
	 Rothamsted	Research	
Harpenden,	Herts,	AL5	2JQ	
	
Telephone:	+44	(0)1582	763133	
Web:	http://www.rothamsted.ac.uk/	

	
	 	

	
	

Rothamsted Research is a Company Limited by Guarantee 
Registered Office: as above.  Registered in England No. 2393175. 
Registered Charity No. 802038.  VAT No. 197 4201 51. 
Founded in 1843 by John Bennet Lawes.	

	

Rothamsted Repository Download
Conference paper

Neal, A. L., Sharma, S., Crawford, J. W., Kiciman, E., Malvar, S., 

Rodriguez, E. and Chandra, R. 2022. Causal Modeling of Soil Processes 

for Improved Generalization. NeurIPS 2022. New Orleans Conference 

Center 28 Nov 2022 

The output can be accessed at: https://repository.rothamsted.ac.uk/item/989xv/causal-

modeling-of-soil-processes-for-improved-generalization.

© Please contact library@rothamsted.ac.uk for copyright queries.

16/02/2024 09:42 repository.rothamsted.ac.uk library@rothamsted.ac.uk

https://repository.rothamsted.ac.uk/item/989xv/causal-modeling-of-soil-processes-for-improved-generalization
https://repository.rothamsted.ac.uk/item/989xv/causal-modeling-of-soil-processes-for-improved-generalization
repository.rothamsted.ac.uk
mailto:library@rothamsted.ac.uk


Causal Modeling of Soil Processes
for Improved Generalization

Anonymous Author(s)
Affiliation
Address
email

Abstract

Measuring and monitoring soil organic carbon is critical for agricultural productiv-1

ity and for addressing critical environmental problems. Soil organic carbon not only2

enriches nutrition in soil, but also has a gamut of co-benefits such as improving3

water storage and limiting physical erosion. Despite a litany of work in soil organic4

carbon estimation, current approaches do not generalize well across soil conditions5

and management practices. We empirically show that explicit modeling of cause-6

and-effect relationships among the soil processes improves the out-of-distribution7

generalizability of prediction models. We provide a comparative analysis of soil8

organic carbon estimation models where the skeleton is estimated using causal9

discovery methods. Our framework provide an average improvement of 81% in10

test mean squared error and 52% in test mean absolute error.11

1 Introduction12

Soil organic carbon, the carbon component of organic compounds found in soil both as biomass and13

as sequestered compounds and necromass, has been called “natural insurance against climate change”14

[35]—with evidence associating increased soil organic matter with increased crop yields [30, 32,15

37]. Climate change is increasing the variability in crop yields and increasing food insecurity [29,16

19, 20]. This variability in yield is further exacerbated by conventional soil management practices17

unconcerned with soil organic carbon. Proper management of soil, including its organic carbon18

component, can mitigate shortages in food, water, energy and adverse repercussions of climate19

change [20]. Measuring and monitoring soil organic carbon can therefore have a positive impact20

in solving several environmental problems. This has led to increased interest by environmentalists,21

economists and soil scientists, as interdisciplinary collaborations, in improving public awareness and22

policy making [8, 18, 9, 17, 26, 7].23

While the problem of studying soil organic carbon is well-motivated, forming hypotheses and24

designing experiments to estimate soil organic carbon can be challenging. Changes in soil organic25

carbon are not only dictated by weather events and management practices, but also by other soil26

processes such as plant nutrient uptake, soil organisms, soil texture, micro-nutrient content and soil27

disturbance. This makes soil a complex “living” porous medium [16, 20, 15]. Due to the complex28

nature of soil science, the exact relations among all soil processes is not yet known. There is no29

accepted universal method for studying soil organic carbon and the relation among soil processes [5].30

Moreover, current models of soil organic carbon (RothC-26.3 [1], Century [2], DNDC [10], and some31

inter-model comparisons [12, 33, 14, 13]) are not consistent with the latest advances in understanding32

Submitted to Tackling Climate Change with Machine Learning: workshop at NeurIPS 2022.



of soil processes and do not generalize to different soil conditions found globally as they are limited33

by their modeling assumptions[22].34

Our goal is to create a method that can generalize well across regions, soil types and soil management35

practices. We aim to create a causal machine learning framework that can aid in standardization36

efforts for soil organic carbon measuring, reporting and verification. Although ML methods have37

demonstrated an improved ability to predict soil organic carbon [45, 39], the reliance of conventional38

ML on the i.i.d. assumption that training data represents the deployed environment limits their39

out-of-distribution generalizability [40, 39, 49, 36]. To improve this, either large (and diverse) data40

sets can be utilized or careful architectural modifications can help in creating a surrogate model or41

an emulator of the real-world physical system. These architectural modifications are also limited by42

domain experts’ understanding of the physical system [44]. Using causal discovery methods is a43

way to overcome this limitation as these frameworks help explicitly model cause-and-effect relations44

among the soil processes to improve the out-of-distribution generalizability.45

In this paper, we present an approach based on causal graphs to estimate soil organic carbon stocks.46

We provide a comparative analysis of soil organic carbon estimation using causal and non-causal47

approaches and show that causal approaches produce better results for soil organic carbon estimation48

on unseen fields (from different locations, with different soil properties, management practices and49

land use). We briefly discuss related literature in Section 2, followed by the problem formulation, data50

set and our methodology in Section 3. Results, discussion and future work is discussed in Section 4.51

2 Background52

Our approach combines recent advances in causal discovery and graph neural networks (GNNs).53

Causal discovery [46, 31, 21] is an approach for identifying cause-and-effect relations between54

variables of a system, using data under causal ignorability and sufficiency assumptions and leveraging55

partial a priori knowledge of relationships. Utilizing such causal discovery methods can quantify56

complex interactions of the different soil processes that govern soil organic carbon and its effects57

on soil quality, which cannot be directly measured but are emergent properties. Quantifying how58

soil organic carbon stocks are influenced by other soil process, and how soil organic carbon affects59

other soil processes and soil functions can move us closer to a universal or standardized model-60

ing framework for all soil processes and for measuring soil organic carbon. Also, graph neural61

networks [34, 41, 48, 50] present approaches to work with non-Euclidean graph data and model62

complex relationships between entities. A survey of recent GNN advancements can be found here63

[47]. Typically, GNN based methods assume homogeneity of nodes. Direct application of GNN64

approaches is not straightforward when nodes and edges are heterogeneous; this is the case in our65

application, where both the nature of the node (nodes could represent soil processes, climate variables,66

management practices) and the type of data associated with each node (e.g., soil process nodes could67

constitute continuous geochemical composition changes while farming or management practices68

might be frequency of an operation being performed on the farm) differ markedly.69

3 Materials and Methods70

3.1 Data71

We utilize an extensive and rich data set from the North Wyke Farm Platform http://www.72

rothamsted.ac.uk/north-wyke-farm-platform. This data is available for multiple fields with73

different land use types, which makes it appropriate for studying spatial out-of-distribution gener-74

alization, and limits bias due to causal ignorability and sufficiency assumptions. The North Wyke75

Farm Platform data consists of observations of three pasture-based livestock farming systems, each76

consisting of five component catchments of approximately 21 ha each. High resolution long term data77

including soil organic carbon, soil total nitrogen, pH as well as management practices are collected to78

study the sustainability of different types of land use (treatments) over time (2012 to present). In the79

baseline period (April 2011 to March 2013), all three farming systems were managed as permanent80
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pastures, grazed by livestock and sheep. In April 2013, one system was resown with high sugar81

grasses, having a high water-soluble carbohydrate content with the aim of increasing livestock growth82

(“the red system”), a second system was resown with a high sugar grass-white clover mix (“the blue83

system”) to reduce the requirement for inorganic nitrogen fertilizer application. The remaining (“the84

green system”) continued as a permanent pasture for long-term monitoring. Appendix A.2 shows85

a map of the North Wyke Farms showing the layout of the individual farms and their management86

practices [51].87

We create a train-test split to ascertain the generalizability of the proposed approach when fields88

are managed differently. For example, inversion ploughing is an important management practice89

because it results in the loss of organic carbon from agricultural soils[24]. Figures 1 and 2 show the90

distribution of soil organic carbon and number of times the fields were ploughed for our data. Note91

that the red and blue systems were ploughed whereas the green system was not. This is also seen as92

a consistent higher levels of carbon for the green fields than the red and blue fields. Training data93

consists of 7 red and 8 blue system fields. Test data consists of a total of 7 green system fields. Our94

data set comprises management practices (including the number of fertilizer applications, pesticide95

applications, plough events, etc.), total nitrogen, total organic carbon and soil pH for each field. More96

details on data preprocessing are included in Appendix A.1.97

3.2 Problem Formulation98

Complex interactions between soil organic carbon, soil processes and other exogenous factors (e.g.,99

environmental and management practices) limit the generalization capabilities of conventional ML100

methods. In this paper, our aim is twofold, understanding how different management practices101

affect soil organic carbon and then estimating it in a way that it generalizes in out-of-distribution102

environments. Let M = M1,M2,M3, . . . ,Mn represent farm management practices, C, O represent103

soil organic carbon and other observed soil properties respectively, studied across k locations.104

Our approach is first to learn the cause-and-effect relations among soil variables (in this study they are,105

soil organic carbon, nitrogen and pH) and the management practices followed in the farm. The learned106

causal graph of different soil processes can be represented as G ∈ R(|M |+|O|+|C|)×(|M |+|O|+|C|).107

Depending on the causal discovery method employed for learning the causal graph, edge indices108

and attributes can be derived to create a skeleton that can be utilized in GNN-based regression to109

estimate soil organic carbon at a location as a function of the other variables. The generalization110

power of a causal graph skeleton based upon a GNN model relies on the graph G that is used as prior111

knowledge for the prediction task. Here, for the regression task, instead of measuring the conditional112

expected response E(C|M,O), we evaluate E(C|M,O,G) which is influenced by not only p(D) but113

also causal graph G, where D = {C,M,O}. Depending on the causal discovery method, additional114

assumptions can be made about the data [21].115

3.2.1 Causal Discovery116

In our experiments, a causal graph consists of nodes—representing variables or physical processes117

and directed edges represent causal relationships between nodes. While prior knowledge or trial-118

and-error guessing can be used to create causal graphs, we make use of established causal discovery119

algorithms to create the directed graphs. To generate causal graphs using the North Wyke Farm120

Platform data, we use the PC algorithm, a constraint-based method, [4] and two score-based methods,121

Greedy Equivalence Search (GES) [6, 3] and Greedy Interventional Equivalence Search (GIES) [11].122

See Appendix A.3 for more details.123

3.2.2 Causal Graph Neural Network124

While causal graphs estimated from causal discovery methods are used to obtain skeletons for GNNs,125

we compare two paradigms, Edge-Conditioned Convolution Message Passing Neural Networks126

(ECC MPNNs) [28, 23] and GraphSAGE [25]. Comparing different message passing procedures127

allows us to study how added complexity in learning influences generalization in the prediction task.128
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Figure 1: Soil organic carbon distribu-
tion

Figure 2: Plough event distribution for
the three treatments

Model Causal MSE MAE
PC + GraphSAGE Yes 1.1002 1.0116

GES + GraphSAGE Yes 0.9248 0.9193

GIES + GraphSAGE Yes 0.7803 0.7904

PC + ECC MPNN Yes 0.2816 0.5258
GES + ECC MPNN Yes 0.2864 0.5302

GIES + ECC MPNN Yes 0.2951 0.5385

Random Edges + GraphSAGE No 2.9052 1.6686

XGBoost No 4.5007 2.0860

MLP No 3.8415 1.9254

Random Forest No 2.7996 1.6263

Table 1: Comparison of soil organic carbon estimation approaches
based on Mean Squared Error (MSE) and Mean Absolute Error
(MAE) to show how well different approaches generalize for per-
manent pasture i.e. the “green system”. We use high sugar grass
pastures (“red” and “blue” systems) for training and the “green"
system for testing. We compare GraphSAGE architecture and ECC
MPNN architecture.

These methods adopt different neighborhood definitions to compute message passing signals. For129

a directed graph G(V,E), where V is a finite set of nodes and E is a set of edges, we can define a130

neighborhood for a given node i as N(i). For an ECC MPNN, N(i) comprises all of the ancestors in131

the directed graph. In GraphSAGE, a neighborhood is defined as a function of varying search depths132

k ∈ {0, 1, ...,K}, wherein, the number of adjacent nodes are sub-sampled for message passing with133

a node i. Starting at k = 0, the neighboring feature vectors are aggregated at each search depth k and134

concatenated with a node’s representation. The final representation is obtained as the aggregation at135

depth K. More details on how node embeddings are updated are mentioned in Appendix A.4.136

4 Results and Discussion137

Our experiments investigate the impact of soil processes and farming practices on soil organic carbon138

estimation. Through empirical evidence, we demonstrate the improvement in out-of-distribution139

generalization offered by coupling causal discovery methods with GNNs. To study generalization140

power, we use the test set Mean Squared Error (MSE) and Mean Absolute Error (MAE) as evaluation141

metrics. Results in Table 1 suggest that causal approaches outperform non-causal approaches for soil142

organic carbon estimation and generalize well to unseen locations. The causal graph generated by the143

PC method is more parsimonious than the score-based methods’ graphs and offers the best prediction144

skill when used as skeleton for ECC MPNN model. The causal graphs resulting from the 3 causal145

discovery approches are in Appendix A.6 and the details of ML algorithms and hyperparameter146

tuning are in Appendix A.5.147

Causal modeling has the potential to offer further improvements. Several new advancements utilize148

continuous optimization methods to learn causal graphs [46] and may offer better time complexity149

for higher dimensional data sets. In further experiments, more explicit incorporation of temporal150

heterogeneity can also be done via methods like GNN-RNN [42, 43] for soil organic carbon estimation151

and using approaches like amortized causal discovery [38]. While our method generalizes well across152

different soil types, management practices and land use, a more extensive study across global153

geographies can aid in evaluation over a broader range of soil conditions, crops, and weather patterns.154
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A Appendix284

A.1 Data preprocessing285

Field names (22 fields) and management practices (54 practices) are one hot encoded. Numerical286

data (i.e., total Nitrogen, total carbon and soil pH) is scaled using a min-max scaling scheme. In287

addition, to understand the long-term cumulative effects of changes in management practices, we288

include lag variables that capture the number of times a management practice / farming operation was289

performed in the last 1.5 months, 6 months, 1 year, 2 years. Different data are available at varying290

cadence, so we merge them together at a daily level by averaging the values of features collected at a291

finer resolution.292

A.2 North Wyke Data Farm293

Layout of the North Wyke Data Farm showing color coded fields to represent the land use type. The294

red system is sown with high sugar grasses, having a high water-soluble carbohydrate content with295

the aim of increasing livestock growth, the blue system sown with a high sugar grass-white clover296

mix to reduce the requirement for inorganic nitrogen fertilizer application. The remaining fields297

continued as a permanent pasture for long-term monitoring (the green system).

Figure 3: Layout of the North Wyke Farms

298
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A.3 Causal discovery approaches: PC, GES and GIES299

The PC algorithm relies on conditional independence testing to establish causal relations. An300

undirected graph is used as an initial skeleton and edges between independent variables are eliminated.301

Conditional independence of variables conditioned on a set S, Di ⊥⊥ Dj |S, is evaluated to eliminate302

additional edges [46]. The score-based methods evaluate the fitness of causal graphs based on a303

scoring function to obtain an optimal graph [27]. In the case of GES, the Bayesian Information304

Criterion (BIC) is used as the scoring function. Starting with an empty graph, edges are added if they305

improve (lower) the score. The graph is then mapped to a corresponding Markovian equivalence306

class followed by elimination of edges that may provide further improvement, assessed using the BIC307

[31]. Similar to GES, GIES also utilizes a quasi-Bayesian score and searches for the causal graph308

that optimizes for the score. GIES is a generalization of GES that incorporates interventional data.309

Apart from adding edges (forward phase) and removing edges (backward phase) that improve score,310

GIES introduces a “turning phase" to improve estimation wherein at each iteration, an edge is turned311

to obtain an essential graph with same number of edges.312

A.4 Details of GNN approaches313

For ECC MPNN, at each layer l of the feed-forward neural network, the embedding signal can be314

computed as,315

hl
i ←

1

|N(i)|
∑

j∈N(i)

F l(Ej,i;W
l)hl−1

j + bl (1)

where, W l and bl are the weight matrix and the bias term defined at layer l. In GraphSAGE,316

embeddings at search depth k for given node i can be computer as,317

hk
i ← σ(W k[hk−1

i , AGG({hk−1
u ,∀u ∈ N(i)})]) (2)

where, σ is a non-linear activation function and W k is the weight matrix at depth k. hk
N(i) =318

AGG({hk−1
u ,∀u ∈ N(i)}) is the signal aggregated over all sub-sampled neighbors at depth k.319

AGG can be any aggregator function including trainable neural network aggregator. Architectures320

for both methods include paradigm based convolution layer followed by linear layers and then ReLU321

activation. Figure 4 shows the neighborhood definition for the two GNN approaches considered.

Figure 4: Neighborhood definition in Causal Graph Neural Networks, GraphSAGE and ECC MPNN. ECC
MPNN defines all connected adjacent nodes as neighborhood while GraphSAGE aggregates information over
different depths, starting from depth 0 (node features itself used as neighboring feature vector) till depth K,
where, at each depth k, connected nodes as sub-sampled to be included in neighboring feature vector.

322
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A.5 Architectural choices and hyperparameter tuning323

In the GraphSAGE architecture, we choose K to be number of connected nodes, mean as the324

aggregator function, AGG. In ECC MPNN network, since we have only one type of edge feature325

in the form of directed edge existence, number of edge feature is set to 1. Model hyperparemeters326

are chosen from grid search - Adam optimization method for both GNNs, learning rate 0.0015327

for GraphSAGE and 0.0020 for EC MPNN. The GraphSAGE architecture uses three sequential328

GraphSAGE convolution layers to learn embeddings. The architecture also comprises three feed-329

forward layers, used to generate estimates for the target variable from the embeddings. For the ECC330

MPNN model, two ECC convolution layers are stacked sequentially to estimate the embeddings. A331

final feed-forward layer is then used to learn the target variable estimates. We combine three causal332

discovery methods, PC, GES and GIES, with the two GNN architectures to obtain 6 variants of333

Causal GNNs. We compare these with four benchmarks, XGBoost (100 estimators, 20 max depth),334

Random Forest (100 estimators), MLP (random grid search based hyperparameter set) and Random335

Edges + SageGRAPH (50 random directed edges used as skeleton).336

A.6 Causal graphs337

In this section, we present the causal graphs produced by the three algorithms: PC algorithm [4]338

Greedy Equivalence Search (GES) [6] and Greedy Interventional Equivalence Search (GIES) [11].339

The nodes of the graph represent the features considered that include one hot encoded fields (nodes340

named as Field_field_name), one hot encoded management practices (Field_Operation_operation),341

total Nitrogen (total-N), total carbon (total-C) and soil pH (pH). The existence of an edge represents342

a causal relationship and the direction of the arrow represents the direction of influence.343
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