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Delin Li Li‐Juan Qiu

ABSTRACT
Advances in plant phenotyping technologies are
dramatically reducing the marginal costs of col-
lecting multiple phenotypic measurements across
several time points. Yet, most current approaches
and best statistical practices implemented to link
genetic and phenotypic variation in plants have
been developed in an era of single‐time‐point data.
Here, we used time‐series phenotypic data col-
lected with an unmanned aircraft system for a large
panel of soybean (Glycine max (L.) Merr.) varieties to
identify previously uncharacterized loci. Specifically,
we focused on the dissection of canopy coverage
(CC) variation from this rich data set. We also in-
ferred the speed of canopy closure, an additional
dimension of CC, from the time‐series data, as it

may represent an important trait for weed control.
Genome‐wide association studies (GWASs) identi-
fied 35 loci exhibiting dynamic associations with CC
across developmental stages. The time‐series data
enabled the identification of 10 known flowering
time and plant height quantitative trait loci (QTLs)
detected in previous studies of adult plants and the
identification of novel QTLs influencing CC. These
novel QTLs were disproportionately likely to act
earlier in development, which may explain why they
were missed in previous single‐time‐point studies.
Moreover, this time‐series data set contributed to
the high accuracy of the GWASs, which we eval-
uated by permutation tests, as evidenced by the
repeated identification of loci across multiple time
points. Two novel loci showed evidence of adaptive
selection during domestication, with different gen-
otypes/haplotypes favored in different geographic
regions. In summary, the time‐series data, with
soybean CC as an example, improved the accuracy
and statistical power to dissect the genetic basis of
traits and offered a promising opportunity for crop
breeding with quantitative growth curves.

Keywords: canopy coverage, dynamic regulation, GWAS, soy-
bean, time series, unmanned aircraft system
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INTRODUCTION

Plants undergo dynamic changes in their phenotypes
throughout their life cycle as a result of both devel-

opmental changes and responses to environmental cues and
stressors. A quantification of both the genetic and pheno-
typic differences among individuals in a given population is a
necessary precondition for connecting genotype to pheno-
type via either linkage mapping (Ahn and Tanksley, 1993) or
association mapping (Flint‐Garcia et al., 2003). The devel-
opment of sequencing technologies over the past decade
has allowed genotyping to reach high‐throughput scales that
are highly accurate and cost‐effective (Goodwin et al., 2016).
Until recently, collecting quantitative plant traits had been
comparatively slow and expensive. However, advances in
plant phenotyping have brought a marked reduction in the
overall cost of collecting plant trait data and in the marginal
costs of collecting trait measurements during the same ex-
periment at additional time points beyond the first one. Early
reports suggested that time‐series data can provide both
greater detection power to identify quantitative trait loci
(QTLs) and a deeper understanding of the phenotypic con-
sequences of specific alleles at specific loci (Li and Sillanpaa,
2015). To date, many studies that use time‐series trait data to
map genes controlling genetic variation in plants have been
performed at relatively small scale, with populations of fewer
than 500 genotypes, while thousands are typically needed to
reveal the genetic basis of complex traits, like yield and
stress tolerance (Huang and Han, 2014), and millions are
used in human studies (Lee et al., 2018).

Advances in sensors, image‐processing algorithms,
and deep learning algorithms are driving the emergence of
diverse high‐throughput phenotyping platforms (Li and
Sillanpaa, 2015; Wang et al., 2020; Watt et al., 2020; Yang
et al., 2020; Jin et al., 2021). One of the most widely used
technology platforms for high‐throughput phenotyping is the
Unmanned Aircraft System (UAS). UAS refers to the combi-
nation of an unmanned aerial vehicle, one or more sensors,
remote control systems, and downstream software for
processing images or other sensor data to extract quantita-
tive or qualitative measurements. UASs are robust and
broadly deployable in field applications and have been suc-
cessfully used to monitor plant growth and performance in
response to changes in the environment, including biotic and
abiotic stresses (Jin et al., 2021). For example, UASs have
been used to quantify plant height (PH) in maize (Zea mays)
(Anthony et al., 2014), flowering time (FT) in rice (Oryza sativa)
(Guo et al., 2015), senescence rates in bread wheat (Triticum
aestivum) (Hassan et al., 2018), nitrogen content of manila
grass (Zoysia matrella) (Caturegli et al., 2016), multiple
canopy traits in sorghum (Sorghum bicolor) (Shi et al., 2016),
lodging in buckwheat (Fagopyrum esculentum) (Murakami
et al., 2012), leaf chlorophyll contents in potato (Solanum tu-
berosum) (Roosjen et al., 2018), plant density in tobacco (Nic-
otiana tabacum) (Fan et al., 2018), maturity date in soybean

(Glycine max (L.) Merr.) (Zhou et al., 2019), and breeding pro-
grams in sorghum and maize (Pugh et al., 2018). Canopy
coverage (CC) has been identified as one of the traits with the
greatest potential to influence plant breeding, based on both
the ease of estimation from RGB color space data and its
correlation with desirable properties in crops (Jin et al., 2021).

Genome‐wide association studies (GWASs) are widely
used in plants to identify loci associated with variation in a
diverse array of plant traits (Liu and Yan, 2019). Time‐series
trait data, in combination with GWASs, offer the potential
to dissect the dynamic regulation of plant phenotypes. How-
ever, very few studies have combined GWASs and time‐series
traits to dissect the dynamic regulation of crop phenotypes,
compared to the many studies that have developed methods
to collect time‐series data. Time‐series GWASs were reported
to display increased power for the identification of causal loci
for PH in sorghum (Miao et al., 2020) and drought tolerance in
maize (Wu et al., 2021), which were based on different optical
images captured from plants grown in the greenhouse. Field‐
based phenotyping systems including UASs have been used
to decipher several causal loci in maize (Wang et al.,
2019; Anderson et al., 2020; Adak et al., 2021) and wheat (Lyra
et al., 2020) behind PH at different developmental stages.
Notably, these studies used fewer than four hundred geno-
types for each bi‐parental or natural populations and thus did
not fully use the high‐throughput potential of the phenotyping
platform or the breadth of genetic diversity.

Soybean is a leguminous crop that was originally do-
mesticated in China (Sedivy et al., 2017) but is now grown
around the globe, where it is a critical source of both
vegetable protein and oil. Canopy coverage data have
been successfully collected via UASs in multiple legumes
(Xavier et al., 2017; Cazenave et al., 2019; Sarkar et al.,
2020). Xavier et al. (2017) phenotyped time‐series CC
among approximately 5,600 recombinant inbred lines
(RILs) of a soybean nested association mapping (SoyNAM)
population and identified seven QTLs from GWASs, based
on only 4,077 single nucleotide polymorphisms (SNPs). In
this study, we combined the high throughput of UASs, the
diversity of soybean natural populations, and a high‐
density of 4 million SNPs to dissect the dynamic regulation
of CC by collecting time‐series CC data spanning the
vegetative and reproductive stages. The population sur-
veyed here represents the broad genetic diversity of the
23,587 cultivated soybeans from the Chinese National
Soybean Gene Bank (Li et al., 2022). The 4 million SNPs
with a minimum minor allele frequency of 5% were gen-
erated from whole‐genome resequencing (Li et al., 2022) of
the 1.1‐Gb genome (Schmutz et al., 2010). Time‐series CC
determination of a large population improved the accuracy
and statistical power of GWASs by increasing phenotype
and genotype diversity and highlights the usefulness of
high‐throughput UAS for genetic studies. In addition, the
diverse growth curves and rates of canopy closure re-
vealed by time‐series CC in this diversity panel have
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potential applications in breeding programs to develop
improved soybean cultivars.

RESULTS

Acquisition of time‐series soybean CC
We phenotyped 1,303 soybean accessions (Figure 1A) both
manually and with the help of a UAS at Nanchang (28°31′56″

N, 116°1′34″E) in 2020. These accessions were collected
from around the world (Table S1) and consisted of 903
landraces and 400 improved cultivars, which comprised the
four soybean sub‐populations described in a previous study
(Li et al., 2022). We employed a UAS (Figure 1B) to collect
data reflecting the proportion of ground covered by the ver-
tical projection of the plant canopy, here referred to as
canopy coverage or CC (Figure 1C–E). The UAS deployed in
the field permitted high‐throughput phenotyping, as the UAS

Figure 1. The soybean materials and the unmanned aircraft system used in Nanchang
(A) Breakdown of the soybean accessions used in this study between landraces and improved varieties and among the different soybean subpopulations
identified (Li et al., 2022): China Northeastern region (CNR), China Huang‐Huai region (CHR), China Southern region (CSR), America (Am), and non‐
categorized accessions (Mixture). (B) The Unmanned Aircraft System (UAS) used in Nanchang, consisting of a controller, a DJI phantom 4 multispectral
drone (DJI‐P4), and a D‐RTK 2 mobile station (RTK) providing centimeter‐level positioning. (C–E) Visual summary of the procedure used for field‐based UAS
phenotyping. (C) At each time point, images were collected by a UAS at a height of 12m above the field. (D) All images are first assembled into a single field
image, which was then clipped into individual images for each soybean accession at each time point. (E) An example of clipped images taken for the
soybean accession “DongNong4Hao” and the corresponding canopy coverage (CC) values estimated from each clipped image. (F) Changes in CC plotted
for all soybean accessions across all 17 time points. Each line indicates one accession. (G) Distribution of manually scored flowering times (FTs) for each
soybean accession included in this study (top) and changes in the correlation between CC and classical developmental traits (BN, branch number; GYPP,
grain yield per plant; MT, maturity time; PH, plant height) (bottom). All phenotypic data were collected in a soybean field trial conducted in Nanchang (China
South) in 2020.
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image collection time only took about 20min (Table S2) as a
flight altitude of 12m above the field. This instrument facili-
tated image collection for 17 time points, from 18 to 72 d after
sowing (DAS), which spanned the vegetative and re-
productive stages. We extracted the CC values for each
soybean accession from the field images for each time point,
providing representative phenotypic data of most of soy-
bean's developmental stages.

Canopy coverage is a developmental trait
The CC data derived from the UAS deployed in Nanchang
showed variation across accessions starting at the fourth
time point (24 DAS) (Figures 1F, S1). We classified CC across
the subsequent 13 time points into two internally correlated
clusters based on the corresponding Spearman's correlation
coefficient matrix: a first cluster from 24 to 48 DAS and a
second cluster from 61 to 72 DAS (Figure S2A). Notably, 48
DAS was the day when 94% of all soybean accessions had
flowered. The CC distribution itself also differed between
time points, switching from a long‐tailed distribution (28–34
DAS) to a more uniform distribution (37–40 DAS), and finally
to a left‐skewed distribution (48–72 DAS) (Figure S1).

In parallel to UAS‐acquired data, we also manually phe-
notyped five developmental traits: PH, FT, maturity time (MT),
branch number (BN), and grain yield per plant (GYPP). Im-
portantly, the CC data derived from the last 13 time points
showed dynamic and significant (Spearman's one‐tailed test,
Bonferroni adjustment with α= 0.01) correlations with these
five manually collected classical traits, with the exception of
CC and MT at 44 DAS (Figure 1G). Canopy coverage dis-
played the highest correlation with PH in the first CC cluster
(24–48 DAS) and exhibited the highest correlation with FT in
the second cluster (61–72 DAS). There was no significant
difference in the correlations between CC with each of five
classical traits and pairwise correlations between these five
classical traits (Welch's two‐sample t‐test, P‐value
0.76; Figure S2). This result supported the notion that time‐
series CC is a novel dynamic developmental trait that reflects
the diversity of soybean accessions. The accessions with the
top 15% GYPP values had a significantly higher maximum
CC across all 17 time points compared to the accessions
with the lowest 15% GYPP values (one‐tailed Welch's two‐
sample t‐test, P‐value <2.2E−16), indicating that CC is a
major yield determinant factor in cereals.

Genetic basis of time‐series CC, as revealed by GWAS
To reveal the dynamic regulation of CC, we performed a
GWAS with 1,303 soybean accessions using the CC values
for each of the later 13 time points (Figure S1), using a high‐
density set of 4,383,780 SNPs with a minimum minor allele
frequency (MAF) of 5%. In total, we identified 35 CC‐
associated loci (Table S3) with an association cutoff
benefiting from the multiple time points, as we required each
region be detected in at least three time points (see
Methods). Of the 35 loci, 10 (or 28.6%) overlapped with
previously reported QTLs for FT or PH (covering 28.6Mb of

the 1.1‐Gb soybean genome (Schmutz et al., 2010)) or with
previous GWAS results (comprising 367 leading SNPs) (Table
S4). Only one (or 11.1%) out of nine loci associated with one
or two time points had been previously reported. The median
number of associated loci was 3 when shuffling the genotype
but following the same cutoffs for 50 permutations (Figure
S3), indicating that the false‐positive rate of the 35 loci is
below 10%. The proportion of variation explained (PVE)
(Zhou and Stephens, 2014) by SNPs for each CC time point
(N= 13) had a median value of 0.40, while the median PVE of
permutated CC traits (N= 13 × 50= 650) was close to zero
(6 × 10−6).

The 35 loci showed a dynamic association with CC across
the later 13 time points from 28 to 72 DAS, which represented
different developmental stages (Figure 2A, B). These 35 loci
formed three groups as a function of the time points at which
they were identified: “all stages” (N= 9), “earlier stages” (28–
40 DAS, N= 11), and “later stages” (61–72 DAS, N= 15)
(Figure 2B). The 44 and 48 DAS time points marked a tran-
sition between earlier and later stages.

The 10 previously reported loci (Table S4) overlapped with
CC‐associated loci at least three times from 44 DAS onward,
when 88% of studied soybean accessions flowered. More-
over, eight of these loci belonged to either the “all stages” or
“later stages” CC‐associated loci. The leading SNPs for these
10 loci had a more significant P‐value than the other 25 (one‐
tailed t‐test P‐value 0.02; Figure S4). Among these 35 asso-
ciated loci, we noticed the two known FT genes E1 (Xia et al.,
2012) and E2 (Watanabe et al., 2011) (Figure 2A, B; Table S3).
E2 was associated with CC in 10 out of 13 time points, and
the presumed causal SNP, a common allele causing a pre-
mature stop codon (Watanabe et al., 2011), also had the most
significant P‐value (Figure 2B; Table S3). A comparison of
phenotypes of the two E2 alleles at this presumed causal
SNP indicated that the Williams 82 (W82) reference allele (AA)
exhibits a higher CC (one‐tailed t‐test P‐value <10−15 for 28–
72 DAS) than the alternative allele, which introduces the
premature stop codon in E2 (Figure 2C).

Population size increases statistical power of GWAS
Increasing population size can improve the statistical power
of GWASs (Visscher et al., 2012). Handling populations of
hundreds or thousands of individuals is ideally suited to ex-
ploit the advantages of high‐throughput phenotyping plat-
forms. Here, we investigated the effect of sample size on our
UAS‐based time‐series CC. To this end, we randomly se-
lected subsets ranging from 10% to 90% of all 1,303 soy-
bean accessions to repeat GWASs on a smaller sample size.
The fraction of the 35 loci identified in these subsampled
analyses increased linearly with population size (Figure S5A).
By contrast, while the proportion of the 10 previously re-
ported loci for FT and PH also increased with population size,
they reached their maximum detection with a population
comprising 60% of all accessions (Figure S5B). Importantly,
we identified E2, which was the most significant candidate in
time‐series CC GWASs, in most (8 of 10) subsets consisting
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of 20% of all accessions and in all cases when subpopulation
size was larger than 20% of the total. These results indicated
that UAS‐based phenotyping of thousands of accessions can
improve the statistical power of GWASs, allowing the iden-
tification of novel loci associated with a given trait.

Canopy coverage PCA and GWASs of the first two
principal components
The time‐series traits paved the way for new opportunities to
reveal more trait‐associated loci but also presented chal-
lenges for interpreting this complex trait data set. To reduce
the dimensionality of the time‐series data, we thus conducted
a principal component analysis (PCA) using the CC trait data
for all 17 time points and all 1,303 accessions. The first two
principal components (PCs) explained 91.5% and 6.1% of
the standing variation of the data (Figure 3A) and showed
large variance between accessions (Figure S6). PC1 illus-
trated average CC values, while PC2 reflected the speed of
canopy closure (Figures 3B, C, S7). We then performed
GWASs using the first two PCs as traits, and 19 and 12 of the
35 loci were determined to be associated with PC1 or PC2,
respectively. In total, GWASs of the first two PCs identified 28
(or 80%) of the 35 CC‐associated loci (Table S3). Fur-
thermore, we identified three loci, which were part of the “all
stages” group, as being associated with both two PCs. In

addition, loci only associated with PC1 belonged to either the
“all stages” (N= 6) or “later stages” (N= 11) group, while
PC2‐specific loci were part of the “earlier stages” (N= 8)
group, during which the canopy closed (Figure S7). For ex-
ample, the known FT gene E2, which was among the “later
stage” CC‐associated loci, showed an association with PC1
but not PC2 (Figure 3D, E).

The PCA not only captured the majority of polymorphisms
and the genetic basis for the time‐series CC, but importantly,
it also quantified the growth curve for each accession with
PC2. Moreover, the soybean accessions with the lowest 15%
PC2 values belonged to all genetically categorized (Li et al.,
2022) sub‐populations: China Northeastern region (CNR; N=
14), China Huang‐huai region (CHR; N= 21), China Southern
region (CSR; N= 64), and America region (Am; N= 48). This
observation indicated no strong bias caused by population
structure, even though soybean is sensitive to photoperiod
(Watanabe et al., 2012). Notably, we detected no accession
from the CNR subpopulation among accessions with the top
15% PC2 values, likely reflecting their low BN (Figure S8).

Confirmation with time‐series CC from an independent
environment
We collected the time‐series CC phenotypic data as a single
replicate in Nanchang (28°31′56″N, 116°1′34″E) over 1 year,

Figure 2. Dynamic association of canopy coverage (CC)
(A) Repeated identification of single nucleotide polymorphisms (SNPs) significantly associated with CC across 13 time points from 28 to 72 d after sowing
(DAS). Only SNPs with a –log10(p) >4 and present in the 35 loci identified in at least three time points are plotted. The two known genes identified in this
analysis (E1 and E2) are shown in red. (B) Change in the –log10(p) across the 13 time points for loci associated with CC in at least three time points. Trait‐
associated loci were categorized as: “all stages,” “earlier stages,” and “later stages” based on whether they were identified in earlier time points (28–40
DAS) or later time points (61–72 DAS); 44–48 DAS were transition time points. (C) Distributions of CC values for soybean accessions carrying different
genotypes of the presumed causal SNP at the E2 gene. **P≤ 0.001, as determined by one‐tailed t‐test.
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while data from at least 2 years are typically needed for ge-
netic analyses of crop traits. To confirm the phenotypes and
association results obtained above, we planted 397 geno-
typed soybean cultivars (Li et al., 2022) as two to three rep-
licates in another location, Sanya (18°23′44″N, 109°9′42″E)
(Table S5). A sum of 350 of the 397 cultivars belonged to the
Nanchang population (Figure S9). We analyzed time‐series
CC data from 21 time points, from 21 to 87 DAS (Figure
S10A, B). The first two PCs also explained most of the
standing variation (90.9%) and represented the average CC
(PC1) and speed of canopy closure (PC2) (Figure S10C–E).
We observed a significant correlation between the two sets of
PC1 values from the overlapped 350 cultivars collected in
Nanchang and Sanya (Spearman's correlation coefficient
0.33, P‐value 8.16 × 10−8). Moreover, soybean accessions
with the top 15% PC1 values based on Sanya time‐series CC
data had a significantly higher average (one‐tailed t‐test P‐
value 2.64 × 10−5) than the accessions with the bottom 15%
PC1 values in Nanchang (Figure 4A). The soybean ac-
cessions with the top 15% values for PC2 from Sanya time‐
series CC data achieved maximum CC earlier (one‐tailed t‐
test P‐value 3.43 × 10−5) than the accessions with the bottom
15% values for PC2 from Nanchang (Figure 4B).

We performed GWASs with 4,189,867 SNPs (MAF >5%)
using the time‐series CC values for the 397 genotyped soy-
bean accessions for each of the 21 time points. The PVE
(Zhou and Stephens, 2014) by SNPs for each time point had

a median value of 0.45 in Sanya, which was higher (one‐tailed
t‐test P‐value 0.01) than that in Nanchang. We identified 16 of
35 (45.7%) Nanchang CC‐associated loci in at least one time
point of Sanya, with 11 loci (31.4%) identified in at least three
time points (Figure 4C). For these 11 loci, five belonged to the
“all stages” (55.5%) group, another two to the “earlier stages”
(18.2%) group, and the final four to the “later stages” (26.7%)
group, as defined based on the Nanchang time‐series CC
GWAS. Notably, we identified no associated locus before 40
DAS in Sanya, while “earlier stages” were defined as 28–40
DAS in Nanchang.

One novel locus was favored during adaptation in the
north of China and in the United States
Of the 35 identified CC‐associated loci, we focused on a
“later stage” novel locus mapping to chromosome 1 that we
named C‐1‐1, as it had the smallest physical interval
(280,730–296,725 bp) of all loci. C‐1‐1 was significantly as-
sociated with CC at seven time points, from 48 to 72 DAS,
and with PC1 (Figure 5A). The C‐1‐1 locus comprised three
annotated genes: Glyma.01G001900, Glyma.01G002000,
and Glyma.01G002100. None of these genes contained
SNPs with a large effect (Table S6). However,
Glyma.01G002100 had InDels (insertion/deletions) in its
exons (Figure 5B). Moreover, Glyma.01G002100 has a ho-
molog in Arabidopsis (Arabidopsis thaliana), AUXIN RE-
SPONSE FACTOR7 (ARF7), encoding an auxin‐regulated

Figure 3. The first two principal components capture most of the phenotypic variation and associated loci
(A) Time‐series canopy coverage (CC) dot plots of the first two principal components (PCs). Each time point is labeled next to the corresponding circle (in d
after sowing). (B, C) Different patterns of CC values over time for soybean accessions in the top 15% (purple) or bottom 15% (orange) values for PC1 (B)
and PC2 (C). Q, quantile. (D, E) Genome‐wide association studies (GWAS) results using PC1 (D) or PC2 (E) obtained from the principal component analysis
(PCA) of CC. single nucleotide polymorphisms (SNPs) with –log10(p) >4 that overlap with the 35 CC‐associated loci identified at each time point are
highlighted in red. The flowering time‐related gene E2 is also labeled in red.
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transcriptional activator. The Arabidopsis arf7 arf19 double
mutant produces fewer inflorescence stems, suggesting en-
hanced apical dominance (Okushima et al., 2005), which could
affect CC. We thus hypothesized that Glyma.01G002100 is a
candidate gene for C‐1‐1.

In total, we detected 12 variants within this candidate
gene and five haplotypes (H1–H5) with at least five soybean
accessions (Figure 5B). Soybean accessions carrying H1
showed significantly lower PC1 values than the other four
haplotypes (H2–H5) (one‐tailed t‐test P‐value 1.2 × 10−10–
3.5 × 10−35), while five of six pairwise comparisons between
H2–H5 showed no difference (one‐tailed t‐test P‐value 0.06–
0.66) (Figure 5C). Hence, H1 was presumed as the function‐
loss haplotype. H1 differed from the other haplotypes at two
SNPs (1‐292611 and 1‐296596) and one InDel (1‐293836),
which were all linked (pairwise linkage disequilibrium (LD)
R2≥ 0.92). Each of those three polymorphisms distinguished
H1 from the other haplotypes (H2–H5), and genotype AA at
the leading SNP (1‐292611) could represent H1.

H1 showed a different distribution in three soybean sub‐
populations located in China (Figure 5D): 55.4% in the CNR
subpopulation, none in CHR, and 0.4% in CSR. By contrast, the
frequency of genotype AA (equal with H1) at the leading SNP (1‐
292611) in wild soybean (Glycine soja) (N= 218) reached 10%
and showed no such geographical distribution bias among G.
soja accessions with geographic information (Table S7). Fur-
thermore, the percentage of H1 in CNR improved cultivars (N=
58) was 43.1% (N=25). The frequency of the H1 haplotype was
46.3% (N= 50) among improved cultivars of the Am sub-
population and increased in the north of the United States, es-
pecially around the Great Lakes region (Figure 5D). Together,
these results suggest a geographical adaptation for the C‐1‐1
locus during domestication from G. soja to G. max.

The frequency of the H1 haplotype was 84.0% among CNR
landraces (N= 25) but only 43.1% in the CNR improved cultivars
(N= 58), however, both sample sizes here were small. We thus
considered the genotypes at the leading SNP in another in-
dependent study (Liu et al., 2020). The leading SNP appeared to
have the same geographical distribution among 1,934 G. max
cultivars, in that genotype AA (equal with H1) was favored in the
north of China. We also identified 654 genotyped soybean cul-
tivars derived from two northeast provinces, Heilongjiang and
Jilin, with the top two frequencies for AA (Figure S11A). The
frequency of genotype AA (equal with H1) was 42.4% (N= 53) in
this other set of landraces and 43.5% (N= 221) in the other
improved cultivars (Figure S11B), suggesting no difference in the
frequency of haplotype H1 in the two groups.

To avoid artifacts from population structure, we compared
the time‐series CC data between H1 (N= 25) and the other
major haplotype H4 (N= 32, 55%) in CNR improved cultivars.
We determined that H1 is associated with a significantly
lower CC (one‐tailed t‐test P‐value ≤0.05) at 65–72 DAS
(Figure 5E). There were no significant differences (t‐test
P‐value >0.05) between H1 and H4 improved cultivars for the
four classical traits (FT, GYYP, MT, and PH) measured in
Nanchang (Figure S12; Table S8), Heilongjiang, or Jilin (≥2‐
year data sets) (Figure S13; Table S9). We observed that 128
improved cultivars from the independent study (Liu et al.,
2020), which were developed in Heilongjiang or Jilin and with
at least 2 years of regional yield trials from 1993 to 2004
(Table S10), also showed no significant difference between
genotype AA at leading SNP (equal with H1, N= 48) and
genotype GG (H2–H5, N= 80) for PH, MT, or yield. However,
we detected a significant difference for BN (t‐test P‐value
1.35 × 10−3) with genotype AA accessions having a lower BN
than genotype GG accessions (Figure S14).

Figure 4. Time series for canopy coverage (CC) in Sanya confirms the principal component analysis (PCA) and genome‐wide
association studies (GWAS) results of Nanchang
(A) Nanchang time‐series CC. The top 15% (>quantile 85%, solid lines) and bottom 15% (<quantile 15%, dashed lines) values are those extracted from
PC1 of the CC time series in Sanya. The purple and orange lines represent the average of the top 15% (N= 59) and bottom 15% (N= 39) soybean lines.
(B) Distribution of days after sowing to achieve maximum CC in Nanchang. The top 15% (purple, N= 58) and bottom 15% (orange, N= 59) values are those
extracted from PC2 of the CC time series in Sanya. The white dots represent the average. (C) The –log10(p) of the leading single nucleotide polymorphism
(SNP) for each locus identified by GWASs for each time point. The loci are in the same order as Figure 2B.
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C‐8‐9 is associated with CC and FT and was favored by
low‐latitude regions during domestication
In parallel to GWASs of the time‐course CC data set, we also
conducted GWASs for the five classical manually collected
traits (Table S8), which were the average values from 2017
and 2018 in Nanchang. GWASs identified 13 loci for at least
one trait, including the two known FT genes E1 and E2, out of
the 35 CC‐associated loci identified above (Figures 6A, S15).
In addition to E1 and E2, we also identified another two
known genes, the FT gene PSEUDORESPONSE REGU-
LATOR 3b (PRR3b) (Li et al., 2020a) (leading SNP 12‐
5520945, P‐value 1.5 × 10−16) and the PH gene Determinate
stem 1 (Dt1) (Liu et al., 2010) (leading SNP 19‐45143999,
P‐value 2.4 × 10−19) (Figure S15).

We identified a locus designated here as C‐8‐9 as being
FT‐associated (Figure 6A), CC‐associated in “all stages” for
seven out of the 13 time points (Figure 2B), and PC1‐
associated. The C‐8‐9 locus encompasses 77.6 kb on chro-
mosome 8 (1,125,492–1,203,080 bp); we further narrowed
the locus to a 22.8‐kb LD block (11,601,216–11,623,966 bp),
which overlapped with association results for FT and CC
(Figure 6B, C). Even though only the time points 34, 37, and
63 DAS had SNPs with P‐value <1 × 10−4 (Figure 6D), the
SNPs of this narrowed interval showed significantly lower
P‐values than the genome‐wide average at all 13 time points
(one‐tailed t‐test P‐value 6.6E × 10−14 to 3.2 × 10−64) (Figure
S16). This smaller interval contained four annotated genes, of
which Glyma.08G150600 with the leading SNP (8‐11602352)

Figure 5. Different alleles in a novel canopy coverage (CC) associated locus are favored in certain geographic regions
(A) Local Manhattan plot of genome‐wide association studies (GWAS) results for the C‐1‐1 locus (indicated between the two blue vertical lines). All results
from GWASs using CC from each time point and PC1 are plotted. (B) Schematic diagram of the candidate gene Glyma.01G002100 and the positions of
single nucleotide polymorphisms (SNPs) detected in this gene. Haplotypes observed in at least five soybean accessions are listed. The three variants
(chromosome position) highlighted in red distinguish the H1 haplotype from the others. (C) Distribution of PC1 values for each of the five haplotypes. H1 is
significantly different from the other haplotypes (one‐tailed t‐test P‐value 1.2 × 10−10 to 3.4 × 10−35), but H2–H5 are not significantly different from each
other. (D) Proportion of accessions from each province (China) or state (United States) carrying the H1 haplotype at C‐1‐1. Chinese provinces with fewer
than five soybean accessions and states from the United States with fewer than three soybean accessions are not shown. (E) Distribution of CC values in
lines carrying the H1 or H4 haplotype among improved cultivars from the subpopulation CNR. –, not significant; *P ≤ 0.05, as determined by one‐tailed
t‐test.
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is homologous to Arabidopsis GLYCINE‐RICH PROTEIN 2B
(GRP2B), which was hypothesized to be involved in the
transition to flowering (Nakaminami et al., 2009). Therefore,
we speculate that Glyma.08G150600 is the mostly likely
candidate for this locus.

Examining the genotype of the leading SNP (T/C), we
established that the frequency of the alternative allele geno-
type CC is 20.2% in the CSR subpopulation and <1.5% in
other soybean sub‐populations (Figure 6E). There was no

difference in allele frequency between CSR landraces and
improved cultivars at this SNP (Figure 6F). However, the
frequency of genotype CC was 56.6% in G. soja (N= 218)
and was present across all of China, with a minimum allele
frequency of 37.5% at the province level (Table S11). This
observation was consistent with strong selection during
soybean domestication, although whether the observed dif-
ferences in allele frequency might have arisen via genetic drift
cannot be ruled out. The frequency of the genotype CC in

Figure 6. A pleiotropic locus associated with both flowering time and canopy coverage (CC)
(A) Manhattan plot of genome‐wide association studies (GWAS) for flowering time (FT). Single nucleotide polymorphisms (SNPs) with a –log10(p) >4 and
also associated with CC in at least three time points are highlighted in red. The known PRR3b locus is labeled in black. (B) Local Manhattan plot near the C‐
8‐9 locus. The strongest FT‐associated SNP is “8‐11602352” (labeled as peak SNP). Most of the FT‐associated SNPs (red), located between the two blue
vertical lines, are present within an linkage disequilibrium (LD) block (C) (highlighted with the blue triangle). (C) LD heatmap of the C‐8‐9 locus. (D) SNPs
within the LD block between the two blue vertical lines (Chr8: 11,601,216–11,623,966 bp) are also associated with CC at three time points and with PC1.
The four black or gray arrows below the local Manhattan plot mark the positions of annotated genes, with the arrow indicating the strand direction of
transcription. The candidate gene harboring the peak SNP is shown in black. (E) Distribution of genotypes for the peak SNP (8‐11602352) in each of the
four soybean sub‐populations. Three heterozygous accessions at the peak SNP were excluded from subpopulation China Southern region (CSR) in (E, F).
(F) Distribution of genotypes for the peak SNP (8‐11602352) in landrace and improved lines in subpopulation CSR. (G) Distribution of FT values for the two
possible genotypes in improved and soybean landraces. (H) Distribution of CC values across 17 time points for accessions carrying the CC or TT genotype. –, not
significant; *P≤ 0.05; **P≤ 0.001, as determined by one‐tailed t‐test.
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landraces and improved cultivars was 21.4% and 13.5%,
respectively, in the CSR subpopulation (Figure 6F). There was
no difference between FT or other traits for CSR improved
cultivars with different genotypes, in either trait data collected
in 2020 or for the average of 2017 and 2018, but we detected
a significant difference for FT, MT, and GYPP among CSR
landraces (Figures 6G, S17). We also observed differences in
CC between CSR landraces with different genotypes in 10
out of 13 time points (Figure 6H). This observation suggested
that the C allele is a landrace‐beneficial allele in the south of
China, which can extend FT and MT with a large CC to obtain
high yields (Figure S17).

DISCUSSION

In this study, we deployed UASs for high‐throughput phe-
notyping to collect CC data from a collection of 1,303 soy-
bean accessions across 17 time points and dissected the
dynamic regulation of CC. We identified 35 associated loci,
which only partially overlapped with known developmental
genes and previously reported QTLs. In addition, we con-
firmed a large fraction (45.7%) of these loci from a time‐series
CC analysis collected in another environment. Compared to a
previous soybean CC study (Xavier et al., 2017), the time‐
series CC data obtained here were more diverse and
revealed another dimension of CC—speed of canopy closure
—since we used a population representing the 23,587 culti-
vated soybeans from the Chinese National Soybean Gene
Bank, rather than RILs of the SoyNAM population. We also
used 100 times more SNPs for GWASs, which increased our
statistical power to detect loci associated with soybean CC.

High‐throughput phenotyping, together with high‐
density genotyping, improves accuracy, statistical
power, and resolution of genetic studies
The high‐throughput nature of UAS‐powered data collection
makes it feasible to generate time‐series data from large and
diverse populations. However, the best approaches with
which to leverage time‐series data and improve our under-
standing of underlying genetic mechanisms remain un-
determined. One straightforward approach, used here, is to
perform GWASs separately for each time point before looking
for recurring associations across time points. When we used
independent time‐point analyses, we consistently identified
35 CC‐associated loci in at least three of the 13 time points.
Despite the high P‐value threshold used, permutation‐based
testing suggested that fewer than 10% of these 35 CC‐
associated loci represented false positives. Several (10/35) of
these loci were also previously reported to be associated with
either PH and/or FT. The multiple‐time‐points approach used
here by time‐series GWASs provided a true positive associ-
ation result of high significance.

High‐throughput phenotyping can also improve statistical
power by making larger field studies more easily achievable
and collecting phenotypic data from larger populations.

These larger populations provide greater power to identify
genetic variants linked to phenotypic variation (Park et al.,
2010; Visscher et al., 2012; Korte and Farlow, 2013), partic-
ularly in cases when the minor allele at a particular locus is
rare within the population (Anderson et al., 2018). Indeed, we
observed that more loci could be identified as population size
increased for the time‐series CC data set and that the addi-
tional loci detected as the population expanded were par-
ticularly likely to be novel and not previously linked to PH or
FT (Figures S4, S5). In addition, a large population size
and a high density of markers increase mapping resolution
(Hamblin et al., 2011), a feature of particular importance in
soybean, as LD decays slowly in this predominantly self‐
pollinated species (Zhou et al., 2015; Li et al., 2020b). In this
study, we identified four loci overlapping with known causal
genes. In two such cases, E2 (Watanabe et al., 2011) and
PRR3b (Li et al., 2020a), the single most significant SNP was
present within the known causal gene itself.

Time‐series data reveal loci uniquely involved in
phenotype‐missing stages
In plants, most genetic studies tend to focus on phenotyping
data collected from either seedlings grown in the greenhouse
or adult plants grown in the field. Comparatively fewer data
sets are collected between the seedling stage and maturity, in
part because of the difficulty of scoring entire populations at
equivalent stages of development using manual approaches.
We classified the 35 loci identified here into those observed in
early‐stage time points, late‐stage time points, and across the
entire growth period. Of the 10 cases where we identified a
locus that overlapped with a known gene or QTL, eight were
shared across either all stages or in later stages, suggesting
that the genes involved in controlling variation in early‐stage
canopy closure have been comparatively under‐investigated
relative to those observables in adult plants.

Geographically favored selection during soybean
adaptation
Soybean cultivars are sensitive to photoperiod, with flowering
being induced by short days (Watanabe et al., 2012). The
soybean varieties used for this study were collected from a
wide range of geographical locales, with the hope that some
of the genetic and phenotypic variation present in the pop-
ulation would reflect adaptation to local climates. C‐1‐1 and
C‐8‐9 both showed distributions of genotypes/haplotypes
consistent with adaptation to different latitudes during do-
mestication and/or crop improvement. For the C‐1‐1 locus,
H1 was the major haplotype in high‐latitude soybean culti-
vars, while it was the minor haplotype in G. soja (wild soy-
bean) and was almost absent in the low‐latitude soybean
sub‐populations CHR and CSR. These improved cultivars
present at high latitudes with H1 showed no difference for
PH, FT, MT, or yield‐related traits compared to other hap-
lotypes from low latitudes and high latitudes, but showed a
lower BN at high latitudes where they originated. The can-
didate gene identified for C‐1‐1, Glyma.01 G002100, is
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homologous to an Arabidopsis gene involved in establishing
apical dominance (Okushima et al., 2005). We hypothesize
that soybean accessions harboring H1 with lower CC values
are suited for higher density planting, which is important for
the agronomic systems used at high latitudes where the
growing season is shorter, but not well suited for the lower
planting densities used at lower latitudes with longer growing
seasons. The H1 haplotype had a similar frequency (42.9%–
46.3%) in the improved cultivars for the United States and the
North of China and a much higher frequency (>95%) in the
Great Lakes region of the United States. This observation
may indicate that H1 was either a target of selection in
breeding programs in the north of China and in the United
States or that there was a genetic bottleneck leading to a
similar drift in these breeding programs.

Another locus associated with CC and FT, C‐8‐9, ap-
peared to have experienced a dramatic shift in allele fre-
quency between G. max and G. soja. Indeed, 56.6% of G.
soja accessions carried the C allele. However, in domes-
ticated soybean cultivars, the frequency of this allele was less
than 1.5% in the CNR, CHR, and Am sub‐populations. In the
CSR subpopulation, the frequency of the C allele was 21.4%
in landraces and 13.5% in improved cultivars. This dis-
tribution of allele frequencies is consistent with the C allele
being strongly selected against in the CNR, CHR, and Am
sub‐populations, either during or after the initial domes-
tication of soybean. In our study, the C allele was associated
with increases in FT and MT, as well as with increased yield in
the landraces from the CSR subpopulation, and this allele
appears to be beneficial in low‐latitude regions. Alleles of
these two novel loci (C‐1‐1 and C‐8‐9) could be used as
genetic markers in breeding programs.

Dynamic CC selection could benefit breeding
programs
In this study, we showed that CC was significantly correlated
with five manually scored traits collected from the same field
study of 1,303 soybean accessions (Figure 1G). Canopy
coverage may therefore be used as an indicator to select or
exclude extreme accessions. For example, the soybean ac-
cessions with lowest GYPP values always had extremely low
CC and can be easily excluded much earlier than at the seed
setting stage. However, a more important use of time‐series
CC data may be to enable selection and breeding for growth
velocity, especially in early growth stages, for example,
canopy closure. This trait is currently not commonly scored
by breeding programs due to logistical constraints. However,
early canopy closure can reduce weed pressure throughout
the growing season, thus enabling farmers to reduce labor
and herbicide costs. Our population of 1,303 soybean ac-
cessions showed diverse time‐series CC values that were
reflected in a PCA, whose first two principal components
represented the average CC and speed of canopy closure,
respectively. Soybean accessions that reach high canopy
closure in the early stages (Figure 3C) would provide targets
associated with both plant vigor and profitability and

sustainability outcomes of reduced weed pressure desirable
to farmers.

Unmanned Aircraft System‐based phenotyping will likely
not be adopted by breeding programs unless the time required
and the data acquisition and processing pipelines are suffi-
ciently streamlined. In our study, it was possible to phenotype
the entire set of 1,303 soybean accessions in a field experi-
ment in a single flight at an altitude of 12m in only approx-
imately 20min of UAS time (Table S2). The flight program may
be extended to obtain PH and maturity at the same time. By
contrast, CC is typically expensive to measure manually;
phenotyping a large set of plants for either height or maturity
could take at least one workday for manual collection. The
development of software and algorithms also continues to
shorten the labor time for image analysis, which is the most
time‐consuming step for UAS‐based phenotyping. We ob-
served a significantly improved PVE (Zhou and Stephens,
2014) by performing GWASs on the time‐series CC data col-
lected in Sanya compared to Nanchang, likely resulting from a
higher resolution RGB sensor used for this second set of
phenotypes and the addition of replicates for each soybean
accession. We anticipate that further advances in sensors,
image‐processing algorithms, and experimental design will
continue to increase the quality and utility of UAS for both
plant genetics and plant breeding investigations. Improved
UAS platforms are rapidly coming online that enable the ac-
quisition of multispectral data and thermal infrared imaging, in
addition to conventional RGB photography (Liu et al., 2021).
These advances will further accelerate the availability of time‐
series and multi‐location time‐series data sets and increase
the importance of identifying and using the most effective
approaches for incorporating time‐series data into quantitative
genetics studies and plant breeding programs.

MATERIALS AND METHODS

Plants and growth conditions
Li et al. (2022) genotyped 2,214 soybean (Glycine max (L.)
Merr.) accessions, which represent the broad genetic diver-
sity of 23,587 cultivated soybeans from the Chinese National
Soybean Gene Bank, via genome resequencing. Of these,
1,303 soybean cultivars were planted and well‐grown at
Nanchang (28°31′56″N, 116°1′34″E) and consisted of 903
landrace soybeans and 400 improved cultivars. Most of these
landraces (N= 897) originated from China, while the im-
proved cultivars originated from 11 countries (Table S1). The
soybean accessions have been categorized into four geo-
graphic regions: CNR (N= 96), CHR (N= 204), CSR (N= 627),
and Am (N= 137), while the remaining 239 could not be
categorized (Li et al., 2022). All 1,303 accessions were sown
in Nanchang on July 15, 2020. Each soybean accession was
hand‐planted as a 1.8‐m × 0.8‐m plot with two rows, with
10 cm between seedlings for each row, that is, 19 individuals
per row. Another 397 soybean cultivars out of the genotyped
2,214 soybean accessions (Li et al., 2022) were sown on
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December 3, 2020 in Sanya (18°23′44″N, 109°9′42″E), of
which 350 were included in the 1,303‐accession set planted
in Nanchang. Each soybean accession was hand‐planted
with three independent replicates (plots), with each replicate
being a 1‐m × 0.65‐m plot with two rows, and 10 cm between
seedlings for each row, that is, 11 individuals for each row.

Phenotyping data sets
Two types of soybean traits were collected: (i) manually col-
lected traits and (ii) UAS‐derived CC. The classical traits in
this study comprised PH, FT, MT, GYPP, and BN. All clas-
sical traits were determined manually in 2020 (Table S1), as
well as in 2017 and 2018 (Table S8) in Nanchang, in which all
accessions were planted in the same field as described for
the 1,303‐accession set planted in Nanchang. In addition,
some improved cultivars from subpopulation CNR were also
phenotyped for PH, FT, MT, and GYPP at two locations of
Northeast China: Harbin (45°45' N, 126°41' E) of Heilongjiang
province and Changchun (43°88' N, 125°35' E) of Jilin prov-
ince, in 2018 and 2019 (Table S9). The planting protocol was
the same as in Nanchang.

Moreover, there were 128 improved cultivars previously
genotyped in an independent study (Liu et al., 2020) and
developed from 1993–2004 in the Heilongjiang and Jilin
provinces in China. These additional improved cultivars were
phenotyped for BN, PH, MT, and yield, which were extracted
from 2‐year regional trials records (Table S10).

CC, as measured by an UAS, was collected at 17 time points
from August 1 to September 24, 2020 in Nanchang for the 1,303
genotyped soybean accessions. Another 397 genotyped soy-
bean cultivars were phenotyped for CC from December 23, 2020
to February 27, 2021 in Sanya. In both field trials, the accessions
lacking genotyping data or showing poor germination or survival
were not analyzed or described in this study. The acquisition of
CC for each plot was described as below.

UAS photograph collection
Two different unmanned aerial vehicles were used in this
study: Phantom 4 multispectral drone integrated with an RGB
sensor (2.1 million effective pixels) in Nanchang and a DJI
Matrice 600 Hexacopter Platform integrated with a Sony ILCE‐
7M2 RGB sensor (24.3 million effective pixels) in Sanya.
Photographs were collected at an altitude of 12m above the
ground in Nanchang and 17m in Sanya. The flight plans (Table
S2) were automated by DJI Ground Station Pro and took place
between approximately 10:00 and approximately 14:00 under
a clear sky with a trajectory overlap of 75% and side overlap of
60%/75% (Fawcett et al., 2019; Stöcker et al., 2020).

Image preprocessing
Image preprocessing consisted of two stages: (i) generation
of orthomosaic maps and (ii) geographical alignment and
tailoring. Generating an orthomosaic map comprised three
steps: (i) alignment of the original images and mosaicking; (ii)
generation of point clouds, mesh, and texture; and (iii) gen-
eration of the orthographic map and export. All three steps

were executed using Agisoft Photo‐Scan Professional soft-
ware (Version 1.2.2; Agisoft LLC., Russia), which is based on
structural motion algorithms (Verhoeven, 2011).

To obtain a unified geographical reference system for all or-
thomosaic images, georeferencing was carried out in Esri ArcGIS
(10.7; ESRI, USA). All other orthomosaic images were georefer-
enced by the extracted ground control points. Each plot for each
soybean line was then obtained by clipping orthomosaic images.
Clipping used an in‐house ENVI (5.3; Exelis Visual Information
Solutions, USA) IDL script. The images for each line were re‐
exported in tiff format using ArcGIS.

Extraction of CC
MATLAB (R2021a) was used to calculate CC in two steps. The
first step was two‐value processing. To identify crop targets
using a computer‐aided vision system, the green plant parts
were separated from the soil background. Binary images were
obtained by using the excess green index (EGI, (2G‐R‐B)/G)
presented by Meyer and Neto (2008). The EGI threshold was
set to 0.05 for canopy and background segmentation. EGI
values greater than the green threshold correspond to canopy
(binary value= 1), and values below the green threshold cor-
respond to soil (binary value= 0). The percentage of canopy
pixels in an image was defined as CC. Canopy coverage for all
plots was then calculated. Plots with an average CC below 0.2
at post‐FT points were excluded from subsequent analysis, as
they may reflect plots with lower germination or survival rates.

Genotyping data sets
A set of 8,785,134 SNPs from resequencing data of 2,214
soybean accessions (Li et al., 2022) based on the Williams 82
(W82) v2 reference genome (Schmutz et al., 2010) were im-
puted with Beagle (Browning and Browning, 2007; Browning
and Browning, 2016). SNPs were then filtered for a minimum
minor allele frequency (MAF) of at least 5% among input
samples for GWASs. Insertion/deletion (InDel) data from the
resequencing of the 2,214 soybean accessions were used for
filtering candidate genes without imputation. In addition, 218
wild soybean (G. soja) accessions that are part of the 2,214
soybean accessions were also analyzed in this study.

The genotypes of 2,898 soybean accessions from another
study (Liu et al., 2020) based on the Zhonghuang 13 (ZH13)
v2 reference genome were used here to supplement the
population size. The positions of all investigated W82 SNPs
were converted to ZH13 positions using their flanking se-
quences ±100 bp for BLASTN (Camacho et al., 2009) against
the ZH13 v2 reference genome (Shen et al., 2018, 2019).

Principal component analysis
Principal component analysis (Hotelling, 1933) is used for
dimensionality reduction by projecting data points into prin-
cipal components (PCs) while preserving data variation as
much as possible (Hotelling, 1933). Here, the PCA was per-
formed using the built‐in R (V4.0.2) function “prcomp” to in-
vestigate differences between the time‐series CC values.
Variation associated with each PC was calculated. The
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coordinates of all soybean individuals (observations) along
the first two PCs, which explained 97.6% of the standing
variation, were used as traits for subsequent GWASs.

Genome‐wide association studies
Genome‐wide association studies were performed with the uni-
variate linear mixed model, which uses the Wald test and cen-
tered relatedness matrix implemented in the GEMMA algorithm
(Zhou and Stephens, 2012). Canopy coverage‐associated loci
were identified with multiple steps, as described below, to cap-
italize on the multiple time points, which we refer to as time‐
series GWASs. (i) SNPs with a P‐value ≤1E–4 from CCGWAS for
each of the 13 time points (28–72 DAS) in Nanchang were used
to identify candidate CC‐associated loci. (ii) Significant SNPs
were merged into separate SNP clusters; consecutive SNP
clusters were merged into a single cluster when linkage dis-
equilibrium (LD) R2 was ≥0.5 or when they were less than 200 kb
apart. Each separate associated SNP clustered with at least five
unique SNPs were defined as CC candidate loci. (iii) The most
significant SNP of each candidate locus was required to have a
P‐value ≤3.16E−6, which was 1/pruned SNPs (as determined by
PLINK v1.90 with the settings –indep‐pairwise 100 kb 50 0.8)
(Gaunt et al., 2007). (iv) The associated loci were required to be
detected as associated for at least three independent time
points. The retained loci were defined as final CC‐associated loci.

Permutation tests were performed to evaluate the accu-
racy of the time‐series CC GWASs. The SNP set for each
accession was randomized across all accessions for per-
mutations, but maintaining the same CC values across dif-
ferent time points for each soybean accession to maintain the
CC correlation. Fifty independent permutations were con-
ducted, followed by a GWAS to identify associated loci
based on the criteria described above. The numbers of as-
sociated loci were used as the false positives to evaluate the
false discovery rate of the time‐series GWAS.

Published FT and PH QTLs and associated SNPs were
downloaded from SoyBase (https://www.soybase.org). QTLs
with a physical interval below 1Mb were retained. If a QTL
overlapped with or its associated peak SNP was included in
one of the CC‐associated loci above, the QTL or SNP was
considered as being part of the CC‐associated locus.

Phylogenetic tree
IQ‐Tree (V2) (Minh et al., 2020) was used to infer the phylo-
genetic tree, for which a general time reversible model with
unequal rates and unequal base frequency (Tavaré, 1986)
was used. The pruned SNPs (N= 316,112) were inputted for
construction of the tree. The tree was visualized by iTOL
(Letunic and Bork, 2007).

Data availability statement
The resequencing data for the soybean accessions in this
project were deposited in the Sequence Read Archive data-
base of NCBI (www.ncbi.nlm.nih.gov) under accession
number PRJNA681974 (Li et al., 2022) and in the Genome
Sequence Archive (GSA) database of BIG Data Center

(https://ngdc.cncb.ac.cn) under bioProject number
PRJCA002030 (Liu et al., 2020). Genotype data resulting from
those two projects were directly used.
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