of 
the total insects on the panels among all specimens collected (Table 1) attest for its 
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propensity to engage in high-altitude windborne dispersal. The scale of C. insularis 
movement at altitude was estimated as the average number of individuals fly-
ing between 50 and 250 m agl crossing a 1 km line perpendicular to the wind 
during a single night. With tens of thousands flying nightly at altitude across 1 km 
(Table 1), the expected number over the four-months season (Fig. 1) was in the 
millions, reflecting that this species had established robust populations in its source 
sites. Radar studies have shown that windborne insects fly nightly over swathes 
that are tens or even several hundreds of kilometers wide (Drake and Reynolds 
2012; Hu et al. 2016). With a mean wind speed of 4.5 m/s, individual insects fly-
ing 2–8 hours would readily cover 30–150 km per night. High-altitude windborne 
dispersal has been reported in leafhoppers including a flight > 3,000 km over the 
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ocean (Balclutha salturella [Previously: B. pauxilla]), culminating in the invasion of 
Ascension Island (Ghauri 1983), and seasonal migrations over hundreds of kilo-
meters in North America (Empoasca fabae, Macrosteles quadrilineatus, and Circulif-
er tenellus), and Asia (Nilparvata lugens and Sogatella furcifera) (Glick 1939; Taylor 
1974; Carlson et al. 1992; Reynolds et al. 2017; Hu et al. 2019; Wu et al. 2019). 
In tropical West-Africa, temperature and humidity rarely restrict flight activity 
even at altitude (Table 1; Sanogo et al. 2021). Altogether, high-altitude dispersal 
of C. insularis is a potent strategy for spreading rapidly over large areas. These 
large number of migrants account for massive propagule pressure (Lockwood et 
al. 2005; Simberloff 2009) that could well explain the importance of this modal-
ity of dispersal compared with vehicular spread, which involves small number of 
specimens that often arrive in inhospitable spaces, e.g., storage facilities surround-
ed by urban environment, which limit reproduction success and establishment 
of populations.

Given the predominant wind directions in this region of West Africa (Fig. 1, 
Table 1), C. insularis is probably carried by the winds inland, encroaching up to at 
least ~300 km (Wenchi) from its supposed landing sites in one or more West Africa 
ports (Fig. 1). If it had been introduced through the largest port of West Africa, 
Abidjan, Ivory Coast, the predominant southwesterly winds would have carried 
it straight to the Agogo and Wenchi areas (Fig. 1), whereas Kenieroba is clearly 
off the predominant wind trajectories from the main Gulf of Guinea ports. Thus, 
invasion of locations such as Kenieroba may require over-land vehicular transport 
or considerably longer time using windborne dispersal. Whether C. insularis can 
establish populations in Kenieroba, Mali is an open question. Located within the 
Sudano-Guinean zone along the Niger river, the overall climatic conditions in 
Kenieroba are similar to those in Wenchi (Table 1) or other sites where C. insularis 
is found (below), albeit with a longer dry season (December-April). Other expla-
nations in which C. insularis has arrived earlier at other region(s) of Africa cannot 
be rule out without additional data on its distribution on the continent.

Spread of Curtara insularis in the USA

The current distribution of C. insularis in the USA is based on 1,109 records (ex-
cluding 11 “in-transit” records) spanning the period of 2004–2023 (Suppl. materi-
al 1, 2: fig. S2). The records cover much of the southeastern and south-central USA 
(25°—36°N latitudes and 77°— 102°W longitude, Suppl. material 2: fig. S2). There 
was minimal seasonal variation considering the month of observation and latitude 
or longitude (not shown), suggesting that C. insularis populations are perennial in 
that range. Given the number of the records, this range suggests a habitat-suitabil-
ity space, which appears bounded to the north by annual temperature minima iso-
therm of -12 °C, described by vegetation zone 8 (USDA 2023) and to the west by 
annual precipitation isohyet of 510–630 mm (NOAA 2023). Despite their appar-
ent correlation between these boundaries and the current limits on the C. insularis 
distribution, studies are needed to establish causal relationships of these hypothet-
ical factors. Permissive combinations of temperatures and precipitation also occur 
along the Northwest coast (e.g., in California) and the Southwest (e.g., in Arizo-
na). Indeed, C. insularis was intercepted in Florida on two trucks that originated 
from Arizona in 2022 and 2024 (FDACS-DPI records), although the species has 
not yet been reported from any western state. Future records of this species from 
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those territories may reveal the stability of the current range. We consider the range 
of records available up to December 2023 as the space in which range expansion 
could have occurred, evaluating how C. insularis “filled” it.

The interception of C. insularis in international ports (9 records since 2019) 
and on trucks entering Florida (3 records since 2004) provide evidence for the role 
of the maritime trade as well as vehicles overland in transporting this species. The 
port interceptions were in Florida (5), Houston Texas (2), Georgia (1), and Puerto 
Rico (1). These records substantiate that C. insularis can spread by all these means 
as well as by wind at altitude (above) as other invasive pests, such as Helicoverpa 
and Spodoptera moths (Jones et al. 2019). Given the large distances of transport 
by truck (daily average of ~1,000 km), airplane, or ships, the expected pattern of 
spread would be by long and irregular leaps in all directions (Suarez et al. 2001; 
Ahn et al. 2023; Lehmann et al. 2023), whereas windborne spread would predict 
a continuous incremental spread that resembles “diffusion process” that follows 
predominant winds.

The first record of C. insularis in the USA dates to January 2004 (Hillsborough 
County, Florida, Suppl. material 1). However, 42 specimens from 5 central-south 
Florida counties were identified that year, indicating the original introduction took 
place into that region earlier (Fig. 2A, Suppl. material 2: fig. S3). Over the next 
5 years, it has spread throughout the state, reaching the panhandle by 2008, and 
expanding outside the state only in 2012 (Suppl. material 2: fig. S3). The relatively 
slow spread northward, given the numerous sightings in Florida and compared with 
subsequent years is incompatible with vehicular transport but can be attributed to 
“unfavorable” predominant winds which have a strong east-west component in re-
lation to the narrow peninsula (~200 km wide), resulting in most windborne jour-
neys ending at sea (Fig. 2A). That Florida is a major producer of most nursery stocks 
and diverse produce that are shipped by trucks efficiently all over the US, highlights 
the contrast between this mode of transport and the pattern of spread observed. In 
2012, C. insularis was reported near Houston, Texas, and a year later near Lafay-
ette, Louisiana (Suppl. material 2: fig. S3). With average nightly wind speeds 5.6 
m/s (maximum of 16.9 m/s) we expect displacement ranges of 40–150 km/night 
over 2–8 hours of flight with up to 500 km during maximum recorded (nightly) 
windspeed. The closest C. insularis record was from Florida, > 900 km away from 
Houston (500 km away from Lafayette). The scarcity of westward winds from Flor-
ida and the large distance suggests that C. insularis was transported to Houston by a 
ship, truck, or airplane rather than by the wind (Fig. 2B, and below). Nonetheless, 
its arrival near Lafayette (Louisiana, Suppl. material 2: fig. S3) the following year 
is consistent with frequent eastward winds from Houston (Fig. 2B). In 2016, C. 
insularis was observed around Austin and Dallas (Texas) as well as near Columbus, 
Georgia (Suppl. material 2: fig. S3). Wind trajectories from Houston to Dallas were 
common and those towards Austin are modestly common, as are the trajectories 
from Tallassee to Columbus (Fig. 2B). The slower arrival into these destinations 
(~4 years) agrees with the modest frequency of corresponding wind trajectories. By 
2017 and 2018, C. insularis was reported from South Carolina and in new counties 
of Texas, including a remote region of western Texas > 50 km from a major high-
way (Suppl. material 2: fig. S3). Fifteen of the new records were located consistent 
with wind trajectories from previously established populations (Fig. 2C), however 
4 of 20 would require 9–11 hours windborne flight (at average nightly wind speed) 
and a single site near Matamoros, Mexico, would require ~16 hours flight or an 
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additional landing by ship at the nearby port of Brownsville Texas (Fig. 2C, Sup-
pl. material 2: fig. S3). In 2019, C. insularis was reported from its northern-most 
point near Raleigh, North Carolina (~170 km from Florence, SC, Suppl. material 
2: fig. S3), Tuscaloosa, Alabama (~260 km from Crestview FL), and Jackson, Mis-
sissippi (~130 km from Pensacola FL), as well as to other new localities, closer to 
previously established populations (Fig. 2D, Suppl. material 2: fig. S3). All these 
sites were consistent with common wind directions and distances from previously 
established populations (Fig. 2D, Suppl. material 2: fig. S3). Similarly, new coun-
ties in 2020 and 2021–2023 were also < 100 km from previously established sites 
and often from multiple such sites (Fig. 2D, Suppl. material 2: fig. S3), consistent 
with windborne spread. This approach is conservative because it assumes that the 
source populations of news localities are known, although unknown source sites 
may be closer to the new location, resulting in overestimating the distance these mi-
grants actually passed. The average annual maximum distance of range expansion 
was 229 km (range: 0–950 km, Suppl. material 2: fig. S4). The arrival into Houston 
(recorded on 2012) presented an extreme outlier, indicating a different mode of 
range expansion from the rest (Fig. 2, Suppl. material 2: figs S3, S4). Excluding this 

Figure 2. Maps showing range expansion of Curtara insularis in relation to projection of annual wind trajectories at altitude (300 m asl) from pu-
tative source(s) reported previously assuming 8-hour windborne flight and linear winds (broken lines) A expansion of C. insularis (2004—2011) 
with annual nightly projections of wind trajectories from Tampa 2005 (see text) B expansion of C. insularis (2012—2016) with annual nightly 
wind trajectories from Tallahassee and Houston 2012 (see text) C expansion of C. insularis (2017—2018) with projections of annual nightly 
wind trajectories from Jacksonville, Tallahassee, Columbus, Lafayette, Houston, Dallas, and Austin. Expansion of C. insularis (2018—2023) with 
projections of annual nightly wind trajectories from Florence, Columbia, Columbus, Crestview, Lafayette, Dallas, Austin, Matamoros (Mexico).

A

DC
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value, yields an average of annual maximum range expansion of 176 km (Suppl. 
material 2: fig. S4: inset). Both values appear considerably lower than the average 
maximum distances of truck transporting produce in the US.

Conclusion and implications

Our results show that C. insularis exploits multiple modes of long-range dispersal, 
including vehicular transportation on board of ships and trucks and windborne 
migration at altitude. Curtara insularis was first found in Africa by sampling at alti-
tude. Based on its aerial density over Ghana, we estimate that annually, millions of 
C. insularis migrate at altitude across each 1 km sections perpendicular to the wind, 
representing a massive propagule pressure that probably exceeds by several orders of 
magnitude that of transport by vehicles. Extending these findings, we assess the rel-
ative importance of windborne migration compared with vehicular transport to the 
spread of C. insularis in the USA. Given the size of the habitat space this leafhopper 
has expanded to until 2023, it is notable that it took 5 years to reach the Florida 
panhandle from central Florida (~350 km), and 8 years to spread beyond Florida 
to other states. Likewise, all but three of the hundreds of records of inter-annual 
range-expansion exceed 300 km from the nearest previously known site. Had it 
regularly been transported by trucks (or airplanes) overland to the numerous new 
areas it was reported from, it would have spread from Central Florida and reach 
North Carolina (~1,000 km), or western Texas (~2,000 km) considerably faster 
than 19 or 15 years, respectively. Our data suggest that except 1–3 independent 
introductions to the US by the maritime trade (and possibly by trucks), C. insularis 
expansion overland has been incremental, diffusion-like process, which generally 
agrees with common wind trajectories. Thus, C. insularis range expansion in the US 
is better explained by high-altitude windborne dispersal following one or few suc-
cessful journeys onboard ships. How unique is C. insularis among invasive insects 
in exploiting high-altitude windborne dispersal? Because strong dispersive capacity 
is a key trait of invasive species (Mack et al. 2000; Lounibos 2002; Hulme et al. 
2008; Anderson et al. 2010; Renault et al. 2018; Hu et al. 2019; Jones et al. 2019) 
and because of the diverse insect faunas at altitude (Chapman et al. 2004; Drake 
and Reynolds 2012; Hu et al. 2016; Florio et al. 2020; Yaro et al. 2022; Huang et 
al. 2024), we propose that-high altitude windborne dispersal may well be especially 
common among invasive insect species. Some of these species pose severe risks to 
biodiversity, food security, and public health (above), and are exacerbated by an-
thropogenic changes including climate change (Cao and Feng 2024). Therefore, 
aerial surveillance 10–30 km downwind from major ports might complement tra-
ditional surveillance procedures to discover invading insect species early and predict 
their likely destinations—information that can improve elimination efforts before 
they spread over large areas—when elimination may be an especially viable option.
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