(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property

Organization

International Bureau

(43) International Publication Date 17 October 2013 (17.10.2013)

- (51) International Patent Classification: *C12N 15/82* (2006.01) *C12N 9/02* (2006.01) *C12N 9/10* (2006.01)
- (21) International Application Number:
- PCT/GB2013/050955
 (22) International Filing Date:

12 April 2013 (12.04.2013)

(25) Filing Language: English

(26) Publication Language: English

- (30)
 Priority Data:

 1206483.8
 12 April 2012 (12.04.2012)
 GB

 1222 184.2
 10 December 2012 (10.12.2012)
 GB
- (71) Applicant: ROTHAMSTED RESEARCH LTD [GB/GB]; West Common, Harpenden, Hertfordshire AL5 2JQ (GB).
- (72) Inventors: NAPIER, Johnathan; The Wilderness, Butchers Lane, Preston, Hertfordshire SG4 7TR (GB). SAYANOVA, Olga; 43 Snatchup, Redbourne, Hertfordshire AL3 7HF (GB). LOPEZ, Noemi Ruiz; 3B Lawes Court, 55 Milton Road, Harpenden, Hertfordshire AL5 5NX (GB). HASLAM, Richard; 25 Lower Street, Quainton, Aylesbury, Buckinghamshire HP22 4BL (GB).
- 74) Agent: D YOUNG & CO LLP; 120 Holborn, London EC IN 2DY (GB).

(10) International Publication Number WO 2013/153404 Al

- (81) Designated States (unless otherwise indicated, for every kind *f* national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind *f* regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- *with international search report (Art. 21(3))*
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(74) 7O 2013/153404 A1

(54) Title: PRODUCTION OF OMEGA-3 LONG CHAIN POLYUNSATURATED FATTY ACIDS

(57) Abstract: A recombinant camelina plant or cell comprising one or more polynucleotides encoding a A6-desaturase, a A6-elongase and a A5-desaturase operably linked with one or more regulatory sequences.

Production of omega-3 long chain polyunsaturated fatty acids

5 Field of the Invention

10

20

35

The present invention relates to a recombinant oilseed plant or cell for producing omega-3 long chain polyunsaturated fatty acids such as eicospentaenoic acid (EPA) and docosahexaenoic acid (DHA). The invention further relates to the oil produced by said recombinant oilseed plant or cell.

Background to the Invention

Two main families of poly-unsaturated fatty acids are the omega-3 fatty acids,exemplified by EPA, and the omega-6 fatty acids, exemplified by arachidonic acid (Figure 1).

The starting material for the omega-6 metabolic pathway is the fatty acid linoleic acid while the omega-3 pathway proceeds via linolenic acid. Linolenic acid is formed by the activity of an omega-3 desaturase (Tocher et al. 1998, Prog. Lipid Res. 37, 73-117; Domergue et al. 2002, Eur. J. Biochem. 269, 4105-41 13).

Omega-3 highly unsaturated fatty acids are recognized as being important dietary compounds for preventing arteriosclerosis and coronary heart disease, for alleviating inflammatory conditions and for retarding the growth of tumor cells. These beneficial effects are a result both of omega-3 highly unsaturated fatty acids causing competitive inhibition of compounds produced from omega-6 fatty acids, and from beneficial compounds produced directly from the omega-3 highly unsaturated fatty acids themselves (Simopoulos et al. (1986) Health Effects of Polyunsaturated Fatty

30 Acids in Seafoods, Academic Press, New York).

Omega-3 long chain polyunsaturated fatty acids are crucial to brain development and normal brain functioning (Neuringer, et al., (1988) *Annu Rev Nutr* 8, 517-541) with DHA particularly important to brain functioning due to its influence on neural membrane properties, which modulate cell signalling (Uauy, R., and Dangour, A. D. (2006) *Nutr Rev* 64, S24-33; discussion S72-91). DHA concentration in the brain

2

decreases with age in humans, something that has been postulated to be consequential to the age-related deterioration in central nervous system functions (Soderberg et al. (1991) *Lipids* 26, 421-425). Evidence from animal studies supports this, with animals fed a low omega-3 long chain polyunsaturated fatty acid diet showing cognitive deficits (Suzuki et al. (1998) *Mech Ageing Dev* 101, 119-128) that are ameliorated by DHA supplementation (Moriguchi, T., and Salem, N., Jr. (2003) *J Neurochem* 87, 297-309; Chung, et al. (2008) *J Nutr* 138, 1165-1171).

In humans, it has been consistently reported that a higher intake offish is related to reduced cognitive decline (van Gelder et al. (2007) Am J Clin Nutr 85, 1142-1 147; 10 Kalmijn et al. (1997) Ann Neurol 42, 776-782; Morris et al. (2005) Arch Neurol 62, 1849-1853; Kalmijn et al. (1997) Am J Epidemiol 145, 33-41) and incidence of dementia (Kalmijn et al. (1997) Ann Neurol 42, 776-782), and associated with better cognitive performance (Morris et al., (2005) Arch Neurol 62, 1849-1853; Kalmijn et al. (2004) Neurology 62, 275-280; Nurk et al. (2007) Am J Clin Nutr 86, 1470-1478; 15 Dangour et al. (2009) J Nutr Health Aging 13, 198-202). Significant positive relationships between cognitive outcomes and dietary intake levels of omega-3 long chain polyunsaturated fatty acids have also been established (van Gelder et al. (2007) Am J Clin Nutr 85, 1142-1 147; Morris et al. (2003) Arch Neurol 60, 940-946; Kalmijn et al. (2004) Neurology 62, 275-280). These positive relationships are 20 further strengthened if one considers the plasma or erythrocyte level/status of omega-3 long chain polyunsaturated fatty acids. Here, DHA/EPA levels have been associated with better cognitive function in normal older adult (Whalley et al. (2004) Am J Clin Nutr 80, 1650-1657; Whalley et al. (2008) Am J Clin Nutr 87, 449-454), better cognitive outcomes over time (Whalley et al. (2008) Am J Clin Nutr 87, 449-25 454), and reduced risk of cognitive decline (Heude et al. (2003) Am J Clin Nutr 77,

803-808) and a lower risk of developing dementia (Schaefer et al. (2006) Arch Neurol 63, 1545-1550).

Studies in cognitively healthy populations have failed to show efficacy in improving cognition (Dangour et al. (2010) Am J Clin Nutr 91, 1725-1732; van de Rest et al. 30 (2008) Neurology 71, 430-438). However, omega-3 long chain polyunsaturated fatty acid supplementation has been shown to be efficacious in cognitively impaired individuals (primarily mild cognitively impaired; MCI), where interventions had a beneficial effect cognitive (Chiu on outcomes et al. (2008)Prog

3

Neuropsychopharmacol Biol Psychiatry 32, 1538-1544; Freund-Levi et al. (2006) *Arch Neurol* 63, 1402-1408; Yurko-Mauro et al. (2010) *Alzheimers Dement* 6, 456-464). Furthermore, they have been shown to be beneficial in at risk AD individuals carrying the apolipoprotein E (ApoE) ɛ4 allele, with these individuals showing an improvement in sustained attention after 26 weeks intervention with both low (226 mg EPA, 176 mg DHA) and high (1093 mg EPA, 847 mg DHA) doses offish oil.

Bacteria and yeast are not known to synthesize omega-3 highly unsaturated fatty acids and only a few fungi are known which can produce minor and trace amounts of omega-3 highly unsaturated fatty acids (Weete (1980) Lipid Biochemistry of Fungi and Other Organism. Plenum Press, New York; Wassef, M. (1977) "Fungal lipids." Adv. Lipid Res.).

Currently the primary dietary source of omega-3 highly unsaturated fatty acids is from certain fish oils which can contain up to 20-30% of these fatty acids in their triacylglycerides. Consequently large quantities of fish oil are processed and encapsulated each year for sale as a dietary supplement.

- However, fish stocks may undergo natural fluctuations or may be depleted by overfishing. Furthermore, fish oils, can accumulate environmental pollutants and may contain high levels of fat-soluble vitamins that are found naturally in fish oils. When ingested, these vitamins are stored and metabolized in fat in the human body rather than excreted in urine. Additionally, fish oils have an unpleasant taste and odour when they undergo oxidation, and as such cannot be added to processed foods as a food additive, without impairing the taste of the food product. Moreover, the refining of pure omega-3 highly unsaturated fatty acids from crude extracts of fish oils is an involved and expensive process resulting in very high prices for pure forms of these fatty acids.
- 30 The primary natural source of omega-3 unsaturated fatty acids in fish oil is in fact marine unicellular microbes such as algae and diatoms, at the base of the aquatic foodweb. These highly unsaturated fatty acids are important components of photosynthetic membranes. Omega-3 highly unsaturated fatty acids accumulate in the food chain and are eventually incorporated into fish oils.

Owing to the positive characteristics of omega-3 polyunsaturated fatty acids, genes have been identified which are involved in the biosynthesis of these fatty acids in a variety of organisms.

- 5 Linoleic acid (LA, 18:2^{Δ9}¹²) is converted to a-linolenic acid (ALA, 18:3^{Δ9}.¹²¹⁵) the first of the omega-3 fatty acids, by the action of a Δ15 desaturase. Subsequently, ALA is converted to stearodonic acid (SDA, 18:4 ^{Δ6}^{19,12,15}) by the activity of a Δ6 desaturase; SDA is converted to eicosatetraenoic acid (ETA, 20:4 ^{Δ8,11,14,17}) by the activity of an elongase; and ETA is converted to eicosapentaenoic acid (EPA, 20:5 ^{Δ5,8}^{11,14,17}) by the activity of a Δ5 desaturase. Alternatively, ETA and EPA can be produced from di-
- homo γ -linolenic acid (DGLA, 20:3^{$\Delta B_{1_1,1_4}$}) and arachidonic acid (ARA, 20:4^{$\Delta 5_{1_8,1_1,1_4</sub>}) respectively, by the activity of a <math>\Delta 17$ desaturase. EPA can be further converted to DHA by the activity of an elongase and a $\Delta 4$ desaturase (see Figure 1).</sup>
- 15 While higher plants comprise polyunsaturated fatty acids such as linoleic acid and linolenic acid, long-chain polyunsaturated fatty acids such as DHA and EPA are not found at all in the seed oil of such plants, or only in miniscule, nutritionally-irrelevant amounts. The production of long-chain polyunsaturated fatty acids, in particular omega-3 fatty acids, in higher plants would be advantageous since large amounts of high-guality long-chain polyunsaturated fatty acids (and associated triacylglycerides)
- 20 high-quality long-chain polyunsaturated fatty acids (and associated triacylglycerides) for the food industry, animal nutrition and pharmaceutical purposes might be obtained economically.

Transgenic linseed oil plants have been shown to result in the accumulation of high 25 levels of $\Delta 6$ desaturatesd C₁₈ fatty acids. However, only very low levels of C₂₀ polyunsaturated fatty acids have been obtained. The synthesis and accumulation of omega-3 LC-PUFAs such as EPA and DHA in the seeds of transgenic plants has previously reported in the literature but with limited success and unpredictable results.

30

Abbadi et al. (Plant Cell. 2004 Oct;16(10):2734-48. Epub 2004 Sep 17) described attempts to produce EPA in the seeds of transgenic linseed, using a three-gene construct containing a Δ 6-desaturase (D6D) *from Phaeodactylum tricornutum* (AY082393), A6-elongase (D6E) from *Physcomitrella patens* (AF428243) and Δ 5-

5

desaturase (D5D) from *Phaeodactylum tricornutum* (AY082392). Linseed was chosen as a host species for the seed-specific expression of these genes on account of the very high levels of endogenous substrate (ALA) for prospective conversion to EPA. However, despite the presence of almost 50% ALA in the seeds of developing linseed, less than 1% EPA (0.8% of total fatty acids) was generated. In addition, very high levels of the undesired biosynthetic intermediate the omega-6 fatty acid y-linolenic acid (GLA) were reported (16.8% of total fatty acids). This simultaneous accumulation of high levels of GLA and low synthesis of EPA was ascribed by Abbadi et al. (Plant Cell. 2004 Oct;16(10):2734-48. Epub 2004 Sep 17) to the

10 phospholipid-dependent substrate-requirements of the D6D.

Similar results were also reported by Wu et al. (Nat Biotechnol, 2005, 23:1013-7) who described the seed-specific expression of a 3 gene construct (D6D from *Pythium irregulare,* CAJ30866; D6E from *Physcomitrella patens;* D5D from *Thraustochytrium,*

- 15 AX467713) in *Brassica juncea*, yielding 0.8% EPA but 27.7% of the undesirable omega-6 GLA. More complex gene constructs were also reported by Wu et al. in which they attempted to boost the accumulation of EPA in transgenic *B. juncea*. A four gene construct comprising the same D6D, D6E, D5D activities and additionally the FAD2 A12-desaturase from *Calendula officinalis* (AF343065) resulted in a small
- 20 increase in EPA to 1.2% but also a concomitant increase in GLA to 29.4%. A five gene construct, comprising D6D, D6E, D5D, FAD2 and a second $\Delta\delta$ -elongase D6E#2 from *Thraustochytrium* (AX214454) had equally marginal impact on the fatty acid composition of the seeds of transgenic *B. juncea,* yielding 1.4% EPA and 28.6% GLA. A six gene construct, comprising the same D6D, D6E, D5D, FAD2, D6E#2 and
- 25 a w3-desaturase w3D from *Phytophthora infestans* (CS160901), yielded the best levels of EPA at 8.1% - however, the levels of GLA remained high at 27.1%. In a further iteration, Wu et al. (Nat Biotechnol, 2005, 23:1013-7) also attempted to engineer the accumulation of both EPA and DHA, through the seed-specific expression of nine genes (D6D, D6E, D5D, FAD2, D6E#2, w3D, and additionally a
- 30 A5-elongase (D5E) from fish (*Oncorhynchus mykiss;* CS020097), a A4-desaturase (D4D) from *Thraustochytrium* (AF489589), and an acyltransferase also from the same organism). This yielded *B. juncea* seeds containing on average 8.1% EPA and 0.2% DHA. Again, GLA levels remained markedly higher (27.3%). Wu et al. reported

a maximal level of EPA observed in transgenic *B. juncea* as 15% and a maximal DHA level of 1.5% (based on individual plants for their nine gene construct.

Similar experiments were carried out in the model oilseed species Arabidopsis
thaliana: Robert et al. (Functional Plant Biol, 2005, 32: 473-479) reported the low level accumulation of EPA (3.2% of total fatty acids) in the seeds of Arabidopsis on the expression of two genes, a Afunctional D6D/D5D from zebrafish (*Danio rerio*, AF309556) and a D6E from the nematode *Caenhorabditis elegans* (Z68749). Interestingly, this construct also showed significantly reduced accumulation of GLA, a fact that Robert et al. attributed to the acyl-CoA-dependent substrate requirement of the D6D/D5D. Further transformation of this EPA-accumulating Arabidopsis ine with genes for DHA synthesis (D4D and D5E from *Pavlova salina*, AY926605, AY926606) resulted in a mean level of 0.3% DHA, again with basal levels of the unwanted co-product GLA (0.3%).

15

Very similar results were reported by Hoffmann et al. (J Biol Chem, 2008, 283:22352-62) who postulated that the use of an "acyl-CoA-dependent" pathway in transgenic plants would decrease the build-up of biosynthetic intermediates such as GI A whilst simultaneously increase the accumulation of EPA. However, the seed-specific 20 expression in Arabidopsis of acyl-CoA-dependent D6D and D5D activities from Mantoniella squamata (AM949597, AM949596) (in conjunction with the previously described D6E from P. patens) yielded barely detectable levels of EPA (<0.1% of total seed fatty acids and < 0.05% GLA. Analogous data have been reported by Ruiz-Lopez et al. (Transgenic Res. 2012 (doi:10.1007/s1 1248-012-9596-0)) who 25 expressed a number of different gene combinations in Arabidopsis. Notably, a six gene construct comprising a D6D from Pythium irregulare, (CAJ30866); D6E from Physcomitrella patens (AF428243); D5D from Thraustochytrium, (AX467713); a bifunctional D12/15 desaturase from Acanthamoeba castellanii, EF017656; w3D from Phytophthora infestans (CS160901) and a second D6E from Thalassiosira 30 pseudonana, (AY591337) yielded 2.5% EPA of total seed fatty acids with the concomitant accumulation of 13.3% GLA. In contrast, a four gene construct that contained an acyl-CoA-dependent D6D from Ostreococcus tauri (AY746357), D6E Thalassiosira pseudonana (AY591337), from D5D from Thraustochytrium, (AX467713) and FAD2 from Phytophtora sojae (CS423998) generated low levels of

both EPA (2% of total fatty acids) and GLA (1.0%).

More recently, Cheng et al. (Transgenic Res, 2010, 19:221-9) reported the accumulation of EPA in transgenic *Brassica carinata*. For example, the seed-specific expression of 3 genes (D6D from *Pythium irregulare*, CAJ30866; D6E from *Thalassiosira pseudonana*, AY591337; D5D from *Thraustochytrium*, AX467713) resulted in a mean level of 2.3% EPA, with high level co-accumulation of GLA (17.6%). A four gene construct (D6D, D6E, D5D and w3D from *Claviceps purpurea*, EF536898) resulted in 4.2% EPA and 11.8% GLA, whilst a five gene construct (D6D, D6E, D5D, w3D and an additional w3-desaturase from *Pythium irregular*, (FB753541)) yielded 9.7% EPA and 11.1% GLA. Such levels are very similar to that observed with five and six gene constructs in *B. juncea* (Wu et al. 2005, Nat Biotechnol, 2005, 23:1013-7). Cheng et al. introduced a different 5 gene construct

D5D from *Thraustochytrium*, AX467713; FAD2 from *Calendula officinalis*, AF343065
and w3D from *Pythium irregulare*, FB753541) into two different cultivars of *B. carinata*, differing in their accumulation of the C22 monounsaturated fatty acid erucic acid. Expression of this construct in conventional high erucic acid *B. carinata* resulted again in a mean accumulation of 9.3% EPA and 18.2% GLA. Expression in the zero-erucic acid genotype yielded an increase in EPA though this genotype also resulted in the co-accumulation of high levels of GLA (26.9%).

(D6D from Pythium irregulare, CAJ30866; D6E from Thraustochytrium, HC476134;

The present invention addresses the need for systems that produce commercially useful levels of omega-3 highly unsaturated fatty acids in the seeds of terrestrial plants.

25

Summary of the Invention

Camelina sativa is a genus within the flowering plant family *Brassicaceae*. Camelina is a short season crop, and has gained notoriety for its ability to withstand water
shortages in early stages of development. In recent years, there has been increasing interest in the use of camelina oil as a biofuel and bio-lubricant, mainly in view of this crop's low nitrogen requirements.

The present invention relates to the surprising finding that camelina can be 35 transformed with desaturase and elongase enzymes to produce omega-3 fatty acids.

25

30

8

Indeed, following the introduction of these enzymes into camelina, it is not only possible to generate omega-3 fatty acids, but it is possible to create novel oil compositions.

- 5 According to a first aspect of the present invention there is provided a recombinant camelina plant or cell comprising one or more polynucleotides encoding a $\Delta 6$ -desaturase, a $\Delta \delta$ -elongase and a A5-desaturase operably linked with one or more regulatory sequences.
- 10 Thus, there is provided a camelina plant or cell transformed with genes encoding a $\Delta 6$ -desaturase, a A6-elongase and a $\Delta \delta$ -desaturase.

The $\Delta\delta$ -desaturase, $\Delta\delta$ -elongase and $\Delta\delta$ -desaturase enzymes can be encoded by a single or separate polynucleotide(s). What is important is that the recombinant camelina plant or host according to the first aspect of the invention comprises polynucleotide sequences for all three enzymes.

In a preferred embodiment of the first aspect of the invention, the recombinant camelina plant or cell is produced by transforming a camelina plant or cell with a
 polynucleotide encoding a Δ6-desaturase, a Δ6-elongase and a A5-desaturase operably linked with one or more regulatory sequences.

Alternatively, the recombinant camelina plant or cell may be produced by transforming a camelina plant or cell with separate polynucleotides each encoding a $\Delta\beta$ -desaturase and/or a $\Delta\beta$ -elongase and/or aA5-desaturase.

The recombinant camelina plant or cell of this aspect of the invention may further comprise one or more polynucleotides encoding a A12-desaturase and/or a ω_3 desaturase operably linked with one or more regulatory sequences. Thus, there is provided a recombinant camelina plant or cell comprising one or more polynucleotides encoding a Δ 6-desaturase, a Δ 6-elongase, aA5-desaturase, a Δ 12-desaturase and ω_3 desaturase operably linked to one or more regulatory elements. In a preferred embodiment, the recombinant camelina plant or cell is produced by

transforming a camelina plant or cell with a polynucleotide encoding a $\Delta 6$ -

9

desaturase, a $\Delta 6$ -elongase, a $\Delta 5$ -desaturase, a A12-desaturase and a $\omega 3$ desaturase operably linked with one or more regulatory sequences.

According to a second aspect of the present invention there is provided a method for producing eicosapentaenoic acid (EPA) comprising growing a plant or cell according to the first aspect of the invention under conditions wherein said desaturase and elongase enzymes are expressed and EPA is produced in said plant or cell.

According to third aspect of the present invention there is provided a method for 10 producing a plant seed oil comprising growing a recombinant camelina plant or cell of the first aspect of the invention whereby said desaturase and elongase enzymes are expressed and oil is produced in said plant or cell.

According to fourth aspect of the present invention there is provided a plant seed oil 15 produced by the recombinant camelina plant or cell of the first aspect of the present invention.

According to a fifth aspect of the present invention there is provided a plant seed oil wherein EPA constitutes at least 5%, at least 10%, at least 20%, at least 25% or at least 30% (mol %) of the total of the total amount of fatty acid present in said oil. Said oil may be produced by a recombinant camelina plant or cell of the first aspect of the present invention.

In one embodiment, the EPA constitutes at least 15, 20, 25 or 30% (mol %) of the
total fatty acid content of said oil, and the γ-linolenic (GLA) constitutes less than 10% (mol %) of the total fatty acid content of said oil.

In one embodiment, the EPA constitutes 20% to 35%, preferably 20 to 31% (mol %) of the total fatty acid content of said oil.

30

The GLA may constitute less than 7% (mol %) of the total fatty acid content of said oil. In one embodiment, the GLA constitutes 1% to 6% (mol %) of the total fatty acid content of said oil.

The ratio of the molar percentages of EPA to γ -linolenic (GLA) may be, for example, about 3:1 to about 22:1, preferably about 5:1 to about 20:1, preferably about 8:1 to about 20:1.

- 5 According to a sixth aspect of the present invention there is provided a recombinant camelina plant or cell comprising one or more polynucleotides encoding a $\Delta 6$ -desaturase, a $\Delta 6$ -elongase, a $\Delta 5$ -desaturase, a $\Delta 5$ -elongase and a A4-desaturase operably linked with one or more regulatory sequences.
- 10 Thus, there is provided a camelina plant or cell transformed with genes encoding a $\Delta\beta$ -desaturase, a $\Delta6$ -elongase, a $\Delta5$ -desaturase, a $\Delta5$ -elongase and a $\Delta4$ -desaturase.

The A6-desaturase, Δβ-elongase, Δ5-desaturase, Δ5-elongase and A4-desaturase
15 can be encoded by a single or separate polynucleotide(s). What is essential is that the recombinant camelina plant or cell according to the sixth aspect of the invention comprises polynucleotide sequences for all five enzymes.

Preferably, the recombinant camelina plant or cell according to this aspect of the invention is produced by transforming a camelina plant or cell with a polynucleotide encoding a A6-desaturase, a A6-elongase, a A5-desaturase, a ∆5-elongase and a A4-desaturase operably linked with one or more regulatory sequences.

Alternatively, the recombinant camelina plant or cell may be produced by 25 transforming a camelina plant or cell with separate polynucleotides each encoding a Δ 6-desaturase, and/or $\Delta\delta$ -elongase, and/or Δ 5-desaturase, and/or $\Delta\delta$ -elongase and/or a A4-desaturase.

The recombinant camelina plant or cell of this aspect of the invention may further 30 comprise one or more polynucleotides encoding a Δ 12-desaturase and/or a ω 3 desaturase operably linked with one or more regulatory sequences. Thus, there is provided a recombinant camelina plant or cell comprising one or more polynucleotides encoding a Δ 6-desaturase, a Δ 6-elongase, a A5-desaturase, a Δ 12desaturase, a Δ 8-elongase, a A4-desaturase and a ω 3 desaturase operably linked to

35 one or more regulatory elements. In a preferred embodiment, the recombinant

camelina plant or cell is produced by transforming a camelina plant or cell with a polynucleotide encoding a A6-desaturase, a Δ 6-elongase, a Δ 5-desaturase, a Δ 5-elongase, a A4-desaturase, a A12-desaturase and a ω 3 desaturase operably linked with one or more regulatory sequences.

5

10

According to a seventh aspect of the present invention there is provided a method for producing docosahexaenoic acid (DHA) and/or EPA comprising growing a plant or cell according to the sixth aspect of the invention under conditions wherein said desaturase and elongase enzymes are expressed and DHA and/or EPA is produced in said plant or cell.

According to eighth aspect of the present invention there is provided a method for producing a plant seed oil comprising growing a recombinant camelina plant or cell of the sixth aspect of the invention whereby said desaturase and elongase enzymes are

15 expressed and oil is produced in said plant or cell.

According to a ninth aspect of the present invention there is provided a plant seed oil produced by the recombinant camelina plant or cell of the sixth aspect of the present invention.

20

25

30

According to a tenth aspect of the present invention there is provided a plant seed oil wherein DHA constitutes at least 1%, preferably at least 3%, more preferably at least 5%, still more preferably at least 7%, still more preferably at least 10%, still more preferably at least 13% or still more preferably at least 15% (mol %) of the total amount of fatty acid present in said oil. Said oil may be produced by a recombinant camelina plant or cell according to the sixth aspect of the present invention.

Preferably, according to this aspect of the invention the γ -linolenic (GLA) constitutes less than 5%, more preferably less than 4.5%, still more preferably less than 4%, still more preferably less than 3.5%, still more preferably less than 3%, still more preferably less than 2.5%, still more preferably less than 2% (mol %) of the total fatty acid content of said oil.

In one embodiment the DHA constitutes 5% to 20% (mol %) of the total fatty acid 35 content of said oil.

In another embodiment the DHA constitutes 5% to 20% (mol %) of the total fatty acid content of said oil.

5 In another embodiment the DHA constitutes 10% to 20% (mol %) of the total fatty acid content of said oil.

In another embodiment the DHA constitutes 10 to 15% (mol %) of the total fatty acid content of said oil.

10

In another embodiment the DHA constitutes 10 to 13.7% (mol %) of the total fatty acid content of said oil.

Preferably the combined percentage of DHA and EPA is at least 20% of the total fatty 15 acid content of said oil.

In one embodiment the combined percentage of DHA and EPA is 20 to 30% of the total fatty acid content of said oil.

20 In one embodiment the combined percentage of DHA and EPA is 21 to 27% of the total fatty acid content of said oil.

In one embodiment the DHA constitutes 4% to 10%, preferably 4% to 8%, preferably 5% to 7.5% (mol %) of the total fatty acid content of said oil.

25

In one embodiment the GLA constitutes 0% to 4.5% (mol %) of the total fatty acid content of said oil.

In one embodiment the GLA constitutes 0.5% to 4.5% (mol %) of the total fatty acid 30 content of said oil.

In another embodiment the GLA constitutes 1.0% to 4.5% (mol %) of the total fatty acid content of said oil.

In another embodiment the GLA constitutes 1.5% to 4.5% (mol %) of the total fatty acid content of said oil.

In another embodiment the GLA constitutes 0% to 3.5% (mol %) of the total fatty acid 5 content of said oil.

In another embodiment the GLA constitutes 0.5% to 3.5% (mol %) of the total fatty acid content of said oil.

10 In another embodiment the GLA constitutes 1.0% to 3.5% (mol %) of the total fatty acid content of said oil.

In another embodiment the GLA constitutes 1.5% to 3.5% (mol %) of the total fatty acid content of said oil.

15 In one embodiment the GLA constitutes 1.5% to 3.2% (mol %) of the total fatty acid content of said oil.

The ratio of the molar percentages of EPA to DHA may be, for example, about 0.8:1 to about 1.4:1, preferably about 1:1 to about 1:1.3.

In another embodiment the ratio of the molar percentages of the sum of (EPA + DHA) to GLA is about 20:1 to about 3:1, 5:1, 7:1 or 10:1.

25 In another embodiment the ratio of the molar percentages of the sum of (EPA + DHA) to GLA is about 17:1 to about 3:1, 5:1, 7:1 or 10:1.

In another embodiment the ratio of the molar percentages of the sum of (EPA + DHA) to GLA is about 16.4:1 to about 3:1, 5:1, 7:1 or 10:1.

30

In another embodiment the ratio of the molar percentages of the sum of (EPA + DHA) to GLA is about 8:1 to about 3:1.

According to an eleventh aspect of the present invention there is provided use of 35 camelina in the manufacture of an omega-3 fatty acid, preferably EPA or DHA.

According to a twelfth aspect of the present invention there is provided a camelina seed comprising a phosphatidylcholine wherein the total number of carbon atoms of the fatty acid acyl groups of said phosphatidylcholine is 40. Preferably the seed is a seed of the plant of the first aspect of the invention.

5

10

According to a thirteenth aspect of the present invention there is provided a camelina seed comprising phosphatidylcholine, wherein the total number of carbon atoms:double bonds of the fatty acid acyl groups of said phosphatidylcholine species is selected from the group consisting of: 34:4, 34:0, 36:7, 38:11, 38:9, 38:8, 38:7, 38:6, 38:5, 40:11, 40:10, 40:9, 40:8, 40:7, 40:6, 40:5 and 40:4. Preferably the seed comprises all the phosphatidylcholine species 34:4, 34:0, 36:7, 38:11, 38:9, 38:8, 38:7, 38:6, 38:5, 40:11, 40:10, 40:9, 40:8, 40:7, 40:6, 40:5 and 40:4. Preferably the seed is a seed of the plant of the first aspect of the invention.

15 According to a fourteenth aspect of the present invention there is provided a camelina seed comprising one or more phosphatidylethanolamine species wherein the total number of carbon atoms:double bonds of the fatty acid acyl groups of said phosphatidylethanolamine species is selected from the group consisting of 34:4, 36:7, 38:8, 38:7, 38:6, 38:5, 40:10, 40:9, 40:8, 40:7, 40:6, 40:5. Preferably the seed comprises all of the phosphatidylethanolamine species 34:4, 36:7, 38:8, 38:7, 38:6, 40:7, 40:6, 40:5. Preferably the seed is a seed of the plant of

According to a fifteenth aspect of the present invention there is provided a camelina seed oil comprising the phosphatidylcholine species 34:4, 34:0, 36:7, 38:1 1, 38:9, 38:8, 38:7, 38:6, 38:5, 40:1 1, 40:10, 40:9, 40:8, 40:7, 40:6, 40:5 and 40:4. Preferably the seed is a seed of the plant of the sixth aspect of the invention.

the first aspect of the invention.

According to a sixteenth aspect of the present invention there is provided a camelina 30 seed wherein the seed comprises one or more phosphatidylethanolamine species wherein the total number of carbon atoms:double bonds of the fatty acid acyl groups of said phosphatidylethanolamine species is selected from the group consisting of 34:4, 36:7, 38:8, 38:7, 38:6, 38:5, 40:10, 40:9, 40:8, 40:7, 40:6, 40:5. Preferably the camelina oil comprises all of the phosphatidylethanolamine species 34:4, 36:7, 38:8,

38:7, 38:6, 38:5, 40:10, 40:9, 40:8, 40:7, 40:6, 40:5. Preferably the seed is a seed of the plant of the sixth aspect of the invention.

According to a seventeenth aspect of the present invention there is provided a 5 camelina seed or oil wherein said seed or oil comprises triglycerides wherein the number of carbon atom double bonds of said triglycerides is 58:8, 58:9 and 58:10. The seed or oil may be derived from the transgenic camelina plant of the invention.

In addition to the specific elongase and desaturase enzymes referred to herein, the recombinant camelina plant or cell defined herein may further encode other enzymes involved in polyunsaturated fatty acid synthesis, in particular enzymes involved in omega-3 polyunsaturated fatty acid synthesis. Alternatively, the recombinant camelina plant may only be transformed with the fatty acid synthesis enzymes referred to herein.

15

The recombinant camelina plant defined herein may be in the form of a seed.

The desaturase and elongase enzymes used in the present invention may be derived from, for example, algae, bacteria, mould or yeast.

20

In one embodiment, the A6-desaturase used in the present invention is derived from *Ostreococcus*, preferably OtD6 from *Ostreococcus tauri* (Domergue et al. Biochem. J. 389 (PT 2), 483-490 (2005). In one embodiment, the A6-desaturase is encoded by a polynucleotide sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or

25 100% identity to SEQ ID NO:1. In another embodiment, the A6-desaturase comprises an amino acid sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:2.

In another embodiment, the A6-desaturase used in the present invention is O809D6
from Ostreococcus RCC809. In one embodiment, the A6-desaturase is encoded by a polynucleotide sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:19. In another embodiment, the A6-desaturase comprises an amino acid sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:20.

In one embodiment, the $\Delta\delta$ -elongase used in the present invention is derived from *Physcomitrella*, and is preferably from *Physcomitrella patens*. Preferably the $\Delta6$ -elongase is PSE1 derived from *Physcomitrella patens* (Zank.et al., Plant J. 31 (3),

5 255-268 (2002); AB23891 4). In one embodiment, the A6-elongase is encoded by a polynucleotide sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:3. In another embodiment, the A6-elongase comprises an amino acid sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:4.

10

In another embodiment, the Δ 6-elongase used in the present invention is FcElo6, a Δ 6 fatty acid elongase from *Fragilariopsis cylindrus CCMP 1102*. In one embodiment, the $\Delta\delta$ -elongase is encoded by a polynucleotide sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:21. In

15 another embodiment, the $\Delta\delta$ -elongase comprises an amino acid sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:22.

In another embodiment, the A6-elongase used in the present invention is CeElo6, a Δ6 fatty acid elongase from *Caenorhabditis elegans* (Beaudoin et al., 2000, Proc Natl
Acad Sci U S A. 2000 Jun 6;97(12):6421-6). In one embodiment, the A6-elongase is encoded by a polynucleotide sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:23. In another embodiment, the Δ6-elongase comprises an amino acid sequence that has at least 50, 60, 70, 80, 85, 90, 95, 95, 97, 99% or 100% identity to SEQ ID NO:24.

25

In one embodiment, the A5-desaturase used in the present invention is derived from *Thraustochytrium sp.* Preferably the Δ 5-desaturase is Tc Δ 5 derived from *Thraustochytrium sp.* (Qiu et al. J Biol Chem. 2001 Aug 24;276(34):31 561-6; AF489588). In one embodiment, the Δ 5-desaturase is encoded by a polynucleotide

30 sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:5. In another embodiment, the Δ 5-desaturase comprises an amino acid sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:6.

PCT/GB2013/050955

17

In another embodiment, the EMoD5 Δ 5-desaturase from *E. huxleyi* (Sequence ID 9, 10) can be used. In one embodiment, the Δ 5-desaturase is encoded by a polynucleotide sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:9. In another embodiment, the Δ 5-desaturase

5 comprises an amino acid sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO: 10.

In one embodiment, the A5-elongase used in the present invention is derived from *Ostreococcus*, preferably *Ostreococcus tauri*. Preferably the A5-elongase is OtElo5

10 derived from *Ostreococcus tauri* (WO 20050 12316-A2; CS020 123). In one embodiment, the A5-elongase is encoded by a polynucleotide sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:7. In another embodiment, the Δ 5-elongase comprises an amino acid sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:8.

15

In one embodiment, the A4-desaturase is derived from *Thraustochytrium sp* (ATCC21685). In one embodiment, the A4-desaturase is encoded by a polynucleotide sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:17. In another embodiment, the A4-desaturase

comprises an amino acid sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO: 18.

In another embodiment the A4-desaturase is EhD4 derived from *Emiliana huxleyi* (WO 20091 331 45-A1; HC086723; et al. Phytochemistry. 201 **1** May; 72(7).594-600).

In one embodiment, the A4-desaturase is encoded by a polynucleotide sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID 15. In another embodiment, the A4-desaturase comprises an amino acid sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO: 16.

30 In another embodiment the A4-desaturase is TpDesk, a A4-desaturase from *Thalassiosira pseudonana* (Tonon et al, 2005 FEBS J. 2005 Jul;272(13):3401-12). In one embodiment, the A4-desaturase is encoded by a polynucleotide sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID 25. In another embodiment, the A4-desaturase comprises an amino acid sequence that has

35 at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:26.

In one embodiment, the A12-desaturase used in the present invention is derived from Phytophthora, and is preferably PsA12 from Phytophthora sojae (WO 2006100241 A2; CS423998). In one embodiment, the A12-desaturase is encoded by a

- 5 polynucleotide sequence that has at least 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:1 1. In another embodiment, the A12-desaturase comprises an amino acid sequence that has at least 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:12.
- 10 In a one embodiment, the ω 3-desaturase used in the present invention is derived from *phytophthora*, preferably *phytophthora infestans*. Preferably the ω 3-desaturase is ρ i(ω 3) derived from *phytophthora infestans* (JP 2007527716; DJ418322). In one embodiment, the ω 3-desaturase is encoded by a polynucleotide sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:13. In
- 15 another embodiment, the ω 3-desaturase comprises an amino acid sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO: 14.

In another embodiment, the ω 3-desaturase used in the present invention is Hpw-3, a ω 3 desaturase gene from Hyaloperonospora parasitica. In one embodiment, the ω 3-20 desaturase is encoded by a polynucleotide sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:27. In another embodiment, the ω 3-desaturase comprises an amino acid sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:28.

25 Preferably the camelina referred to herein is *Camelina satrva*.

In one embodiment, the plant seed oil described herein comprises triglycerides wherein the number of carbon atoms:double bonds of said triglycerides is 58:8, 58:9 and 58:10.

30

Detailed description

Various preferred features and embodiments of the present invention will now be described by way of non-limiting examples.

The practice of the present invention will employ, unless otherwise indicated, conventional techniques of chemistry, molecular biology, microbiology, recombinant DNA and immunology, which are within the capabilities of a person of ordinary skill in the art. Such techniques are explained in the literature. See, for example, J. Sambrook, E. F. Fritsch, and T. Maniatis, 1989, *Molecular Cloning: A Laboratory Manual*, Second Edition, Books 1-3, Cold Spring Harbor Laboratory Press; Ausubel, F. M. et al. (1995 and periodic supplements; *Current Protocols in Molecular Biology*, ch. 9, 13, and 16, John Wiley & Sons, New York, N.Y.); B. Roe, J. Crabtree, and A. Kahn, 1996, *DNA Isolation and Sequencing: Essential Techniques*, John Wiley & Sons; J. M. Polak and James O'D. McGee, 1990, *In Situ Hybridization: Principles and Practice;* Oxford University Press; M. J. Gait (Editor), 1984, *Oligonucleotide Synthesis: A Practical Approach*, Irl Press; D. M. J. Lilley and J. E. Dahlberg, 1992,

15 DNA Methods in Enzymology, Academic Press; and E. M. Shevach and W. Strober, 1992 and periodic supplements, *Current Protocols in Immunology,* John Wiley & Sons, New York, NY. Each of these general texts is herein incorporated by reference.

Methods of Enzymology: DNA Structure Part A: Synthesis and Physical Analysis of

20 Camelina

5

10

Camelina is a genus within the flowering plant family Brassicaceae. Camelina is an emerging biofuel crop, in particular *Camelina sativa*. It is also known by other names such as German sesame, false-flax, gold-of-pleasure, and Siberian oilseed.
Renewed interest in C. *sativa* as a biofuel feedstock is due in part to its drought tolerance and minimal requirements for supplemental nitrogen and other agricultural inputs (Gehringer et al. (2006) Genome 49(12): 1555-63; Gugel and Falk (2006) Canadian Journal of Plant Science 86(4): 1047-1058).

30 Similar to other non-traditional, renewable oilseed feedstocks such as *Jatropha curcas L*. ("jatropha"), C. *sativa* grows on marginal land. Unlike *jatropha*, which is a tropical and subtropical shrub, C. *sativa* is native to Europe and is naturalized in North America, where it grows well in the northern United States and southern Canada.

In addition to its drought tolerance and broad distribution, several other aspects of C. sativa biology make it well suited for development as an oilseed crop. First, C. sativa is a member of the family Brassicaceae, and thus is a relative of both the genetic
model organism Arabidopsis thaliana and the common oilseed crop Brassica napus (also known as canola). Second, the oil content of C. sativa seeds is comparable to that of B. napus, ranging from 30 to 40% (w/w) (Budin et al. (1995). Journal of the American Oil Chemists' Society 72(3): 309-315; Gugel and Falk (2006) Canadian journal of plant science 86(4): 1047-1058). Finally, the properties of C. sativa were used as fuel in engine trials with promising results (Bernardo et al. (2003) Industrial Crops and Products 17(3): 191-197; Frohlich and Rice (2005). Industrial Crops and Products 21(1): 25-31).

15 Oils, lipids and fatty acids

Polyunsaturated fatty acids can be classified into two major families (depending on the position (n) of the first double bond nearest the methyl end of the fatty acid carbon chain. Thus, the omega-6 fatty acids have the first unsaturated double bond
six carbon atoms from the omega (methyl) end of the molecule and additionally have a total of two or more double bonds, with each subsequent unsaturation occurring 3 additional carbon atoms toward the carboxyl end of the molecule. In contrast, the omega-3 fatty acids have the first unsaturated double bond three carbon atoms away from the omega end of the molecule and additionally have a total of three or more double bonds, with each subsequent unsaturation atoms away from the omega end of the molecule and additionally have a total of three or more atoms toward the carboxyl end of the molecuring 3 additional carbon atoms toward the carboxyl end additionally have a total of three or more

Table 1 summarizes the common names of omega-3 fatty acids and the abbreviations that will be used throughout the specification:

30

Table 1

Common Name	Abbreviation	Shorthand notation
oleic acid	OA	18:1 ^{Δ9}

Linoleic acid	LA	18:2 ^{∆9,12}
γ-Linolenic	GLA	18:3 ^{46,9,12}
di-homo γ-linolenic acid	DGLA	20:3 ^{48,11,14}
Arachidonic acid	ARA	20:4 ^{Δ5,8,11,14}
α-linolenic acid	ALA	18:3 ^{Δ9,12,15}
stearidonic acid	SDA	18:4 ^{Δ6,9,12,15}
eicosatetraenoic acid	ETA	20:4 ^{Δ8,11,14,17}
eicosapentaenoic acid	EPA	20:5 ^{Δ5,8,11,14,17}
docosapentaenoic acid	DPA	22:5 ^{47,10,13,16,19}
docosahexaenoic acid	DHA	22:6 ^{44,7,10,13,16,19}

The fatty acids produced by the processes of the present invention can be isolated from the camelina in the form of an oil, a lipid or a free fatty acid. One embodiment of the invention is therefore oils, lipids or fatty acids or fractions thereof which have been produced by the methods of the invention, especially preferably oil, lipid or a fatty acid composition comprising EPA or DHA and being derived from the transgenic camelina.

10 The term "oil", or "lipid" is understood as meaning a fatty acid mixture comprising unsaturated, preferably esterified, fatty acid(s). The oil or lipid is preferably high in omega-3 polyunstaurated or, advantageously, esterified fatty acid(s). In a particularly preferred embodiment the oil or lipid has a high ALA, ETA, EPA, DPA and/or DHA content, preferably a high EPA and/or DHA content.

15

5

For the analysis, the fatty acid content of the seed can, for example, be determined by gas chromatography after converting the fatty acids into the methyl esters by transesterification of lipids such as triacylglycerides and/or phospholipids.

20 The omega-3 polyunstaurated acids produced in the method of the present invention, for example EPA and DHA, may be in the form of fatty acid derivatives, for example sphingolipids, phosphoglycerides, lipids, glycolipids, phospholipids, monoacylglycerol, diacylglycerol, triacylglycerol or other fatty acid esters.

The omega-3 and other polyunsaturated fatty acids which are present can be liberated for example via treatment with alkali, for example aqueous KOH or NaOH, or acid hydrolysis, advantageously in the presence of an alcohol such as methanol or ethanol, or via enzymatic cleavage, and isolated via, for example, phase separation and subsequent acidification via, for example, H_2SO_4 . The fatty acids can also be liberated directly without the above-described processing step.

If further purification is necessary, standard methods can be employed. Such
methods may include extraction, treatment with urea, fractional crystallization, HPLC, fractional distillation, silica gel chromatography, high-speed centrifugation or distillation, or combinations of these techniques. Protection of reactive groups, such as the acid or alkenyl groups, may be done at any step through known techniques (e.g., alkylation, iodination, use of butylated hydroxytoluene (BHT)). Methods
used include methylation of the fatty acids to produce methyl esters. Similarly, protecting groups may be removed at any step. Desirably, purification of fractions containing, for example, ALA, STA, ETA, EPA, DPA and DHA may be accomplished by treatment with urea and/or fractional distillation.

20 The present invention encompasses the use of the oil, lipid, the fatty acids and/or the fatty acid composition in feedstuffs, foodstuffs, cosmetics or pharmaceuticals. The oils, lipids, fatty acids or fatty acid mixtures according to the invention can be used in the manner with which the skilled worker is familiar for mixing with other oils, lipids, fatty acids or fatty acid mixtures of animal origin, such as, for example, fish oils. 25 Thus, the invention also provides feedstuffs, foodstuffs, cosmetics or pharmacologicals which comprise the oils, lipids, fatty acids or fatty acid mixtures of the present invention.

Total fatty acid content

30

35

The term "total fatty acids content" herein refers to the sum of all cellular fatty acids that can be derivitized to fatty acid methyl esters by the base transesterification method in a given sample (as known in the art, for example as described in Sayanova et al., (1997) Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):421 1-6; Sayanova et al., (2003) FEBS Lett. 2003 May 8;542(1-3): 100-4).

Polyunsaturated fatty acid biosvnthetic genes

Microorganisms, including algae, bacteria, moulds and yeasts, can synthesize polyunsaturated fatty acids and omega fatty acids in the ordinary course of cellular metabolism. Particularly well-studied are fungi including *Schizochytrium aggregatm*, species of the genus *Thraustochytrium* and *Morteriella aipina*. Additionally, many dinoflagellates (Dinophyceaae) naturally produce high concentrations of polyunsaturated fatty acids. As such, a variety of genes involved in oil production have been identified through genetic means and the DNA sequences of some of these genes are publicly available. Non-limiting examples are shown below:

Accession No. Description

15	AY1 31238	Argania spinosa $\Delta 6$ desaturase
	Y0551 18	Echium pitardii var. pitardii $\Delta 6$ desaturase
	AY0551 17	Echium gentianoides $\Delta 6$ desaturase
	AF296076	Mucor rouxii, $\Delta 6$ desaturase
	AF007561	Borago officinalis $\Delta 6$ desaturase
20	L1 1 421	Synechocystis sp. $\Delta 6$ desaturase
	NM_031344	Rattus norvegicus $\Delta 6$ fatty acid desaturase
	AF465283,	Mortierella aipina $\Delta 6$ fatty acid desaturase
	AF465282	Mortierella isabellina Δ 6 fatty acid desaturase
	AF419296	Pythium irregulare $\Delta 6$ fatty acid desaturase
25	AB052086	Mucor circinelloides D6d mRNA for $\Delta 6$ fatty acid desaturase
	AJ250735	Ceratodon purpureus mRNA for $\Delta 6$ fatty acid desaturase
	AF126799	Homo sapiens $\Delta 6$ fatty acid desaturase
	AF1 26798	Mus musculus $\Delta 6$ fatty acid desaturase
	AF1 99596,	Homo sapiens $\Delta 5$ desaturase
30	AF320509	Rattus norvegicus liver $\Delta 5$ desaturase
	AB072976	Mus musculus D5D mRNA for $\Delta 5$ desaturase
	AF489588	Thraustochytrium sp. ATCC21685 $\Delta 5$ fatty acid desaturase
	AJ510244	Phytophthora megasperma mRNA for $\Delta 5$ fatty acid desaturase
	AF419297	Pythium irregulare $\Delta 5$ fatty acid desaturase
35	AF07879	Caenorhabditis elegans $\Delta 5$ fatty acid desaturase

WO 2013/153404

PCT/GB2013/050955

24

	AF067654	Mortierella alpina $\Delta 5$ fatty acid desaturase
	AB022097	Dictyostelium discoideum mRNA for $\Delta 5$ fatty acid desaturase
	AF489589.1	Thraustochytrium sp. ATCC21685 $\Delta 4$ fatty acid desaturase
	AY332747	Pavlova lutheri $\Delta 4$ fatty acid desaturase (desl) mRNA
5	AAG36933	Emericella nidulans oleate Δ 12 desaturase
	AF1 10509,	Mortierella alpina Δ 12 fatty acid desaturase mRNA
	AAL13300	Mortierella alpina Δ 12 fatty acid desaturase
	AF417244	Mortierella alpina ATCC 16266 Δ 12 fatty acid desaturase
	AF161219	Mucor rouxii Δ 12 desaturase mRNA
10	X86736 S	piruline platensis Δ 12 desaturase
	AF240777	Caenorhabditis elegans Δ 12 desaturase
	AB007640	Chlamydomonas reinhardtii Δ 12 desaturase
	AB075526	Chlorella vulgaris Δ 12 desaturase
	AP002063	Arabidopsis thaliana microsomal Δ 12 desaturase
15	NP_441622,	Synechocystis sp. PCC 6803 Δ 15 desaturase
	AAL36934	Perilla frutescens Δ 15 desaturase

Additionally, the patent literature provides many additional DNA sequences of genes (and/or details concerning several of the genes above and their methods of isolation)
involved in polyunsaturated fatty acid production. See, for example: U.S. Pat. No. 5,968,809 (Δ6 desaturases); U.S. Pat. No. 5,972,664 and U.S. Pat. No. 6,075,183 (Δ5 desaturases); WO 91/13972 and U.S. Pat. No. 5,057,419 (Δ9 desaturases); WO 93/1 1245 (Δ15 desaturases); WO 94/1 1516, U.S. Pat. No. 5,443,974 and WO 03/099216 (Δ12 desaturases); U.S. 2003/0196217 A1 (Δ17 desaturase); WO 25 02/090493 (Δ4 desaturases); and WO 00/12720 and U.S. 2002/01 39974A1 (elongases).

The term "desaturase" refers to a polypeptide component of a multi-enzyme complex that can desaturate, i.e., introduce a double bond in one or more fatty acids to 30 produce a mono- or polyunsaturated fatty acid or precursor of interest. Some desaturases have activity on two or more substrates. It may be desirable to empirically determine the specificity of a fatty acid desaturase by transforming a suitable host with the gene for the fatty acid desaturase and determining its effect on the fatty acid profile of the host.

In the context of the present invention a ω 3 desaturase catalyzes the conversion of LA to ALA (WO 2008022963-A 30 28-FEB-2008; FB753570)

In the context of the present invention a $\Delta 6$ desaturases catalyzes the conversion of

- 5 ALA to SDA and also LA to GLA. A6-Desaturases are described in WO 93/06712, US 5,614, 393, US 5614393, WO 96/21022, W00021557 and WO 99/27111 and their application to production in transgenic organisms is also described, e. g. in WO 9846763, WO 9846764 and WO 9846765. In one embodiment, the A6-desaturase used in the present invention is derived from *Ostreococcus*, preferably OtD6 from
- 10 Ostreococcus tauri (Domergue et al. Biochem. J. 389 (PT 2), 483-490 (2005); AY746357). In one embodiment, the A6-desaturase is encoded by a polynucleotide sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:1. In another embodiment, the Δ6-desaturase comprises an amino acid sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:2.
- In the context of the present invention a Δ5 desaturase catalyzes the conversion of ETA to EPA. In one embodiment, the Δ5-desaturase used in the present invention is derived from *Thraustochytrium sp.* Preferably the Δ5-desaturase is ToΔ5 derived
 from *Thraustochytrium sp.* (Qiu et al. J Biol Chem. 2001 Aug 24;276(34):31561-6; AF489588). In one embodiment, the Δ5-desaturase is encoded by a polynucleotide sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:5. In another embodiment, the Δ5-desaturase comprises an amino acid sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:5.

In the context of the present invention a Δ12 desaturases catalyzes the conversion OA to LA. In one embodiment, the A12-desaturase used in the present invention is PεΔ 12 derived from Phytophthora, preferably *Phytophthora sojae* (WO 2006100241
A2; CS423998). In one embodiment, the A12-desaturase is encoded by a polynucleotide sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:11. In another embodiment, the Δ12-desaturase comprises an amino acid sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:12.

In the context of the present invention a $\Delta 4$ desaturase catalyzes the conversion of DPA to DHA. In one embodiment embodiment, the A4-desaturase is derived from Thraustochytrium sp (ATCC21685). In one embodiment, the A4-desaturase is encoded by a polynucleotide sequence that has at least 50, 60, 70, 80, 85, 90, 95,

5 97, 99% or 100% identity to SEQ ID NO: 17. In another embodiment, the Δ4-desaturase comprises an amino acid sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO: 18.

In another embodiment the A4-desaturase is EhD4 derived from Emiliana huxleyi

- 10 (Sayanova et al. Phytochemistry. 201 1 May; 72(7):594-600). In one embodiment, the A4-desaturase is encoded by a polynucleotide sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID 15. In another embodiment, the A4-desaturase comprises an amino acid sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:16.
- 15

The term "eiongase" refers to a polypeptide that can elongate a fatty acid carbon chain to produce an acid two carbons longer than the fatty acid substrate that the eiongase acts upon.

- 20 Examples of reactions catalyzed by eiongase systems are the conversion of GLA to DGLA, SDA to ETA, ARA to DTA and EPA to DPA. In general, the substrate selectivity of eiongases is somewhat broad but segregated by both chain length and the degree and type of unsaturation.
- For example, a C14/16 eiongase will utilize a C14 substrate (e.g., myristic acid), a C16/18 eiongase will utilize a C16 substrate (e.g., palmitate), a C18/20 eiongase will utilize a C18 substrate (e.g., GLA, SDA, LA, ALA) and a C20/22 eiongase (also referred to as a ∆5 eiongase) will utilize a C20 substrate (e.g., ARA, EPA).
- 30 Since some eiongases have broad specificity, a single enzyme may be capable of catalyzing several eiongase reactions (e.g., thereby acting as both a C16/18 eiongase and a C18/20 eiongase). It may be desirable to empirically determine the specificity of a fatty acid eiongase by transforming a suitable host with the gene for the fatty acid eiongase and determining its effect on the fatty acid profile of the host.

In the context of the present invention a $\Delta 6$ elongase catalyzes the conversion of SDA to ETA. In one embodiment, the $\Delta 6$ -elongase used in the present invention is derived from *Physcomitrella*, and is preferably from *Physcomitrella patens*. Preferably the $\Delta 6$ -elongase is PSE1 derived from *Physcomitrella patens* (Zank, et al., Plant J. 31) (3), 255-268 (2002); AB238914). In one embodiment, the $\Delta 6$ -elongase is encoded by a polynucleotide sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:3. In another embodiment, the Δ 6-elongase comprises an amino acid sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:4.

10

5

In the context of the present invention a $\Delta 5$ elongase catalyzes the conversion of EPA to DPA. In one embodiment, the Δ 5-elongase used in the present invention is derived from Ostreococcus, preferably Ostreococcus tauri. Preferably the $\Delta 5$ elongase is OtElo5 derived from Ostreococcus tauri (WO 2005012316-A2; 15 CS020123). In one embodiment, the Δ 5-elongase is encoded by a polynucleotide sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:7. In another embodiment, the Δ 5-elongase comprises an amino acid sequence that has at least 50, 60, 70, 80, 85, 90, 95, 97, 99% or 100% identity to SEQ ID NO:8.

20

Although the particular source of a polyunsaturated fatty acid desaturase or elongase is not critical in the invention herein, it will be obvious to one of skill in the art that heterologous genes will be expressed with variable efficiencies in an alternate host. Furthermore, it may be desirable to modify the expression of particular 25 polyunsaturated fatty acid biosynthetic pathway enzymes to achieve optimal conversion efficiency of each, according to the specific polyunsaturated fatty acid product composition of interest. A variety of genetic engineering techniques are available to optimize expression of a particular enzyme. Two such techniques include codon optimization and gene mutation, as described below. Genes produced by e.g., either of these two methods, having desaturase and/or elongase activity(s) would be

30

useful in the invention herein for synthesis of omega-3 polyunsaturated fatty acids.

Sequence Homology or Sequence_identity

"Sequence Homology or Sequence identity" is used herein interchangeably. The terms "identical" or percent "identity" in the context of two or more nucleic acid or protein sequences, refer to two or more sequences or subsequences that are the same or have a specified percentage of amino acid residues or nucleotides that are

- 5 the same, when compared and aligned for maximum correspondence, as measured using one of the following sequence comparison algorithms or by visual inspection. If two sequences which are to be compared with each other differ in length, sequence identity preferably relates to the percentage of the nucleotide residues of the shorter sequence which are identical with the nucleotide residues of the longer sequence.
 10 Sequence identity can be determined conventionally with the use of computer
- programs such as the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, 575 Science Drive Madison, WI 5371 1). Bestfit utilizes the local homology algorithm of Smith and Waterman, Advances in Applied Mathematics 2 (1981), 482-489, in order
- 15 to find the segment having the highest sequence identity between two sequences. When using Bestfit or another sequence alignment program to determine whether a particular sequence has for instance 95% identity with a reference sequence of the present invention, the parameters are preferably so adjusted that the percentage of identity is calculated over the entire length of the reference sequence and that homology gaps of up to 5% of the total number of the nucleotides in the reference sequence are permitted. When using Bestfit, the so-called optional parameters are preferably left at their preset ("default") values. The deviations appearing in the comparison between a given sequence and the above-described sequences of the invention may be caused for instance by addition, deletion, substitution, insertion or
- 25 recombination. Such a sequence comparison can preferably also be carried out with the program "fasta20u66" (version 2.0u66, September 1998 by William R. Pearson and the University of Virginia; see also W.R. Pearson (1990), Methods in Enzymology 183, 63-98, appended examples and http://workbench.sdsc.edu/). For this purpose, the "default" parameter settings may be used.

30

Preferably, reference to a sequence which has a percent identity to any one of the SEQ ID NOs as detailed herein refers to a sequence which has the stated percent identity over the entire length of the SEQ ID NO referred to.

Another indication that two nucleic acid sequences are substantially identical is that the two molecules hybridize to each other under stringent conditions.

Hybridization

5

Hybridization is the binding of complementary strands of DNA, DNA/RNA, or RNA.

Polynucleotides that hybridize to the polynucleotide sequences provided herein may also be used in the invention. Particularly preferred are polynucleotides that hybridize under
stringent conditions to the polynucleotides described herein. As herein used, the terms "stringent conditions" and "stringent hybridization conditions" mean hybridization occurring only if there is at least 90%, 95% and preferably at least 97% identity between the sequences. A specific example of stringent hybridization conditions is overnight incubation at 42°C in a solution comprising: 50% formamide, 5x SSC (150mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 micrograms/ml of denatured, sheared salmon sperm DNA, followed by washing the hybridization support in 0.1 x SSC at about 65°C.

The polynucleotides of the invention, may be used as a hybridization probe for RNA,cDNA and genomic DNA to isolate other genes that have a high identity, particularly high sequence identity.

Codon-optimization

25 Codon degeneracy refers to the nature in the genetic code permitting variation of the nucleotide sequence without affecting the amino acid sequence of an encoded polypeptide. The skilled artisan is well aware of the "codon-bias" exhibited by a specific host cell in usage of nucleotide codons to specify a given amino acid. As will be appreciated by one skilled in the art, it is frequently useful to modify a portion of the codons encoding a particular polypeptide that is to be expressed in a foreign host, such that the modified polypeptide uses codons that are preferred by the alternate host. Use of host-preferred codons can substantially enhance the expression of the foreign gene encoding the polypeptide.

In general, host-preferred codons can be determined within a particular host species of interest by examining codon usage in proteins (preferably those expressed in the largest amount) and determining which codons are used with highest frequency. Then, the coding sequence for a polypeptide of interest having desaturase or elongase activity can be synthesized in whole or in part using the codons preferred in the host species. All (or portions) of the DNA also can be synthesized to remove any destabilizing sequences or regions of secondary structure that would be present in the transcribed mRNA. All (or portions) of the DNA also can be synthesized to alter the base composition to one more preferable in the desired host cell.

In the present invention, it may be desirable to modify a portion of the codons encoding the polypeptide having the relevant activity e.g., desaturase or elongase activity, to enhance the expression of the gene in camelina.

15

10

5

Gene Mutation

Methods for synthesizing sequences and bringing sequences together are well established in the literature. For example, *in vitro* mutagenesis and selection, sitedirected mutagenesis, error prone PGR (Melnikov et al., Nucleic Acids Research, 27(4): 1056-1062 (Feb. 15, 1999)), "gene shuffling" or other means can be employed to obtain mutations of naturally occurring desaturase or elongase genes. This would permit production of a polypeptide having desaturase or elongase activity, respectively, *in vivo* with more desirable physical and kinetic parameters for function in the host cell such as a longer half-life or a higher rate of production of a desired PUFA.

If desired, the regions of a polypeptide of interest (i.e., a desaturase or an elongase) important for enzymatic activity can be determined through routine mutagenesis,
expression of the resulting mutant polypeptides and determination of their activities. Mutants may include deletions, insertions and point mutations, or combinations thereof. A typical functional analysis begins with deletion mutagenesis to determine the N- and C-terminal limits of the protein necessary for function, and then internal deletions, insertions or point mutants are made to further determine regions necessary for function. Other techniques such as cassette mutagenesis or total

synthesis also can be used. Deletion mutagenesis is accomplished, for example, by using exonucleases to sequentially remove the 5' or 3' coding regions. Kits are available for such techniques. After deletion, the coding region is completed by ligating oligonucleotides containing start or stop codons to the deleted coding region after the 5' or 3' deletion, respectively. Alternatively, oligonucleotides encoding start or stop codons are inserted into the coding region by a variety of methods including site-directed mutagenesis, mutagenic PCR or by ligation onto DNA digested at existing restriction sites. Internal deletions can similarly be made through a variety of methods including the use of existing restriction sites in the DNA, by use of mutagenic primers via site-directed mutagenesis or mutagenic PCR. Insertions are made through methods such as linker-scanning mutagenesis, site-directed mutagenesis or mutagenesis, site-directed mutagenesis or mutagenesis or mutagenesis or mutagenic PCR, while point mutations are made through techniques

such as site-directed mutagenesis or mutagenic PCR.

15 Transformation

5

10

The term "transgenic" or "recombinant" is preferably understood as meaning the expression of the nucleic acids encoding the enzymes involved in omega-3 fatty acid synthesis referred to herein at an unnatural locus in the genome, i.e. preferably,
heterologous expression of the nucleic acids takes place. Thus, the genes introduced in to the camelina according to the present invention are preferably derived from a different organism.

The polynucleotides encoding the enzymes (e.g., desaturase and elongase enzymes) may be introduced into expression cassettes and/or vectors. In principal, the expression cassettes can be used directly for introduction into the camelina. However, preferably the nucleic acids are cloned into expression cassettes, which are then used for transforming camelina with the aid of vectors such as Agrobacterium.

30

After their introduction into the camelina plant cell or plant, the polynucleotides used in the present invention can either be present on a separate plasmid or, advantageously, integrated into the genome of the host cell.

10

32

As used in the present context, the term "vector" refers to a nucleic acid molecule which is capable of transporting another nucleic acid to which it is bound. One type of vector is a "plasmid", a circular double-stranded DNA loop into which additional DNA segments can be ligated. A further type of vector is a viral vector, it being possible for additional DNA segments to be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they have been introduced. Other vectors are advantageously integrated into the genome of a host cell when they are introduced into the host cell, and thus replicate together with the host genome. Moreover, certain vectors can govern the expression of genes with which they are in operable linkage. These vectors are referred to in the present context as "expression vectors". Usually, expression vectors which are suitable for DNA recombination techniques take the form of plasmids.

The recombinant expression vectors used in the present invention are suitable for expressing nucleic acids in a camelina host cell. The recombinant expression vectors/polynucleotides preferably comprise one or more regulatory sequences, which regulatory sequence(s) is/are operably linked with the nucleic acid sequence to be expressed.

20 The term "operably linked" refers to the association of nucleic acid sequences on a single nucleic acid fragment so that the function of one is affected by the other. For example, a promoter is operably linked with a coding sequence when it is capable of affecting the expression of that coding sequence (i.e., the coding sequence is under the transcriptional control of the promoter). Coding sequences can be operably linked 25 to regulatory sequences in sense or antisense orientation.

The term "regulatory sequence" is intended to comprise promoters, enhancers and other expression control elements such as polyadenylation signals. These regulatory sequences are described, for example, in Goeddel: Gene Expression Technology:

30 Methods in Enzymology 185, Academic Press, San Diego, CA (1990), or see: Gruber and Crosby, in: Methods in Plant Molecular Biology and Biotechnolgy, CRC Press, Boca Raton, Florida, Ed.: Glick and Thompson, Chapter 7, 89-108, including the references cited therein.

20

33

Examples of plant expression vectors comprise those which are described in detail in: Becker, D., Kemper, E., Schell, J., and Masterson, R. (1992) "New plant binary vectors with selectable markers located proximal to the left border", Plant Mol. Biol. 20:1 195-1 197; Bevan, M.W. (1984) "Binary Agrobacterium vectors for plant transformation", Nucl. Acids Res. 12:8711-8721; and Vectors for Gene Transfer in Higher Plants; in: Transgenic Plants, Vol. 1, Engineering and Utilization, Ed.: Kung and R. Wu, Academic Press, 1993, p. 15-38.

The polynucleotide/vector preferably comprises regulatory sequences which are capable of governing the expression of genes in plant cells and which are linked operably so that each sequence can fulfill its function, such as transcriptional termination, for example polyadenylation signals. Examples of polyadenylation signals are those which are derived from Agrobacterium tumefaciens T-DNA, such as gene 3 of the Ti plasmid pTiACH5 (Gielen et al., EMBO J. 3 (1984) 835 et seq.), which is known as octopine synthase, or functional equivalents thereof, but other

terminator sequences which are functionally active in plants are also suitable.

Since plant gene expression is very often not limited to the transcriptional level, a plant expression cassette or vector preferably comprises other sequences which are linked operably, such as translation enhancers.

Plant gene expression is preferably linked operably with a suitable promoter which triggers gene expression with the correct timing or in a cell- or tissue- specific manner. Examples of promoters are constitutive promoters (Benfey et al., EMBO J. 8 25 (1989) 2195-2202), such as those which are derived from plant viruses, such as 35S CaMV (Franck et al., Cell 21 (1980) 285-294), 19S CaMV (see also US 5352605 and WO 84/02913), or plant promoters, such as the promoter of the Rubisco subunit, which is described in US 4,962,028. Other sequences for use in operable linkage in plant gene expression cassettes are targeting sequences, which are required for 30 steering the gene product into its corresponding cell compartment (see a review in Kermode, Grit. Rev. Plant Sci. 15, 4 (1996) 285-423 and references cited therein), for example into the vacuole, into the nucleus, all types of plastids, such as amyloplasts, chloroplasts, chromoplasts, the extracellular space, the mitochondria. the endoplasmid reticulum, elaioplasts, peroxisomes and other compartments of plant

35 cells.

34

Plant gene expression can also be achieved via a chemically inducible promoter (see review in Gatz 1997, Annu. Rev. Plant Physiol. Plant Mol. Biol., 48:89-108). Chemically inducible promoters are particularly suitable when it is desired that the gene expression takes place in a time-specific manner. Examples of such promoters are a salicylic acid-inducible promoter (WO 95/19443), a tetracyclin- inducible

promoter (Gatz et al. (1992) Plant J. 2, 397-404) and an ethanol-inducible promoter.

Promoters which respond to biotic or abiotic stress conditions are also suitable, for
example the pathogen-induced PRP1 gene promoter (Ward et al., Plant. Mol. Biol. 22 (1993) 361-366), the heat-inducible tomato hsp80 promoter (US 5,187,267), the chill-inducible potato alpha-amylase promoter (WO 96/12814), the wound-inducible pinll promoter (EP-A-0 375 091) and the cis-jasmone-responsive promoter (Matthes MC, Bruce TJ, Ton J, Verrier PJ, Pickett JA, Napier JA. The transcriptome of cis-jasmone-induced resistance in Arabidopsis thaliana and its role in indirect defence. Planta. 2010 Oct;232(5): 1163-80).

Especially preferred are those promoters which bring about the gene expression in tissues and organs in which the biosynthesis of fatty acids, lipids and oils takes
place, in seed cells, such as cells of the endosperm and of the developing embryo. Examples of such promoters are the oilseed rape napin promoter (US 5,608,152), the Vicia faba USP promoter (Baeumlein et al., Mol Gen Genet, 1991, 225 (3):459-67), the Arabidopsis oleosin promoter (WO 98/45461), the Phaseolus vulgaris phaseolin promoter (US 5,504,200), the Brassica Bce4 promoter (WO 91/13980) or
the legumine B4 promoter (LeB4; Baeumlein et al., 1992, Plant Journal, 2 (2):233-9). It is also envisaged that a mesocarp-specific promoter could direct the synthesis of the omega-3 trait in oil palm and similar crops.

Other promoters are those which bring about a plastid-specific expression, since 30 plastids constitute the compartment in which the precursors and some end products of lipid biosynthesis are synthesized. Examples of promoters, such as the viral RNA polymerase promoter, are described in WO 95/16783 and WO 97/06250, and the clpP promoter from Arabidopsis, described in WO 99/46394.

To ensure the stable integration of the biosynthesis genes into the transgenic plant over a plurality of generations, it is usually necessary for each of the nucleic acids which encodes a protein of interest to be expressed under the control of a separate promoter, preferably a promoter which differs from the other promoters, since repeating sequence motifs can lead to instability of the T-DNA, or to recombination events. However, it is also possible to insert a plurality of nucleic acid sequences behind a promoter and, if appropriate, before a terminator sequence. Here, the insertion site, or the sequence, of the inserted nucleic acid sequence can be inserted at the first or last position in the cassette without its expression being substantially influenced thereby.

Preferably, each gene introduced into the camelina plant or cell is under the control

15

of a specific promoter.

10

5

Vector DNA can be introduced into cells via conventional transformation or transfection techniques. The terms "transformation" and "transfection", conjugation and transduction, as used in the present context, are intended to comprise a multiplicity of methods known in the prior art for the introduction of foreign nucleic
acid (for example DNA) into a host cell, including calcium phosphate or calcium chloride coprecipitation, DEAE-dextran-mediated transfection, lipofection, natural competence, chemically mediated transfer, electroporation or particle bombardment. Suitable methods for the transformation or transfection of host cells, including plant cells, can be found in Sambrook et al. (Molecular Cloning: A Laboratory Manual., 2nd
ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold

- Spring Harbor, NY, 1989) and other laboratory textbooks such as Methods in Molecular Biology, 1995, Vol. 44, Agrobacterium protocols, Ed.: Gartland and Davey, Humana Press, Totowa, New Jersey.
- 30 Transformation systems for camelina are known in the art. For example, US 2009/0151023 describe a method which involves:
 - (a) Providing sterilized *Camelina sativa* seeds collected from a plants grown in controlled conditions;
- (b) Germinating the seeds on agar in sterilized conditions and growing in vitro seedlings;
- (c) Obtaining explants from the in vitro grown seedlings;
- (d) Inoculating the explants with *Agrobacterium tumefaciens* strain containing at least one recombinant DNA construct;
- (e) Cocultivating the explant with the Agrobacterium strain;
- (f) Transferring the explants to a callus forming medium, said medium being supplemented with hormones and containing 2% sucrose;
- (g) Transferring the explants to a shoot regeneration medium, said medium being supplemented with hormones and containing 2-6% sucrose;
- (h) Transferring the shoots to a root elongation medium, said medium being supplemented with hormones and containing 1-4%; and
- (i) Transferring the regenerated shoots into soil and growing them to transgenic *Cameiina sativa* plants.

10

5

The methods for transforming cameiina disclosed in US 2009/0151028 and US 2009/0151023 are incorporated herein by reference.

Transgenic plants which comprise the polyunsaturated fatty acids synthesized in the process according to the invention can advantageously be marketed directly without there being any need for the oils, lipids or fatty acids synthesized to be isolated.

Plants for the process according to the invention are listed as meaning intact plants and all plant parts, plant organs or plant parts such as leaf, stem, seeds, root, tubers, anthers, fibers, root hairs, stalks, embryos, calli, cotelydons, petioles, harvested material, plant tissue, reproductive tissue and cell cultures which are derived from the actual transgepia plant and/or can be used for bringing about the transgepia plant.

actual transgenic plant and/or can be used for bringing about the transgenic plant. In this context, the seed comprises all parts of the seed such as the seed coats, epidermal cells, seed cells, endosperm or embryonic tissue.

30

35

25

The compounds produced in the process according to the invention can also be isolated from the organisms, advantageously plants, in the form of their oils, fats, lipids and/or free fatty acids. This can be done via pressing or extraction of the cameiina plant parts, preferably the plant seeds. In this context, the oils, fats, lipids and/or free fatty acids can be obtained by what is known as cold-beating or cold-

pressing without applying heat. To allow for greater ease of disruption of the plant parts, specifically the seeds, they are previously comminuted, steamed or roasted. The seeds which have been pretreated in this manner can subsequently be pressed or extracted with solvents such as warm hexane. Thereafter, the resulting products

- 5 are processed further, i.e. refined. In this process, substances such as the plant mucilages and suspended matter are first removed. What is known as desliming can be effected enzymatically or, for example, chemico-physically by addition of acid such as phosphoric acid. Thereafter, the free fatty acids are removed by treatment with a base, for example sodium hydroxide solution. The resulting product is washed
- 10 thoroughly with water to remove the alkali remaining in the product and then dried. To remove the pigment remaining in the product, the products are subjected to bleaching, for example using filler's earth or active charcoal. At the end, the product is deodorized, for example using steam.

15 Growing

In the case of plant (including plant tissue or plant organs) or plant cells, "growing" is understood as meaning, for example, the cultivation on or in a nutrient medium, or of the intact plant on or in a substrate, for example in a hydroponic culture, potting

20 compost or on arable land.

Further preferred features and embodiments of the present invention will now be described by way of non-limiting example and with reference to the accompanying drawings in which:

25

Figure 1 is a schematic showing the biosynthesis pathway for long chain polyunsaturated fatty acids.

Figure 2 shows a schematic of the vector constructs used for Camelina 30 transformation.

Figure 3 shows neutral loss survey of total seed triglycerols (TAG) from wild type and Camelina lines transformed with the five gene construct BC.

Figure 4 shows the ESI-MS analysis of wild type and Camelina lines transformed with the five gene construct BC.

Figure 5 shows acyl composition as determined by precursor ion scanning of 5 phosphatidyl choline for the wild type and Camelina lines transformed with the five gene construct BC

Figure 6 shows the distribution of acyl chains within phosphatidylcholinie of wild type and Camelina lines transformed with the five gene construct BC.

10

20

Figure 7 shows the distribution of acyl chains within phosphatidylethanolamine of wild type and Camelina lines transformed with the five gene construct BC.

Figure 8 shows the distribution of acyl chains within phosphatidic acid and 15 phosphoinositol of wild type and Camelina lines transformed with the five gene construct BC.

Figure 9 shows the distribution of acyl chains within phosphatdylserine acid and phosphatidylglycerol of wild type and Camelina lines transformed with the five gene construct BC.

Figures 10 and 11 show the acyl-CoA pool of Arabidopsis and transgenic Camelina seeds harvested at mid-stage of seed development.

25 Example 1 - Materials and Methods

Fatty-acid analysis

Fatty acids were extracted and methylated as described Sayanova et al., (1997) Proc
 Natl Acad Sci U S A. 1997 Apr 15;94(8):421 1-6 and Sayanova et al., (2003) FEBS Lett. 2003 May 8;542(1-3):100-4. Methyl ester derivatives of total fatty acids extracted were analysed by GC and GC-MS. Data presented as representative numbers derived from replicated analysis.

Acyl-CoA profiling

Twenty-milligrams of developing (15 days after flowering) seed material were collected, frozen in liquid nitrogen and extracted after Larson and Graham 2001
(Larson TR, Graham IA. (2001), Plant J. 2001 Jan;25(1):1 15-25), for reverse-phase LC with either quantitative analysis of fluorescent acyl-etheno-CoA derivatives or with electrospray ionization tandem mass spectrometry (multi reaction monitoring) in positive ion mode For the analysis of etheno-CoA derivatives HPLC (Agilent 1200 LC system; Phenomenex LUNA 150 - 2 mm C18(2) column) was performed using the methodology and gradient conditions described previously (Larson and Graham 2001); whilst LC-MS/MS +MRM analysis followed the methods described by Haynes et al. 2008 (Agilent 1200 LC system ;Gemini C18 column, 2 mm inner diameter, 150 mm with 5 mm particles). For the purpose of identification and calibration, standard acyl-CoA esters with acyl chain lengths from C14 to C20 were purchased from Sigma

15 as free acids or lithium salts.

Lipid Profiling

The molecular species of TAGs and PLs were analysed by electrospray ionisation 20 triple guadrupole mass spectrometry (API 4000 QTRAP: Applied Biosystems). The molecular species of polar lipid were defined by the presence of a head-group fragment and the mass/charge of the intact lipid ion formed by ESI (Welti et al., 2002, J Biol Chem. 2002 Aug 30;277(35):31 994-2002. Devaiah et al., 2006, Phytochemistry. 2006 Sep;67(17): 1907-24. with modifications described by Xiao et 25 al. 2010; Plant Cell. 2010 May;22(5): 1463-82.). Such tandem ESI-MS/MS precursor and product ion scanning, based on head group fragment, do not determine the individual fatty acyl species. Instead, polar lipids are identified at the level of class, total acyl carbons, and total number of acyl carbon-carbon double bonds. Polar lipids

30 Triacylglycerols (TAGs) measured after Krank et al. (2007, Methods Enzymol. 2007;432:1-20) were defined by the presence of one acyl fragment and the mass/charge of the ion formed from the intact lipid (neutral loss profiling). This allows identification of one TAG acyl species and the total acyl carbons and total number of acyl double bonds in the other two chains. The procedure does not allow

were quantified in comparison with a series of polar lipid internal standards.

35 identification of the other two fatty acids individually nor the positions (sn-1, sn-2, or

sn-3) that individual acyl chains occupy on the glycerol. TAGs were quantified in a manner similar to the polar lipids, including background subtraction, smoothing, integration, isotope deconvolution and comparison of sample peaks with those of the internal standard (using LipidView, Applied Biosystems). However, whereas polar lipids within a class exhibit similar mass spectral response factors, the mass spectral

- responses of various TAG species are variable, owing to differential ionization of individual molecular TAG species. In the data shown herein, no response corrections were applied to the data. The data were normalized to the internal standards tri15:0 and tri19:0.
- 10

5

Example 2 - Production of EPA in transgenic Camelina

We were interested in engineering the accumulation of bona fide omega-3 LC-PUFAs normally associated with fish oils such as eicosapentaenoic acid (EPA; 20:5 Δ5.8.11.14.17) and docosahexaenoic acid (DHA; 22:6 Δ4.7.10.13.16.19). To that end, a modular reconstruction of their biosynthetic pathway (Fig 1) was undertaken in transgenic Camelina. The heterolologous biosynthetic activities were all placed under the regulatory control of common seed-specific promoters. In addition, given the variation in codon-usage observed between angiosperms and marine algae, a number of genes were resynthesised with codon-optimisation for expression in Cruciferae.

Constructs design

Four constructs containing from 3- to 7- gene cassettes were built using the
Gateway® recombination system (Invitrogen). Respective genes were inserted as *NcoVPac* fragments into the promoter/terminator cassettes and then moved into pENTRY vectors (Fig 2). As shown, the simplest (MC) construct contained a three expression cassettes, comprising 1) a seed specific promoter (the sucrose binding protein SBP1800 promoter), Oi∆6, *Ostreococcus tauri* ∆6-desaturase gene
(Domergue et al. Biochem. J. 389 (PT 2), 483-490 (2005); AY746357) and CatpA, terminator; 2) a seed specific promoter (USP1 promoter (Baumlein et al. 1991 Mol Gen Genet. 1991 Mar;225(3):459-67), PSE1, a ∆6 fatty acid elongase from *Physcomitrella patens* (Zank.et al., Plant J. 31 (3), 255-268 (2002); AB238914) and CaMV35S terminator; 3) a seed specific promoter (Cnl, a conlininl promoter (Truksa 2003; Plant Physiol Biochem 41:141-147), TcA5, a A5-desaturase from

Thraustochytrium sp. (Qiu et al. J Biol Chem. 2001 Aug 24;276(34):31561-6) and OCS, a terminator region of OCS, octopin synthase gene of *A. tumefaciens*.

The BC construct contained five- gene cassettes including the same 3 gene cassettes as in the MC described above plus two additional gene cassettes consisting of PsA12, a Δ12-desaturase gene from *Phytophtora sojae* (see above) and Píω3, a ω3 desaturase gene from *Phytophtora infestans* (Wu et al., 2005 Nat Biotechnol. 2005 Aug;23(8):1013-7) flanked by Np, a BnNapin promoter and E9 terminator regions.

10

15

To build DHA-1 construct we combined BC construct with additional two-gene cassettes, containing OtElo5, an *Ostreococcus tauri* Δ 5 fatty acid elongase (Meyer et al., J Lipid Res. 2004 Oct;45(10): 1899-909) and EhA4, a A4-desaturase from *Emiliania huxleyi* (Sayanova et al. 201 1 Phytochemistry. 201 1 May;72(7):594-600) flanked by napin promoters and OCS terminators.

Synthesis of EPA in transgenic Camelina

In a first iteration, the simplest 3-gene construct (MC) was introduced into transgenic Camelina using standard floral infiltration technique to infect inflorescences with
 Agrobacterium tumefaciens strains carrying binary transformation vectors. Table 2 exemplifies the accumulation of non-native omega-3 long chain polyunsaturated fatty acids such as eicosapentaenoic acid (EPA). Total fatty acid composition of seeds from wild-type and transgenic plants of C.sativa lines expressing MC construct are shown below, confirming the presence of EPA in transgenics in the range 12.9-17.3% of total seed fatty acids. Note the complete absence of this fatty acid from the

wildtype non-transgenic control.

Table 2

	16:0	18:0	18:1	LA	GLA	ALA	SDA	20:1	DHGLA	ARA	ETA	EPA	Others
Wt	7.0	3.1	15.1	21.2	0.0	29.6	0.0	14.1	0.0	0.0	0.0	0.0	9.9
Line2	9.3	5.0	4.7	24.7	1.8	12.2	1.8	7.8	0.6	2.4	2.0	16.8	10.9
Line3	9.3	4.9	6.4	25.6	2.1	13.4	2.0	8.3	0.7	2.0	1.8	12.9	10.6
Line	9.2	5.6	4.1	21.3	1.4	13.5	1.3	6.2	1.5	2.2	5.1	17.3	11.3
4													

5

10

In a second iteration of engineering Camelina with the capacity to accumulate high levels of EPA, we transformed C. Sativa with the 5-gene construct BC, again by floral infiltration. As shown in Table 3 below, the total fatty acid composition of T2 seeds from transgenic plants of C.sativa expressing BC construct contains very high levels of EPA (in the range 20.0 - 30.7%). Moreover, as shown in Table 4 below, it was also possible to obtain EPA at a level of 30.7% EPA. This fatty acid is totally absent from WT controls.

15 Table 3

																EPA (MO)L%)
	16:0	18:0	18:1	18:2	GLA	ALA	SDA	20:1	DHGLA	ARA	20:3n3	ETA	EPA	Others	Sum	Average	SD
162a	9.8	7.6	4.6	18.3	2.4	10.8	1.5	6.5	0.5	2.0	1.6	2.4	25.0	7.0	100.0		
162b	8.6	7.1	5.0	18.7	3.6	11.4	2.3	7.4	0.5	1.8	1.4	2.2	22.8	7.1	100.0		
162c	11.3	7.0	4.9	20.4	4.0	9.4	2.1	5.3	0.6	1.9	1.3	2.0	24.0	5.8	100.0	23.9	1.1
26a	9.9	6.2	4.0	19.1	1.9	10.3	1.1	6.4	0.8	2.1	1.6	3.5	26.0	7.0	100.0		
26b	8.9	5.6	4.5	18.6	1.2	14.9	0.8	7.7	1.4	2.0	1.5	4.7	21.6	6.6	100.0		
26c	9.2	5.8	4.8	18.6	1.6	14.9	1.1	7.3	1.2	1.9	1.5	4.2	21.6	6.3	100.0	_23.1	2.6
169a	10.3	5.4	4.8	19.8	1.0	15.0	0.7	6.4	1.3	1.8	1.6	4.6	21.3	6.0	100.0		
169b	11.3	6.7	4.0	18.0	1.2	14.4	0.8	5.8	1.1	1.6	1.6	4.5	22.4	6.5	100.0		
169c	11.3	6.5	4.7	19.9	2.2	13.5	1.3	6.5	1.3	1.9	1.4	4.1	18.9	6.5	100.0	20.9	1.8
158a	8.5	8.0	5.3	20.2	3.5	10.7	2.0	7.2	0.6	1.9	1.3	2.5	21.3	7.0	100.0		
158b	10.4	9.0	5.0	19.5	5.9	8.1	3.1	6.4	0.6	1.8	1.2	1.8	19.0	8.2	100.0		
158c	8.9	8.5	5.2	19.8	3.6	9.8	1.9	6.6	0.5	2.1	1.3	2.3	21.6	7.8	100.0	20.6	1.4
216a	7.6	8.1	5.3	21.5	2.1	11.2	1.1	8.1	0.6	1.9	1.5	2.5	19.8	8.5	100.0		
216b	7.8	7.7	5.3	21.2	2.4	10.9	1.2	7.9	0.6	2.0	1.6	2.4	20.7	8.5	100.0		
216 c	7.4	7.8	5.2	21.3	1.8	11.2	1.0	8.1	0.6	2.0	1.6	2.6	20.8	8.7	100.0	20.4	0.5
29a	9.2	6.3	4.9	21.2	1.5	13.3	0.7	7.0	0.9	2.1	1.7	3.3	21.2	6.6	100.0		
29b	8.8	6.8	5.7	20.8	1.7	15.5	1.0	7.7	1.1	2.0	1.3	3.5	17.9	6.3	100.0		
29 ¢	8.6	6.2	5.1	20.1	1.5	14.5	0.8	8.0	0.8	2.0	1.5	3.2	21.1	6.5	100.0	20.1	1.9
105a	8.6	8.9	5.3	20.3	2.3	10.1	1.2	7.4	0.5	2.1	1.6	2.0	21.0	8.5	100.0		
105b	8.9	9.8	5.4	20.3	3.2	9.8	1.7	7.2	0.5	1.9	1.4	1.8	19.2	8.9	100.0		
105c	9.2	10.1	5.5	20.8	2.2	8.8	1.0	7.0	0.6	2.3	1.5	1.9	19.8	9.3	100.0	20.0	1.0

Table 4

			MOL %			16:0	18:0	18:1	18:2	GLA	ALA	SDA	20:1	DHGLA	ARA	20:3n3	ETA	EPA	Others	Sum	
T3 seeds	LineBBC_3	26 1	Lseed/vial	26_	10	10.4	6.3	4.0	14.2	2.1	8.2	16	6.5	0.3	1.4	2.1	2.9	30.7	9.2	100.0 NVR1	36
T3 seeds	LineBBC_3	162 1	Lseed/vial	162	_13	11.3	7.3	4.1	19.4	2.6	7.6	1.2	6.2	0.3	1.6	15	2.1	26.1	8.6	100.0 NVR1	16
T3 seeds	LineBBC_3	26 1	Lseed/vial	26_	15	9.9	7.7	4.2	17.1	3.0	9.3	1.4	6.8	0.3	1.6	1.6	2.8	25.8	8.4	100 0 NVR2	6
T3 seeds	LineBBC_3	26 1	Lseed/vial	26_	19	9.3	6.1	4.2	15.8	1.3	13.8	1.0	7.7	0.5	1.4	1.9	3.9	24.9	8.D	100.0 NVR2	11
T3 seeds	LineBBC_3_	169 1	Lseed/vial	169	_ 16	10.3	7.2	4.2	20.7	1.9	7.8	0.9	6.0	0.5	1.7	1.8	2.9	24.9	9.3	100.0 NVR2	32
T3 seeds	LineBBC_3	162 1	Lseed/vial	162	_20	8.9	7.0	5.0	16.6	2.1	12.2	1.3	8.1	0.4	17	1.6	2.7	24.6	7.9	100.0 NVR1	24

5

Targeted lipidomic analysis of transgenic Camelina accumulating EPA.

To provide further and more detailed characterisation of the Camelina plants accumulating high levels of EPA in the seed oil, detailed analysis was carried out using tandem mass spectrometry as detailed below. As shown in Fig 3, neutral loss
10 surveys of the total seed triacylglycerols (TAG) from either WT or two high EPA lines (162, 26 - cf Table 3) confirmed the presence of EPA in TAGs from lines 162 and 26 and confirmed the complete absence of this fatty acid in WT seed oil. To further define the composition of the TAGs present in the high EPA lines, ESI-MS was used identify their molecular composition, compared with WT. As shown in Fig 4, several novel TAG species are clearly present in lines 162 and 26 which are not present in

WT, notably 58:8, 58:9 and 58:10. Given that the predominant TAG species in WT

are 54:5-8, this upward shift represents the accumulation of longer chain fatty acids containing additional double bonds - i.e. EPA is accumulating at 1 (or possibly 2) positions on the glycerol backbone of TAG.

- As a corollary to the analysis of neutral lipids in these Camelina lines, we also analysed the acyi composition of phospholipids. Using precursor ion scanning, the acyl composition of phosphatidylcholine (PC, the major phospholipid present in plant seeds) was determined for WT and lines 162 and 26 (Fig 5). Again major differences were identified between the WT and the high EPA transgenics, including the identification of a series of C38 and C40 lipids were essentially absent from WT.
- 10 This alteration to the composition of phospholipids resulting from the transgenic synthesis and accumulation of EPA was further investigated by more detailed profiling of individual phospholipid classes (Figs 6-9). As seen in Fig 6, this analysis confirmed the presence of a suite of novel PC species, arising from the incorporation of EPA into this phospholipid. It is also clear that a number of endogenous PC
- 15 species are reduced as a consequence of this accumulation, most notably the reduction in C36 PC species containing 1-4 double bonds. A very similar profile was observed for phosphatidylethanolamine (PE) (Fig 8), which also showed the accumulation of novel C38 and C40 polyunsaturated species, with a concomitant reduction in the levels of C36 PE species. We profiled the other, more minor,
- 20 phospholipid species (phosphatidic acid [PA], phosphoinositol [PI], phosphatidyserine [PS] and phosphatidyl lycerol [PG]) and observed some more prenounced perturbations. For example, overall levels of all PA species were increased in the transgenic lines, albeit from a very low baseline (Fig 8). Conversely many C34 and C36 PI species were decreased in the high EPA transgenics, though these lines did also contain some novel C38 PUFA-containing species (Fig 8). Interestingly, PS, which normally accumulates di + monounsaturated C20+ fatty acids was reduced in the transgenic lines, as were C34/36 PG species (Fig 9). No novel C38/40 PS species could be detected in our transgenic lines, whereas novel C38 PUFA-containing species (Fig 9).
- 30 Acyl-CoA profiling was also used to define the composition of this key metabolic hub. As can be seen in Figs 10 & 11, the acyl-CoA pool of transgenic Camelina seeds harvested at mid-stage of seed development revealed the presence of significant levels of EPA-CoA.

Example 3 - Production of DHA in transgenic Camelina

- Having successfully engineered the significant accumulation of EPA in transgenic
 Camelina seeds, we next attempted to direct the synthesis of DHA. Since DHA is a metabolite of EPA (Fig 1), having sufficient levels of EPA are a prerequisite for such manipulations. Using the construct detailed in Fig 2, we generated transgenic Camelina plants engineered to accumulate both EPA and DHA.
- Since genotyping of the T2 generation indicated that this material was not homozygous for the transgene, we decided to carry out half-seed analysis, in which a portion of the seed is subject to destructive FAMes analysis, but the residual portion containing the embryo is retained and can be used to regenerate a plant. As shown below in Table 5, the single (half) seed analysis indeed confirmed the presence of transgene nulls (samples 9-1 1) as would be expected from a non-homozygous
- 15 population. However, FAMEs analysis of total seed lipids did indeed confirm the presence of EPA and DHA, the later up to levels greater than 13% of total fatty acids. The best line showing combined levels of EPA and DHA (C20+ omega-3 LC-PUFAs) was at 26.3 % of total seed fatty acids. Importantly, this line contained only very low levels of the omega-6 fatty acids ARA, GLA and DHGLA and the omega-3
- 20 biosynthetic intermediates SDA, ETA and DPA. Thus this novel Camelina oil represents a new and valuable terrestrial source of C20+ omega-3 LC-PUFAs normally found in aquatic environments.

Table 5. Total fatty acid composition of T2 seeds from transgenic plants of C.sativa best lines expressing DHA-1 construct. (Half seed analysis)

÷										Hal	fsee	d ana	lysis on	T2 se	eds									. 1
MOL%	l		16:0	18:0	18:1	18:2	GLA	ALA	SDA	20:0	20:1	20:2	DHGLA	ARA	20:3n3	ETA	EPA	22:0	22:1	DPA	DHA	Other	s	
BBC O	E3	1	15.0	7.5	7.2	23.4	1.6	6.4	0.9	3.5	6.7	1.4	1.3	1.5	0.9	1.9	5.3	0.5	1.0	1.3	4.4	8.4	NVX1	7
	-	2	12.1	80	6.4	20.7	3.2	11 2	24	36	60	11	10	15	0.8	2.6	5.6	0.6	07	17	47	6.8	NVX1	56
		2	15.1	7.5	U.4	10 0		10.4	2.7	10	6.7	1.1	1.0	1 2	0.0	76	5.0 E 3	0.0	0.7	17	11	0.0	ABAVI	0
		3	12.7	7.5	5.4	10.2	25	10.4	2.0	4.0	0.7	2.2	1.0	1.5	0.9	2.0	3.2	0.0	0.0	1.4	4.1	0.1	INVAL	9
		_4	14.8	4.9	/.5	18.8	1.6	13.2	1.4	1.8	7.4	1.5	1.0	1.2	1.0	2.7	4.9	0.4	0.9	1.5	4.7	8.0	NVX1	10
		5	11.1	4.8	6.5	23.3	1.9	14.6	1.3	2.5	8.5	1.5	1.5	1.4	1.1	3.3	5.2	0.4	0.9	1.3	4.3	4.6	NVX1	57
-		6	11.5	4.4	8.6	23.1	2.3	13.4	1.7	2.1	8.5	1.4	1.7	1.5	0.8	3.0	4.8	0.3	0.8	1.1	3.8	5.3	NVX1	13
		7	11.3	5.0	6.8	23.4	2.1	13.7	1.5	2.5	8.2	1.3	1.3	1.5	1.0	2.8	5.8	0.4	1.0	1.3	5.0	4.2	NVX1	14
		8	13.3	4.8	5.7	19.4	2.1	12.3	1.9	1.9	7.6	1.5	0.9	1.5	1.2	2.3	7.2	0.4	1.0	1.5	7.3	6.5	NVX1	15
		9	9.8	3.8	93	23.5	0.2	27.6	0.2	2.7	11.6	2.4	0.1	0.0	1.1	0.3	0.4	0.5	3.4	0.0	0.3	3.1	NVX1	58
		10	17.6	19	07	28 0	0.0	21 4	0.0	29	97	73	00	nn	0.6	0.0	0.0	0.5	25	0.0	0.0	55	NI/X1	17
		11	11 0		9.7 o r	20.0	0.0	24.7	0.0	2.5	10.6	74	0.0	0.0	10	0.0	0.0	0.5	2.5 2 E	0.0	0.0	A A	40.0/4	10
	- 1	11	11.9	3.9	8.0	23.4	0.0	20.9	0.0	2.0	10.0	2.4	. 0.0	0.0	1.0	0.0	0.0	0.5	5.5	0.0	0.0	4.4	INVXI	19
		12	15.1	4.8	6.7	21.6	1.7	13.4	1.3	2.0	7.7	1.3	1.3	1.4	1.0	2.7	5.1	0.4	0.9	1.3	4.5	5.7	NVX1	20
		13	13.1	5.4	6.9	24.8	2.1	11.0	1.2	2.7	8.1	1.2	1.4	1.4	0.9	2.5	5.6	0.4	1.0	1.1	4.4	4.8	NVX1	21
		14	12.0	4.9	5.5	17.2	3.2	13.8	3.2	2.2	7.4	1.0	0.7	1.4	1.2	2.3	8.8	0.4	0.7	2.2	7.5	4.6	NVX1	22
		15	10.7	8.0	6.1	21.5	1.9	15.3	1.9	4.0	7.6	1.1	0.8	1.2	1.0	2.5	4.8	0.6	1.0	1.8	5.2	3.0	NVX1	59
		16	12.1	5.7	6.4	18.1	2.3	15.3	2.2	2.7	6.9	1.0	0.7	1.5	1.2	2.6	6.9	0.5	0.7	2.2	7.2	3.9	NVX1	25
		17	10.8	54	75	22.5	17	16.4	1.4	3.2	7.8	1.3	1.2	1.4	1.1	3:0	5.2	0.4	0.7	1.6	4.4	2.8	NVX1	26
		10	14.0	5.0		72.7	1 2	- 10- 1	1 7	75	73	12	17	17	1 1	2.2	70	0.5	11	1 4	61	5 4	MUY1	27
		10	19.0	3.0	0.5	23.2	1.0	144	1.2	2.5	7.5	1.2	1.0	2.4	4 4	2.2	7.U	0.5	 	4.5	5.7	<u>р.</u> ч	NU 0/4	27
[19	12.0	4.1	C.0	21.0	1.8	14.4	1.5	2.0	7.5	1.5	1.0	1.4	1.1	2.0	5.5	0.4	1.0	1.0	5.7	5.0	NVXI	28
		20	15.2	60	68	73 8	15	78	08	- 37	73	1.3	77	75	110	- 24	58	05	12	16	53	5.9	NVX1	29
			2.0.2	0.0	0.0	20.0	2.5	7.0	0.0	3.2	110				1.0									
			2012	0.0	0.0	2.0		7.0	0.0	3.2					1.0						5.5	0.0		
Line	15:0		18:0	18:1	18:	2.0		ALA	SDA	20:0	21	 H	20:2 DHG		RA 20:3	n3 : 1	ETA	EPA	22:0	22:	1 : DP	A D	HA Of	hers
Line OE_33_2	15:0 15.9		18:0	18:1	18:	2 2G	LA 1.6	ALA 7.4	SDA 1.4	20:0 0,8	21	h:1	20:2 DHG		RA 20:3	n3	ETA 27	EPA 12.6	22:0 0.0	22: 0.0	1 DP 5.5	A D	HA Of	hers 4.6
Line OE_33_2 OE_33_24	15:0 15.9 13.2		18:0 5.2 4.2	18:1 5.8 5.3	185 16.0 15.7	2 G	LA 1.6 2.6	ALA 7.4 9.2	SDA 1.4 2.0	20:0 0.8 1.1	21	1 1	20:2 DHG 1.0 0.4		RA 20:3 1.2 1.1 2.1 1.7	n3 :]	ETA 27 32	EPA 12.6 13.0	22:0 0.0 0.2	22- D.C D.C	1 DP 5.5	A D 0 11	HA Of 3.7 2.7	hers 4.6 3.7
Uine DE_33_2 DE_33_24 DE_33_65 DE_33_65	15:0 15.9 13.2 14.0		18:0 5.2 4.2 4.1	18:1 5.8 5.3 6.0	185 161 15.7 15.7	2 G	LA 1.6 2.6	ALA 7.4 9.2 9.4 7.5	SDA 1.4 2.9 3.0	20:0 0.8 1.1 0.9	21	1.7 .1 .5	20:2 DHG 1.0 0.1 1.0 0.1 0.9 0.1	LA A 6 5	RA 203 1.2 1.1 2.1 1.7 1.7 1.4	n3 :] 5 7	ETA 27 32 23	EPA 12.6 13.0 12.9	22:0 0.0 0.2 0.0	22- 0.0 0.6	1 DP 5.5 5.3 7 3.	A D 0 17 8 17 5 12	HA Of 3.7 4 2.7 3 2.5 1	hers 4.6 3.7 3.8
Uine OE_33_2 OE_33_24 OE_33_66 OE_33_11 OE_33_5	15:0 15.9 13.2 14.0 15.4 14.5		18:0 5.2 4.2 4.1 5.2 5.0	18:1 5.8 5.3 6.0 6.2 5.8	185 16.0 15.1 15.1 15.1 15.4	2 G 5 5 7 2 8 3 2 4	LA 1.6 2.6 3.5 5 4.4	ALA 7.4 9.2 9.4 7.5 10.1	SDA 1.4 2.9 3.0 2.3	20:0 0.8 1.1 0.9 1.2 1.1	21 22 4 3 4 3	1 .7 .5 .2 .7	20:2 DHG 1.0 0.1 1.0 0.1 0.9 0.1 0.7 0.1 0.9 0.1	LA A 6 2 5	RA 20:3 1.2 1.1 1.7 1.4 1.6 1.1 1.8 1.7	n3 : 1 5 7 4	27 32 23 1.7 28	EPA 12.6 13.0 12.9 13.7 12.5	22:0 0.0 0.2 0.0 0.3 0.3	22- 0.0 0.6 0.7 0.5	1 DP 0 5, 3 3, 7 3, 5 3, 3 3, 7 3, 5 3, 1 3,	A D 0 17 8 17 5 12 9 1 6 1	HA Ot 3.7 2.7 2.5 1.7 1.5	hers 4.6 3.7 3.8 4.3 3.8
CE_33_2 OE_33_24 OE_33_66 OE_33_11 OE_33_5 OE_33_89	15.9 13.2 14.0 15.4 14.5 13.3		18:0 5.2 4.2 4.1 5.2 5.0 4.2	18:1 5.8 5.3 6.0 6.2 5.8 6.0	18: 16.1 15.1 15.1 15.4 15.4 15.4 17.1	2 G 5 7 2 4 3 5 3	LA 1.6 2.6 3.5 5.4 3.1 3.1	ALA 7.4 9.2 9.4 7.5 10.1 10.4	SDA 1.4 2.9 3.0 2.3 2.7	20:0 0.8 1.1 0.9 1.2 1.1 1.1	21 22 4 3 4 3 4 4	1 5 2 7 .0	20:2 DHG 1.0 0.1 0.9 0.1 0.7 0.1 0.9 0.1 1.1 0.1	LA A 6 5 5 5 5 5	RA 20:3 1.2 1.1 2.1 1.2 1.7 1.4 1.6 1.1 1.8 1.1 1.9 1.4	n3 : 1 5 7 4 0	ETA 27 32 23 1.7 28 22	EPA 12.6 13.0 12.9 13.7 12.5 12.5	22:0 0.0 0.2 0.0 0.3 0.3 0.3	22- 0.0 0.7 0.7 0.5 0.4 0.6	1 DP 0 5J 3 3, 7 3, 7 3, 7 3, 7 3, 7 3, 7 3, 7 3,	A D 0 11 8 11 5 12 9 11 6 1	HA Ot 3.7 4 2.7 2 2.5 1 1.7 4 1.5 3 0.7 1	hers 4.6 3.7 3.8 4.3 3.8 3.8
Eine DE_33_2 DE_33_24 OE_33_66 OE_33_11 DE_33_5 DE_33_89 OE_33_91	15:9 13.2 14.0 15.4 14.5 13.3 11.8		18:0 5.2 4.2 4.1 5.2 5.0 4.2 3.9	18:1 5.8 5.3 6.0 6.2 5.8 6.0 5.3	18: 16: 15: 15: 15: 15: 15: 17: 16:	2 G 5 5 4 5 5 2	LA 1.6 2.6 3.5 3.4 3.1 3.4 2.4	ALA 7.4 9.2 9.4 7.5 10.1 10.4 12.9	50A 1.4 20 29 3.0 2.3 27 2.3	20:0 0.8 1.1 0.9 1.2 1.1 1.1 1.1	21 22 4 3 4 3 4 4 4 4	2 2 2 2 2 2 2 2 2 2 1	20-2 DHG 1.0 0.1 1.0 0.1 0.9 0.1 0.7 0.1 0.9 0.1 1.1 0.1 1.3 0.1	LA A 5 2 5 5 5 5 5 5	RA 20:3 1.2 1.1 2.1 1.2 1.7 1.4 1.6 1.6 1.8 1.7 1.9 1.4 2.4 1.4	n3 : 1 5 7 4 0	ETA 27 32 23 1.7 28 22 3.1	EPA 126 13.D 12.9 13.7 12.5 12.5 13.0	22:0 0.0 0.2 0.0 0.3 0.3 0.0 0.0	22: 0.0 0.7 0.5 0.4 0.6	J. J. 1 DP 0 5.1 5 3.2 7 3.2 5 3.2 4 3.3 5 3.3 5 3.3	A D 0 17 8 11 5 12 9 1 6 1 0 14 6 1	HA OF 3.7 2.7 2.5 1.7 4.1.5 1.7 4.1.5 1.0.7 1.5 1.0.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	hers 4.6 3.7 3.8 4.3 3.8 3.5 3.3
Eine DE_33_2 DE_33_24 OE_33_66 OE_33_57 DE_33_57 DE_33_97 DE_33_27 OE_33_97 DE_35_97 D	15:0 15.9 13.2 14.0 15.4 14.5 13.3 11.8 12.6		18:0 5.2 4.2 4.1 5.2 5.0 4.2 3.9 4.5 4.0	18:1 5.8 5.3 6.0 6.2 5.8 6.0 5.3 5.9 6.4	18: 16.0 15.1 15.1 13.1 15.4 17.0 16.0 17.1 17.1	2 G 5 7 2 4 3 5 2 4 3 5 2 1 2	LA 1.6 2.6 3.5 3.1 3.4 2.4 2.5 3.1	ALA 7.4 9.2 9.4 7.5 10.1 10.4 12.9 12.0 10.7	SDA 1.4 2.9 3.0 2.3 2.7 2.3 2.2 2.4	20:0 0.8 1.1 0.9 1.2 1.1 1.1 1.1 1.0 1.2 1.1	21 2 4 3 4 3 4 4 4 4 4	27 .7 .1 .5 .2 .7 .0 .1 .3 .2	20:2 DHG 1.0 0.1 1.0 0.1 0.9 0.1 0.9 0.1 1.1 0.1 1.3 0.0 0.0 0.1	LA A 6 2 5 5 5 5 5 6 8 2	RA 20:3 1.2 1.1 2.1 1.2 1.7 1.4 1.6 1.1 1.8 1.1 1.9 1.4 2.4 1.2	n3 : 5 7 4 0 1 4 4 3	ETA 27 32 23 1.7 28 22 3.1 31 29	EPA 12.6 13.0 12.9 13.7 12.5 13.0 12.1 12.9	22:0 0.0 0.2 0.0 0.3 0.3 0.0 0.0 0.0 0.0 0.0	22- 0.0 0.7 0.5 0.4 0.6 0.6 0.6	1 DP 5 5 5 3, 7 3, 5 3, 7 3, 5 3, 5 3, 5 3, 5 3, 5 3, 5 3, 5 3, 5	A D 0 17 8 17 5 12 9 1 6 1 0 17 6 11 5 1.1	HA OF 3.7 2.7 2.5 2.5 1.7 4. 1.5 2.0.7 2.0.6 2.0.3 2.0.3 2.0.5 2.0	hers 4.6 3.7 3.8 4.3 3.8 3.5 3.3 3.7 3.7 3.5
Uine DE_33_2 OE_33_24 OE_33_65 OE_33_5 OE_33_5 OE_33_91 OE_33_97 OE_33_97 OE_33_13	16:0 15.9 13.2 14.0 15.4 14.5 13.3 11.8 12.6 11.9 13.3		18:0 5.2 4.2 4.1 5.2 5.0 4.2 3.9 4.5 4.0 4.9	18:1 5.8 5.3 6.0 6.2 5.8 6.0 5.3 5.9 6.4 5.7	182 16.0 15.7 15.7 15.7 15.4 15.4 15.4 15.4 15.4 15.4 15.4 15.4	2 G 5 3 4 3 5 2 4 3 5 2 1 2 5 3 5 3	LA 1.6 2.6 3.5 3.4 3.1 3.4 2.4 2.5 3.1 2.3	ALA 7.4 9.2 9.4 7.5 10.1 10.4 12.9 12.0 10.7 11.2	SDA 1.4 2.9 3.0 2.3 2.7 2.3 2.2 2.4 1.9	20:0 0.8 1.1 0.9 1.2 1.1 1.1 1.0 1.2 1.1 1.2	21 22 4 3 4 3 4 4 4 4 4 4 4 4 4 4	2 7 .1 .5 .2 .7 .0 .1 .3 .2 .1	20.2 DHG 1.0 0.1 1.0 0.1 0.9 0.1 0.9 0.1 1.1 0.0 0.0 0.1 1.1 0.0 1.1 0.0 1.2 0.1	LA A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	IC IC RA 20:3:0 1.2 1.3 1.2 1.3 1.6 1.4 1.8 1.1 1.9 1.4 2.4 1.5 2.3 1.5 2.4 1.5 2.4 1.5 2.4 1.5 2.4 1.5	n3 5 7 4 0 1 1 4 3 3 3 2	ETA 27 32 23 1.7 28 22 3.1 31 29 32	EPA 12.6 13.0 12.9 13.7 12.5 13.0 12.1 12.9 11.5	22:0 0.0 0.2 0.0 0.3 0.3 0.0 0.0 0.0 0.2 0.0 0.2 0.0 0.3	22: 0.0 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	1 DP 1 3.	A D 0 11 5 12 9 1 6 1 6 1 5 1 0 14 0 14 0 14 0 14 0 14 0 14	HA OF 3.7 2.7 2.5 1.7 1.5 0.7 0.6 0.3 0.3 0.2	hers 4.6 3.7 3.8 4.3 3.8 3.5 3.3 3.7 3.5 3.3 3.7 3.5 3.8
Line DE_33_2 DE_33_24 OE_33_65 OE_33_11 OE_33_5 DE_33_85 OE_33_27 OE_33_27 OE_33_13 OE_33_13 OE_33_13 OE_33_3	15:0 15:9 13:2 14:0 15:4 14:5 13:3 11:8 12:6 11:9 13:3 13:8		18:0 5.2 4.2 4.1 5.2 5.0 4.2 3.9 4.5 4.0 4.9 4.5	18:1 5.8 5.3 6.0 6.2 5.8 6.0 5.3 5.9 6.4 5.7 6.0	18: 16.(15.: 15.: 15.: 15.: 15.: 15.: 15.: 15.:	2 G 5 7 2 4 3 5	LA 1.6 2.6 3.5 3.4 3.1 2.4 2.5 3.1 2.3 2.2	ALA 7.4 9.2 9.4 7.5 10.1 10.4 12.9 12.0 10.7 11.2 11.9	SDA 1.4 20 3.0 2.3 2.7 2.3 2.2 2.4 1.9 2.0	20:0 0.8 1.1 0.9 1.2 1.1 1.1 1.1 1.0 1.2 1.1 1.2 1.1 1.2	22 2 4 3 4 4 4 4 4 4 4 4 4 4 4	22 27 .1 .5 .2 .7 .0 .1 .3 .2 .1 .3 .2 .1 .3 .2 .1 .5 .2 .1 .0 .1 .3 .2 .1 .3 .2 .1 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	20.2 DHG 1.0 0.1 0.9 0.2 0.7 0.2 1.1 0.1 0.0 0.1 1.1 0.1 1.1 0.1 1.2 0.1	LA A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	RA 20:3 12 1.1 2.1 1.1 2.1 1.1 1.6 1.1 1.8 1.1 2.4 1.1 2.2 1.1	n3 : 1 5 7 4 0 1 4 4 4 3 3 2 2	ETA 27 32 23 1.7 28 22 3.1 3.1 29 3.2 3.0	EPA 12.6 13.0 12.9 13.7 12.5 13.0 12.1 12.9 11.5 11.1	22:0 0.0 0.2 0.3 0.3 0.3 0.0 0.0 0.0 0.2 0.0 0.3 0.3	22: 0.0 0.6 0.7 0.6 0.4 0.6 0.4 0.6 0.4 0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	J. DP 1 DP 5 3. 7 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 6 3. 7 3. 6 3. 7 3. 6 3. 7 3. 8 3.	A D 0 17 8 17 5 12 9 1 6 17 5 11 0 14 5 11 0 14 5 17 5 17	HA Of 3.7 4 2.7 2 1.5 2 0.7 2 0.6 2 0.3 2 0.3 2 0.2 2 0.0 2	hers 4.6 3.7 3.8 4.3 3.8 3.5 3.3 3.7 3.5 3.3 3.7 3.5 3.8 2.8
Line DE_33_2 DE_33_24 DE_33_66 DE_33_11 DE_33_5 DE_33_89 DE_33_97 DE_33_97 DE_33_3 DE_33_3 DE_33_3 DE_33_3 DE_33_90	15:0 15.9 13.2 14.0 15.4 14.5 13.3 11.8 12.6 11.9 13.3 13.8 11.4		18:0 5.2 4.2 4.1 5.2 4.2 5.0 4.2 3.9 4.5 4.0 4.5 4.0	18:1 5.8 5.3 6.0 6.2 5.8 6.0 5.3 5.9 6.4 5.7 6.0 5.4	18: 16: 15: 15: 13: 15: 17: 16: 17: 16: 17: 16: 16: 16: 16: 16:	2 G 5 7 4 3 5 3 5 3 5 3 5 3 7 2 4 3 5 3 5 3 7 2 4 3 5 3 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2	LA 1.6 2.6 3.5 4.4 3.1 3.4 2.4 2.4 2.5 3.1 2.3 2.2 2.5 	ALA 7.4 9.2 9.4 7.5 10.1 10.4 12.9 12.0 10.7 11.2 11.9 13.2	SDA 1.4 20 29 3.0 23 27 23 22 24 1.9 2.0 2.6	20:0 0,8 1.1 0,9 1.2 1.1 1.1 1.0 1.2 1.1 1.2 1.1 1.2 1.0 1.2	21 22 4 3 4 3 4 4 4 4 4 4 4 4 4 4 4 4	27 1 5 2 7 .0 .1 .3 2 .1 .3 .2 .1 .5 .5 .5	20.2 DHG 1.0 0.1 0.9 0.2 0.7 0.2 0.7 0.2 1.1 0.1 1.3 0.0 1.4 0.1 1.2 0.1 1.3 0.1 1.3 0.1	LA A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	RA 20:3 1.2 1.4 2.1 1.7 1.6 1.1 1.8 1.1 1.9 1.4 2.4 1.1 2.3 1.3 2.4 1.1 2.2 1.1	n3 1 5 7 4 0 1 4 4 3 3 3 3 3	ETA 27 32 23 1.7 28 22 3.1 31 29 32 3.0 32	EPA 12.6 13.0 12.9 13.7 12.5 13.0 12.1 12.9 11.5 11.1 12.8	22-0 0.0 0.2 0.3 0.3 0.0 0.2 0.0 0.3 0.0 0.2 0.0 0.3 0.3 0.3 0.3 0.0	22- 0.0 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.4 0.6 0.4 0.4 0.4 0.4 0.4	1 DP 0 5. 5 3. 7 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 4 4. 4 3. 4 3. 4 3.	A D 0 11 8 11 5 12 9 1 6 1 5 11 5 11 5 11 5 11 5 11 5 11 5 11 5 11 5 11 5 11	HA Of 3.7 4 2.7 2.5 1 1.7 4 1.5 1 0.7 1 0.6 1 0.3 1 0.3 1 0.2 1 0.0 1 0.0 1	hers 4.6 3.7 3.8 4.3 3.8 3.5 3.3 3.7 3.5 3.3 3.7 3.5 3.8 2.8 3.2
Line DE_33_2 DE_33_24 DE_33_66 DE_33_66 DE_33_66 DE_33_67 DE_33_91 DE_33_97 DE_33_97 DE_33_97 DE_33_37 DE_33_30 DE_33_30 DE_33_90 DE_35_90 DE_35_90 DE_35_90 D	15.9 15.9 13.2 14.0 15.4 14.5 13.3 11.8 12.6 11.9 13.3 13.8 11.4 10.6		18:0 5.2 4.2 4.1 5.2 4.2 3.9 4.5 4.0 4.5 4.0 4.2	18:1 5.8 5.3 6.0 6.2 5.8 6.0 5.3 5.9 6.4 5.7 6.0 5.4 5.6	185 16.0 15.7 15.7 15.7 15.7 15.7 15.7 15.7 16.0 16.1 16.1 16.1 16.1 16.1 16.1 16.1		LA 1.6 2.6 3.5 4.4 3.1 3.4 2.5 3.1 2.3 2.2 2.5 2.7 1.6	ALA 7.4 9.2 9.4 7.5 10.1 10.4 12.9 12.0 10.7 11.2 11.9 13.2 13.3 10.5	SDA 1.4 2.9 3.0 2.3 2.7 2.3 2.2 2.4 1.9 2.0 2.6 2.3 1.9	20:0 0.8 1.1 1.2 1.2 1.1 1.0 1.2 1.1 1.2 1.0 1.2 1.0 1.2 1.2	22 4 3 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 7 7 1 5 5 2 7 7 7 0 0 1 3 2 4 5 5	20.2 DHG 1.0 0.4 1.0 0.4 0.9 0.4 0.7 0.2 0.8 0.4 1.1 0.3 1.3 0.0 1.1 0.4 1.3 0.1 1.2 0.1 1.3 0.1 1.3 0.1 1.3 0.1 1.3 0.1 1.3 0.1 1.3 0.1 1.4 0.5	LA A 5 5 5 5 5 5 5 5 5 5 5 5 5	RA 20:3 1.2 1.1 2.1 1.1 1.6 1.1 1.8 1.1 1.9 1.4 2.3 1.7 2.4 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.3 1.1 2.3 1.1 2.4 1.1 2.5 1.1	n3 5 7 4 0 1 4 4 3 3 3 3 3 4	ETA 227 32 23 1.7 28 22 3.1 31 31 32 3.0 3.2 3.0 3.0 3.0	EPA 126 13.0 129 13.7 125 125 13.0 121 129 11.5 11.1 128 13.0	22:0 0.0 0.2 0.0 0.3 0.3 0.0 0.0 0.0 0.2 0.0 0.3 0.3 0.3 0.0 0.2 0.0	22: 0.0 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.4 0.4 0.4 0.4 0.4 0.4	1 DP 0 55 3 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3	A D 0 1; 8 1; 9 1; 6 1 5 1; 5 1; 5 1; 5 1; 5 1; 5 1; 5 1; 5 1; 5 1; 5 1; 3 5	HA Ot 3.7 4 2.7 25 1 1.7 4 1.5 0.7 1 0.6 1 0.3 2 0.0 2 0.0 2 0.0 2 0.0 2 0.0 2 0.8 3	hers 4.6 3.7 3.8 4.3 3.8 3.8 3.5 3.3 3.7 3.5 3.8 2.8 3.2 3.7 2.7
Line DE_33_2 DE_33_24 DE_33_66 DE_33_66 DE_33_66 DE_33_67 DE_33_97 DE_33_97 DE_33_97 DE_33_97 DE_33_37 DE_33_37 DE_33_30 DE_33_37 DE_33_47 DE_337 DE_37	15:9 15:9 13:2 14:0 15:4 14:5 13:3 11:8 12:6 11:9 13:3 13:8 11:4 10:6 15:7 10:8		18:0 5.2 4.2 4.1 5.2 4.2 3.9 4.5 4.0 4.5 4.0 4.2 4.4 4.2	18:1 5.8 5.3 6.0 6.2 5.8 6.0 5.3 5.9 6.4 5.7 6.0 5.4 5.6 5.4 5.6 5.3	185 16.0 15.7 15.7 15.7 15.7 15.7 15.7 15.7 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0	2 G 5 7 2 4 3 5 3 5 3 5 3 5 3 5 3 7 1 4 3	LA 1.6 2.6 3.5 3.4 3.1 2.4 2.5 3.1 2.3 2.2 2.5 2.7 1.9 3.1	ALA 7.4 9.2 9.4 7.5 10.1 10.4 12.9 12.0 10.7 11.2 11.9 13.2 13.3 10.5 14.0	SDA 1.4 2.9 3.0 2.3 2.7 2.3 2.7 2.3 2.2 2.4 1.9 2.0 2.6 2.3 1.9 2.6	20:0 0.8 1.1 1.1 1.0 1.2 1.1 1.2 1.0 1.2 1.0 1.2 1.0 1.2 1.1 1.1	22 2 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 7 7 .1 .5 .5 .2 .7 .7 .0 .0 .1 .3 .2 .1 .0 .5 .5 .4 .9 .0	20.2 DHG 1.0 0. 1.0 0. 0.9 0. 1.1 0. 1.3 0. 1.1 0. 1.3 0. 1.1 0. 1.1 0. 1.3 0. 1.2 0. 1.3 0. 1.2 0. 1.3 0. 1.2 0. 1.3 0. 1.2 0. 1.3 0. 1.1 0. 1.0 0.	LA A 5 5 5 5 5 5 5 5 5 5 5 5 5	RA 20:3 1.2 1.1 1.2 1.1 2.1 1.7 1.6 1.1 1.8 1.1 1.9 1.4 2.4 1.2 2.3 1.3 2.4 1.2 2.1 1.2 2.1 1.2 2.1 1.2 2.1 1.2 2.1 1.2 2.1 1.2 2.2 1.2 2.3 1.4	n3 : 5 7 4 0 1 1 4 4 3 3 3 3 3 3 4 4 4	ETA 227 32 23 1.7 28 22 22 3.1 3.1 2.9 3.2 3.0 3.2 3.3 3.0 3.2 3.0 3.2	EPA 12.6 13.0 12.9 13.7 12.5 12.5 12.5 13.0 12.1 12.9 11.5 11.1 12.8 13.0 11.4 13.6	22:0 0.0 0.2 0.0 0.3 0.3 0.0 0.0 0.2 0.0 0.3 0.3 0.3 0.3 0.0 0.2 0.0 0.2 0.0 0.2	22: 0.0 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	1 DP 0 55 3 3 7 3 5 3 7 3 5 3 5 3 1 3 5 3 4 4 4 3 5 3 4 4 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3	A D 0 11 8 11 5 12 9 1 6 11 5 11 5 11 5 11 5 11 5 11 5 11 5 12 9 5 1 5 1 5 9 5	HA OF 3.7 / 2.7 /	hers 4.6 3.7 3.8 4.3 3.8 3.5 3.3 3.5 3.5 3.5 3.5 3.5 3.8 2.8 3.2 3.7 2.7 3.8
Line DE 33_2 DE 33_2 DE 33_24 OE 33_66 OE 33_11 DE 33_5 DE 33_89 OE 33_97 OE 33_97 OE 33_13 OE 33_3 OE 33_3 DE 33_4 OE 33_4 OE 33_4 OE 33_4 DE 33_5 DE 33_4 DE 33_5 DE 35_5 DE 35_5	15:0 15:9 13:2 14:0 15:4 14:5 13:3 11:8 12:6 11:9 13:3 13:8 11:4 10:6 15:7 10:8 12:1		18:0 5.2 4.2 4.1 52 50 4.2 3.9 4.5 4.0 4.5 4.0 4.2 4.4 4.2 4.8	18:1 5.8 5.3 6.0 6.2 5.8 6.0 5.3 5.9 6.4 5.7 6.0 5.4 5.6 5.0 5.3 5.6 5.3 5.8	182 16.1 15.1 15.1 15.1 15.1 15.1 15.1 15.1	2 G 5 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2	LA 1.6 2.6 3.5 4.4 2.5 3.1 2.2 2.5 2.7 1.9 3.1 2.4 2.5 3.1 2.3 3.1 2.2 2.5 3.1 2.3 3.1 2.4 2.5 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	ALA 7.4 9.2 9.4 7.5 10.1 10.4 12.9 12.0 10.7 11.2 11.9 13.2 13.3 10.5 14.0 13.1	SDA 14 20 30 23 27 23 22 24 1.9 20 26 23 1.9 26 21	20:0 0.8 1.1 1.1 1.1 1.1 1.2 1.1 1.2 1.2 1.2 1.2	22 2 4 4 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 5 2 7 7 .0 1 .3 2 .0 .1 .3 .2 .1 .3 .2 .1 .3 .2 .1 .3 .2 .1 .5 .5 .2 .7 .1 .5 .5 .2 .7 .7 .1 .5 .5 .2 .7 .7 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	20-2 DHG 1.0 0. 1.0 0. 0.7 0. 0.7 0. 1.1 0. 1.3 0. 1.4 0. 1.3 0. 1.1 0. 1.2 0. 1.3 0. 1.3 0. 1.3 0. 1.3 0. 1.3 0. 1.3 0. 1.3 0. 1.1 0. 1.3 0. 1.3 0. 1.1 0. 1.5 1.1 1.0 0. 1.0 0.	LA A 5 5 5 5 5 5 5 5 5 5 5 5 5	RA 20:3 1.2 1.1 1.2 1.1 1.7 1.4 1.6 1.1 1.8 1.1 1.9 1.4 2.4 1.2 2.4 1.2 2.4 1.2 2.4 1.2 2.2 1.2 2.2 1.2 2.2 1.2 2.2 1.2 2.2 1.2 2.3 1.4 2.3 1.2 2.3 1.2 2.3 1.2 2.3 1.2	n3 1 5 7 4 0 0 1 1 4 4 4 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4	ETA 27 32 23 1.7 28 22 3.1 31 29 32 30 32 3.0 32 3.0 32 3.0 32 3.0	EPA 126 13.0 129 13.7 125 125 13.0 121 129 11.5 11.1 128 13.0 11.4 13.5 120	22:0 0.0 0.2 0.0 0.3 0.3 0.0 0.0 0.2 0.0 0.2 0.0 0.3 0.3 0.0 0.2 0.0 0.2 0.0 0.3 0.2 0.0 0.3 0.2 0.0 0.3 0.3 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.0	22: 0.0 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6	1 DP 5 3 3 4 3 5 3 4 3 5 3 4 3 4 3 4 4 4 3 4 3 4 3 5 3 6 3 7 3 7 3 8 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9	A D 0 11 8 11 5 12 9 1 6 11 5 11 5 11 5 11 5 11 5 11 3 5 1 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5	HA OF 3.7 2.7 2.5 1.7 2.5 0.7 0.7 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0	hers 4.6 3.7 3.8 3.8 3.7 3.5 3.3 3.7 3.5 3.8 2.8 3.2 3.7 2.7 3.8 8.6
Line DE_33_2 DE_33_24 DE_33_66 DE_33_65 DE_33_51 DE_33_57 DE_33_57 DE_33_77 DE_33_13 DE_33_31 DE_33_30 DE_33_31 DE_33_4 DE_33_40 DE_33_41 DE_33_41 DE_33_41 DE_33_41 DE_33_41 DE_33_41 DE_33_41 DE_33_41 DE_33_41 DE_33_41 DE_33_41 DE_33_41 DE_33_41 DE_33_41 DE_33_41 DE_33_41 DE_33_41 DE_33_41 DE_33_41 DE_33_57 DE_357	15:0 15.9 13.2 14.0 15.4 14.5 13.3 11.8 12.6 11.9 13.3 13.8 11.4 10.6 15.7 10.8 12.1 10.9		1830 52 42 4.1 52 4.2 3.9 4.5 4.0 4.5 4.0 4.2 4.8 4.1	18:1 5.8 5.3 6.0 6.2 5.8 6.0 5.3 5.9 6.4 5.7 6.0 5.4 5.6 5.0 5.3 5.8 5.8 5.8 5.9	1823 16,1 15,5 15,5 15,5 15,5 15,5 15,5 15,5	2 G 7 3 3 2 4 4 5 5 2 1 7 3 7 1 7 3 7 1 7 3 7 1 7 3 7 1 7 3 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1	LLA 1.6 226 3.5 4.4 3.1 2.3 2.2 2.5 2.7 1.9 3.1 2.4 2.5 2.7 1.9 3.1 2.4 2.5 3.1 2.5 3.1 2.5 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	ALA 7.4 92 9.4 7.5 10.1 10.4 12.9 12.0 10.7 11.2 11.9 13.3 10.5 14.0 13.1 12.5	SDA 1.4 2.9 3.0 2.3 2.7 2.3 2.7 2.3 2.7 2.3 2.7 2.3 2.7 2.3 2.4 1.9 2.6 2.1 2.5	20:0 0.8 1.1 0.9 1.2 1.1 1.0 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.0 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.2 1.1 1.1	21 2 4 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1 7 7 1 5 2 2 7 7 0 0 1 1 3 2 2 1 0 0 5 6 8 9 0 0 9 0 9 0 9 2 2	20.2 DHG 1.0 0. 1.0 0. 0.7 0. 0.7 0. 1.1 0. 1.3 0.0 1.1 0. 1.2 0. 1.3 0. 1.4 0. 1.2 0. 1.3 0. 1.3 0. 1.3 0. 1.2 0. 1.3 0. 1.2 0. 1.3 0. 1.2 0. 1.3 0. 1.2 0. 1.3 0. 1.2 0. 1.0 0. 1.0 0. 1.2 0.	LA A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	RA 20:3 1.2 1.1 1.2 1.1 1.7 1.4 1.6 1.1 1.8 1.1 1.8 1.1 2.4 1.2 2.4 1.2 2.4 1.2 2.2 1.2 2.2 1.2 2.2 1.2 2.2 1.2 2.2 1.2 2.3 1.1 2.0 1.1 2.0 1.2 2.0 1.2 2.0 1.2 2.0 1.2 2.0 1.2 2.0 1.2 2.0 1.2 2.0 1.2 2.0 1.2 2.0 1.2 2.0 1.2 2.0 1.2 2.1 2.2	n3 : 1 5 7 4 2 5 3 3 3 3 3 4 4 4 4 1 2 3 3	ETA 27 32 23 1.7 28 22 31 31 31 29 32 30 32 30 32 30 32 30 32 30 32 30 32	EPA 126 130 129 137 125 125 130 121 129 11.5 11.1 128 13.0 11.4 13.6 120 125	22:0 0.0 0.2 0.3 0.3 0.0 0.3 0.3 0.0 0.3 0.3 0.3 0.3	22- 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1 DP 0 55 3 3 5 3, 5 3, 5 3, 5 3, 1 3, 5 3, 5 3, 1 3, 5 5, 5 3, 7 4, 7 4, 7 4, 7 4, 7 4, 7 4, 7 4, 7 4	A D 0 1; 5 1; 9 1; 6 1; 0 1; 5 1; 5 1; 5 1; 5 1; 5 1; 5 1; 5 1; 5 1; 5 1; 5 1; 5 2; 3 5; 1 5; 1 5; 1 5; 3 5; 1 5;	HA Ot 3.7 2.7 2.5 1.7 2.5 1.7 0.6 1.7 0.6 0.3 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	hers 4.6 3.7 3.8 4.3 3.7 3.5 3.3 3.7 2.7 3.8 3.8 3.2 3.7 2.7 3.8 3.8 3.2 3.7 2.7 3.8 3.8 3.2 3.7 2.7 3.8 3.8 3.2 3.7 3.7 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8
Line DE_33_2 DE_33_24 DE_33_65 DE_33_65 DE_33_51 DE_33_55 DE_33_51 DE_33_57 DE_33_91 D	16:0 15.9 13.2 14.0 15.4 14.5 13.3 11.8 12.6 11.9 13.3 13.8 11.4 10.6 15.7 10.8 12.1 10.9 10.2		1830 52 42 41 52 50 42 3.9 4.5 4.0 4.5 4.0 4.2 4.4 4.2 4.8 4.1 4.5	18:1 5.8 5.3 6.0 6.2 5.8 6.0 5.3 5.9 6.4 5.7 6.0 5.4 5.6 5.0 5.4 5.5 5.8 5.8 5.9 6.3 5.8 5.8 5.8 5.9 6.3 5.8 5.3 5.8 5.3 5.4 5.3 5.9 6.0 5.4 5.3 5.3 5.9 6.0 5.3 5.3 5.9 6.0 5.3 5.3 5.9 6.0 5.3 5.9 6.0 5.3 5.9 6.0 5.3 5.9 6.0 5.3 5.9 6.0 5.3 5.9 6.0 5.3 5.9 6.0 5.3 5.9 6.0 5.3 5.9 6.0 5.3 5.9 6.0 5.3 5.9 6.0 5.4 5.9 6.0 5.3 5.9 6.0 5.4 5.9 6.0 5.4 5.9 6.0 5.4 5.9 6.0 5.4 5.9 6.0 5.4 5.9 6.0 5.4 5.9 6.0 5.4 5.9 6.0 5.4 5.9 6.0 5.4 5.0 5.3 5.0 5.4 5.0 5.0 5.4 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	1855 16,1 15,5 15,5 15,5 15,5 15,5 15,5 15	2 G 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2	LLA 	ALA 7.4 9.2 9.4 7.5 10.1 10.4 12.9 12.0 10.7 11.2 11.9 12.0 10.7 11.2 11.3 10.5 14.0 13.1 12.5 12.8 12.4 14.1	sDA 1.4 2.0 2.9 3.0 2.3 2.7 2.3 2.7 2.3 2.2 2.4 1.9 2.0 2.6 2.3 1.9 2.6 2.1 2.5 3.3 2.2	2000 0.8 11 0.9 12 1.1 1.1 1.0 1.2 1.2 1.1 1.1 1.2 1.2 1.2 1.2 1.1 1.1	22 2 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	H1 77 1.1 5 5 2 7 7 7 0 1.1 .3 2 1.1 .0 5 .5 .5 .5 .5	20.2 DHG 1.0 0.1 0.9 0.2 0.7 0.2 0.9 0.2 1.1 0.1 1.3 0.0 1.4 0.1 1.3 0.1 1.4 0.1 1.5 1.1 1.5 1.1 1.5 1.1 1.5 1.1 1.5 1.1 1.5 1.1 0.0 0.1 1.2 0.2 1.0 0.2 1.0 0.2 1.2 0.2 1.4 0.2 1.5 1.1 0.8 0.2	LLA A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	IC RA 20:3 1.2 1.3 1.2 1.7 1.6 1.1 1.8 1.1 1.9 1.4 2.4 1.2 2.3 1.3 2.4 1.2 2.4 1.2 2.1 1.2 2.2 1.2 2.2 1.2 2.2 1.2 2.3 1.4 2.6 1.2 2.0 1.2 2.6 1.1 2.6 1.1 2.6 1.2 2.6 1.2 1.8 1.3 2.6 1.2 1.8 1.3 2.6 1.2 1.8 1.3	n3 : 5 7 4 5 7 4 4 5 7 4 4 4 4 1 2 2 3 3 3 3 4 4 4 4 4 1 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ETA 27 32 23 1.7 28 22 31 31 31 32 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 32 32 32 32 32 32 32 32 32 32 32 32	EPA 126 130 129 137 125 125 130 121 129 115 111 129 115 111 128 130 114 136 120 125 143	2230 0.0 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	22- 22- 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1 DP 1 3 3 3 3 3 3 3 4 3 5 3 4 3 5 3 4 4 4 4 3 3 5 3 4 4 4 4 3 3 5 3 4 3 5 3 4 4 4 3 5 3 5 3 6 3 7 3 7 3 8 3 9 3 9 3 9 3 9 3 9 3 9 3 9 3 9	A D T T S 1 S 1 S 1 S 1 S 1 S 1 S 3 S 3 S 3 S 3 S 3 S 7	HA Of 3.7 2.5 1.7 2.5 1.7 2.5 1.7 0.6 0.3 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	hers 4.6 3.7 3.8 4.3 3.5 3.3 3.3 3.5 3.5 3.5 3.5 3.5 3.5 3
Line OE_33_2 OE_33_26 OE_33_66 OE_33_67 OE_33_66 OE_33_57 OE_33_89 OE_33_91 OE_33_91 OE_33_91 OE_33_91 OE_33_91 OE_33_91 OE_33_10 OE_33_91 OE_33_10 OE_30_10 O	16:0 15.9 13.2 14.0 15.4 14.5 13.3 11.8 12.6 11.9 13.3 13.8 11.4 10.6 15.7 10.8 12.1 10.9 10.2 11.8		18.0 5.2 4.2 4.1 5.2 4.2 4.1 4.5 4.0 4.9 4.5 4.0 4.2 4.3 4.4 4.2 4.4 4.2 4.4 4.2 4.4 4.2 4.4 4.5 4.0 4.2 4.4 4.5 4.6 4.7 4.8 4.1 4.5 4.5	18:1 5.8 5.3 6.0 6.2 5.8 6.0 5.3 6.0 5.3 6.0 5.3 5.9 6.4 5.7 6.0 5.3 5.8 5.9 6.3 6.0 6.0	1825 1825 153 153 153 153 153 153 153 153 153 15	2 G 3 C 7 2 3 C 7 2 4 S 5 S 2 4 4 S 5 S 2 2 4 S 5 S 2 2 4 S 5 S 2 2 4 S 5 S 2 2 4 S 5 S 2 2 5 S 2 3 5 S 2 5 5 S 5 S 5 S 5 S 5 S 5 S 5 S 5	LLA LLA LLA LLA LLA LLA LLA LLA	ALA 7.4 9.2 9.4 7.5 10.1 10.4 12.9 12.0 10.7 11.2 11.9 12.0 10.7 11.2 11.3 10.5 14.0 12.1 12.5 12.8 11.1 12.4	SDA 1.4 20 30 23 27 23 27 23 27 23 27 23 27 23 27 23 27 23 21 25 33 23 21	2000 0.8 1.1 0.9 1.2 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.2 1.2	22 2 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2. 	20.2 DHG 1.0 0.1 0.9 0.2 0.9 0.2 0.9 0.2 1.1 0.0 1.3 0.0 1.4 0.1 1.3 0.1 1.3 0.1 1.3 0.1 1.4 0.1 1.5 1.1 1.0 0.1 1.2 0.1 1.0 0.2 1.1 0.0 1.2 0.1 1.2 0.1 1.2 0.1 0.8 0.2 1.2 0.1 1.4 0.1	LA A 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 6 - 7 - 7 - 7 - 7 - 5 - 7 - 6 - 7 -	IC RA 20:3 1.2 1.3 1.3 1.4 1.6 1.1 1.8 1.1 1.9 1.4 2.4 1.2 2.4 1.2 2.4 1.2 2.2 1.2 2.2 1.2 2.2 1.2 2.2 1.2 2.2 1.2 2.2 1.2 2.2 1.2 2.3 1.4 2.2 1.2 2.3 1.4 2.4 1.2 2.3 1.4 2.4 1.2 2.5 1.1 1.8 1.2 2.6 1.2 2.4 1.2 2.4 1.2 2.4 1.2 2.4 1.2 2.4 1.2 2.4 1.2	n3 1 5 7 4 0 1 1 4 4 4 3 3 2 2 3 3 3 4 4 4 4 4 3 3 3 5 5	ETA 27 32 23 1.7 28 22 31 31 31 29 32 30 32 30 32 30 32 30 32 30 32 27 32	EPA T26 13.0 12.9 13.7 12.5 13.0 12.1 12.9 11.5 11.1 12.9 11.5 11.1 12.9 11.5 11.1 12.0 12.5 14.3 12.0 12.5 14.3 12.0 12.5 14.0 12.9 13.7 12.5 13.0 12.4 13.0 12.4 13.0 12.4 12.5 12.5 12.5 12.5 12.5 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12	220 0.0 0.2 0.0 0.3 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0	222 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1 DP 0 53 3 3 3 3 5 3 6 3 7 3 8 3 9 3 1 3 1 3 2 3 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 5 2 3 3 3 3	A D 0 T 8 T 5 1 6 T 6 T 7 S 3 S 9 S 1 S 1 S 1 S 1 S 3 S 1 S 1 S 7 S 7 S	HA OF 3.7 2 2.5 2 1.7 4 1.5 0.7 2 0.3 2 0.3 2 0.3 2 0.0 2 0.	hers 4.6 3.7 3.8 4.3 3.7 3.8 3.8 3.3 3.7 3.7 3.7 2.7 3.8 3.2 3.7 2.7 3.8 3.2 3.7 2.7 3.8 3.2 3.7 4.4 4.0
Line OE_33_2 OE_33_26 OE_33_66 OE_33_11 OE_33_66 OE_33_89 OE_33_91 OE_33_91 OE_33_91 OE_33_91 OE_33_10 OE_30_10 O	15:0 15:9 13:2 14:0 15:4 14:5 13:3 11:8 12:6 11:9 13:3 13:8 13:8 13:8 13:4 10:9 10:2 11:8 11:7 10:7 10:7		18:0 5.2 4.2 4.1 5.2 4.2 4.1 4.5 4.0 4.9 4.5 4.0 4.2 4.8 4.1 4.5 4.0 4.2 4.4 4.5 4.4 4.5 4.4	18:1 5.8 5.3 6.0 6.2 5.8 6.0 5.3 6.0 5.3 6.0 5.3 5.6 5.6 5.7 6.0 5.3 5.8 5.9 6.3 6.0 5.3 5.8 5.9 6.3 6.0 5.5	1825 1825 1927 1927 1927 1927 1927 1927 1927 1927	2 G 5 7 7 3 2 4 4 5 5 2 4 5 5 2 7 1 5 2 7 1 4 5 7 1 4 5 7 1 4 5 7 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1	LA 1.6 2.6 3.5 4.4 4.4 2.5 3.1 1.3 2.2 2.5 2.7 1.9 3.1 1.2 2.7 1.9 3.1 2.7 1.9 3.1 2.7 1.9 3.1 2.7 3.2 2.5 3.1 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	ALA 7.4 92 9.4 92 9.4 10.1 10.4 12.9 12.0 10.7 11.2 13.3 10.5 12.6 11.1 14.0 12.5 12.8 11.1 12.4 12.0 12.4	sDA 1.4 20 30 2.3 2.7 2.3 2.7 2.3 2.7 2.3 2.7 2.3 2.7 2.3 2.7 2.3 2.1 2.3 2.3 2.4	2000 0.8 1.1 0.9 1.2 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.2 1.2		21 1 5 2 7 7 7 7 7 7 7 7 7 7 7 7 7	20.2 DHG 1.0 0. 1.0 0. 0.9 0. 0.9 0. 1.1 0. 1.3 0. 1.4 0. 1.3 0. 1.3 0. 1.3 0. 1.3 0. 1.4 0. 1.5 1.1 1.0 0. 1.3 0. 1.4 0. 1.5 1.1 1.0 0. 1.1 0. 1.2 0. 0.8 0. 1.2 0. 1.4 0. 1.4 0.	LA A 4 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 6 - 7 - 6 - 7 - 6 - 7 - 8 - - - 7 - 8 - 7 - 8 - 7 - 8 - 7 - 8 - 7 - 8 - 8 -	IC RA 203 12 1.3 1.2 1.7 1.6 1.1 1.9 1.4 2.4 1.2 2.4 1.2 2.1 1.2 2.2 1.3 2.2 1.2 2.1 1.2 2.1 1.2 2.1 1.2 2.2 1.2 2.3 1.4 2.3 1.4 2.3 1.4 2.3 1.1 2.6 1.1 2.6 1.1 2.4 1.2 2.4 1.2 2.4 1.2 2.6 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.4 1.1	n3 1 5 7 4 0 1 4 4 4 3 3 3 2 2 3 3 3 4 4 4 4 1 2 2 3 3 3 5 5 2 2	ETA 27 32 23 1.7 28 22 31 31 31 29 32 30 32 30 32 30 32 30 32 27 32 32 31	EPA T26 13.0 12.9 13.7 12.5 13.0 12.1 12.9 11.5 11.1 12.9 11.5 11.1 12.9 11.5 11.1 12.0 12.0 12.0 12.0 12.0 12.0 13.0 12.1 12.5 13.0 12.4 13.0 12.4 12.5 12.5 12.0 12.5 12.0 12.5 13.0 12.4 12.5 12.5 12.0 12.5 12.0 12.5 12.0 12.5 12.5 12.0 12.5 12.5 12.0 12.5 12	220 0.0 0.2 0.0 0.3 0.3 0.3 0.3 0.0 0.0 0.0 0.0 0.0	222 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1 DP 0 5.5 3 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 4 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 5 3. 6 3. 7 3.	A D 0 T 8 T 5 1 6 T 6 T 7 S 3 S 9 S 1 S 7 S 7 S 9 S	HA Cri 2.7 2.7 2.7 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	hers 4.6 3.7 3.8 3.5 3.3 3.5 3.3 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.8 3.2 3.7 3.7 3.7 3.7 3.8 3.6 3.0 5.1 3.4 4.0 4.0
Line OE 33.2 OE 33.2 OE 33.6 OE 33.6 OE 33.6 OE 33.1 OE 33.1 OE 33.1 OE 33.9 OE 33.9 OE 33.9 OE 33.1 OE 33.9 OE 33.1 OE 33.2 OE 33.1 OE 33.2 OE 33.1 OE 33.2 OE 33.	16:0 15.9 13.2 14.0 15.4 13.3 13.8 11.4 13.3 13.8 11.4 10.6 15.7 10.8 12.1 10.9 10.2 11.8 11.7 10.7 12.2		18:0 5:2 4:2 3:9 4.5 4.0 4.5 4.0 4.2 4.4 4.2 4.8 4.1 4.5 4.4 4.2 4.8 4.1 4.5 4.0 4.2 4.8 4.1 4.5 4.4 4.3	18:11 5.8 5.3 6.0 5.2 5.8 6.0 5.3 5.6 6.0 5.3 5.8 6.0 5.3 5.9 6.4 5.6 5.3 5.8 5.9 6.3 5.8 5.9 6.3 6.0 5.9 6.3 6.0 5.9 6.3 6.0 5.9 6.2	18:5 16.1 15.5 15.5 13.3 15.7 17.7 16.1 16.1 16.1 16.1 16.1 16.1 16	2 G 2 G 3 2 4 4 3 5 2 5 2 5 2 7 1 5 2 5 2 7 1 7 1 7 1 7 2 7 2 7 2 7 2 7 2 7 2 7 2 7 2	LA 1.6 2.6 3.5 4.4 2.4 2.4 2.5 3.1 1.2 3.1 2.2 2.5 2.7 1.9 3.1 2.2 2.5 2.7 1.9 3.1 2.4 2.5 3.1 2.4 2.5 3.1 3.1 3.1 3.1 3.2 2.5 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	ALA 7.4 92 9.4 92 9.4 10.1 10.4 12.9 12.0 10.7 11.2 13.3 10.5 12.0 13.1 12.5 12.8 11.1 12.4 12.0 12.4 12.0	SDA 1.4 2.0 3.0 2.3 2.7 2.3 2.7 2.3 2.7 2.4 1.9 2.6 2.3 2.1 2.5 3.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.4 1.9	209 0.8 11 1.0 0.9 1.2 1.1 1.1 1.0 1.2 1.2 1.2 1.2 1.2 1.2 1.1 1.1 1.1 1.2 1.2		21 7 7 7 1 5 5 7 7 0 1 1 3 2 2 1 1 0 5 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 2 2 3 3 3 2 2 3 3 3 3 3 3 4 4 9 9 2 2 5 5 5 5 5 5 5 5 5 5 5 5 5	20.2 DHG 1.0 0. 0.9 0.1 0.9 0.2 0.7 0.0 0.9 0.4 1.1 0.0 1.3 0.1 1.3 0.1 1.3 0.1 1.3 0.1 1.3 0.1 1.4 0.0 1.5 1.1 1.0 0.1 1.0 0.1 1.2 0.0 1.2 0.1 1.2 0.1 1.2 0.1 1.2 0.1 1.2 0.1 1.2 0.1 1.2 0.1 1.2 0.1 1.2 0.1 1.4 0.2 0.0 0.4	LA A 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	IC RA 20:3 1.2 1.3 1.2 1.4 1.6 1.1 1.7 1.4 1.6 1.1 1.9 1.4 2.4 1.2 2.4 1.2 2.1 1.2 2.1 1.2 2.1 1.2 2.2 1.2 2.3 1.1 2.2 1.2 2.3 1.1 2.6 1.1 2.4 1.1 2.6 1.1 2.2 1.1 2.4 1.1 2.3 1.1 2.6 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1 2.2 1.1	n3 : 1 5 7 4 3 3 3 2 2 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 2 2 3 3	ETA 27 32 23 17 28 22 31 31 31 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 31 32 32 32 32 32 32 32 32 32 32 32 32	EPA 126 13.0 129 13.7 125 125 130 121 129 11.5 11.1 128 13.0 11.4 13.6 120 120 125 14.3 1220 13.0 112 120 13.0 120 120 120 120 120 120 129 11.5 11.5 11.5 11.5 11.5 11.5 11.5 11.	22-9 0.0 0.2 0.3 0.3 0.3 0.3 0.3 0.0 0.2 0.0 0.3 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0	22-20 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	1 DP 0 5.5 3 3 5 3 5 3 5 3 5 3 5 3 6 3 7 3 8 4 4 3 5 3 6 3 7 3 8 4 9 3 1 3 2 3 3 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 6 3 7 3 8 3 9 3 10 3 10 3 10 3 10 3<	A D 0 1 5 1 6 1 0 1 6 1 7 1 9 1 9 1 9 1 9 1 9 2 9 2 9 2 9 2 9 2	HA Oc 2.7 2.5 2.7 2.5 1.7 2.5 1.5 3 0.6 3 0.3 3.3 0.2 3.0 1.7 2.6 1.8 2.7 1.8 2.7 1.8 2.8 1.7 3.3 1.3 3.2 2.2 3.2	hers 4.6 3.7 3.8 3.5 3.3 3.7 3.5 3.8 3.7 3.7 2.7 3.8 3.2 3.7 2.7 3.8 3.6 3.0 5.1 3.4 4.0 4.0 4.0 3.9
Line 0E 33,2 0F 33,2 0F 33,2 0F 33,46 0F 33,65 0F 33,16 0F 33,97 0F 33,91 0F 33,97 0F 33,17 0F 33,13 0F 33,37 0F 35 0F 35 0F 35 0F 35 0F 35 0F 35 0F 35 0F 3	16:0 15:9 13:2 14:0 15:4 14:5 13:3 11:8 12:6 11:9 13:3 13:8 11:4 10:9 10:2 11:8 11:7 10.7 10.7 11:7 10.7		18:0 5:2 4:2 3:9 4.5 4.0 4.5 4.0 4.2 4.8 4.1 4.5 4.4 4.5 4.4 4.5 4.4 4.5 4.4 4.5 4.4 4.5 4.4 4.5 4.4 4.3 4.4	18:11 5.8 5.3 6.0 5.3 5.9 6.4 5.7 6.0 5.3 5.9 6.4 5.7 6.0 5.3 5.8 5.9 6.3 5.8 5.9 6.3 5.8 5.9 6.3 5.8 5.9 6.3 5.8 5.9 6.3 5.8 5.9 6.2 5.8 5.8 5.3 6.0 5.3 5.9 6.0 5.3 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8	18:5 16.1 15.5 15.5 13.3 15.7 17.7 16.1 16.1 16.1 16.1 16.1 16.1 16	2 G 2 G 3 C 4 C 3 C 4 C 3 C 4 C 3 C 4 C 3 C 4 C 5 C 5 C 7 C 5 C 7 C 5 C 7 C 7 C 7 C 7 C 7 C 7 C 7 C 7	LA 1.6 2.6 2.5 2.5 2.5 2.5 2.7 2.2 2.5 2.7 1.9 3.1 2.2 2.5 2.7 1.9 3.1 2.4 2.8 3.1 2.2 2.5 3.1 2.2 2.5 3.1 2.2 2.5 3.1 2.2 2.5 3.1 2.2 2.5 3.1 2.2 2.5 3.1 2.5 3.1 2.5 3.1 2.5 3.1 2.5 3.1 3.1 2.5 3.1 3.1 2.5 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1	ALA 7.4 92 9.4 7.5 10.1 10.4 12.9 12.0 10.7 11.2 11.9 12.2 12.3 10.5 10.4 12.2 12.3 10.5 12.4 12.2 12.4 12.0 12.6 10.9	SDA 1.4 20 30 23 27 23 27 24 1.9 20 26 21 25 323 23 21 25 23 23 21 25 23 23 21 25 23 23 21 25 23 20	2009 0.6 1.1 1.0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2		21 7 7 7 1 5 5 7 7 0 1 1 3 2 2 1 1 0 5 2 2 3 3 4 4 9 0 5 2 2 3 3 2 2 3 3 2 2 3 3 3 4 4 9 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	20.2 DHG 1.0 0.1 0.7 0.2 0.7 0.2 0.7 0.2 1.1 0.2 1.3 0.1 1.4 0.1 1.2 0.1 1.3 0.1 1.2 0.1 1.3 0.1 1.5 1.1 1.0 0.2 1.5 1.1 0.0 0.2 1.1.4 0.1 1.2 0.1 1.2 0.1 1.2 0.1 1.2 0.1 1.2 0.1 1.2 0.1 1.3 0.1 1.3 0.0 0.0 0.0	LA A 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	RA 20:3 RA 20:3 1.1 1.1 1.7 1.4 1.6 1.4 1.7 1.4 1.8 1.1 1.9 1.4 2.4 1.2 2.3 1.1 2.2 1.4 2.3 1.4 2.6 1.4 2.6 1.4 2.6 1.4 2.4 1.2 2.2 1.4 2.3 1.1 2.6 1.4 2.6 1.4 2.6 1.2 2.6 1.2 2.2 1.4 2.4 1.2 2.5 1.2 2.6 1.2 2.6 1.2 2.6 1.2 2.6 1.2 2.5 1.3	n3 : 1 5 7 4 3 3 3 2 2 3 3 3 3 3 5 5 2 2 3 3 3 3	ETA 27 32 23 17 28 22 31 31 31 32 30 32 30 32 30 32 30 32 30 32 30 32 30 32 31 32 32 32 32 32 32 32 32 32 32 32	EPA 126 13.0 129 13.7 125 125 130 121 129 11.5 11.1 128 13.0 11.4 13.6 120 120 125 14.3 1220 13.0 11.2 120 13.0 120 125 14.3 120 120 120 129 11.5 11.5 129 11.5 11.5 129 11.5 11.5 129 11.5 11.5 129 11.5 129 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	22-3 0.0 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3	22: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1 DP 1 3 3 3 3 3 5 3 5 3 5 3 3 3 4 3 5 3 4 3 5 3 2 3 3 2 5 3 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3 4 3 5 3	A D 0 1 8 1 5 1 6 1 7 1 5 1	HA CO	hers
Line 0E 33,2 0E 33,2 0E 33,2 0E 33,2 0E 33,26 0E 33,16 0E 33,56 0E 33,17 0E 33,37 0E 33,37 0E 33,47 0E 33,57 0E 35,57 0E 35,57 0E 35,57 0E 35,57 0E 35,57 0E 35,57 0E 35,57 0E 35,57 0E 35,57 0E 3	16:0 15.9 13.2 14.0 15.4 14.5 13.3 11.8 12.6 11.9 13.3 13.8 12.1 10.9 10.2 11.8 11.7 10.9 10.2 11.8 11.7 10.7 10.7 11.2 11.1 10.9		18:5 5.2 4.2 4.1 5.2 5.0 4.2 4.3 4.4 4.5 4.0 4.5 4.0 4.2 4.4 4.5 4.0 4.5 4.0 4.5 4.0 4.2 4.4 4.3 4.4 4.2 5.0	18:1 5.8 5.3 6.0 6.2 5.8 6.0 5.4 5.9 6.4 5.7 6.0 5.4 5.6 5.4 5.6 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8 5.8	18:5 18:5 16:1 15: 13:1 15: 13:1 15:5 13:1 13:1 15:5 13:1 13:1 13:1 15:5 13:1 13:1 14:5 15:5 13:1 13:1 15:5 13:1 13:1 15:5 13:1 13:1 15:5 13:1 13:1 15:5 13:1 13:1 15:5 13:1 13:1 15:5 13:1 13:1 15:5 15:5 13:1 13:1 13:1 15:5 16:5 15:5 16:5 17:7 17:7 17:7 17:7 16:5 16:5 16:5 16:5 17:7 17:7 17:7 17:7 17:7 16:5 16:5 16:5 16:5 17:7 15:7 15	2 G 3 G 4 G 3 G 5 G 4 G 3 G 4 G 4 G 4 G 5 G 6 G 7 G 7 G 7 G 7 G 7 G 7 G 7 G 7	LA 1.6 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	ALA 7.4 92 9.4 7.5 10.1 10.4 12.9 12.0 10.7 11.2 11.9 12.2 12.3 10.5 14.0 12.1 12.2 12.3 10.4 12.1 12.2 12.3 12.4 12.6 10.9 11.6 11.6 11.7	SDA 1.4 20 30 23 27 23 27 23 27 23 27 23 27 23 24 1.9 20 33 1.9	2000 0.6 1.1 1.0 1.0 1.2 1.2 1.0 1.2 1.2 1.0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2		h1 7 7 2 2 7 7 0 1 3 2 7 7 0 1 3 2 7 7 0 1 3 2 7 7 0 1 3 2 2 1 1 9 9 0 6 8 4 9 9 2 2 5 5 2 4 4 4 4 4 4 6 6 5 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7	20.2 DHG 1.0 0.1 0.9 0.2 0.7 0.2 0.8 0.2 1.1 0.4 1.3 0.1 0.0 0.1 1.1 0.4 1.2 0.1 1.3 0.1 1.2 0.1 1.0 0.2 1.1 0.0 1.2 0.1 0.8 0.2 1.1 0.2 1.2 0.1 0.8 0.2 1.4 0.1 0.8 0.2 1.2 0.0 1.3 0.0 0.0 0.0 1.3 0.0 1.3 0.0 0.4 0.1 0.5 0.0 1.3 0.0	LA A 4 - 5 - 7 - 7 - 7 - 7 - 7 - 7 - 8 - 9 8 4 - 5 -	RA 20:3 RA 20:3 1.1 1.1 2.1 1.1 2.1 1.1 1.7 1.4 1.8 1.1 1.8 1.1 2.4 1.3 2.4 1.3 2.4 1.2 2.1 1.2 2.2 1.2 2.3 1.2 2.3 1.2 2.6 1.1 2.6 1.1 2.4 1.2 2.3 1.2 2.3 1.1 2.6 1.1 2.6 1.1 2.4 1.2 2.5 1.2 2.5 1.2 2.5 1.2 2.5 1.2 2.4 1.1 2.5 1.2 2.5 1.2 2.5 1.2 2.5 1.2 2.6 1.1 2.7	n3 1 5 5 7 4 2 0 1 1 4 4 3 3 3 3 2 2 3 3 3 3 3 3 3 3 3 1 3 3	ETA 27 32 23 1.7 28 22 31 31 31 31 31 31 31 32 32 30 32 30 32 30 32 30 32 30 32 31 32 33 30 32 32 32 32 32 32 32 32 32 32 32 32 22 30 22 32 23 31 31 32 23 31 31 32 23 31 31 32 23 31 31 32 23 31 32 23 31 32 23 31 31 32 23 31 31 32 23 31 31 32 23 31 32 23 31 31 32 23 31 31 32 23 31 31 32 23 31 31 32 23 31 32 23 31 31 32 23 32 32 32 32 32 32 32 32 32 32 32	EPA 12.6 13.0 12.9 12.5 12.5 12.5 12.1 12.9 11.5 11.1 12.9 11.5 12.1 12.9 11.5 12.1 12.9 11.5 12.1 12.9 11.5 12.1 12.9 11.5 12.1 12.9 13.0 11.4 13.0 11.2 12.5 13.0 11.2 12.5 13.0 11.4 13.0 11.2 12.5 13.0 11.4 13.5 12.5 13.0 11.4 13.5 12.5 13.0 11.4 13.5 12.5 13.0 11.4 13.5 12.5 13.0 11.4 13.5 12.5 13.0 11.4 13.5 13.0 11.4 13.5 13.0 11.4 13.5 13.0 11.4 13.5 13.0 11.4 13.5 13.0 11.2 12.5 13.0 11.4 13.5 13.0 11.2 12.5 13.0 11.2 12.5 13.0 11.4 13.5 13.0 11.2 12.5 13.0 11.2 12.5 13.0 11.2 13.5 13.0 11.2 13.5 13.0 11.2 13.5 13.0 11.2 13.5 13.0 11.2 13.5 13.0 11.2 13.5 13.0 11.2 13.5 13.0 11.2 13.5 13.0 11.2 13.5 13.0 11.2 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 13.5 14.5 13.5 14.5 13.5 14.5 14.5 14.5 15.5 1	22.9 0.0 0.2 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	222 0.0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	1 DP 1 3 3 3 3 3 5 3 5 3 5 3 5 3 4 3 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 3 4 3 5 3 6 3	A D 0 1 5 1 9 1 6 1 7 5 1 5 9 1 5 1 5 1 7 5 7 5 7 5 1 5 7 5 1 5 7 5 1 5 7 5 1 5 7 5 7 5 1 5 7 5	HA 02 27 27 27 27 27 27 27 27 20 27 20 30 3 30 3	hers
Line DE_33_2 DE_33_24 DE_33_26 DE_33_65 DE_33_65 DE_33_86 DE_33_11 DE_33_86 DE_33_97 DE_33_13 DE_33_13 DE_33_13 DE_33_13 DE_33_14 DE_33_15 DE_33_44 DE_33_16 DE_33_24 DE_33_24 DE_33_24 DE_33_77 DE_357 DE_357 DE_357 DE_357 DE_357 DE_357 DE_357 DE_35	16:0 15:9 13:2 14:0 15:4 14:5 13:3 11:4 14:5 13:3 13:8 12:6 11:9 13:3 13:8 12:1 10:9 10:2 11:8 11:7 10:9 10:2 11:1 10:9 15:1 10:9 15:1 10:3		18.9 5.2 4.2 4.1 5.2 5.0 4.2 4.1 4.5 4.0 4.5 4.0 4.2 4.4 4.2 4.8 4.1 4.5 4.4 4.3 4.4 4.2 4.3 4.4 4.2 4.4 4.3 4.4 4.2 4.4 4.4 4.2 4.4 4.4 4.4 4.4 4.4 4.4 4.8	18:1 5.8 5.3 6.0 6.2 5.8 6.0 5.4 5.9 6.4 5.7 6.0 5.4 5.6 5.9 6.3 6.0 6.0 5.4 5.9 6.3 6.0 6.0 5.4 5.9 6.3 6.2 5.9 6.3 6.0 5.9 6.2 6.0 6.0 5.4 5.9 6.0 5.4 5.9 6.0 6.0 5.4 5.9 6.0 6.0 5.4 5.9 6.0 6.0 5.4 5.9 6.0 6.0 5.4 5.9 6.0 6.0 5.4 5.9 6.0 6.0 5.4 5.9 6.0 6.0 5.4 5.9 6.0 6.0 5.4 5.9 6.0 6.0 5.4 5.9 6.2 5.9 6.0 5.4 5.9 6.2 6.2 5.9 6.2 5.9 6.2 6.2 5.9 6.2 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5	18:5 18:5 16:1 15: 15: 13: 13: 13: 15: 14: 15: 17: 16: 16: 16: 16: 16: 16: 16: 16		LA 	ALA 7.4 92 94 7.5 10.1 122 123 124 125 123 104 123 112 112 123 124 125 126 121 122 112 124 125 128 111 124 120 112 128 111 124 120 112 121 122	SDA 1.4 20 30 23 27 23 27 23 27 23 24 1.9 20 24 1.9 20 3.3 21 25 3.3 2.1 2.4 1.9 2.0 3.3 2.4	2000 00 08 11 0.9 12 12 13 13 1.1 14 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.2		h1 7 5 2 7 7 7 7 7 7 7 7 7 7 7 7 7	20.2 DHG 1.0 0.1 0.9 0.4 0.7 0.2 0.8 0.0 1.1 0.1 1.3 0.1 1.4 0.1 1.2 0.1 1.3 0.1 1.2 0.1 1.3 0.1 1.4 0.1 1.5 1.1 1.0 0.1 1.2 0.1 1.4 0.2 1.2 0.1 1.4 0.2 1.2 0.1 0.0 0.2 1.2 0.1 0.0 0.2 1.2 0.1 0.0 0.2 1.3 0.1 1.3 0.1 0.1 0.2 1.1 0.1	LA A 4 - 5 - 2 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 7 - 2 - 6 - 6 -	RA 20:3 1.1 1.1 2.1 1.1 2.1 1.1 1.7 1.4 1.8 1.1 1.8 1.1 2.3 1.2 2.4 1.3 2.4 1.3 2.1 1.2 2.3 1.2 2.3 1.2 2.3 1.1 2.6 1.1 2.6 1.1 2.2 1.1 2.6 1.1 2.5 1.1 2.5 1.1 2.5 1.1 2.5 1.1 2.5 1.1 2.5 1.1 2.5 1.1 2.5 1.1 2.5 1.1 2.5 1.1 2.5 1.1 2.5 1.1 2.5 1.1 2.5 1.1 2.6 1.2 2.7	n3 1 5 5 7 4 4 0 0 1 4 4 4 3 3 3 2 2 3 3 3 5 5 2 2 3 3 3 3 3 3 3 3	ETA 27 32 23 1.7 28 22 31 31 31 32 31 31 32 32 30 32 30 32 30 32 32 30 32 32 30 32 32 33 32 32 32 32 32 32 32 32 32 32	EPA 126 13.0 129 13.7 125 125 13.0 11.5 11.1 128 13.0 11.4 13.6 125 14.3 125 14.3 125 14.3 125 14.3 125 14.3 125 14.3 125 14.3 125 14.3 125 14.3 125 14.3 125 14.3 125 14.3 125 14.3 125 14.3 125 14.3 125 14.3 14.3 14.3 14.3 14.3 14.3 14.3 14.3	22.9 0.0 0.2 0.0 0.3 0.0 0.3 0.0 0.0 0.3 0.0 0.0 0.0	222 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	1 DPP 1 3.3 3 3.3 4 3.3 5 3.3 5 3.3 5 3.3 5 3.3 4 4.4 3.3 2.2 5 3.3 4 3.2 2 3.3 5 3.3 5 3.3 5 3.3 5 3.3 5 3.3 5 3.3	A D D T S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 1 S 2 T 2 T 2 T 2 T 2 T 2 T 2 T 2 T 2 S 3	HA CO 25	hers 4.6 3.7 3.8 4.3 3.7 3.8 5.5 3.8 3.3 3.7 3.7 3.8 3.2 3.7 3.7 3.8 3.2 3.7 3.7 3.8 3.2 3.7 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.8 3.9 3.9 3.9 3.9 3.9 4.4 3.5 3.5 3.5 3.5 3.5 3.7 3.8 4.0 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9
Line OE_33_2 OE_33_24 OE_33_66 OE_33_11 OE_33_65 OE_33_11 OE_33_27 OE_33_17 OE_33_13 OE_33_17 OE_33_13 OE_33_17 OE_33_14 OE_33_14 OE_33_27 OE_33_15 OE_33_14 OE_33_27 OE_33_15 OE_33_14 OE_33_27 OE_33_15 OE_33_15 OE_33_27 OE_33_15 OE_33_15 OE_33_27 OE_33_15 OE_33_15 OE_33_15 OE_33_15 OE_33_15 OE_33_27 OE_33_15 OE_33_17 OE_33_12 OE_33_17 OE_33_17 OE_33_17 OE_33_17 OE_33_17 OE_33_17 OE_33_17 OE_33_17 OE_33_17 OE_33_17 OE_33_17 OE_33_15 OE_33_17 OE_33_15 OE_33_17 OE_33_15 OE_33_15 OE_33_17 OE_33_15 OE_35 OE_35 OE_35 OE_35 OE_35 OE_35 OE_35 OE_35 OE_35	16:0 15:9 13:2 14:0 15:4 14:5 13:3 11:8 12:6 11:9 13:3 13:8 11:4 10:6 15:7 10:7 10:7 10:7 10:7 10:7 10:7 11:1 10:9 15:1 10:3 11:1		1830 5,2 4,2 4,1 5,2 5,0 4,2 4,1 5,2 5,0 4,2 4,3 4,4 4,4 4,5 4,0 4,5 4,0 4,5 4,0 4,5 4,0 4,5 4,0 4,5 4,4 4,4 4,4 4,5 4,0 4,5 4,4 4,3 4,4 4,3 4,4 4,4 4,3 4,4 4,4 4,4 4,3 4,4 4,4 4,8 3,9	18:1 5.8 6.0 6.2 5.8 5.9 6.4 5.9 6.4 5.9 6.4 5.9 6.4 5.9 6.4 5.4 5.8 5.8 6.4 5.3 5.8 6.4 5.3 5.8 6.0 5.3 5.9 6.4 5.9 6.0 5.3 5.9 6.0 5.9 6.0 5.9 6.0 5.3 5.5 6.0 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	18:5 16:1 15:5 15:5 13:1 15:5 13:1 15:5		LA 	ALA 7.4 9.2 9.4 7.5 10.1 10.4 12.9 12.0 11.2 11.2 13.1 12.5 12.6 10.7 11.2 13.1 12.5 12.6 10.9 11.6 11.7 12.7 14.5	SDA 1.4 2.9 3.0 2.3 2.7 2.3 2.2 2.4 1.9 2.0 2.3 2.4 1.9 2.6 2.3 2.6 2.3 2.6 2.3 2.1.9 2.6 2.3 2.1.9 2.6 2.3 2.1.9 2.6 2.3 2.1.9 2.6 2.3 2.1.9 2.6 2.3 2.1.9 2.6 3.3 3.9 2.4 2.6	2000 0.8 0.8 1.1 0.9 1.2 1.1 1.1 1.0 1.2 1.2 1.1 1.1 1.1 1.2 1.2 1.2 1.2 1.2	22 2 3 3 4 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4	h1 7 7 5 2 7 7 7 7 7 7 7 7 7 7 7 7 7	20.2 DHG 1.0 0.1 0.9 0.2 0.7 0.2 0.8 0.2 1.1 0.2 1.3 0.1 1.4 0.2 1.1 0.1 1.2 0.1 1.3 0.1 1.4 0.2 1.5 1.1 1.0 0.2 1.1 0.0 1.2 0.1 0.8 0.2 1.2 0.1 0.8 0.2 1.2 0.2 0.4 0.2 1.2 0.2 0.4 0.2 0.2 0.2 1.3 0.2 0.9 0.2 1.1 0.2 1.1 0.2	LA A 4 5 5 5 5 5 5 5 5 5 5 5 5 5	RA 20:3 RA 20:3 1.2 1.3 1.2 1.7 1.6 1.0 1.8 1.1 1.9 1.4 2.3 1.3 2.4 1.3 2.4 1.3 2.4 1.2 2.3 1.2 2.3 1.2 2.3 1.2 2.6 1.1 2.6 1.2 2.4 1.2 2.3 1.2 2.6 1.1 2.6 1.2 2.4 1.2 2.0 1.2 2.0 1.2 2.0 1.2 2.2 1.2 2.2 1.2 2.4 1.2 2.5 1.2 2.5 1.2 2.4 1.1 2.5 1.1 2.4 1.1 2.3 1.1 2.3	n3 1 5 7 7 1 4 4 3 3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3	ETA 27 32 23 17 17 28 32 22 31 32 32 32 32 32 30 32 32 30 32 32 30 32 32 30 32 32 32 32 32 32 32 32 32 32 32 32 32	EPA 126 13.0 129 13.7 125 130 121 129 125 130 121 129 125 130 121 128 13.0 11.5 11.1 128 13.0 11.5 120 125 13.0 11.2 120 13.0 125 13.0 12.1 125 13.0 12.5 12.5 13.0 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5	2220 0.0 0.2 0.0 0.3 0.3 0.3 0.3 0.3 0.0 0.0 0.0 0.0	22- 0.0. 0	1 DPP 1 3 3 3 4 3 5 3 5 3 5 3 5 3 5 3 5 3 5 3 4 4 3 3 4 3 5 3 6 2 5 3 4 2 5 3 5 3 6 2 7 3 7 3	A D B T B T S S S S S S S S S S S S S S S S S S S S	HA CC 1.7	hers 4.5 3.7 3.8 3.7 3.8 3.8 3.7 3.7 3.8 5 3.3 3.7 3.5 3.8 3.2 3.7 3.5 3.8 8.8 8.0 5.1 3.4 4.0 3.9 3.9 3.9 3.9 3.5 4.4 3.5 3.5 4.4 0.5 5.1 3.5 4.4 5.5 3.5 5.5 1.5 5.5 3.7 7 7 8 8 8 8 8 9 8 9 8 9 8 9 8 9 8 9 8

5 To further examine the feasibility of producing EPA and DHA in transgenic Camelina seeds, we evaluated additional activities for this capacity - 4 examples are shown below.

Example 4 - EPA-B4.3

To the original MC construct (Fig 2; comprising 1) a seed specific promoter (the sucrose binding protein SBP1800 promoter), OtA6, Ostreococcus tauri Δ 6-desaturase gene (Domergue et al. Biochem. J. 389 (PT 2), 483-490 (2005); AY746357) and CatpA, terminator; 2) a seed specific promoter (USP1 promoter

- 5 (Baumlein et al. 1991 Mol Gen Genet. 1991 Mar; 225(3):459-67), PSE1, a Δ 6 fatty acid elongase from Physcomitrella patens (Zank.et al., Plant J. 31 (3), 255-268 (2002); AB238914) and CaMV35S terminator; 3) a seed specific promoter (Cnl, a conlininl promoter (Truksa 2003; Plant Physiol Biochem 41:141-147), TcA5, a Δ 5-desaturase from Thraustochytrium sp. (Qiu et al. J Biol Chem. 2001 Aug
- 10 24;276(34):31561-6) and OCS, a terminator region of OCS, octopin synthase gene of A. tumefaciens) we added Hpw-3, a ω3 desaturase gene from Hyaloperonospora parasitica behind the Cnl promoter and in front of OCS, a terminator region of OCS, octopin synthase gene of A. tumefaciens

15 Example s - EPA-B5.1

We varied the genes present in the original BC construct (Fig 2), such that the PsA12, a A12-desaturase gene from *Phytophtora sojae* and Piω3, a ω3 desaturase gene from *Phytophtora infestans* flanked by Np, a BnNapin promoter and E9
terminator regions were retained, but the activities were replaced with: 1) O809d6, a D6-desaturase from Ostreococcus RCC809, flanked by the Cnl conlininl seed-specific promoter and OCS, a terminator region of OCS, octopin synthase gene of *A. tumefaciens* 2) FcElo6, a Δ6 fatty acid elongase from *Fragilariopsis cylindrus CCMP 1102,* flanked by the Cnl conlininl seed-specific promoter and OCS, a terminator
region of OCS, octopin synthase gene of *A. tumefaciens* and 3) EmiD5, a Δ5-desaturase from Emiliana huxleyi (Sayanova et al., 2011, Phytochemistry 72: 594-600) flanked by the Cnl conlininl seed-specific promoter and OCS, a terminator region of OCS, octopin synthase gene of A tumefaciens

30 Example 6 - EPA-B5.2

35

We varied the genes present in the original BC construct (Fig 2), such that the **PSA12**, a A12-desaturase gene from *Phytophtora sojae* and Pi ω 3, a ω 3 desaturase gene from *Phytophtora infestans* flanked by Np, a BnNapin promoter and E9 terminator regions were retained, but the activities were replaced with: 1) O809d6, a

D6-desaturase from Ostreococcus RCC809, flanked by the CnI conlinining seedspecific promoter and OCS, a terminator region of OCS, octopin synthase gene of *A*. *tumefaciens* 2) CeElo6, a $\Delta 6$ fatty acid elongase from *Caenorhabditis elegans* (*Beaudoin et at., 2000, Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6421-6*) flanked by the CnI conlinining seed-specific promoter and OCS, a terminator region of OCS,

octopin synthase gene of *A. tumefaciens* 3) EmiD5, a A5-desaturase from Emiliana huxleyi (Sayanova et al., 2011, Phytochemistry 72: 594-600) flanked by the Cnl conlinin seed-specific promoter and OCS, a terminator region of OCS, octopin synthase gene of *A. tumefaciens*

10

15

5

Example 4 - DHA-B7.2

To the original DHA-1 construct (Fig 2), the EhD4 D4-desaturase from *Emiliana huxleyi* (Sayanova et al, 2011) was replaced by TpDesk, a D4-desaturase from *Thalassiosira pseudonana* (Tonon et al, 2005 FEBS J. 2005 Jul;272(13):3401-12), under the same regulatory elements (Cni1, OCS).

Half-seeds of primary T1 transgenic lines were analysed by GC-FID as decribed earlier (Example 1 - Fatty acid analysis) and examples of the fatty acid profiles
observed are shown in Table 6 below. These data indicate that the capacity of Camelina to produce EPA and DHA is not limited to the gene sets initially described.

Tat	ble	6
-----	-----	---

							-	e t .	_	~			•		1			-	2		ILA		5	2	· · ·						
	line	16	16.11	16.16	16.2	16.3	18.0	18:1	18:11	b18:2	18.2	GLA	PAL	ALA	SDA	20.0	20.1	20.18	20:14	20.2	DHG	ARA	20.3	20.41	EPA	22.0	22.1	22.2	DPA	DHA	24.0
DHA-B7.2_1		5	2	1	0	0	4	6	1	1	15	5	0	19	5	3	11	0	2	1	2	0	2	5	1	1	3	4	1	0	1
DHA-B7.2_2		5	2	4	1	2	7	3	0	0	15	3	0	13	4	5	12	0	3	1	2	0	1	3	3	0	4	5	2	2	1
DHA-B7.2_3		5	2	3	0	1	5	3	0	1	12	6	0	17	9	4	15	0	2	1	1	0	2	2	. 0	0	5	4	0	0	2
DHA-B7.2_4		5	2	1	0	0	6	5	0	1	15	2	0	19	2	4	10	0	2	2	1	1	2	3	6	0	3	3	9	6	0
WILDTYPE		5	4	2	0	1	4	5	0	0	14	1	0	27	_ 0	4	17	0	0	5	0	0	2	0	. 0	0	7	_ 3	0	0	2
EPA-B4.3_1		5	2	1	0	0	4	15	0	1	8	0	0	21	1	3	13	0	1	2	1	2	2	2	11	0	3	2	1	0	1
EPA-B4.3_2		4	0	0	0	0	3	14	0	0	14	0	0	35	0	2	19	0	0	2	0	0	2	0	0	0	4	0	0	0	1
EPA-B4.3_3		5	1	1	0	0	2	10	• 0	0	14	0	0	38	0	2	17	0	0	2	0	0	2	0	0	0	5	0	0	0	2
EPA-B5.1_1		6	1	0	0	0	4	9	0	0	20	2	0	30	5	3	14	0	0	1	0	0	1	0	1	0	3	0	0	0	0
EPA-B5.1_2		7	1	0	0	0	5	8	1	0	25	3	0	22	5	4	12	0	0	1	0	0	1	0	2	1	2	0	0	0	0
EPA-B5.1_3		6	1	0	0	0	5	10	1	0	24	2	0	27	4	3	12	0	0	1	0	0	1	0	· 1	1	1	0	0	0	0
EPA-B5.1_4		6	1	0	0	0	4	12	1	0	27	3	0	18	5	3	14	0	0	1	0	0	1	1	2	0	2	0	0	0	0
EPA-B5.1_5		5	1	0	0	0	3	12	1	0	23	2	0	25	5	3	14	0	0	1	0	0	1	0	1	0	2	0	0	0	0
EPA-B5.1_6		6	1	0	1	0	3	11	2	1	26	4	0	18	5	2	11	0	0	1	0	1	1	1	4	0	2	0	0	0	<u>_</u> 0
EPA-B5.1_7		7	1	0	1	0	4	7	1	0	24	0	0	29	1	4	15	0	0	2	0	0	2	0	Ð	1	3	0	0	0	0
EPA-B5.1_8		7	1	0	1	0	6	8	2	0	32	4	0	17	4	3	10	0	0	0	0	0	1	0	3	0	1	0	0	Ð	0
EPA-B5.2_1		7	2	0	0	0	5	7	1	0	27	2	0	16	6	0	4	11	0	1	1	1	1	1	7	0	2	0	0	0	1
EPA-B5.2_2		6	1	0	0	0	4	13	0	0	22	1	0	27	4	0	3	14	0	1	0	0	1	0	1	0	2	0	0	0	1
EPA-B5.2_3		7	2	0	0	0	4	6	0	0	22	2	0	22	6	0	5	15	0	1	0	0	1	0	4	1	3	0	0	0	1
EPA-B5.2_4		7	2	0	0	0	5	8	0	0	24	1	0	27	4	0	3	11	0	1	0	0	1	1	3	0	1	0	0	0	1
EPA-B5.2_5		5	1	0	0	0	3	15	0	0	24	1	0	24	. 4	0	2	14	0	1	0	0	1	1	3	0	2	0	0	0	0
EPA-B5.2_6		6	1	0	0	0	3	12	0	0	24	0	0	29	3	0	2	13	0	1	0	0	1	1	1	0	1	0	0	0	1
EPA-B5.2_7		7	2	0	0	0	5	6	0	0	19	2	0	22	4	0	6	16	0	2	0	1	1	1	2	2	4	0	0	0	1
EPA-B5.2_8		7	2	0	0	0	4	7	0	0	23	1	0	28	_ 4	0	4	12	0	· 1	0	0	1	1	2	1	3	0	0	0	1

5

All publications mentioned in the above specification are herein incorporated by reference. Various modifications and variations of the described methods and system of the present invention will be apparent to those skilled in the art without departing from the scope and spirit of the present invention. Although the present invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in biochemistry and biotechnology or related fields are intended to be within the scope of the following claims.

50

SEQUENCES

SEQ ID NO: 1 (Codon-optimised OtD6 Δ 6-desaturase from Ostreococcus tauri)

		٠
		2

5	1	ATGTGTGTTGAGACCGAGAACAACGATGGAATCCCTACTGTGGAGATCGCTTTCGATGGA
	61	GAGAGAGAAAGAGCTGAGGCTAACGTGAAGTTGTCTGCTGAGAAGATGGAACCTGCTGCT
	121	TTGGCTAAGACCTTCGCTAGAAGATACGTGGTTATCGAGGGAGTTGAGTACGATGTGACC
	181	GATTTCAAACATCCTGGAGGAACCGTGATTTTCTACGCTCTCTCT
	241	GCTACTGAGGCTTTCAAGGAGTTCCACCACAGATCTAGAAAGGCTAGGAAGGCTTTGGCT
10	301	GCTTTGCCTTCTAGACCTGCTAAGACCGCTAAAGTGGATGATGCTGAGATGCTCCAGGAT
	361	TTCGCTAAGTGGAGAAAGGAGTTGGAGAGGGACGGATTCTTCAAGCCTTCTCCTGCTCAT
	421	GTTGCTTACAGATTCGCTGAGTTGGCTGCTATGTACGCTTTGGGAACCTACTTGATGTAC
	481	GCTAGATACGTTGTGTCCTCTGTGTTGGTTTACGCTTGCTT
	541	TGGGTTCAACATGAGGGAGGACATTCTTCTTTGACCGGAAACATCTGGTGGGATAAGAGA
15	601	ATCCAAGCTTTCACTGCTGGATTCGGATTGGCTGGATCTGGAGATATGTGGAACTCCATG
	661	CACAACAAGCACCATGCTACTCCTCAAAAAGTGAGGCACGATATGGATTTGGATACCACT
	721	CCTGCTGTTGCTTTCTTCAACACCGCTGTGGAGGATAATAGACCTAGGGGATTCTCTAAG
	781	TACTGGCTCAGATTGCAAGCTTGGACCTTCATTCCTGTGACTTCTGGATTGGTGTTGCTC
~ ~	841	TTCTGGATGTTCTTCCTCCATCCTTCTAAGGCTTTGAAGGGAGGAAAGTACGAGGAGCTT
20	901	GTGTGGATGTTGGCTGCTCATGTGATTAGAACCTGGACCATTAAGGCTGTTACTGGATTC
	961	ACCGCTATGCAATCCTACGGACTCTTCTTGGCTACTTCTTGGGTTTCCGGATGCTACTTG
	1021	TTCGCTCACTTCTCTACTTCTCACACCCATTTGGATGTTGTTCCTGCTGATGAGCATTTG
	1081	TCTTGGGTTAGGTACGCTGTGGATCACACCATTGATATCGATCCTTCTCAGGGATGGGTT
~ =	1141	AACTGGTTGATGGGATACTTGAACTGCCAAGTGATTCATCACCTCTTCCCTTCTATGCCT
25	1201	CAATTCAGACAACCTGAGGTGTCCAGAAGATTCGTTGCTTTCGCTAAGAAGTGGAACCTC
	1261	AACTACAAGGTGATGACTTATGCTGGAGCTTGGAAGGCTACTTTGGGAAACCTCGATAAT
	1321	GTGGGAAAGCACTACTACGTGCACGGACAACATTCTGGAAAGACCGCTTGA

30

SEQ ID NO: 2 (OtD6 Δ6-desaturase from Ostreococcus tauri)

MCVETENNDGIPTVEIAFDGERERAEANVKLSAEKMEPAALAKTFARRYVVIEGVEYDVT 35 DFKHPGGTVIFYALSNTGADATEAFKEFHHRSRKARKALAALPSRPAKTAKVDDAEMLQD FAKWRKELERDGFFKPSPAHVAYRFAELAAMYALGTYLMYARYVVSSVLVYACFFGARCG WVQHEGGHSSLTGNIWWDKRIQAFTAGFGLAGSGDMWNSMHNKHHATPQKVRHDMDLDTT ${\tt PAVAFFNTAVED} NR {\tt PRGFSKYWLRLQAWTFIPVTSGLVLLFWMFFLHPSKALKGGKYEEL}$ VWMLAAHVIRTWTIKAVTGFTAMQSYGLFLATSWVSGCYLFAHFSTSHTHLDVVPADEHL 40 SWVRYAVDHTIDIDPSQGWVNWLMGYLNCQVIHHLFPSMPQFRQPEVSRRFVAFAKKWNL

NYKVMTYAGAWKATLGNLDNVGKHYYVHGQHSGKTA*

SEQ ID NO: 3 (Codon-optimised PSE1 Δ6-elongase from *Physcomitrella patens*)

	1	ATGGAAGTTGTTGAGAGGTTCTACGGAGAGTTGGATGGAAAGGTTTCCCAAGGAGTGAAC
	61	GCTTTGTTGGGATCTTTCGGAGTTGAGTTGACTGATACCCCAACTACTAAGGGATTGCCA
5	121	CTCGTTGATTCTCCAACTCCAATTGTGTTGGGAGTGTCTGTTTACTTGACCATCGTGATC
	181	GGAGGATTGCTTTGGATCAAGGCTAGAGATCTCAAGCCAAGAGCTTCTGAGCCATTCTTG
	241	TTGCAAGCTTTGGTGTTGGTGCACAACTTGTTCTGCTTCGCTTTGTCTCTTTACATGTGC
	301	GTGGGTATCGCTTACCAAGCTATCACCTGGAGATATTCCTTGTGGGGAAACGCTTATAAC
	361	CCAAAGCACAAGGAGATGGCTATCCTCGTTTACCTCTTCTACATGTCCAAGTACGTGGAG
10	421	TTCATGGATACCGTGATCATGATCCTCAAGAGATCCACCAGACAGA
	481	GTGTACCACCATTCTTCTATCTCCCTTATCTGGTGGGCTATTGCTCATCATGCTCCAGGA
	541	GGAGAGGCTTATTGGAGTGCTGCTCTCAACTCTGGAGTGCATGTGTTGATGTACGCTTAC
	601	TACTTCTTGGCTGCTTGCTTGAGATCTTCCCCAAAGCTCAAGAACAAGTACCTCTTCTGG
	661	GGAAGATACCTCACCCAATTCCAGATGTTCCAGTTCATGCTCAACTTGGTGCAAGCTTAC
15	721	TACGATATGAAAACCAACGCTCCATATCCACAATGGCTCATCAAGATCCTCTTCTACTAC
	781	ATGATCTCCCTCTTGTTCCTCTCGGAAACTTCTACGTGCAAAAGTACATCAAGCCATCC
	841	GATGGAAAGCAAAAGGGAGCTAAGACCGAGTGA

20

SEQ ID NO: 4 (PSE1 Δ6-elongase from *Physcomitrella patens*)

25 MEVVERFYGELDGKVSQGVNALLGSFGVELTDTPTTKGLPLVDSPTPIVLGVSVYLTIVIGGLLWIKAR DLKPRASEPFLLQALVLVHNLFCFALSLYMCVGIAYQAITWRYSLWGNAYNPKHKEMAILVYLFYMSKY VEFMDTVIMILKRSTRQISFLHVYHHSSISLIWWAIAHHAPGGEAYWSAALNSGVHVLMYAYYFLAACL RSSPKLKNKYLFWGRYLTQFQMFQFMLNLVQAYYDMKTNAPYPQWLIKILFYYMISLLFLFGNFYVQKY IKPSDGKQKGAKTE*

SEQ ID NO: 5 (Codon-optimised Tc∆5-desaturase from *Thraustochytrium* sp.)

	1	ATGGGAAAAGGATCTGAGGGAAGATCTGCTGCTAGAGAGATGACTGCTGAGGCTAACGGA
	61	GATAAGAGAAAGACCATCCTCATTGAGGGAGTGTTGTACGATGCTACCAACTTCAAACAC
5	121	CCAGGAGGTTCCATTATTAACTTCCTCACCGAGGGAGAAGCTGGAGTTGATGCTACCCAA
	181	GCTTACAGAGAGTTCCATCAGAGATCCGGAAAGGCTGATAAGTACCTCAAGTCCCTCCC
	241	AAGTTGGATGCTTCTAAGGTGGAGTCTAGGTTCTCTGCTAAGGAGCAGGCTAGAAGGGAC
	301	GCTATGACCAGGGATTACGCTGCTTTCAGAGAGGAGTTGGTTG
	361	CCATCTATCCCACACATGATCTACAGAGTGGTGGAGATTGTGGCTTTGTTCGCTTTGTCT
10	421	TTCTGGTTGATGTCTAAGGCTTCTCCAACCTCTTTGGTTTTGGGAGTGGTGATGAACGGA
	481	ATCGCTCAAGGAAGATGCGGATGGGTTATGCATGAGATGGGACACGGATCTTTCACTGGA
	541	GTTATCTGGCTCGATGATAGGATGTGCGAGTTCTTCTACGGAGTTGGATGTGGAATGTCT
	601	GGACACTACTGGAAGAACCAGCATTCTAAGCACCATGCTGCTCCAAACAGATTGGAGCAC
	661	GATGTGGATTTGAACACCTTGCCACTCGTTGCTTTCAACGAGAGAGTTGTGAGGAAGGTT
15	721	AAGCCAGGATCTTTGTTGGCTTTGTGGCTCAGAGTTCAGGCTTATTTGTTCGCTCCAGTG
	781	TCTTGCTTGTTGATCGGATTGGGATGGACCTTGTACTTGCACCCAAGATATATGCTCAGG
	841	ACCAAGAGACATATGGAGTTTGTGTGGATCTTCGCTAGATATATCGGATGGTTCTCCTTG
	901	ATGGGAGCTTTGGGATATTCTCCTGGAACTTCTGTGGGAATGTACCTCTGCTCTTTCGGA
	961	CTTGGATGCATCTACATCTTCCTCCAATTCGCTGTGTCTCATACCCATTTGCCAGTTACC
20	1021	AACCCAGAGGATCAATTGCATTGGCTTGAGTACGCTGCTGATCATACCGTGAACATCTCT
	1081	ACCAAGTCTTGGTTGGTTACCTGGTGGATGTCTAACCTCAACTTCCAAATCGAGCATCAT
	1141	TTGTTCCCAACCGCTCCACAATTCAGGTTCAAGGAGATCTCTCCAAGAGTTGAGGCTCTC
	1201	TTCAAGAGACATAACCTCCCTTACTACGATTTGCCATACACCTCTGCTGTTTCTACTACC
	1261	TTCGCTAACCTCTACTCTGTTGGACATTCTGTTGGAGCTGATACCAAGAAGCAGGATTGA
25		

25

SEQ ID NO: 6 (Tc Δ 5-desaturase from *Thraustochytrium* sp.)

 ${\tt MGKGSEGRSAAREMTAEANGDKRKTILIEGVLYDATNFKHPGGSIINFLTEGEAGVDATQAYREFHQRS}$ 30 GKADKYLKSLPKLDASKVESRFSAKEQARRDAMTRDYAAFREELVAEGYFDPSIPHMIYRVVEIVALFA $\label{eq:listwink} LSFWLMSKASPTSLVLGVVMNGIAQGRCGWVMHEMGHGSFTGVIWLDDRMCEFFYGVGCGMSGHYWKNQ$ HSKHHAAPNRLEHDVDLNTLPLVAFNERVVRKVKPGSLLALWLRVQAYLFAPVSCLLIGLGWTLYLHPR YMLRTKRHMEFVWIFARYIGWFSLMGALGYSPGTSVGMYLCSFGLGCIYIFLQFAVSHTHLPVTNPEDQ LHWLEYAADHTVNISTKSWLVTWWMSNLNFQIEHHLFPTAPQFRFKEISPRVEALFKRHNLPYYDLPYT

35 SAVSTTFANLYSVGHSVGADTKKQD*

SEQ ID NO: 7 (Codon-optimised OtELo5 Δ 5-elongase from Ostreococcus tauri)

	1	ATGTCTGCTTCTGGAGCTTTGTTGCCTGCTATTGCTTTCGCTGCTTACGCTACC
	61	TACGCTTATGCTTTCGAGTGGTCTCATGCTAACGGAATCGATAACGTGGATGCTAGAGAG
5	121	TGGATTGGAGCTTTGTCTTTGAGACTCCCTGCAATTGCTACCACCATGTACCTCTTGTTC
	181	TGCCTTGTGGGACCTAGATTGATGGCTAAGAGGGAGGCTTTTGATCCTAAGGGATTCATG
	241	CTCGCTTACAACGCTTACCAAACCGCTTTCAACGTTGTGGTGCTCGGAATGTTCGCTAGA
	301	GAGATCTCTGGATTGGGACAACCTGTTTGGGGATCTACTATGCCTTGGAGCGATAGGAAG
	361	TCCTTCAAGATTTTGTTGGGAGTGTGGCTCCATTACAACAATAAGTACCTCGAGTTGTTG
10	421	GATACTGTGTTCATGGTGGCTAGGAAAAAGACCAAGCAGCTCTCTTTCTT
	481	CATCATGCTTTGTTGATTTGGGCTTGGTGGCTTGTTTGTCATCTCATGGCTACCAACGAT
	541	TGCATCGATGCTTATTTCGGAGCTGCTTGCAACTCTTTCATCCACATCGTGATGTACTCC
	601	TACTACCTCATGTCTGCTTTGGGAATTAGATGCCCTTGGAAGAGATATATCACCCAGGCT
	661	CAGATGTTGCAATTCGTGATCGTGTTCGCTCATGCTGTTTTCGTGCTCAGACAAAAGCAC
15	721	TGCCCTGTTACTTTGCCTTGGGCACAAATGTTCGTGATGACAAATATGTTGGTGCTCTTC
	781	GGAAACTTCTACCTCAAGGCTTACTCTAACAAGTCTAGGGGAGATGGAGCTTCTTCTGTT
	841	AAGCCTGCTGAGACTACTAGAGCACCTTCTGTGAGAAGAACCAGGTCCAGGAAGATCGAT
	901	TGA

20

1

SEQ ID NO: 8 (OtELo5 Δ5-elongase from *Ostreococcus tauri*)

MSASGALLPAIAFAAYAYATYAYAFEWSHANGIDNVDAREWIGALSLRLPAIATTMYLLFCLVGPRLMA 25 KREAFDPKGFMLAYNAYQTAFNVVVLGMFAREISGLGQPVWGSTMPWSDRKSFKILLGVWLHYNNKYLE LLDTVFMVARKKTKQLSFLHVYHHALLIWAWWLVCHLMATNDCIDAYFGAACNSFIHIVMYSYYLMSAL GIRCPWKRYITQAQMLQFVIVFAHAVFVLRQKHCPVTLPWAQMFVMTNMLVLFGNFYLKAYSNKSRGDG ASSVKPAETTRAPSVRRTRSRKID*

SEQ ID NO: 9 (Codon-optimised EMoD5 Δ 5-desaturase from *Emiliana huxleyi*)

	1	ATGTCATTGGCTGCTAAAGATGCAGCCTCGGCCCACTCATCCGTCTTGGACCCTAAGTAT
	61	CACGGAGCTACAAATAAGTCAAGAACTGATGCAGCAGACCTTACAGTTAGTT
5	121	ACTTCTAAGGAGATGATCATAAGGGGTCGTGTGTATGATGTCTCTGATTTTATTAAAAGG
	181	CACCCGGGAGGAAGCATTATTAAACTCTCCTTAGGTTCTGATGCAACAGACGCTTATAAC
	241	AACTTCCATATTAGGTCTAAAAAAGCGGATAAAATGTTGAGAGCTTTGCCAAGTAGGCCA
		GTAGCGGATGGATTCGCTAGAGACGCTTTGTCTGCAGACTTCGAGGCCCTGAGAGCCCAA
	361	CTCGAGGCCGAAGGTTACTTCGAACCGAATCTGTGGCATGTAGCTTATCGAGTTGCGGAA
10	421	GTCGTTGCTATGTACTGGGCGGGGTATTAGACTTATCTGGGCGGGGTTATTGGTTTTTAGGA
	481	GCCATTGTAGCAGGAATAGCTCAGGGGGAGATGCGGTTGGCTTCAGCATGAGGGTGGTCAT
	541	TATTCGCTCACAGGTAATATTAAACTTGATCGACACATGCAAATGATTATCTATGGATTA
	601	GGTTGCGGAATGTCCGGTTGTTATTGGAGAAACCAACATAACAAGCACCATGCGACACCG
	661	CAAAAGTTGGGTGCAGATCCAGACCTTCAAACAATGCCTCTGGTTGCGTTCCATGGACTC
15	721	ATCGGTGCTAAGGCTAGGGGAGCAGGAAAGTCGTGGCTAGCATGGCAAGCTCCACTTTTC
	781	TTTGGAGGCGTTATCACAACCCTGGTATCTTTTGGTTGGCAGTTCGTCCAACATCCAAAG
	841	CACGCATTGAGAGTAGGAAACCAACTCGAATTAGGCTATATGGCTTTACGATATGCTTTA
	901	TGGTATGCAGCATTCGGTCATCTTGGGGCTTGGTGGTGCTTTCAGATTGTACGCTTTTTAT
	961	GTGGCAGTCGGAGGTACATATATCTTCACGAACTTTGCGGTGTCTCACACACA
20	1021	GTTGTTCCACACGATAAGCATATTTCTTGGACCTTGTATTCTGCAAACCATACCACTAAT
	1081	CAATCTAACACACCTCTAGTCAATTGGTGGATGGCCTATCTGAATTTTCAAATTGAACAT
	1141	CACCTTTTCCCTAGCATGCCACAATATAACCATCCTAAAATCTGCGGAAGAGTGAAACAA
	1201	TTGTTTGAAAAACATGGCGTAGAGTACGATGTCAGAACTTACGCGAAGTCAATGCGTGAT
	1261	ACATACGTGAATCTCTTGGCTGTGGGAAATGCATCTCATTCCCTTCATCAGAGAAACGAG
25	1321	GGATTAACGACTAGGGAGTCTGCGGCTGTTAGAGTTACAGGTCATTGA

SEQ ID NO: 10 (EMoD5 Δ5-desaturase from Emiliana huxleyi)

1	MSLAAKDAASAHSSVLDPKYHGATNKSRTDAADLTVSSIDTSKEMIIRGRVYDVSDFIKR
61	${\tt HPGGSIIKLSLGSDATDAYNNFHIRSKKADK{\tt MLRALPSRPVADGFARDALSADFEALRAQ}$
121	LEAEGYFEPNLWHVAYRVAEVVAMYWAGIRLIWAGYWFLGAIVAGIAQGRCGWLQHEGGH
181	YSLTGNIKLDRHMQMIIYGLGCGMSGCYWRNQHNKHHATPQKLGADPDLQTMPLVAFHGL
241	IGAKARGAGKSWLAWQAPLFFGGVITTLVSFGWQFVQHPKHALRVGNQLELGYMALRYAL
301	WYAAFGHLGLGGAFRLYAFYVAVGGTYIFTNFAVSHTHKDVVPHDKHISWTLYSANHTTN
361	QSNTPLVNWWMAYLNFQIEHHLFPSMPQYNHPKICGRVKQLFEKHGVEYDVRTYAKSMRD
421	TYVNLLAVGNASHSLHQRNEGLTTRESAAVRVTGH*

SEQ ID NO: 11 (Codon-optimised Ps∆12-desaturase from *Phytophthora sojae*)

	1	ATGGCTATTTTGAACCCTGAGGCTGATTCTGCTGCTAACCTCGCTACTGATTCTGAGGCT
	61	AAGCAAAGACAATTGGCTGAGGCTGGATACACTCATGTTGAGGGTGCTCCTGCTCCTTTG
5	121	CCTTTGGAGTTGCCTCATTTCTCTCTCAGAGATCTCAGAGCTGCTATTCCTAAGCACTGC
	181	TTCGAGAGATCTTTCGTGACCTCCACCTACTACATGATCAAGAACGTGTTGACTTGCGCT
	241	GCTTTGTTCTACGCTGCTACCTTCATTGATAGAGCTGGAGCTGCTGCTTATGTTTTGTGG
	301	CCTGTGTACTGGTTCTTCCAGGGATCTTACTTGACTGGAGTGTGGGTTATCGCTCATGAG
	361	TGTGGACATCAGGCTTATTGCTCTTCTGAGGTGGTGAACAACTTGATTGGACTCGTGTTG
10	421	CATTCTGCTTTGTTGGTGCCTTACCACTCTTGGAGAATCTCTCACAGAAAGCACCATTCC
	481	AACACTGGATCTTGCGAGAACGATGAGGTTTTCGTTCCTGTGACCAGATCTGTGTTGGCT
	541	TCTTCTTGGAACGAGACCTTGGAGGATTCTCCTCTCTACCAACTCTACCGTATCGTGTAC
	601	ATGTTGGTTGGTTGGATGGATGCCTGGATACCTCTTCTTCAACGCTACTGGACCTACTAAG
	661	TACTGGGGAAAGTCTAGGTCTCACTTCAACCCTTACTCCGCTATCTAT
15	721	AGATGGATGATCGTGCTCTCCGATATTTTCTTGGTGGCTATGTTGGCTGTTTTGGCTGCT
	781	TTGGTGCACACTTTCTCCTTCAACACCATGGTGAAGTTCTACGTGGTGCCTTACTTCATT
	841	GTGAACGCTTACTTGGTGTTGATTACCTACCTCCAACACCGATACCTACATCCCTCAT
	901	TTCAGAGAGGGAGAGTGGAATTGGTTGAGAGGAGCTTTGTGCACTGTGGATAGATCATTT
	961	GGTCCATTCCTCGATTCTGTGGTGCATAGAATCGTGGATACCCATGTTTGCCACCACATC
20	1021	TTCTCCAAGATGCCTTTCTATCATTGCGAGGAGGCTACCAACGCTATTAAGCCTCTCCTC
	1081	GGAAAGTTCTACTTGAAGGATACCACTCCTGTTCCTGTTGCTCTCTGGAGATCTTACACC
	1141	CATTGCAAGTTCGTTGAGGATGATGGAAAGGTGGTGTTCTACAAGAACAAGCTCTAG

25 SEQ ID NO: 12 (Ps∆12-desaturase from *Phytophthora sojae*)

MAILNPEADSAANLATDSEAKQRQLAEAGYTHVEGAPAPLPLELPHFSLRDLRAAIPKHCFERSFVTST YYMIKNVLTCAALFYAATFIDRAGAAAYVLWPVYWFFQGSYLTGVWVIAHECGHQAYCSSEVVNNLIGL VLHSALLVPYHSWRISHRKHHSNTGSCENDEVFVPVTRSVLASSWNETLEDSPLYQLYRIVYMLVVGWM

30 pgylffnatgptkywgksrshfnpysaiyadrerwmivlsdiflvamlavlaalvhtfsfntmvkfyvv pyfivnaylvlitylqhtdtyiphfregewnwlrgalctvDrsfgpfldsvvhrivdthvchhifskmp fyhceeatnaikpllgkfylkdttpvpvalwrsythckfveddgkvvfyknkl*

SEQ ID NO: 13 (Codon-optimised pi(w3)-desaturase from *Phytophthora infestans*)

	1	ATGGCTACAAAGGAGGCTTACGTTTTCCCAACTCTCACCGAGATCAAGAGATCTCTCCCA
	61	AAGGATTGCTTCGAGGCTTCTGTGCCTTTGTCTCTCTACTACACTGTGAGATGCTTGGTT
5	121	ATTGCTGTGGCTTTGACCTTCGGATTGAACTACGCTAGAGCTTTGCCAGAGGTTGAGTCT
	181	TTCTGGGCTTTGGATGCTGCTTTGTGCACTGGATATATCCTCCTCCAGGGAATTGTGTTC
	241	TGGGGATTCTTCACTGTTGGACACGATGCTGGACACGGAGCTTTCTCTAGATACCACCTC
	. 301	TTGAACTTCGTTGTGGGAACCTTCATGCACTCTCTCATCTTGACCCCATTCGAGTCTTGG
	361	AAGTTGACCCACAGACACCACCACAAGAACACCGGAAACATCGATAGAGATGAGGTGTTC
10	421	TACCCACAGAGAAAGGCTGATGATCACCCATTGTCCAGGAACTTGATCTTGGCTTTGGGA
	481	GCTGCTTGGCTTGCTTATTTGGTGGAGGGATTCCCACCAAGAAAGGTGAACCACTTCAAC
	541	CCATTCGAGCCACTTTTTGTGAGACAAGTGTCCGCTGTGGTTATCTCTTTGCTCGCTC
	601	TTCTTCGTTGCTGGACTCTCTATCTACTTGTCTCTCCAGTTGGGACTTAAGACCATGGCT
	661	ATCTACTACGGACCAGTTTTCGTGTTCGGATCTATGTTGGTGATTACCACCTTCTTG
15	721	CACCACAACGATGAGGAGACTCCATGGTATGCTGATTCTGAGTGGACTTACGTGAAGGGA
	781	AACTTGTCCTCTGTGGATAGATCTTACGGTGCTCTCATCGATAACCTCTCCCACAACATC
	841	GGAACTCACCAGATCCACCACCTCTTCCCAATTATCCCACACTACAAGCTCAAGAAGGCT
	901	ACTGCTGCTTTCCACCAAGCTTTCCCAGAGCTTGTGAGAAAGTCCGATGAGCCAATCATC
	961	AAGGCTTTCTTCAGAGTGGGAAGGTTGTATGCTAACTACGGAGTGGTTGATCAAGAGGCT
20	1021	AAGCTCTTCACTTTGAAGGAGGCTAAGGCTGCTACTGAAGCTGCTGCTAAGACCAAGTCT
	1081	ACCTGA

SEQ ID NO: 14 (pi(w3)-desaturase from *Phytophthora infestans*)

1	MATKEAYVFPTLTEIKRSLPKDCFEASVPLSLYYTVRCLVIAVALTFGLNYARALPEVES
61	FWALDAALCTGYILLQGIVFWGFFTVGHDAGHGAFSRYHLLNFVVGTFMHSLILTPFESW
121	${\tt KLTHR} {\tt H} {\tt H} {\tt KNTGNIDRDEVFYPQRKADDHPLSRNLILALGAAWLAYLVEGFPPRKVNHFN}$
181	PFEPLFVRQVSAVVISLLAHFFVAGLSIYLSLQLGLKTMAIYYYGPVFVFGSMLVITTFL
241	HHNDEETPWYADSEWTYVKGNLSSVDRSYGALIDNLSHNIGTHQIHHLFPIIPHYKLKKA
301	${\tt TAAFHQ} AFPELVRKS {\tt DEPIIKAFFRVGRLYANYGVVDQEAKLFTLKEAKAATEAAAKTKS}$
361	Τ*

5 SEQ ID NO: 15 (Codon-optimized EhD4 Δ4-desaturase from Emiliana huxleyi)

	1	ATGGGGGGTGCAGGCGCTTCGGAAGCAGAGAGGGCCAAAGTGGACAACTATCCACGGAAGA
	61	${\tt CACGTTGATGTGTCAAAGTTTAGACACCCTGGAGGTAATATCATTGAATTGTTCTATGGC}$
	121	ATGGATAGTACATCCGCTTTCGAGCAATTTCACGGACATCATAAGGGGGGCATGGAAGATG
10	181	CTCAAGGCTCTTCCTACCAAGGAGGTTGACCCAGCTGACGTCCCACAGCAACCTCAAGAA
	241	CATGTCGCGGAGATGACCAGACTTATGACATCCTGGAGAGAAAGGGGGTTTATTCAAGCCT
	301	CGTCCGGTTGCATCTGGCATATATGGACTTGCAGTAGTTGCTGCTATAGTTGCATGCA
	361	GCATGTGCTCCGCACGCACCGGTTCTGTCGGGGGATTGGTTTAGGGTCTTGTTGGGCCCAA
	421	TGCGGTTTCTTGCAGCATATGGGGGGGACATAGGGAGTGGGGGGGTCAGGTATTCTTTCT
15	481	CTCCAACACTTCTTTGAGGGTTTACTAAAGGGAGGATCAGCTAGCT
	541	CATAATAAGCATCATGCGAAAACCAATGTTCTTGGAGAGGATGGTGACCTTCGAACTACT
	601	CCATTCTTTGCGTGGGACCCGACTCTCGCTAAAAAGGTGCCGGATTGGTCTCTGAAGACA
	661	CAAGCTTTCACTTTCCTCCCAGCACTAGGAGCCTATGTTTTCGTTTTCGCTTTCACAATT
	721	AGAAAATACGCTGTGGTGAAAAAACTCTGGCACGAACTTGCTCTAATGATTGCTCATTAC
20	781	GCAATGTTCTACTATGCCCTGCAGTTGGCTGGAGCCAGTTTGGGTTCTGGACTTGCATTT
	841	TACTGCACAGGTTACGCATGGCAGGGAATCTACCTCGGATTCTTCTTCGGTTTGAGCCAC
	901	TTTGCAGTCGAGAGAGTACCAAGCACAGCGACATGGCTCGAAAGCTCAATGATAGGTTCA
	961	TGGCAGGGAATCTACCTCGGATTCTTCTTCGGTTTGAGCCACTTTGCAGTCGAGAGAGTA
	1021	CCAAGCACAGCGACATGGCTCGAAAGCTCAATGATAGGTACGGTAGACTGGGGAGGTTCA
25	1081	TCTGCTTTTTGTGGTTATGTTTCTGGTTTCTTGAATATCCAAATTGAACATCACATGGCC
	1141	CCTCAAATGCCTATGGAAAATCTGAGACAGATCAGGGCAGATTGTAAGGCTAGTGCTGAG
	1201	AAACTCGGCTTGCCATATAGAGAGTTGTCATTCGCAGGTGCTGTCAAACTCATGATGGTA
	1261	GGTCTCTGGAGGACTGGAAGAGACGAATTACAGCTCCGAAGTGATCGAAGAAAGTACTCA
	1321	AGAACCCAGGCTTACATGGCGGCTGCTTCAGCTGTTGTTGAAAATCTGAAGGCAGATTAA
30		

SEQ ID NO: 16 (EhD4 \triangle 4-desaturase from *Emiliana huxleyi*)

	1	MGGAGASEAERPKWTTIHGRHVDVSKFRHPGGNIIELFYGMDSTSAFEQFHGHHKGAWKM
	61	LKALPTKEVDPADVPQQPQEHVAEMTRLMTSWRERGLFKPRPVASGIYGLAVVAAIVACI
35	121	$\label{eq:construction} A CAPHAPVLSGIGLGSCWAQCGFLQHMGGHREWGVRYSFLLQHFFEGLLKGGSASWWRNR$
	181	HNKHHAKTNVLGEDGDLRTTPFFAWDPTLAKKVPDWSLKTQAFTFLPALGAYVFVFAFTI
	241	RKYAVVKKLWHELALMIAHYAMFYYALQLAGASLGSGLAFYCTGYAWQGIYLGFFFGLSH
	301	FAVERVPSTATWLESSMIGSWQGIYLGFFFGLSHFAVERVPSTATWLESSMIGTVDWGGS
	361	SAFCGYVSGFLNIQIEHHMAPQMPMENLRQIRADCKASAEKLGLPYRELSFAGAVKLMMV
40	421	GLWRTGRDELQLRSDRRKYSRTQAYMAAASAVVENLKAD*

45

50

58

SEQ ID NO: 17 (Codon-optimized Δ 4-desaturase from Thraustochytrium sp., ATCC21685)

	1	ATGACTGTTGGATACGATGAGGAGATCCCATTCGAGCAAGTTAGGGCTCATAACAAGCCA
	61	GATGATGCTTGGTGTGCTATTCATGGACACGTGTACGATGTTACCAAGTTCGCTTCTGTT
	121	CATCCAGGAGGAGATATTATCTTGCTCGCTGCTGGAAAGGAAGCTACTGTGCTCTACGAG
10	181	ACCTACCATGTTAGAGGAGTGTCTGATGCTGTGCTCAGAAAGTACAGAATCGGAAAGTTG
	241	${\tt CCAGATGGACAAGGAGGAGCTAACGAGAAGGAGAAGAGAACCTTGTCTGGATTGTCCTCT$
	301	${\tt GCTTCTTACTACACCTGGAACTCCGATTTCTACAGAGTGATGAGGGAGAGAGTTGTGGGCT}$
	361	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$
	421	TTGCTCCTTGTTGGATTCTGGTCCTCTCTTTACTGGATGTGCACCCTCGATCCATCTTTC
15	481	${\tt GGAGCTATCTTGGCTGCTATGTCTTTGGGAGTGTTCGCTGCTTTTGTTGGAACCTGCATC}$
	541	CAACATGATGGAAACCATGGAGCTTTCGCTCAATCTAGATGGGTTAACAAGGTGGCAGGA
	601	TGGACTTTGGATATGATCGGAGCTTCTGGAATGACTTGGGAGTTCCAACATGTGTTGGGA
	661	CATCACCCATACACTAACTTGATCGAGGAGGAGGAGAACGGATTGCAAAAGGTGTCCGGAAAG
	721	AAGATGGATACCAAGTTGGCTGATCAAGAGTCTGATCCAGATGTGTTCTCCACCTACCCA
20	781	${\tt ATGATGAGATTGCATCCATGGCATCAGAAGAGAGATGGTATCACAGGTTCCAGCATATCTAC}$
	841	${\tt GGACCATTCATCTTCGGATTCATGACCATCAACAAGGTGGTGACTCAAGATGTTGGAGTG}$
	901	${\tt GTGTT}{\tt GAGAAAGAGGGCTCTTCCAAATCGATGCTGAGTGCAGATATGCTTCCCCAATGTAC}$
	961	${\tt GTTGCTAGGTTCTGGATCATGAAGGCTTTGACCGTGTTGTACATGGTTGCTCTCCCATGT$
	1021	TATATGCAAGGACCATGGCATGGATTGAAGCTCTTCGCTATCGCTCATTTCACTTGCGGA
25	1081	GAGGTTTTGGCTACCATGTTCATCGTGAACCACATTATCGAGGGAGTGTCTTACGCTTCT
	1141	${\tt AAGGATGCTGTTAAGGGAACTATGGCTCCACCAAAGACTATGCATGGAGTGACCCCAATG}$
	1201	${\tt AACAACACTAGAAAGGAGGTTGAGGCTGAGGCTTCTAAGTCTGGAGCTGTGGTTAAGTCT}$
	1261	GTGCCATTGGATGATTGGGCTGCTGTTCAATGCCAAACCTCTGTGAACTGGTCTGTTGGA
	1321	TCTTGGTTCTGGAACCATTTCTCTGGAGGACTCAACCATCAAATCGAGCATCATCTCTTC
30	1381	${\tt CCAGGATTGTCTCACGAGACCTACTACCACATCCAAGATGTGGTTCAATCTACCTGTGCT$
	1441	GAGTACGGAGTTCCATACCAACATGAGCCATCTTTGTGGACTGCTTACTGGAAGATGCTC
	1501	GAACATTTGAGACAATTGGGAAACGAGGAGACTCACGAGTCTTGGCAAAGAGCTGCTTGA

35 SEQ ID NO: 18 (Δ4-desaturase from Thraustochytrium sp., ATCC21685)

	1	MTVGYDEEIPFEQVRAHNKPDDAWCAIHGHVYDVTKFASVHPGGDIILLAAGKEATVLYE
	61	TYHVRGVSDAVLRKYRIGKLPDGQGGANEKEKRTLSGLSSASYYTWNSDFYRVMRERVVA
	121	RLKERGKARRGGYELWIKAFLLLVGFWSSLYWMCTLDPSFGAILAAMSLGVFAAFVGTCI
40	181	$\label{eq:chdgnhgafaqsrwvnkvagwtldmigasgmtwefqhvlghhpytnlieeenglqkvsgk}$
	241	KMDTKLADQESDPDVFSTYPMMRLHPWHQKRWYHRFQHIYGPFIFGFMTINKVVTQDVGV
	301	eq:vlrkrlfqidaecryaspmyvarfwimkaltvlymvalpcymqgpwhglklfaiahftcg
	361	${\tt EVLATMFIVNHIIEGVSYASKDAVKGTMAPPKTMHGVTPMNNTRKEVEA {\tt EASKSGAVVKS}$
	421	VPLDDWAAVQCQTSVNWSVGSWFWNHFSGGLNHQIEHHLFPGLSHETYYHIQDVVQSTCA
45	481	${\tt EYGVPYQHEPSLWTAYWKMLEHLRQLGNEETHESWQRAA*}$

SEQ ID NO: 19 (codon optimised O809D6 △6-desaturase from Ostreococcus RCC809)

- AAGAATTACGAAGAGGCTGCATGGATCGTTGCTGCCACATGTGATAAGGACATCAGTTATTAAAGCTGTG ACAGGATATAGTTGGATAACCTGTTACGGTCTCTTTTTAAGTACCATGTGGGTTTCTGGATGCTATCTT TTTGCTCATTTCTCAACCAGTCATACTCACCTTGATGTTGTGCCTTCAGATAAGCATTTGAGTTGGGTT AGATATGCTGTGGATCACACTATTGATATCGATCCATCTAAATCAGTTGTGAATTGGCTTATGGGTTAC TTGAACTGTCAGGTTATCCATCACTTGTTTCCTGATATGCCACAATTCAGACAGCCAGAAGTTTCTAGA
 - AGGTTTGTGTCATTCGCTAAGAAATGGAATCTCAACTACAAGGTTATGTCTTATTACGGAGCTTGGAAA GCAACATTCGGTAACCTTAACGAAGTTGGAAAGCACTACTATATTCAGGGTTCTCAAATCACAAAAAAG ACCGTGTAA

25

SEQ ID NO: 20 (O809D6 △6-desaturase from Ostreococcus RCC809)

30	1	MGKGARNPGARAWKSTLEPHAVAKSFDRRWVKVDGVEYDVTDFKHPGGSVIYYMLSNTGA
	61	DATEAFKEFHYRSKKARKALAALPQREPEDASPVEDANMLKDFAKWRKDLEREGFFKPSP
	121	AHVAYRFAELAAMFALGTALMYARWHATSVFVTACFFGARCGWVQHEGGHSSLTGSIWWD
	181	${\tt KRIQAFTAGFGLASSGDMWNLMHNKHHATPQKVRHDMDLDTTPAVAFFNTAVEENRPRKF}$
	241	SKLWLRVQAWTFVPVTSGLVLLAWMYLLHPRHIARRKNYEEAAWIVAAHVIRTSVIKAVT
35	301	GYSWITCYGLFLSTMWVSGCYLFAHFSTSHTHLDVVPSDKHLSWVRYAVDHTIDIDPSKS
	361	VVNWLMGYLNCQVIHHLFPDMPQFRQPEVSRRFVSFAKKWNLNYKVMSYYGAWKATFGNL
	421	NEVGKHYYIQGSQITKKTV-

SEQ ID NO: 21 (codon-optimised FcELO6 △6-Elongase from *Fragilariopsis* cylindrus CCMP 1102)

20 SEQ ID NO: 22 (FcELO6 ∆6-Elongase from *Fragilariopsis cylindrus CCMP* 1102)

25	1	MDEYKATLESVGDAIIQWADPESQFTGFTKGWFLTDFTSAFSIALVYVLFVIIGSQVMKV
	61	LPAIDPYPIKFFYNVSQIMLCAYMTIEACLLAYRNGYTIMPCVGYNRDDPAIGNLLWLFY
	121	VSKVWDFWDTIFIVLGKKWRQLSFLHVYHHTTIFLFYWLNANVFYDGDIYLTIALNGFIH
	181	TVMYTYYFICMHTKDKKTGKSLPIWWKSSLTLLQLFQFITMMSQGLYLIIFGCESLSIRV
	241	TATYVVYILSLFFLFAQFFVASYMQPKKSKTA-
20		

SEQ ID NO: 23 (codon-optimised CeELO6 △6-elongase from *Caenorhabditis* elegans)

5

20

SEQ ID NO: 24 (CeELO6 \(\Delta\)6-elongase from Caenorhabditis elegans)

25

1	MAQHPLVQRLLDVKFDTKRFVAIATHGPKNFPDAEGRKFFADHFDVTIQASILYMVVVFG
61	TKWFMRNRQPFQLTIPLNIWNFILAAFSIAGAVKMTPEFFGTIANKGIVASYCKVFDFTK
121	GENGYWVWLFMASKLFELVDTIFLVLRKRPLMFLHWYHHILTMIYAWYSHPLTPGFNRYG
181	IYLNFVVHAFMYSYYFLRSMKIRVPGFIAQAITSLQIVQFIISCAVLAHLGYLMHFTNAN
241	CDFEPSVFKLAVFMDTTYLALFVNFFLQSYVLRGGKDKYKAVPKKKNN-

62

SEQ ID NO: 25 (codon-optimised TpDesK Δ 4-desaturase from *Thalassiosira* pseudonana)

ATGGGTAATGGTAATCTTCCAGCATCTACAGCACAACTCAAGTCAACAAGTAAACCTCAACAGCAACAC GAGCACAGAACAATCAGTAAATCTGAATTGGCACAACATAACACTCCTAAGTCTGCTTGGTGTGCAGTT 10 ACAGATTTCGCTTCTAGACATCCAGGAGGAGAGATTTGATTCTTTTGGCTTCAGGAAAAGATGCAAGTGTG CTCTTCGAGACCTACCACCCTAGGGGGAGTTCCAACTTCATTAATTCAAAAGCTTCAGATCGGTGTTATG GAAGAGGAAGCTTTTAGAGATAGTTTCTACTCTTGGACAGATTCTGATTTCTACACCGTTCTTAAGAGA AGGGTTGTGGAAAGATTAGAGGAAAGGGGACTTGATAGAAGGGGTTCAAAAGAGATTTGGATCAAGGCT TTATTTCTCTTAGTTGGATTCTGGTACTGTCTTTACAAGATGTACACTACATCAGATATAGATCAATAC 15 GGAATAGCTATTGCATATAGTATCGGAATGGGTACTTTTGCTGCATTCATCGGTACATGCATACAACAT ATCGGTGCTTCTGCATTCACCTGGGAATTGCAGCATATGCTCGGTCATCACCTTACACTAATGTTCTT GATCCAGATGTTTTCTCTTCATTCCCTCTCATGAGAATGCATCCACATCACACCACTAGTTGGTACCAT 20 AAATATCAGCACCTTTATGCTCCTCCACTCTTTGCATTAATGACCCTTGCTAAGGTGTTTCAACAGGAT TTCGAAGTTGCAACATCTGGAAGATTGTACCATATTGATGCTAACGTTAGATATGGTTCAGTTTGGAAT GTGATGAGATTCTGGGCTATGAAAGTTATCACAATGGGATACATGATGGGTTTGCCTATTTACTTTCAT GGAGTTCTCAGGGGAGTGGGTCTTTTCGTTATCGGACACCTTGCATGTGGTGAACTCTTAGCTACTATG TTCATAGTTAACCATGTGATTGAGGGGGGGGGGGGGGGTGAGTTATGGTACAAAAGATCTTGTTGGAGGTGCATCTCAC 25 GGAGATGAAAAGAAAATTGTGAAGCCTACAACCGTTTTAGGTGATACCCCAATGGAGAAAACTAGAGAA GAGGCTCTCAAGTCAAACAGTAACAACAACAAGAAAAAGGGAAAAAGAACTCAGTTCCTAGTGTGCCA TTTAATGATTGGGCTGCAGTGCAATGCCAGACTTCTGTTAACTGGTCTCCTGGTTCATGGTTTTGGAAT TGCCACATTCAAGATGTTGTGGAATCTACATGTGCTGAGTACGGTGTGCCATATCAGTCTGAATCAAAC 30 TTGTTCGTTGCATACGGAAAGATGATCTCACATTTGAAGTTCCTCGGTAAGGCTAAGTGCGAGTGA

35 SEQ ID NO: 26 (TpDesK ∆4-desaturase from *Thalassiosira pseudonana*)

40 1 MGNGNLPASTAQLKSTSKPQQQHEHRTISKSELAQHNTPKSAWCAVHSTPATDPSHSNNK 61 QHAHLVLDITDFASRHPGGDLILLASGKDASVLFETYHPRGVPTSLIQKLQIGVMEEEAF 121 RDSFYSWTDSDFYTVLKRRVVERLEERGLDRRGSKEIWIKALFLLVGFWYCLYKMYTTSD 181 IDQYGIAIAYSIGMGTFAAFIGTCIQHDGNHGAFAQNKLLNKLAGWTLDMIGASAFTWEL 241 QHMLGHHPYTNVLDGVEEERKERGEDVALEEKDQESDPDVFSSFPLMRMHPHHTTSWYHK 301 YQHLYAPPLFALMTLAKVFQQDFEVATSGRLYHIDANVRYGSVWNVMRFWAMKVITMGYM

SEQ ID NO: 27 (codon-optimised Hpw-3, a w3-desaturase from *Hyaloperonospora parasitica*)

	1	ATGGCTACTAAACAATCAGTTGCTTTTCCTACTTTGACTGATCTTAAAAGATCTCTTCCT
5	61	TCTGAGTGTTTTGAATCTTCTTTGCCTCTTTCTCTTTACTATACACTTAGATCTTTGGTT
	121	TTTGCTGGTTCTCTTGCTGTTTCTCTTTCTTACGCTCTTGCTCAACCTTTGGTTCAAAAC
	181	TTTTACCCTCTTAGAGTTGCTCTTATTGCTGGATACACTGTTTTTCAAGGAGTTATTTTC
	241	TGGGGATTTTTCACTATTGGTCATGATGCTGGTCATGGTGCTTTTTCTAGATATCCTGTT
	301	CTTAACTTCACTGTTGGAACACTTATGCATTCTCTTATTTTGACTCCTTTTGAATCTTGG
10	361	AAGTTGACTCATAGACATCATCATAAAAACACTGGAAATATCGATAGAGATGAGATCTTC
	421	TACCCTCAAAGAGAATCTGATGATCATCCTGTTTCTAGACATCTTACTTTCACTCTTGGA
	481	GCTGCTTGGTTCGCTTACCTTGTTGAGGGTTTTCCACCTAGAAAATTGAATCATTACAAT
	541	CCTTTCGAGCCATTGTTCGAGAGAAGAGTTTCTGCTGTTGTTATCTCTATCTTGGCTCAG
	601	TTTTTCGTTGCAGGATTGTCTATTTACTTGTGTTTCCAGGTTGGAGTTCAGGCTGTTGCT
15	661	CTTTACTATTACGGTCCTATCTTCGTTTTTGGTACTATGCTTGTTATTACTACTTTCTT
	721	CATCATAACGATGAAGAGACTCCTTGGTACGGTGATGAGGATTGGTCTTACGTTAAGGGT
	781	AACTTGTCTTCTGTTGATAGATCTTACGGTCCTCTTATCGATAACTTGTCTCATAACATC
	841	GGTACTCATCAAGTTCATCATCTTTTCCCAATCATCCCTCATTACAAATTAAAGCCTGCT
	901	ACAGCTGCTTTCAGAAGAGCTTTCCCACATCTTGTTAGAAAGTCTGATGAAAGAATTTTG
20	961	CAGGCTTTTTACAGAATTGGTAGATTGTATGCTAAATATGGTGTTGCTGATTCTTCTGCT
	1021	AAATTGTTTACATTGAAGGAAGCTCAACTTACTTCTAAAGCTGCTTCTGATGCTAAAGCT
	1081	GCTTGA

25

SEQ ID NO: 28 (Hpw-3, a w3-desaturase from Hyaloperonospora parasitica)

	1	MATKQSVAFPTLTDLKRSLPSECFESSLPLSLYYTLRSLVFAGSLAVSLSYALAQPLVQN
	61	FYPLRVALIAGYTVFQGVIFWGFFTIGHDAGHGAFSRYPVLNFTVGTLMHSLILTPFESW
30	121	KLTHRHHHKNTGNIDRDEIFYPQRESDDHPVSRHLTFTLGAAWFAYLVEGFPPRKLNHYN
	181	PFEPLFERRVSAVVISILAQFFVAGLSIYLCFQVGVQAVALYYYGPIFVFGTMLVITTFL
	241	HHNDEETPWYGDEDWSYVKGNLSSVDRSYGPLIDNLSHNIGTHQVHHLFPIIPHYKLKPA
	301	TAAFRRAFPHLVRKSDERILQAFYRIGRLYAKYGVADSSAKLFTLKEAQLTSKAASDAKA
	361	A-

Claims:

- 1. A recombinant camelina plant or cell comprising one or more polynucleotides encoding a Δ 6-desaturase, a A6-elongase and a A5-desaturase operably linked with one or more regulatory sequences.
- 2. A recombinant camelina plant or cell according to claim 1 which further comprises one or more polynucleotides encoding a A12-desaturase and/or a ω 3 desaturase operably linked with one or more regulatory sequences.
- 3. A recombinant camelina plant according to claim 1 or 2 wherein the plant is a seed.
- 15 4. A recombinant camelina plant or cell according to any one of claims 1 to 3 wherein the desaturase and elongase enzymes are independently derived from algae, bacteria, mould or yeast.
- 5. A recombinant camelina plant or cell according to any one of claims 1 to 3 wherein the A6-desaturase comprises an amino acid sequence having at least 50% identity to SEQ ID NO:2 or SEQ ID NO:20, the $\Delta 6$ -elongase comprises an amino acid sequence having at least 50% identity to SEQ ID NO:4, SEQ ID NO: 22 or SEQ ID NO:24, and the Δ 5-desaturase comprises an amino acid sequence having at least 50% identity to SEQ ID NO:6 or SEQ 25 ID NO: 10.
 - 6. A recombinant camelina plant or cell according to any one of claims 1 to 5 wherein the $\Delta 6$ -desaturase is derived from Ostreococcus tauri, the $\Delta 6$ elongase is derived from *Physcomitrella* patens and the Δ 5-desaturase is derived from Thraustochytrium sp.
 - 7. A method for producing eicospentaenoic acid (EPA) comprising growing a plant or cell according to any one of claims 1 or 6 under conditions wherein said desaturase and elongase enzymes are expressed and EPA is produced in said plant or cell.

10

5

20

30

- 8. A method for producing plant seed oil comprising growing a plant or cell according to any one of claims 1 or 6 under conditions wherein said desaturase and elongase enzymes are expressed and a plant seed oil is produced in said plant or cell.
- 9. A plant seed oil produced by the method of claim 8.
- 10. A plant seed oil according to claim 9 wherein EPA constitutes at least 5%, at least 10%, at least 15%, at least 20%, at least 25% or at least 30% (mol %) of the total fatty acid content of said oil.
 - 11. A plant seed oil wherein the EPA constitutes at least 15% (mol %) of the total fatty acid content of said oil, and the γ-linolenic (GLA) constitutes less than 10% (mol %) of the total fatty acid content of said oil.
 - 12. A plant seed oil according to claim 11 wherein the EPA constitutes at least 20% (mol %) of the total fatty acid content of said oil.
- 13. A plant seed oil according to claim 12 wherein the EPA constitutes 20% to 31% (mol %) of the total fatty acid content of said oil.
 - 14. A plant seed oil according to any one of claims 11 to 13 wherein the GLA constitutes less than 7% (mol %) of the total fatty acid content of said oil.
 - 15. A plant seed oil according to claim 14 wherein the GLA constitutes 1% to 6% (mol %) by weight of the total fatty acid content of said oil.
 - 16. A plant seed oil according to any one of claims 11 to 15 wherein the ratio of the molar percentages of EPA to γ -linolenic (GLA) is about 3:1 to about 22:1, preferably about 5:1 to about 20:1.
 - 17. A plant seed oil according to any one of claims 11 to 16 wherein the oil is produced by the method of claim 8.

10

5

20

15

30

25

- 18. A recombinant camelina plant or cell comprising one or more polynucleotides encoding a $\Delta 6$ -desaturase, a $\Delta 6$ -elongase, a $\Delta \delta$ -desaturase, a $\Delta 5$ -elongase and a A4-desaturase operably linked with one or more regulatory sequences.
- 5 19. A recombinant camelina plant or cell according to claim 18 which further comprises one or more polynucleotides encoding a A12-desaturase and/or a ω 3 desaturase operably linked with one or more regulatory sequences.
 - 20. A recombinant camelina plant according to claim 18 or 19 wherein the plant is a seed.
 - 21. A recombinant camelina plant or cell according to any one of claims 18 to 20 wherein the desaturase and elongase enzymes are independently derived from algae, bacteria, mould or yeast.
- 22. A recombinant camelina plant or cell according to any one of claims 18 to 21 wherein the $\Delta\delta$ -desaturase comprises an amino acid sequence having at least 50% identity to SEQ ID NO:2 or SEQ ID NO:20, the A6-elongase comprises an amino acid sequence having at least 50% identity to SEQ ID 20 NO:4, SEQ ID NO: 22 or SEQ ID NO:24, the Δ 5-desaturase comprises an amino acid sequence having at least 50% identity to SEQ ID NO:6 or SEQ ID NO:10, the Δ 5-elongase comprises an amino acid sequence having at least 50% identity to SEQ ID NO:8 and the A4-desaturase comprises an amino acid sequence having at least 50% identity to SEQ ID NO:16, SEQ ID NO: 25 18 or SEQ ID NO:26.
 - 23. A recombinant camelina plant or cell according to any one of claims 18 to 22 wherein the $\Delta 6$ -desaturase is derived from Ostreococcus tauri, the $\Delta 6$ elongase is derived from *Physcomitrella patens*, the Δ 5-desaturase is derived from Thraustochytrium sp., the $\Delta 5$ -elongase is derived from Ostreococcus tauri and the A4-desaturase is derived from Emiliana huxleyi or Thraustochytrium sp

10

30

- 24. A method for producing docosahexaenoic acid (DHA) comprising growing a plant or cell according to any one of claims 18 to 23 under conditions wherein said desaturase and elongase enzymes are expressed and DHA is produced in said plant or cell.
- 5

- 25. A method for producing EPA comprising growing a plant or cell according to according to any one of claims 18 to 23 under conditions wherein said desaturase and elongase enzymes are expressed and EPA is produced in said plant.
- 26. A method for producing a camelina oil comprising growing a plant or cell according to any one of claims 18 to 25 wherein said desaturase and elongase enzymes are expressed and oil is produced in said plant or cell.
- 15 27. A plant seed oil produced by the method of claim 26.
 - 28. A plant seed oil according to claim 27 wherein DHA constitutes at least 3%, at least 5%, at least 7%, at least 10%, or at least 13% (mol %) of the total amount of fatty acid present in said oil.

20

25

- 29. A plant seed oil wherein DHA constitutes at least 3%, at least 5%, at least 7%, at least 10%, or at least 13% (mol %) of the total fatty acid content of said oil and the γ -linolenic (GLA) constitutes less than 5% (mol %) of the total fatty acid content of said oil.
- 30. A plant seed oil according to claim 29 wherein the DHA constitutes at least 13% (mol %) of the total fatty acid content of said oil.
- 31. A plant seed oil according to claim 30 wherein the DHA constitutes 5% to 15%, 10% to 15% or 10% to 13.7% (mol %) of the total fatty acid content of said oil.
 - 32. A plant seed oil according to any one of claims 29 to 31 wherein the GLA constitutes less than 3.5 % (mol %) of the total fatty acid content of said oil.

35

PCT/GB2013/050955

68

- 33. A plant seed oil according to any one of claims 29 to 31 wherein the GLA constitutes 0.5% to 5% (mol %) of the total fatty acid content of said oil.
- 34. A plant seed oil according to any one of claims 29 to 31 wherein the GLA constitutes 1.5% to 3.5% (mol %) of the total fatty acid content of said oil.
 - 35. A plant seed oil according to any one of claims 29 to 34 wherein the ratio of the percentages by weight of EPA to DHA is about 0.8:1 to about 1.4:1.
- 10 36. A plant seed oil according to any one of claims 29 to 35 wherein the ratio of the molar percentages of the sum of (EPA + DHA) to GLA is about 20:1 to about 3:1, or about 17:1 to about 7:1.
- 37. A plant seed oil according to any one of claims 29 to 36 wherein the oil isproduced by the method of claim 26.
 - 38. Use of camelina in the manufacture of a long chain polyunsaturated acid.
 - 39. Use according to claim 38 wherein the long chain polyunsaturated acid is an omega-3 long chain polyunsaturated acid
 - 40. Use according to claim 38 wherein the long chain polyunsaturated acid is EPA.
- 25 41. Use according to claim 38 wherein the long chain polyunsaturated acid is acid DHA.
 - 42. A feedstuff, food, cosmetic or pharmaceutical comprising the oil as defined in any one of claims 9 to 17 or 27 to 37.

30

20

1/11

PCT/GB2013/050955

SUBSTITUTE SHEET (RULE 26)

3/11

· 6/11

orange =increased above WT

Fig 9 – Distribution of acyl chains within phospholipids of WT and EPA- accumulating Camelina. phosphatidyserine (PS) and phosphatidylglycerol (PG)

WO 2013/153404

PCT/GB2013/050955

	INTERNATIONAL SEARCH R	EPORT Internatio	nal application No	
PCT/GB2013			B2013/050955	
A. CLASSIFICATION OF SUBJECT MATTER INV. C12N15/82 C12N9/10 C12N9/02 ADD.				
According to	International Patent Classification (IPC) or to both national classification	and IPC		
B. FIELDS	SEARCHED			
Minimum do	cumentation searched (classification system followed by classification	symbols)		
C12N				
Documentation	n searched other than minimum documentation to the extent that suc	n documents are included in the f	ields searched	
Electronic da	ata base consulted during the international search (name of data base	and, where practicable, search te	erms used)	
EPO-In	ternal , снем ABS Data, BIOSIS, Seque	nce Search , EMBAS	E, WPI Data	
C. DOCUMEN	ITS CONSIDERED TO BE RELEVANT			
Category*	Citation of document, with indication, where appropriate, of the releva	int passages	Relevant to claim No.	
Х	OLGA SAYANOVA ET AL: "The rol e of		1,3-6,	
	specificity in the efficient synth long-chain polyunsaturated fatty	18, 20-23 , 26,38,39		
	PLANT BIOTECHNOLOGY JOURNAL, vol . 10, no. 2,			
	8 September 2011 (2011-09-08) , pa 195-206, XP055071442, ISSN: 1467-7644, D0I:	ges		
Y	the whole document	2,7,8, 12,13, 19,		
			24-26, 30,31 , 40,41	
	-	/		
X Further documents are listed in the continuation of Box C. X See patent family annex.				
"A" documen	t defining the general state of the art which is not considered	F later document published after date and not in conflict with the	the international filing date or priority e application but cited to understand	
 "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier application or patent but published on or after the international "X" document of particular relevance; the claimed invention cannot be 			ng the invention e; the claimed invention cannot be	
tiling date considered novel or cannot be considered to involve an inventive "L" documentwhich may throw doubts on priority claim(s) orwhich is cited to establish the publication date of another citation or other				
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other "O" document referring to an oral disclosure, use, exhibition or other				
 "P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family 				
Date of the a	actual completion of the international search	Date of mailing of the internation	al search report	
1	8 September 2013	25/09/2013		
Name and n	nailing address of the ISA/	Authorized officer		
European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016		Puonti -Kaerl as, J		

6

Box No. II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box No. III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see addi tional sheet
1. X As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fees, this Authority did not invite payment of additional fees.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers '' only those claims for which fees were paid, specifically claims Nos.:
4. UN required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest and, where applicable, the '' payment of a protest fee. The additional search fees were accompanied by the applicant's protest but the applicable protest '' fee was not paid within the time limit specified in the invitation. Image: No protest accompanied the payment of additional search fees.

International Application No. PCT/ GB2013/ 050955

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210 This International Searching Authority found multiple (groups of) inventions in this international application, as follows: 1. cl aims: 1-10, 40(compl etely); 18-23, 25-27, 38, 39, 42 (parti al ly) A recombinant camelina plant or cell expressing a delta 6-desaturase, a del t a 6-el ongase and/or a del t a 5-desaturase and subject-matter rel ati ng thereto _ _ _ _ 2. claims: 11-17, 29-36(completely); 37, 42(partially) A plant seed oil wherein the EPA constitutes at least 15% (mol %) of the total fatty acid content of said oil, and the y-l i nol eni c (GLA) consti tutes less than 10% (mol %) of the total fatty acid content of said oil, and subject-matter rel ati ng thereto ---3. claims: 24, 28, 41 (completely); 18-23, 25-27, 37-39, 42 (parti al ly) As inventi on group 1, but rel ati ng to plants further expressing a delta 5-el ongase and/or a delta 4-desaturase

International application No PCT/GB2013/050955

C(Continuat	ion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X Y	US 2009/234006 AI (CI RPUS PETRA [DE] ET AL) 17 September 2009 (2009-09-17) the whol e document	9-11 , 14-17 2 , 7 ,8, 12 , 13 , 19 , 24-26, 30,31 , 40,41
х	N. RUIZ-LOPEZ ET AL: "Metabol i c engi neeri ng of the omega-3 long chai n polyunsaturated fatty aci d bi osyntheti c pathway i nto transgeni c pl ants", JOURNAL OF EXPERIMENTAL BOTANY, vol. 63, no. 7, 1 Apri l 2012 (2012-04-01), pages 2397-2410, XP055071443, ISSN: 0022-0957 DOL: 10.1093/ixb/orr454	27-29 , 32-35 ,37
Y	the whole document	2 , 7 ,8, 19 , 24-26,41
х	₩0 2011/006948 AI (BASF PLANT SCIENCE CO GMBH [DE] ; BAUER J0ERG [DE] ; NAPLER JOHNATHAN A) 20 January 2011 (2011-01-20)	9,10,14, 15,17, 27-29, 32-37,42
Y	the whol e document	40,41
A	OLGA SAYANOVA ET AL: "Transgeni c oil seed crops as an alternati ve to fish oils", PROSTAGLANDINS LEUKOTRIENES AND ESSENTIAL FATTY ACIDS, vol. 85, no. 5, 2011, pages 253-260, XP028309060, ISSN: 0952-3278, D0I: 10. 1016/J . PLEFA.2011 .04.013 [retri eved on 2011-05-07]	1-42
A	VENEGAS-CALERON M ET AL: "An alternati ve to fish oils: Metabol ic engineering of oil-seed crops to produce omega-3 long chain polyunsaturated fatty acids", PROGRESS IN LIPID RESEARCH, PERGAMON PRESS, PARIS, FR, vol. 49, no. 2, 1 April 2010 (2010-04-01), pages 108-119, XP026911073, ISSN: 0163-7827, D01: 10. 1016/J. PLI PRES.2009.10.001 [retri eved on 2009-10-24] 	1-42

International application No PCT/GB2013/050955

Category*Citation of document, with indication, where appropriate, of the relevant passagesRelevant to claim No.ACHAOFU LU AND JINLING KANG: "Generati on of transgeni c plants of a potenti al oil seed crop Camelina sati va by Agrobacteri um-medi ated transformati on", PLANT CELL REPORTS, SPRINGER VERLAG, DE, vol. 27, no. 2, 1 February 2008 (2008-02-01) , pages 273-278, XP002659396, ISSN: 0721-7714, D01: 10.1007/S00299-007-0454-0 [retri eved on 2007-09-27]1-42Awo 2009/133145 Al (BASF PLANT SCI ENCE GMBH [DE]; BAUER JOERG [DE]; NAPI ER JOHNATHAN A [GB) 5 November 2009 (2009-11-05) ci ted in the applicati on1-42	C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT					
 A CHAOFU LU AND JINLING KANG: "Generati on 1-42 of transgeni c plants of a potenti al oil seed crop Camelina sati va by Agrobacteri um-mediated transformati on", PLANT CELL REPORTS, SPRINGER VERLAG, DE, vol. 27, no. 2, 1 February 2008 (2008-02-01), pages 273-278, XP002659396, ISSN: 0721-7714, DOI: 10. 1007/S00299-007-0454-0 [retri eved on 2007-09-27] A wo 2009/133145 AI (BASF PLANT SCI ENCE GMBH 1-42 [DE]; BAUER JOERG [DE]; NAPLER JOHNATHAN A [GB) 5 November 2009 (2009-11-05) cited in the applicati on	Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.			
A wo 2009/133145 AI (BASF PLANT SCIENCE GMBH 1-42 [DE]; BAUER JOERG [DE]; NAPIER JOHNATHAN A [GB) 5 November 2009 (2009-11-05) cited in the application 	A	CHAOFU LU AND JINLING KANG: "Generati on of transgeni c plants of a potenti al oil seed crop Camelina sati va by Agrobacteri um-mediated transformati on", PLANT CELL REPORTS, SPRINGER VERLAG, DE, vol. 27, no. 2, 1 February 2008 (2008-02-01), pages 273-278, XP002659396, ISSN: 0721-7714, D0I: 10. 1007/S00299-007-0454-0 [retri eved on 2007-09-27]	1-42			
	A	<pre>vecu our 2007-09-27] ve 2009/133145 Al (BASF PLANT SCIENCE GMBH [DE]; BAUER JOERG [DE]; NAPIER JOHNATHAN A [GB) 5 November 2009 (2009-11-05) cited in the application</pre>	1-42			

Information on patent family members

International application No PCT/GB2013/050955

Patent document cited in search report	Publication date		Patent family member(s)		Publication date
US 2009234006 Al	17-09-2009	AR	058650	Al	20-02-2008
		AU	2006278035	Al	15-02-2007
		CA	2617714	Al	15-02-2007
		CN	101238216	A	06-08-2008
		DE	102005038036	Al	15-02-2007
		ΕP	1915451	A2	30-04-2008
		ES	2387101	т3	13-09-2012
		US	2009234006	Al	17-09-2009
		Wo	2007017419	A2	15-02-2007
Wo 2011006948 Al	2 0 - 01 - 2011		2010272536	 A 1	02-02-2012
		CA	2768082	Al	20-01-2011
		DE	112010002967	т5	11-10-2012
		ΕP	2454278	Al	23-05-2012
		US	2012124705	Al	17-05-2012
		WO	2011006948	Al	20-01-2011
WO 2009133145 al	05-11-2009		2009242130	ם מו	05-11-2009
WO 2009133143 AT	05 11 2005	CA	2005242130		05-11-2009
		CN	102066564	Δ	18-05-2011
		EP	2281051	л. Д]	09-02-2011
		US	2011138490	Al	09-06-2011
		WO	2009133145	ב- <u>-</u>	05-11-2009