

Rothamsted Research Harpenden, Herts, AL5 2JQ

Telephone: +44 (0)1582 763133 Web: http://www.rothamsted.ac.uk/

Rothamsted Repository Download

A - Papers appearing in refereed journals

Greenop, A., Woodcock, B. A., Wilby, A., Cook, S. M. and Pywell, R. F. 2018. Functional diversity positively affects prey suppression by invertebrate predators: a meta-analysis. *Ecology.* 99 (8), pp. 1771-1782.

The publisher's version can be accessed at:

• <u>https://dx.doi.org/10.1002/ecy.2378</u>

The output can be accessed at: <u>https://repository.rothamsted.ac.uk/item/8471z</u>.

© 4 May 2018, Rothamsted Research. Licensed under the Creative Commons CC BY.

11/03/2019 13:57

repository.rothamsted.ac.uk

library@rothamsted.ac.uk

Functional diversity positively affects prey suppression by invertebrate predators: a meta-analysis

Journal:	Ecology
Manuscript ID	ECY17-0800.R2
Wiley - Manuscript type:	Articles
Date Submitted by the Author:	23-Feb-2018
Complete List of Authors:	Greenop, Arran; Centre for Ecology and Hydrology, ; Lancaster Environment Centre, Woodcock, Ben; CEH Wilby, Andrew; Lancaster University Cook, Sam; Rothamsted Research Pywell, Richard; Centre for Ecology and Hydrology, UK
Substantive Area:	Predation < Species Interactions < Community Ecology < Substantive Area, Biological Control < Species Interactions < Community Ecology < Substantive Area, Agroecosystems < Ecosystems < Substantive Area, Phylogenetics < Systematics < Population Ecology < Substantive Area, Species Interactions < Community Ecology < Substantive Area
Organism:	
Habitat:	
Geographic Area:	
Additional Keywords:	Functional diversity, Phylogenetic diversity, Predator-prey interactions, Traits, Conservation biological control, Natural enemies, Biodiversity and ecosystem functioning, Agricultural ecosystems, Ecosystem services, Species richness
Abstract:	The use of pesticides within agricultural ecosystems has led to wide concern regarding negative effects on the environment. One possible alternative is the use of predators of pest species that naturally occur within agricultural ecosystems. However, the mechanistic basis for how species can be manipulated in order to maximise pest control remains unclear. We carried out a meta-analysis of 51 studies that manipulated predator species richness in reference to suppression of herbivore prey to determine which components of predator diversity affect pest control. Overall, functional diversity (FD) based on predator's habitat domain, diet breadth and hunting strategy was ranked as the most important variable. Our analysis showed that increases in FD in polycultures led to greater prey suppression compared to both the mean of the component predator species, and the most effective predator species, in monocultures. Further analysis of individual traits indicated these effects are likely to be driven by

broad niche differentiation and greater resource exploitation in functionally diverse predator communities. A decoupled measure of phylogenetic diversity, whereby the overlap in variation with FD was removed, was not found to be an important driver of prey suppression. Our results suggest that increasing FD in predatory invertebrates will help maximise pest control ecosystem services in agricultural ecosystems, with the potential to increase suppression above that of the most effective predator species.

SCHOLARONE[™] Manuscripts

to Review Only

1	Running head: Functional diversity drives prey suppression
2	Functional diversity positively affects prey suppression by invertebrate predators: a
3	meta-analysis
4	Arran Greenop. ^{1,2} , Ben A Woodcock ¹ , Andy Wilby ² , Samantha M Cook ³ & Richard F
5	Pywell ¹ .
6	¹ NERC Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford,
7	Wallingford, Oxfordshire OX10 8BB, UK. Tel. +44(0)1491692415
8	² Lancaster Environment Centre, Library Avenue, Lancaster University, Lancaster LA1 4YQ
9	³ Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Herts,
10	AL5 2JQ, UK.
11	
12	Contact Author: Arran Greenop, e-mail:arrgre@ceh.ac.uk, 07538808379
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	

26 Abstract

27 The use of pesticides within agricultural ecosystems has led to wide concern regarding 28 negative effects on the environment. One possible alternative is the use of predators of pest 29 species that naturally occur within agricultural ecosystems. However, the mechanistic basis for how species can be manipulated in order to maximise pest control remains unclear. We 30 31 carried out a meta-analysis of 51 studies that manipulated predator species richness in 32 reference to suppression of herbivore prey to determine which components of predator 33 diversity affect pest control. Overall, functional diversity (FD) based on predator's habitat 34 domain, diet breadth and hunting strategy was ranked as the most important variable. Our analysis showed that increases in FD in polycultures led to greater prey suppression 35 36 compared to both the mean of the component predator species, and the most effective 37 predator species, in monocultures. Further analysis of individual traits indicated these effects are likely to be driven by broad niche differentiation and greater resource exploitation in 38 functionally diverse predator communities. A decoupled measure of phylogenetic diversity, 39 40 whereby the overlap in variation with FD was removed, was not found to be an important 41 driver of prey suppression. Our results suggest that increasing FD in predatory invertebrates 42 will help maximise pest control ecosystem services in agricultural ecosystems, with the 43 potential to increase suppression above that of the most effective predator species.

44

45

Key words: Functional diversity, Phylogenetic diversity, Predator-prey interactions, Traits,
Conservation biological control, Natural enemies, Biodiversity and ecosystem functioning,
Agricultural ecosystems, Ecosystem services, Species richness

49

50

2

51 Introduction

52 The predicted growth of global populations will lead to an ever-increasing demand for 53 agricultural systems to deliver greater food production (25% - 75% increase in food by 2050; 54 Hunter et al, 2017). Whilst this goal may be achieved through conventional forms of agricultural intensification, there are likely limitations to the extent to which chemical 55 56 insecticides can be relied upon without facing a myriad of risks. These range from the likelihood of pesticide resistance in pest species (Nauen & Denholm 2005; Bass et al. 2014), 57 the revocation of active ingredients (NFU, 2014), damaging effects on non-target organisms 58 59 (Easton & Goulson 2013; Hallmann et al. 2014; Woodcock et al. 2016, 2017), as well as diffuse pollution impacting on human and environmental health in general (Wilson & Tisdell 2001; 60 61 Horrigan et al. 2002). An increased reliance on conservation biological control, where 62 predators or parasitoids (here, referred to collectively as predators) of pest species are 63 encouraged within agricultural ecosystems has the potential to address some of these issues (Begg *et al.* 2017). Fundamental to integrating conservation biological control into agricultural 64 65 practices is understanding which components of invertebrate biodiversity need to be managed to maximise pest suppression. 66

67

A number of meta-analyses (Bianchi et al. 2006; Letourneau et al. 2009; Griffin et al. 2013) 68 have demonstrated that higher predator richness can increase prey suppression (reduction in 69 70 herbivores by predators), however, species richness provides little elucidation as to the 71 underlying mechanisms driving this trend. An important characteristic of multi-predator 72 systems is the presence of significant variation in the response of prey suppression to increasing 73 predator species richness; a consequence of the range of complex interactions between 74 predators, and predators and prey (Ives et al. 2004; Casula et al. 2006; Schmitz 2007). For example, intraguild interactions can be positive (functional facilitation), whereby predators 75

76 facilitate the capture of prey by other predator species (Losey & Denno 1998). Niche 77 complementarity is another interaction that can lead to overyielding of prey suppression by 78 diverse assemblages, where individual predators may feed on different life stages of a prey 79 species (Wilby et al. 2005). However, negative interactions also occur between predators reducing prey suppression in diverse assemblages. One of the most commonly encountered of 80 81 these is intraguild predation, whereby a top predator consumes not only the prey but also the intermediate predators (Rosenheim et al. 2004a; Finke & Denno 2005). 82 Interference 83 competition can also occur whereby one predator species reduces prey capture by the other due 84 to negative behavioural interactions (Lang 2003). Given the complexity of these interactions, the net effect of predator species diversity is often difficult to predict. 85

86

Defining morphological or behavioral characteristics of individual species that potentially 87 88 impact on prey suppression, often referred to as functional effect traits, provides an opportunity 89 to elucidate the mechanistic link between predator biodiversity and the delivery of this 90 ecosystem service (Wood et al. 2015). For example, Schmitz (2007) suggested that traits 91 related to habitat domain (the spatial location of where the natural enemy feeds, e.g. ground or upper canopy of vegetation) and hunting method (how they catch prey, e.g. sit & wait) were 92 93 important in understanding how predator interactions affected prey suppression. Similarly, size differences between predators and prey can also influence intraguild interactions and play 94 95 an important role in predicting consumption rates (Rosenheim et al. 2004b; Brose et al. 2008; 96 Ball et al. 2015). While these assumptions have been supported in part by several studies (Woodcock & Heard 2011; Miller et al. 2014; Northfield et al. 2014; Michalko & Pekár 2016) 97 98 the direct implications of functional diversity (FD) between species on their capacity to deliver 99 pest control remains poorly understood.

100

An understanding of how predator diversity and traits influence pest suppression has been identified by several reviews as being crucial to the implementation of sustainable pest management in agricultural ecosystems (Bianchi et al. 2010; Wood et al. 2015; Jonsson et al. 2017; Perović et al. 2017). This information is a required step in bridging the gap between experimental small-scale mesocosm (cage) studies and generalizable rules that can be used by practitioners in field-scale management strategies, and a detailed meta-analysis directly addressing this question has yet to be undertaken (Woodcock *et al.* 2013).

108

109 Here we address this knowledge gap by undertaking a meta-analysis to identify how 110 dissimilarity in key functional effects traits of invertebrate predators can influence interactions 111 between predators and their prey to affect pest suppression. The meta-analysis was undertaken 112 using 51 studies (214 data points) comprising a total of 73 predator species attacking 35 species 113 of arthropod prey. We assess how both FD based on an *a priori* selection of traits, and 114 phylogenetic diversity (PD) based on evolutionary history are linked to prev suppression 115 (Cadotte et al. 2013). We use the meta-analysis to test the general prediction that increased 116 predator species richness leads to greater prey suppression (prediction 1) (e.g. Letourneau et 117 al. 2009; Griffin et al. 2013; Katano et al. 2015). We also test the following predictions related 118 to explaining diversity effects; increased FD of key effects traits explains patterns in prey 119 suppression in polycultures due to increased niche complementarity between predator species 120 (prediction 2); PD has a smaller effect on prey suppression than FD as it accounts for broad 121 differences in evolutionary history, compared to FD which is based on an *a priori* selection of 122 traits (prediction 3); and finally related to body size differences between predators, and 123 predators and prey we predict that, increased body size ratio between predators and prey will 124 positively affect prey suppression, whilst greater size differences between predators will

- negatively affect prey suppression due to increased intraguild predation (prediction 4) (Lucas,
- 126 Coderre & Brodeur 1998; Rosenheim *et al.* 2004b; Brose 2010; Ball *et al.* 2015).
- 127

128 Materials and Methods

129 *Study selection and data*

130 We carried out a systematic literature search of studies testing the impact of factorial combinations of increasing predator or parasitoid species richness on prey suppression. These 131 132 experiments were all undertaken in mesocosms, representing an experimental arena within 133 which population changes of the prey species could be monitored. Literature searches were 134 carried out between November 2016 – January 2017 using ISI Web of Science (search terms 135 included in Appendix S1 in Supporting Information) and reference lists published in the 136 following studies: Sih et al. 1998; Straub et al. 2008; Letourneau et al. 2009; Griffin et al. 2013; Katano et al. 2015. In addition, unpublished sources (Asiry, 2011; Fennel, 2013) of 137 138 literature were included and additional studies identified by E Roubinet (pers comm).

139

140 Studies were selected based on their fulfilment of the following criteria: 1) the study system 141 was of terrestrial arthropods, 2) predator species richness was manipulated in reference to the 142 suppression of arthropod prey species, 3) the study considered two or more predator species, 4) all predators of prey were included in monoculture (species A or species B) and polyculture 143 144 (species A+B) treatments, 5) the study contained a quantifiable measure of prey suppression, 145 6) the study included mean, standard deviations and the number of replicates for each 146 treatment. Typically, individual published studies were composed of multiple experiments 147 where factors other than predator species richness were manipulated. These factors included 148 prey species richness, habitat complexity, temperature/environmental conditions, predator life stage, predator density as well as methodological factors such as the use of additive and 149

150 substitutive experimental designs; of which factors could potentially impact the nature of multi-151 predator trophic interactions and the observed outcome on prev suppression (Finke & Denno 152 2002; Wilby & Orwin 2013; Ajvad et al. 2014; Drieu & Rusch 2017). These experiments were 153 therefore treated as separate data points. For studies investigating responses of multiple instars of the same predator species, only the life stages that provided the maximum and minimum 154 155 prey suppression were included. This was done to avoid potential pseudo-replication due to strong functional similarity between successive larval instars while providing an indication of 156 157 the full range of potential emergent impacts on prey suppression by that species (Cisneros & 158 Rosenheim 1997).

159

160 *Quantification of herbivore suppression effect sizes*

161 Where possible, we extracted data on the impact of predator diversity on prey suppression 162 directly from published studies, either from presented data or using WebPlotDigitizer 3.11 (Rohatgi, 2017) to extract information from graphs. Where the required information was not 163 164 available, the raw data was requested directly from the corresponding author. A total of 51 165 studies constituting 214 data points were included in analyses (see Appendix S2 for literature As prey suppression was measured in several different ways, we used the 166 included). 167 standardised mean difference corrected for small sample sizes as our test statistic (Hedges 1981; Hedges & Olkin 1985). We also calculated the corresponding sampling variance for 168 169 each experiment (Hedges 1981; Hedges & Olkin 1985). Following Cardinale et al., 2006 and 170 Griffin, Byrnes & Cardinale, 2013, we calculated two test statistics for each experimental data point. The first is *SMD_{mean}*, which is the standardised mean difference between the mean (\bar{x}) 171 172 effect of the predator polyculture (*p*) on prey suppression compared to the mean effect of the 173 component predator species in monocultures (m) calculated as:

174
$$SMD = \frac{\overline{x_p} - \overline{x_m}}{s}J$$

175 where *s* is the pooled standard deviation calculated as:

176

177
$$s = \sqrt{\frac{(n_p - 1)SD_p^2 + (n_m - 1)SD_m^2}{n_p + n_m - 2}}$$

178

and *J* a correction factor applied for small sample sizes:

180
$$J = \frac{3}{4(n_p + n_m) - 1}$$

181 The variance (v) for each experiment was calculated as:

182
$$V = \frac{n_p + n_m}{n_p n_m} + \frac{SMD^2}{2(n_p + n_m)}$$

The second metric, SMD_{max} , is the standardised mean difference between the mean effect of 183 the polyculture on prey suppression compared to the most effective predator species in a 184 185 monoculture (m_x) , where m_x replaces m in the above equations. Where the measure of prev suppression was negative (e.g. aphid population size decreased due to greater predation) then 186 187 the sign of the mean was reflected (multiplied by minus 1) so that the measure could be more intuitively interpreted as a positive effect of increased prey suppression in polycultures (Griffin 188 189 et al. 2013). All effect sizes and sampling variances were calculated in RStudio using the 190 *metafor* package (Viechtbauer, 2010; R Core Team, 2016).

191

192 Species richness

Variables were included for predator species richness and prey species richness, as a metaanalysis by Katano *et al.* (2015) demonstrated variation in herbivore suppression between different richness levels. Both variables were included as categorical due to a strong skew towards lower richness levels (prey richness = 1 (n = 177) and prey richness >1 (n = 37); predator richness = 2 (n = 152) and predator richness > 2 (n = 62)).

198

199 *Effects traits describing functional diversity*

For each of the predator species we collected information on 'effects traits' which represent 200 201 physical or behavioral characteristics that would have a direct impact on prey suppression. Due 202 to the taxonomic breadth of predator species we included effects traits based on: hunting strategy, defined as the method used by the predator species to capture prey; habitat domain, 203 204 defined as the part of the experimental area where the predator predominantly hunts; and diet 205 breadth, describing whether the predators were generalists or specialists. The trait categories, 206 definitions and species within these groups are shown in Appendix S3; Table 1 and 2. Where 207 possible trait classifications were obtained directly from the study included in the metaanalysis. Where this was not possible information on species ecology was determined from a 208 209 search of primary and grey literature, as well as the use of expert opinion. These traits were 210 selected as previous research suggests they play an important role in predator-predator 211 interactions and the resultant effect on herbivore suppression (Losey & Denno 1998; Schmitz 212 2007; Straub et al. 2008; Woodcock & Heard 2011; Ball et al. 2015). A Gower dissimilarity 213 matrix (Gower 1971) was calculated using these effects traits. The square root of the Gower 214 dissimilarity matrix was then subjected to principle coordinate analysis and used to calculate 215 mean pairwise dissimilarity between the predator species within each experiment as an index 216 of functional diversity (FD) (see functional and phylogenetic diversity measures for a description). Functional dissimilarity pairwise matrices were calculated using the *decouple* 217 218 function supplied in de Bello et al. 2017.

219

220 Phylogentic diversity

Whilst the functional effects traits were selected due to their direct importance in predicting
prey suppression based on previous research, these do not describe the full functional identity
of individual species. This functional identity would be defined by both response traits as well

224 as potentially undefined effects traits linked to pest control delivery. These between species 225 differences in combined functional characteristics can be explained by phylogenetic history, 226 with the assumption that a common evolutionary origin will explain a large component of the 227 functional similarity in traits that characterise predator species (Cadotte et al. 2013). We used the Linnaean taxonomic classification (phylum, class, order, family, genus) for the predator 228 229 species to construct a surrogate phylogenetic tree in the *ape* package in RStudio (Paradis, Claude and Strimmer, 2004). From this tree, a matrix of phylogenetic dissimilarity was 230 231 calculated from the square root branch lengths between the tips of the tree for each species. 232 The overlap in variation between the functional dissimilarity and phylogenetic dissimilarity 233 between each species was then decoupled using the *decouple* function described in de Bello et 234 al, (2017). This was carried out to ensure that the two measures for each species were 235 explaining unique components of predator diversity. This was then used to derive a decoupled 236 phylogenetic dissimilarity matrix between predator species. The functional diversity metric incorporates diversity linked to both individual traits and an inherent component resulting from 237 238 phylogenetic links between species (referred to as FDist in de Bello et al., 2017). As such this 239 is typical of other existing functional diversity metrics (for example Rao's quadratic entropy (de Bello et al., 2017)). However, the decoupled phylogenetic diversity metric represents the 240 241 residual phylogenetic variation not accounted for through the functional traits (referred to as 242 dcPDist in de Bello et al., 2017). This decoupled measure of phylogenetic diversity was 243 included as it allowed us to identify if other unmeasured traits captured by phylogenetic 244 diversity were important in prey suppression.

245

246 Functional and phylogenetic diversity measures

From each functional and phylogenetic dissimilarity matrix, we calculated the mean pairwise dissimilarity between species in each experiment using the *melodic* function supplied in de Bello et al., (2016);

250

251 Mean pairwise dissimilarity =
$$\frac{1}{\sum_{i>j}^{N} p_i p_j} \sum_{i>j}^{N} p_i p_j d_{ij}$$
,

252

where N is the number of species in a community, *dij* is the dissimilarity between each pair of 253 254 different species *i* and *j*, respectively, *pi* and *pj* are the relative abundances of species *i* and *j*, 255 respectively, divided by the total of all species abundances in a community. We used an unweighted index based on presence/absence (where $p_i = 1/N$) as predator numbers were equal 256 257 in the majority of experiments included in the meta-analysis. Mean pairwise dissimilarity was 258 selected for all the phylogenetic and functional diversity measures (see Table 1) as it has been found to be relatively insensitive to species richness where richness levels are low (de Bello et 259 260 al. 2016).

261

262 Body size

Body size has been shown to influence predator-predator interactions where large body sized 263 generalist predators may consume smaller predators as well as prey (Lucas, Coderre & Brodeur 264 265 1998; Rosenheim et al. 2004b). Additionally, body size ratios between predators and prey have 266 been shown to affect consumption rates (Lucas et al. 1998; Rosenheim et al. 2004b; Brose 2010; Ball et al. 2015). We defined a mean body size (body length in mm) for each predator 267 268 species (Appendix S3). Where different life stages of single predator species were used in experiments, this was accounted for with life-stage specific mean body size. We also included 269 a mean body size for each of the prey species. From these measures of body size, we calculated 270

271 the mean size difference in predator body sizes, and the ratio between the smallest predator and prev body size (Table 1). We did not include the individual sizes of smallest and largest 272 273 predators as covariates as these were both highly inter-correlated with either predator-predator 274 size differences or predator-prey body size ratios (see Appendix S4: Table 1). Similarly, a high level of collinearity was also found between the prey and the largest predator body size ratio 275 276 (ratio_{large}), and prey and the smallest predator size ratio (ratio_{small}) variables. The highest ranked model sets including ratio_{small} had lower AIC_c scores than the highest ranked ratio_{large} models; 277 278 therefore only ratio_{small} was included in final analysis (Appendix S4: Table 2-5).

279

280 Experimental factor moderator variables

281 In addition to factors associated with predator and prey species richness and traits, a number 282 of experimental factors were also included in analysis that have previously been shown to 283 influence prey suppression. These included: experimental arena volume (cm³; log transformed to improve linearity), duration of study following predator addition (hours) and study setting 284 285 (field, or greenhouse/lab). Additionally, a factor was included to test between study designs (additive or substitutive) as this has been shown to lead to different conclusions about prey 286 suppression depending on the design used (Schmitz 2007; Byrnes and Stachowicz, 2009). 287 Additive studies increase the number of predators in the polyculture based on the sum of the 288 component predators in monocultures, whereas substitutive designs maintain the same number 289 290 of predators in polycultures and monocultures.

291

292 *Statistical analysis*

Intercept only random effects models were used for both SMD_{mean} and SMD_{max} to determine whether there was an overall effect of greater prey suppression in polycultures. Models included study identity as a random factor to account for the fact that multiple points came

296 from single studies. The restricted maximum likelihood was used (REML) to estimate between 297 study variance. The meta-analysis was unweighted as weighting by inverse variance has been 298 shown to result in bias against small sample sizes (Hedges & Olkin 1985; Letourneau et al. 299 2009). All meta-analyses were undertaken using the rma.mv function in the package *metafor* (Viechtbauer, 2010; RStudio, 2015). Wald-type 95% confidence intervals are given. 300 301 Assessments of publication bias in response to an underrepresentation of non-significant results were undertaken using funnel plots (Koricheva, Gurevitch and Mengersen, 2013). Some 302 303 evidence of publication bias was found whereby studies with lower precision were more likely 304 to detect negative effects for SMD_{max} (See Appendix S5). However, as this result was not detected for SMD_{mean}, this is likely caused by the calculation of the SMD_{max} metric (see Schmid 305 306 et al. 2008).

307

We used a meta-regression with a maximal model including FD, PD, ratio_{small}, predator size 308 309 difference, prey size, prey richness and predator richness to quantify how emergent effects on 310 prey suppression were effected by aspects of invertebrate community structure (Table 1). The 311 response variables were the two metrics SMD_{mean} and SMD_{max}. An information theoretic 312 approach was used to identify the best set of candidate models from the full model and we then 313 used multi-model averaging to obtain parameter estimates (Burnham & Anderson 2004). 314 Maximum-likelihood was used to allow model comparison with a study subject identifier 315 included as a random effect. All possible model combinations of the variables included in the 316 full model were run. Models that had ΔAIC_c values of <2 were then used to rank variable importance and obtain model averaged parameter estimates based on AIC_c relative importance 317 318 weights (Burnham & Anderson 2004). Variables were transformed where required to improve 319 linearity (Table 1). All model averaging was carried out in the *glmulti* package in RStudio (Calcagno and Mazancourt, 2010). 320

\sim	\sim		
- 2	•,	1	
. ר	-		

322 Whilst the FD metric allowed for comparisons to be made to phylogenetic diversity, the 323 inclusion of a number of different traits meant it was difficult to discern which aspects of FD 324 were driving any potential trends. To account for this, we analysed differentiation within each trait using mixed models comparing all possible model combinations based on AIC_c values. 325 326 Full models started with diet breadth, hunting strategy and habitat domain included as fixed 327 effects with the study subject identifier as a random effect. Models that had ΔAIC_c of <2 were 328 then ranked to obtain model-averaged parameter estimates based on AIC_c relative importance 329 weights (Burnham & Anderson 2004). Models were also run including just FD, so that a comparison of AIC_c values of the individual traits with the composite metric of functional 330 331 diversity could be made.

332

We also individually tested whether the experimental moderator variables had a significant effect on the two SMD metrics using mixed effects models, again using REML with a study subject identifier included as a random factor. We did not include experimental variables in model averaging as the focus of this analysis was to identify the importance of factors related to predator and prey community structure on prey suppression, not experimental design. Variables were tested individually as information was absent from several studies for some of the experimental explanatory variables.

340

341 Results

342 General effects across studies

Overall trends showed greater prey suppression in predator polycultures compared to the mean effect of the component species in a monoculture (SMD_{mean}), as the average effect size for SMD_{mean} was significantly greater than zero (SMD_{mean} = 0.444; 95% CI [0.265, 0.623]; Z = 4.858, p = <0.001). However, SMD_{max} (suppression of herbivores in the polyculture compared

to the most effective predator) was not found to differ significantly from zero with a mean effect size of -0.109 (95% CI [-0.308, 0.090], Z = -1.078, p = 0.281). This shows that increased predator richness in polycultures did not result in significantly greater levels of prey suppression than the most effective predator in a monoculture.

351

352 *Predator and prey variables*

353 SMD_{mean}

354 Functional diversity was ranked as the most important variable based on relative model 355 weights of the 2AIC_c subset, and was the only parameter included in the top ranked model (Table 2: Figure 1) (See Appendix S6 for 2AIC_c subset). Functional diversity (parameter 356 357 estimate = 0.448, 95% CI [0.065, 0.831]) had a positive effect on SMD_{mean}. Ratio_{small} 358 (parameter estimate = -0.080, 95% CI [-0.344, 0.184]) was ranked as the second most important variable, however had confidence intervals that overlapped zero, as did the 359 variables prey richness, predator richness, size difference, prey size and decoupled 360 361 phylogenetic diversity (Table 2; Figure 1).

362

Where the individual traits were analysed separately, diet breadth was the only variable 363 included in the top ranked model (See Appendix S7; Table 1). Differentiation within diet 364 breadth (parameter estimate = 0.371, 95% CI [0.096, 0.646]) was found to have a positive 365 366 effect on SMD_{mean}. Hunting strategy was also included in the 2AIC_c subset, however had 95% 367 confidence intervals that overlapped zero (hunting parameter estimate = 0.023, 95% CI [-0.098, 0.144]). The FD only model showed a positive effect of FD (parameter estimate = 368 369 0.453, 95% CI [0.072, 0.831]). When compared to the diet breadth only model, the FD 370 model had a higher AIC_c value (Diet breadth only model AIC_c = 443.960; Functional diversity model AICc = 445.671). Suggesting that the beneficial effects of FD on SMD_{mean} in 371

the main predator and prey model may have largely been driven by differentiation in dietbreadth.

374

375 SMD_{max}

Functional diversity, predator richness and ratio_{small} were all included in the top ranked model 376 377 for SMD_{max} (Appendix S6). Functional diversity (parameter estimate = 0.461, 95% CI [0.049,(0.873)) was again found to have a positive effect, whereas both predator richness of >2 species 378 (parameter estimate = -0.276, 95% CI [-0.541, -0.011]) and ratio_{small} (parameter estimate = -379 380 0.282, 95% CI [-0.754, 0.190]) had a negative effect on SMD_{max} (although the 95% CI for ratio_{small} overlapped zero). Variables also included in the top ranked models were prey size and 381 382 size difference between predators, however, these were only included in models in combination 383 with functional diversity and had confidence intervals that overlapped zero (Table 2; Figure 2). Decoupled phylogenetic diversity was included in one model in the 2AIC_c subset, however it 384 385 too had confidence intervals that overlapped zero (Table 2; Figure 2).

386

387 Where the traits were analysed separately, a null model was included in the $2AIC_c$ subset 388 (Appendix S7; Table 4). This indicated that none of the individual traits explained a greater 389 amount of the variation than a model without any factors included. In comparison to the trait 390 model, the FD model showed a clear positive effect of FD (parameter estimate = 0.458, 95% 391 CI [0.049, 0.867]) on SMD_{max}, and had a lower AIC_c by a value of <2 compared to the null 392 model (Appendix S7). This indicates that the positive effect of FD on SMD_{max} is likely 393 dependent on a composite measure of diversity including all three traits.

394

395 Experimental factors

396 Of the experimental variables tested, study design (additive or substitutive) was found to have 397 a significant effect on SMD_{max} metric (Table 3). Compared to additive designs, substitutive 398 designs were found to have a significantly lower mean effect size (whilst the mean for additive 399 designs was positive, the 95% CI still overlapped zero) (Table 3; Figure 3). As this is indicative of a potential density effect, where positive diversity effects in polycultures could be a product 400 401 of predator densities, we re-analysed the predator and prey variables for SMD_{max} only including studies that accounted for density. This had no qualitative effect on our results (See Appendix 402 403 S8). None of the other experimental variables included had a significant effect on SMD_{mean} or 404 SMD_{max}, suggesting that the results were not artefacts of differences in spatio-temporal scale or the study setting (Table 3). 405

406

407 Discussion

408 When compared to the pest suppression achieved by individual predator species, combining 409 predators in polycultures increased the top-down control of herbivores. This is consistent with 410 our first prediction that increased predator species richness leads to greater prey suppression. 411 However, this was only the case when considering the average level of prey suppression across 412 all predators (SMD_{mean}), with polyculture effects not exceeding those of the most effective 413 predator (SMD_{max}). Interestingly, increased species richness above that of simple two predator 414 systems was shown to have a negative effect when polycultures were compared to the most 415 effective predator species. This result is likely an artefact of bias in the calculation of SMD_{max} 416 metric (Schmid et al. 2008; Griffin, Byrnes & Cardinale 2013). Where predator assemblages 417 are species rich they are increasingly likely to include species that affect the extreme ranges of 418 prey suppression. Therefore, whilst sampling effects increase the likelihood that diverse 419 polycultures will include a highly effective predator, when polycultures are compared to the most effective predator in a monoculture, they may be as probable to perform badly due to an 420

increased likelihood of poorly performing predatory species also being present (Schmid et al.
2008). In an agricultural context, this would suggest that management should be targeted
towards the most effective predator species rather than increasing overall richness (Straub &
Snyder 2006; Straub *et al.* 2008).

425

426 Although where we considered moderator variables, the results of our meta-regression supported our second prediction that greater FD positively affects prey suppression. Further 427 428 analysis, where we compared the polyculture to the mean of the component species in 429 monocultures, revealed that this was most likely to be driven by differences in diet breadth. 430 Several studies suggest that intraguild predation by generalists on specialist predators can lead 431 to herbivore communities being released from predation (e.g. Hodge, 1999; Rosenheim, 432 Wilhoit and Armer, 1993; Snyder and Ives, 2001). However, our analysis would suggest that 433 the combination of both generalist and specialist predators in polyculture treatments can lead 434 to greater prey suppression than the mean of the component species. A number of mechanisms 435 are proposed for this; firstly, complementary predation may occur between a generalist 436 predator and specialist parasitoids where the predator prefers feeding on alternate or unparasitised prey, thus minimising intraguild predation on the parasitoid (Cardinale et al., 437 438 2003; Snyder et al., 2004). Secondly, it is possible that spatial resource partitioning commonly 439 occurs between generalist and specialist predators feeding on different parts of the plant 440 (Northfield et al., 2010; Gable et al., 2012). Consequently, our metric of diet breadth may have 441 captured more subtle separation in predator feeding locations between specialist and generalists 442 that were not captured by broader distinction within the habitat domain category. Thirdly, 443 through sampling effects alone, a polyculture containing both specialist and generalist 444 predators may lead to greater prey suppression when compared to the mean of the component species, due to inclusion of the most effective predator. Thus, in our analysis, this may have 445

446 led to polycultures with increased diversity in the diet breadth category causing greater prey 447 depletion than the mean of the component predator species. Where this occurs positive sampling effects cannot be ruled out. This mechanism is supported by empirical evidence from 448 449 Straub and Snyder (2006), who found that the inclusion of an aphid specialist within polycultures led to significantly greater aphid depletion than communities without the 450 451 specialist present. Finally, communities made up of both generalist and specialist predators may provide more stable herbivore control than monocultures of either type of predator alone 452 453 due to the insurance hypothesis (Snyder et al., 2006).

454

When we compared polycultures to the most effective predator, none of the single traits (diet 455 456 breadth, habitat domain and hunting strategy) had a clear effect on prey suppression. Instead, 457 only the composite measure of the functional diversity FD had a positive effect. Functional 458 diversity based on these traits is likely to reflect broad niche partitioning between predators leading to fewer antagonistic interactions, and greater exploitation of available resources (Ives 459 460 et al. 2004; Finke & Snyder 2008; Northfield et al. 2010; Gontijo et al. 2015; Northfield, 461 Barton and Schmitz., 2017). Previous meta analyses by Cardinale et al. (2006) and Griffin, Byrnes & Cardinale (2013) found that increased predator species richness provided greater 462 463 prey suppression than the mean of the component species, but not to a greater extent than the most effective predator. The results of our main meta-analysis are consistent with these studies, 464 465 however, we have built on this previous research to suggest conditions under which predator 466 polycultures can provide greater prey suppression than the most effective predator, as a result of functional diversity effects mediated through aggregate effects traits. Griffin, Byrnes & 467 468 Cardinale (2013) used taxonomic distinctness (similar to our measure of phylogenetic 469 diversity) as a proxy for functional diversity and found it had a positive effect on prey suppression in polycultures when compared to the mean of the component species, but not 470

471 when compared to the most effective predator. In our analysis, when phylogeny was decoupled 472 from aspects of FD it was found to have no clear effect on prev suppression, supporting our 473 third prediction that PD has a smaller effect on prey suppression than FD. One of the reasons 474 that phylogeny was not identified as an important driver of prey suppression may be because only a few effect traits impact on prey suppression in the context of mesocosm studies, all of 475 476 which were accounted for through the used metric of FD. Phylogenetic diversity is often used as surrogate to represent all functional differences between species, however the variation 477 478 explained by the key effects traits can be concealed by irrelevant traits also encompassed within 479 the metric, which are a result of divergent evolutionary histories. This has led to contradicting results from other studies. For example, a study by Rusch et al. (2015) found that functional 480 481 traits selected a priori, based on their link to prey suppression, better predicted aphid pest 482 control compared to a taxonomic approach. Whereas a study by Bell et al. (2008) selected 483 broad ranging functional traits that were incorporated into a single metric and had little effect in predicting the predation rates of a range of invertebrate predators compared to using 484 485 taxonomy. Therefore, careful consideration of appropriate functional traits would appear 486 imperative to discerning biodiversity and ecosystem functioning relationships where multiple traits are incorporated into a single metric. Furthermore, the relative usefulness of phylogenetic 487 488 diversity/taxonomic approaches in predicting ecosystem services are also limited by the fact that they do not allow a direct link between traits and a function to be ascertained. This does 489 490 not preclude the importance of phylogeny between species being of general importance, 491 however in the case of prey suppression where appropriate traits were identified PD did not 492 have a clear effect.

493

494 Previous literature suggests that hunting mode and habitat domain play important roles in495 emergent impacts on prey suppression. However, in the current meta-analysis neither trait was

496 identified to be individually important. The absence of detected effects of these traits within 497 this meta-analysis may be due to limitations in the data set. For example, biases in the source 498 data meant that 'sit and wait' and 'mobile-active' predators occurring within the same habitat 499 made up a small proportion (18%) of the studies included in the analysis. This would limit the 500 capacity of the analysis to differentiate between effects of these hunting modes. A further issue 501 may relate to the resolution with which broad habitat categorisations capture fine scale 502 differences in predator's habitat use in diverse systems (as considered here). It is possible that 503 while the application of hunting domain and habitat domain to predict overyielding is effective, 504 its definition within these categories needs to be defined on a community by community basis. 505 Independent of these issues linked to limitations in the data, our results still suggest that broad 506 niche differentiation through FD leads to overyielding. It is highly likely that this is at least in 507 part a function of complementarity between predators within combinations of habitat domain, 508 hunting mode and/or the diet preferences. This study ultimately provides evidence for the 509 importance of predator functional diversity as a prerequisite for effective pest control across 510 compositionally different predator-prey systems. However, pulling apart the exact nature of 511 the mechanisms that underpin this will be dependent on new methodological approaches to classification of factors like hunting strategy and habitat domain that allow for making high 512 513 resolution comparisons between fundamentally different predator-prey systems. Northfield, 514 Barton and Schmitz, (2017) present a spatially explicit theory to describe predator interactions 515 across landscapes that is not dependent on temporal or spatial scale. They suggest that where 516 there is complete overlap in spatial resource utilisation between predators, antagonistic 517 interactions are likely to decrease the capacity of predators to suppress herbivore prey. Our results, whilst not from a spatially explicit standpoint, also broadly suggest that separate 518 519 resource utilisation by predators will promote positive intraguild interactions across diverse 520 systems.

521

522 In contradiction to our fourth prediction, we found an increase in the body size ratio between 523 the smallest predator and prey species had a negative impact on prey suppression in 524 polycultures, although there was large variation within this result. This is surprising as consumption rates and handling times are predicted to be larger and smaller, respectively, 525 526 where the size difference between a predator and its prey is large (Petchey et al. 2008; Ball et 527 al. 2015). A possible explanation is that as animals with larger body sizes tend to consume prey 528 with a wider range of body sizes (Cohen et al. 1993), top generalist predators may consume 529 smaller predators as well as prey where the difference in energy gain between prey items is large (Heithaus, 2001; Lima, 2002). However, it could have been expected that the size 530 531 difference variable between predators would have had a greater effect in our analysis. Size 532 differences between predators may become more important where predators occupy the same 533 habitat and show little specialisation in diet breadth. For example, Rusch et al., (2015) found that size differences weakened pest suppression in predatory ground beetles, which not only 534 535 occur in the same habitat domain but are also generalist predators.

536

Our meta-analysis highlights the importance of trait identification when discerning the 537 538 relationships between biodiversity and ecosystem functioning, i.e. true effects traits like diet breadth, hunting strategy and habitat domain as used in this study that have been shown in 539 540 quantitative research to play a direct role in the provision of an ecosystem service (Losey & 541 Denno 1998; Schmitz 2007; Straub et al. 2008; Woodcock & Heard 2011; Ball et al. 2015). Understanding how species will respond to environmental perturbation through key response 542 543 traits and how this will in turn affect functioning through fluctuations in effects traits is 544 important in ascertaining the stability of ecosystem services in a changing environment (Jonsson et al., 2017; Oliver et al. 2015; Perović et al. 2017). Theoretically, where FD is 545

546 concomitant with redundancy amongst predators and there is little correlation between 547 response and effects traits, this should provide greater stability of pest control ecosystem 548 services (Oliver et al. 2015). This is because systems are more resilient to the loss of individual 549 predators as long as their functions are maintained within the ecosystem (Oliver et al. 2015). However, whilst redundancy should theoretically lead to greater ecosystem service stability, 550 551 this does not always occur. For example, functional redundancy between parasitoids species was not found to improve the temporal stability of parasitism rates, with food web connectivity 552 553 appearing more important in stability (Peralta et al., 2014). Consequently, more research is 554 needed to determine the role of FD and functional redundancy in ecosystem service stability. 555

556 Of the experimental variables, only study design (additive vs substitutive) had a significant 557 effect on prey suppression. Prey suppression in polycultures compared to monocultures was lower in substitutive than additive designs. The predominant reason for this could be that higher 558 predator density in additive experimental polycultures may increase prey suppression where 559 560 predation rates are density dependant and intraspecific interactions between heterospecific predators are neutral or positive (Griffen 2006). Importantly, this also highlights the possibility 561 that increasing predator density within agro-ecosystems has beneficial effects on pest 562 suppression. 563

564

565 Conclusion

566 Our results suggest that maximising functional diversity in predatory invertebrates within 567 agricultural ecosystem will improve natural pest control. Relatively simple management 568 measures, such as the inclusion of tussock-forming grasses in buffer strips surrounding crop 569 fields, have been found to increase the FD of ground beetle assemblages on arable farmland 570 (Woodcock *et al.* 2010). However, it is currently difficult to advocate single management

571 options as other field margin types, such as grass leys, have conversely been found to increase 572 the functional similarity in spider communities (Rusch et al. 2014). It is therefore likely that 573 habitat complexity plays an important role with a diversity of non-crop habitats needed to 574 promote FD across a wide range of predators (Woodcock et al. 2010; Lavorel et al., 2013; Rusch et al. 2016). However, it is difficult to ascertain the precision with which this can be 575 576 achieved in practice. Whilst mesocosms are useful for identifying basic species interactions they represent a simplified environment. Real-world agricultural ecosystems are host to an 577 578 array of predator and pest species with complex life cycles. Mesocosm studies fail to account 579 for fluctuations in predator numbers/assemblages both spatially and temporally. Therefore, 580 traits related to phenology and dispersal are likely to be relevant in field conditions and would 581 be important to consider in any management practices (Landis, Wratten and Gurr, 2000). The 582 results of our meta-analysis fall short of identifying a generalizable rule across all predator 583 interactions that lead to overyielding. However, the findings do highlight the need to quantify how important context is, in terms of predator community assemblage and habitat, in 584 585 determining which trait combinations promote beneficial effects from functional diversity for 586 pest control ecosystem services. Future studies should aim to identify complimentary sets of traits within different predator communities to determine whether certain trait combinations 587 588 consistently lead to overyielding, or whether the context dependency of differing predator 589 communities and habitat means that the importance of different trait combinations fluctuates 590 depending on the ecological setting. As we found no clear effects of individual traits, and only 591 our overall metric of FD affected overyielding, our results would suggest that the latter is more 592 likely. However, further research is required in realistic field based studies to determine this.

593

594 Acknowledgements

We would like to thank all the authors who contributed primary data to the meta-analysis, and

595

596 Jonathan Storkey and Andreas Cecelja and two anonymous reviewers for additional comments 597 which helped improve the manuscript. We would also like to thank Eve Roubinet for help with 598 identifying studies and discussion around the subject. This study was supported by the Centre for Ecology & Hydrology, Rothamstead Research and Lancaster University. The research was 599 600 also supported by the Natural Environment Research Council (NERC) and the Biotechnology and Biological Sciences Research Council (BBSRC) under research programme 601 ASSIST 602 NE/N018125/1LTS-M _ Achieving Sustainable Agricultural Systems 603 www.assist.ceh.ac.uk. 604 References 605 Ajvad, F.T., Madadi, H. & Gharali, B. (2014). Influence of intraguild predation between 606 607 *Episyrphus balteatus* and *Hippodamia variegata* on their prey. *Archives of Phytopathology* 608 and Plant Protection, 47, 106–112. 609 610 Asiry, K.A.M. (2011). The impacts of cereal-legume intercropping on biological control of cereal aphids within temperate agro-ecosystems. Doctoral Thesis. University of Reading. 611 612 Ball, S.L., Woodcock, B.A., Potts, S.G. & Heard, M.S. (2015). Size matters: Body size 613 614 determines functional responses of ground beetle interactions. Basic and Applied Ecology, **16**, 621–628. 615 616 617 Bass, C., Puinean, A.M., Zimmer, C.T., Denholm, I., Field, L.M., Foster, S.P., et al. (2014). 618 The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect 619 Biochemistry and Molecular Biology, **51**, 41–51. 620 621 Begg, G.S., Cook, S.M., Dye, R., Ferrante, M., Franck, P., Lavigne, C., et al. (2017). A 622 functional overview of conservation biological control. Crop Protection, 97, 145–158. DOI: 623 10.1016/j.cropro.2016.11.008 624 625 Calcagno, V., & De Mazancourt, C. (2010). glmulti: An R package for easy automated model selection with (generalized) linear models. Journal of Statistical Software, 34: 626 627 DOI10.18637/jss.v034.i12 628

- 629 De Bello, F., Carmona, C.P., Lepš, J., Szava-Kovats, R. & Pärtel, M. (2016). Functional
- 630 diversity through the mean trait dissimilarity: resolving shortcomings with existing
- 631 paradigms and algorithms. *Oecologia*, **180**, 933–940.

632	
633 634	De Bello, F., Šmilauer, P., Diniz-Filho, J.A.F., Carmona, C.P., Lososová, Z., Herben, T., <i>et al.</i> (2017). Decoupling phylogenetic and functional diversity to reveal hidden signals in
635 636	community assembly. <i>Methods in Ecology and Evolution</i> . DOI: 10.1111/2041-210X.12735
637	Bianchi, F.J.J.A., Booij, C.J.H. & Tscharntke, T. (2006). Sustainable pest regulation in
638 639	agricultural landscapes: a review on landscape composition, biodiversity and natural pest control. <i>Proc. Biol. Sci.</i> , 273 , 1715–1727.
640	
641	Bianchi, F.J.J.A., Schellhorn, N.A., Buckley, Y.M. & Possingham, H.P. (2010). Spatial
642	variability in ecosystem services: simple rules for predator-mediated pest suppression.
643 644	Ecological Applications, 20, 2322–2333.
645	Brose, U. (2010). Body-mass constraints on foraging behaviour determine population and
646 647	food-web dynamics. <i>Functional Ecology</i> , 24 , 28–34.
648	Brose, U., Ehnes, R.B., Rall, B.C., Vucic-Pestic, O., Berlow, E.L. & Scheu, S. (2008).
649	Foraging theory predicts predator-prey energy fluxes. <i>Journal of Animal Ecology</i> , 77 , 1072–
650	1078.
651	
652	Burnham, K.P. & Anderson, D.R. (2004). Multimodel inference: understanding AIC and BIC
653	in model selection. Sociological Methods & Research., 33, 261–304.
654	
655	Byrnes, J.E. and Stachowicz, J.J. (2009). The consequences of consumer diversity loss:
656	different answers from different experimental designs. <i>Ecology</i> , 90 , .2879-2888.
657	
658 650	Cadotte, M., Albert, C.H. & Walker, S.C. (2013). The ecology of differences: assessing
659 660	community assembly with trait and evolutionary distances. <i>Ecology Letters</i> , 16 , 1234–1244.
661	Casula, P., Wilby, A. & Thomas, M.B. (2006). Understanding biodiversity effects on prey in
662 663	multi-enemy systems. <i>Ecology Letters</i> , 9 , 995–1004.
664	Cardinale, B.J., Harvey, C.T., Gross, K. & Ives, A.R. (2003). Biodiversity and biocontrol:
665	emergent impacts of a multi-enemy assemblage on pest suppression and crop yield in an
666	agroecosystem. Ecology Letters, 6, 857–865.
667	
668	Cisneros, J. & Rosenheim, J. (1997). Ontogenetic change of prey preference in the generalist
669	predator Zelus renardii and its influence on predator-predator interactions. Ecological
670	Entomology, 22 , 399–407.
671	
672	Cohen, J.E., Pimm, S.L., Yodzis, P. & Saldana, J. (1993). Body sizes of animal predators and
673	animal prey in food webs. <i>Journal of Animal Ecology</i> , 62 , 67-78
674 075	
675 676	Drieu, R. & Rusch, A. (2017). Conserving species-rich predator assemblages strengthens
676 677	natural pest control in a climate warming context. <i>Agricultural and Forest Entomology</i> , 19 , 52–59.

678	
679	Easton, A.H. & Goulson, D. (2013). The neonicotinoid insecticide imidacloprid repels
680	pollinating flies and beetles at field-realistic concentrations. PLoS ONE, 8, e54819.
681	
682	Fennel, J. (2013). Does host-plant nutrient supply affect the interaction of arthropod predators
683	in a multi-species assemblage? Unpublished dissertation. Lancaster University.
684	
685	Finke, D.L. & Denno, R.F. (2002). Intraguild Predation Diminished in Complex-Structured
686	Vegetation: Implications for Prey Suppression. <i>Ecology</i> , 83 , 643.
687	
688	Finke, D.L. & Denno, R.F. (2003). Intra-guild predation relaxes natural enemy impacts on
689	herbivore populations. <i>Ecological Entomology</i> , 28 , 67–73.
690	
691	Finke, D.L. & Denno, R.F. (2005). Predator diversity and the functioning of ecosystems: the
692	role of intraguild predation in dampening trophic cascades. <i>Ecology Letters</i> , 8 , 1299–1306.
693	
694	Finke, D.L. & Snyder, W.E. (2008). Niche partitioning increases resource exploitation by
695	diverse communities. Science, 321 , 1488–1490.
696 607	EAO (2006) The State of Food Incorporate in the World 2006 (Food and Apriculture
697 608	FAO. (2006). The State of Food Insecurity in the World 2006. (Food and Agriculture
698 699	Organisation, Rome).
700	Gable, J.T., Crowder, D.W., Northfield, T.D., Steffan, S.A. and Snyder, W.E., (2012). Niche
701	engineering reveals complementary resource use. <i>Ecology</i> , 93 , 1994-2000.
702	Gontijo, L.M., Beers, E.H. & Snyder, W.E. (2015). Complementary suppression of aphids by
703	predators and parasitoids. <i>Biological Control</i> , 90 , 83–91.
704	
705	Gower, J.C. (1971). A General Coefficient of Similarity and Some of Its Properties.
706	<i>Biometrics</i> , 27 , 857.
707 708	Griffen, B.D. (2006). Detecting emergent effects of multiple predator species. <i>Oecologia</i> ,
708 709	148 , 702–709.
709	140, 702-709.
711	Griffin, J., Byrnes, J. & Cardinale, B. (2013). Effects of predator richness on prey
712	suppression: a meta-analysis. <i>Ecology</i> , 94 , 2180–2187.
713	suppression. a meta anarysis. <i>Leonogy</i> , 94 , 2100–2107.
714	Hallmann, C.A., Foppen, R.P.B., van Turnhout, C.A.M., de Kroon, H. & Jongejans, E.
715	(2014). Declines in insectivorous birds are associated with high neonicotinoid concentrations.
716	<i>Nature</i> , 511 , 341–343.
717	
718	Hedges, L.V. (1981). Distribution theory for glass's estimator of effect size and related
719	estimators. Journal of Educational Statistics, 6, 107.
720	
721	Hedges, L.V. & Olkin, I. (1985). Statistical Methods for Meta-Analysis. Boston, Academic. P
722	1-14
723	

724 725 726	Heithaus, M.R. (2001). Habitat selection by predators and prey in communities with asymmetrical intraguild predation. <i>Oikos</i> , 92 , 542-554
727 728 729	Hodge, M.A., 1999. The implications of intraguild predation for the role of spiders in biological control. <i>Journal of Arachnology</i> , 27 , 351-362.
730 731 732 733	Horrigan, L., Lawrence, R.S. & Walker, P. (2002). How sustainable agriculture can address the environmental and human health harms of industrial agriculture. <i>Environmental Health Perspectives</i> , 110 , 445–456.
734 735 736 737	Hunter, M. C., Smith, R. G., Schipanski, M. E., Atwood, L. W., & Mortensen, D. A. (2017). Agriculture in 2050: Recalibrating Targets for Sustainable Intensification. <i>BioScience</i> , 67 , 386-391.
738 739 740	Ives, A.R., Cardinale, B.J. & Snyder, W.E. (2004). A synthesis of subdisciplines: predator- prey interactions, and biodiversity and ecosystem functioning. <i>Ecology Letters</i> , 8 , 102–116.
741 742 743 744	Jenkins, D.G., Brescacin, C.R., Duxbury, C.V., Elliott, J.A., Evans, J.A., Grablow, K.R., <i>et al.</i> (2007). Does size matter for dispersal distance? <i>Global Ecology and Biogeography</i> , 16 , 415–425.
745 746 747	Jonsson, M., Kaartinen, R. & Straub, C.S. (2017). Relationships between natural enemy diversity and biological control. <i>Current Opinion in Insect Science</i> , 20 , 1–6.
748 749 750	Katano, I., Doi, H., Eriksson, B.K. & Hillebrand, H. (2015). A cross-system meta-analysis reveals coupled predation effects on prey biomass and diversity. <i>Oikos</i> , 124 , 1427–1435.
751 752 753	Koricheve, J., Gurevitch, J. & Mengersen. 2013. Handbook of Meta-analysis in Ecology and Evolution. Woodstock: Princeton University Pess.
754 755 756	Lang, A. (2003). Intraguild interference and biocontrol effects of generalist predators in a winter wheat field. <i>Oecologia</i> , 134 , 144–153.
757 758 759	Landis, D.A., Wratten, S.D. and Gurr, G.M. (2000). Habitat management to conserve natural enemies of arthropod pests in agriculture. <i>Annual Reviews of Entomology</i> , 45 , 175-201.
760 761 762 763	Lavorel, S., Storkey, J., Bardgett, R.D., de Bello, F., Berg, M.P., Le Roux, X., <i>et al.</i> (2013). A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. <i>Journal of Vegetation Science</i> , 27 , 259-268
764 765 766 767	Letourneau, D.K., Jedlicka, J.A., Bothwell, S.G. & Moreno, C.R. (2009). Effects of Natural Enemy Biodiversity on the Suppression of Arthropod Herbivores in Terrestrial Ecosystems. <i>Annual Review of Ecology, Evolution, and Systematics</i> , 40 , 573–592.
768 769	Lima, S.L. (2002). Putting predators back into behavioural predator-prey interactions. <i>Trends in Ecology Evolution</i> , 17 , 70-75

770	
771	Losey, J.E. & Denno, R.F. (1998). Positive Predator-Predator Interactions: Enhanced
772	Predation Rates and Synergistic Suppression of Aphid Populations. <i>Ecology</i> , 79 , 2143.
773	
774	Lucas, É., Coderre, D. & Brodeur, J. (1998). Intraguild Predation among Aphid Predators:
775	Characterization and influence of Extraguild Prey Density. <i>Ecology</i> . 79 , 1084-1092
776	Characterization and millionee of Extragand Frey Density. Ecology, 19, 100+ 1092
777	Michalko, R. & Pekár, S. (2016). Different hunting strategies of generalist predators result in
778	functional differences. <i>Oecologia</i> , 181 , 1187–1197.
779	Tunctional uniferences. Decologia, 101, 1107–1177.
780	Miller, J.R.B., Ament, J.M. & Schmitz, O.J. (2014). Fear on the move: predator hunting
781	
	mode predicts variation in prey mortality and plasticity in prey spatial response. <i>Journal of</i>
782	Animal Ecology, 83 , 214–222.
783	
784	Nauen, R. & Denholm, I. (2005). Resistance of insect pests to neonicotinoid insecticides:
785	current status and future prospects. Archives of Insect Biochemistry and Physiology, 58 , 200–
786	215.
787	
788	NFU. (2014). Healthy Harvest. National Farmers Union. Warwickshire, UK. DOI
789	https://www.nfuonline.com/assets/36920
790	
791	Northfield, T.D., Crowder, D.W., Takizawa, T. & Snyder, W.E. (2014). Pairwise interactions
792	between functional groups improve biological control. <i>Biological Control</i> , 78 , 49–54.
793	
794	Northfield, T.D., Snyder, G.B., Ives, A.R. & Snyder, W.E. (2010). Niche saturation reveals
795	resource partitioning among consumers. <i>Ecology Letters</i> , 13 , 338–348.
796	
797	Northfield, T.D., Barton, B.T. and Schmitz, O.J. (2017). A spatial theory for emergent
798	multiple predator-prey interactions in food webs. <i>Ecology and Evolution</i> , 7 , 6935-6948.
799	
800	Oliver, T.H., Heard, M.S., Isaac, N.J.B., Roy, D.B., Procter, D., Eigenbrod, F., et al. (2015).
801	Biodiversity and resilience of ecosystem functions. <i>Trends Ecology and Evolution</i> , 30 , 673–
802	684.
803	
804	Paradis E., Claude J. & Strimmer K. (2004). APE: analyses of phylogenetics and evolution in
805	R language. Bioinformatics, 20: 289-290.
806	
807	Peralta, G., Frost, C.M., Rand, T.A., Didham, R.K. and Tylianakis, J.M. (2014).
808	Complementarity and redundancy of interactions enhance attack rates and spatial stability in
809	host–parasitoid food webs. <i>Ecology</i> , 95 , 1888-1896.
810	
811	Perović, D.J., Gámez-Virués, S., Landis, D.A., Wäckers, F., Gurr, G.M., Wratten, S.D., et al.
812	(2017). Managing biological control services through multi-trophic trait interactions: review
813	and guidelines for implementation at local and landscape scales. <i>Biological Reviews of the</i>
814	Cambridge Philosophical Society. DOI: 10.1111/brv.12346
815	Cumerrage 1 millsophical Society. DOI: 10.1111/011.12510
5.5	

816	
817	Petchey, O.L., Beckerman, A.P., Riede, J.O. & Warren, P.H. (2008). Size, foraging, and food
818	web structure. Proc. Natl. Acad. Sci. U S A., 105, 4191–4196.
819	
820	R Core Team. (2016). R: A language and environment for statistical computing. R
821	Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.
822	
823	Rohatgi, A. (2012) WebPlotDigitalizer: HTML5 based online tool to extract numerical data
824	from plot images. Version 3.12. URL <u>http://arohatgi.info/WebPlotDigitizer/citation.html</u>
825	(Accessed between November 2016 – February 2017)
826	
827	Roland, J. & Taylor, P.D. (1997). Insect parasitoid species respond to forest structure at
828	different spatial scales. <i>Nature</i> , 386 , 710–713.
829	
830	Rosenheim, J.A., Wilhoit, L.R. & Armer, C.A. (1993). Influence of intraguild predation
831	among generalist insect predators on the suppression of an herbivore population. <i>Oecologia</i> ,
832	96 , 439–449.
833	
834	Rosenheim, J.A., Glik, T.E., Goeriz, R.E. & Rämert, B. (2004a). Linking a predator's
835	foraging behavior with its effects on herbivore population suppression. Ecology, 85, 3362-
836	3372.
837	
838	Rosenheim, J.A., Limburg, D.D., Colfer, R.G., Fournier, V., Hsu, C.L., Leonardo, T.E., et al.
839	(2004b). Herbivore population suppression by an intermediate predator, Phytoseiulus
840	macropilis, is insensitive to the presence of an intraguild predator: an advantage of small
841	body size? <i>Oecologia</i> , 140 , 577–585.
842	
843	Rusch, A., Birkhofer, K., Bommarco, R., Smith, H.G. & Ekbom, B. (2014). Management
844	intensity at field and landscape levels affects the structure of generalist predator communities.
845	<i>Oecologia</i> , 175 , 971–983.
846	
847	Rusch, A., Chaplin-Kramer, R., Gardiner, M.M., Hawro, V., Holland, J., Landis, D., et al.
848	(2016). Agricultural landscape simplification reduces natural pest control: A quantitative
849	synthesis. Agriculture, Ecosystems & Environment, 221, 198–204.
850	
851	Schmid, B., Hector, A., Saha, P. & Loreau, M. (2008). Biodiversity effects and transgressive
852	overyielding. Journal of Plant Ecology, 1, 95–102.
853	
854	Schmitz, O.J. (2007). Predator diversity and trophic interactions. <i>Ecology</i> , 88 , 2415–2426.
855	Site A England C & Waggton D (1008) Engagent imports of multiple productors on prov
856	Sih, A., Englund, G. & Wooster, D. (1998). Emergent impacts of multiple predators on prey.
857	<i>Trends in Ecology and Evolution</i> , 13 , 350–355.
858 850	Snuder WE and Juce A. P. (2001). Concredict predators dismust historical control by a
859 860	Snyder, W.E. and Ives, A.R. (2001). Generalist predators disrupt biological control by a specialist parasitoid. <i>Ecology</i> 82 , 705, 716
861	specialist parasitoid. <i>Ecology</i> , 82 , 705-716.
001	

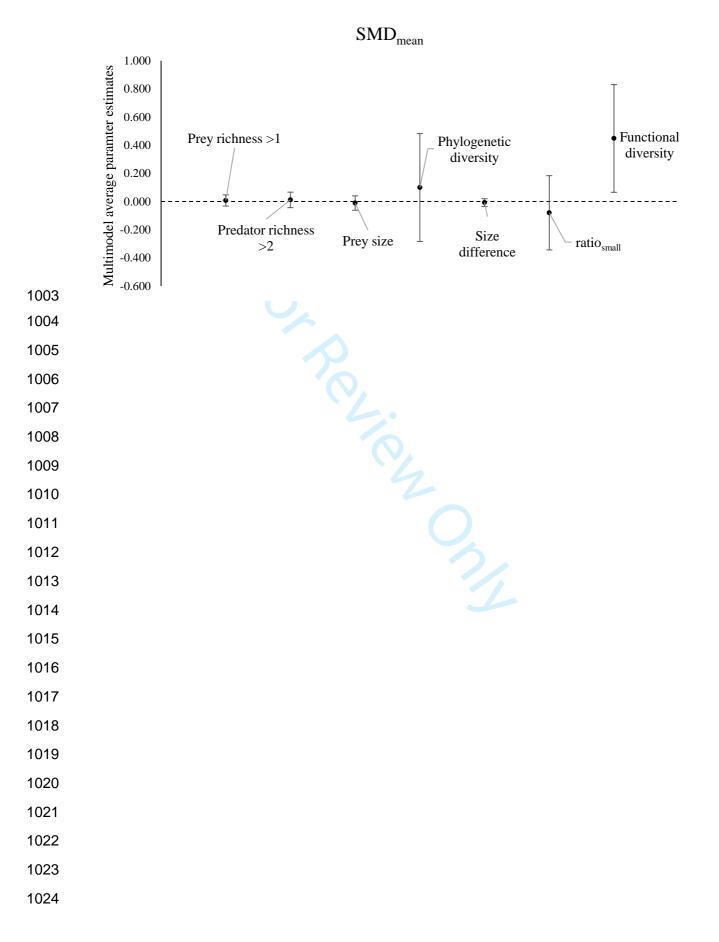
862 863 864 865 866	Snyder, W.E., Ballard, S.N., Yang, S., Clevenger, G.M., Miller, T.D., Ahn, J.J., Hatten, T.D. and Berryman, A.A. (2004). Complementary biocontrol of aphids by the ladybird beetle Harmonia axyridis and the parasitoid Aphelinus asychis on greenhouse roses. <i>Biological Control</i> , 30 , 229-235
867 868	Snyder, W.E., Snyder, G.B., Finke, D.L. & Straub, C.S. (2006). Predator biodiversity strengthens herbivore suppression. <i>Ecology Letters</i> , 9 , 789–796.
869 870 871 872	Straub, C.S., Finke, D.L. & Snyder, W.E. (2008). Are the conservation of natural enemy biodiversity and biological control compatible goals? <i>Biological Control</i> , 45 , 225–237.
873 874 875	Straub, C.S. & Snyder, W.E. (2006). Species identity dominates the relationship between predator biodiversity and herbivore suppression. <i>Ecology</i> , 87 , 277–282.
876 877 878	Tylianakis, J.M. & Romo, C.M. (2010). Natural enemy diversity and biological control: Making sense of the context-dependency. <i>Basic and Applied Ecology</i> , 11 , 657–668.
879 880 881	Viechtbauer, W. (2010). Conducting meta-analyses in R with the metafor package. <i>J. Stat. Softw.</i> , 36 , 1-48. URL: <u>http://www.jstatsoft.org/v36/i03/</u>
882 883 884 885	Wilby, A. & Orwin, K.H. (2013). Herbivore species richness, composition and community structure mediate predator richness effects and top-down control of herbivore biomass. <i>Oecologia</i> , 172 , 1167–1177.
886 887 888	Wilby, A. & Thomas, M.B. (2002). Natural enemy diversity and pest control: patterns of pest emergence with agricultural intensification. <i>Ecology Letters</i> , 5 , 353–360.
889 890 891 892	Wilby, A., Villareal, S.C., Lan, L.P., Heong, K.L. & Thomas, M.B. (2005). Functional benefits of predator species diversity depend on prey identity. <i>Ecological Entomology</i> , 30 , 497–501.
893 894 895	Wilson, C. & Tisdell, C. (2001). Why farmers continue to use pesticides despite environmental, health and sustainability costs. <i>Ecological Economics</i> , 39 , 449–462.
896 897 898 899	Wood, S.A., Karp, D.S., DeClerck, F., Kremen, C., Naeem, S. & Palm, C.A. (2015). Functional traits in agriculture: agrobiodiversity and ecosystem services. <i>Trends in Ecology Evolution</i> , 30 , 531–539.
900 901 902 903	Woodcock, B.A., Bullock, J.M., Shore, R.F., Heard, M.S., Pereira, M.G., Redhead, J., <i>et al.</i> (2017). Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. <i>Science</i> , 356 , 1393–1395.
904 905 906 907	Woodcock, B.A. & Heard, M.S. (2011). Disentangling the effects of predator hunting mode and habitat domain on the top-down control of insect herbivores. <i>Journal of Animal Ecology</i> , 80 , 495–503.

908 909 910 911 912 913 914 915 916 917 918 919 920	 Woodcock, B.A., Isaac, N.J.B., Bullock, J.M., Roy, D.B., Garthwaite, D.G., Crowe, A., <i>et al.</i> (2016). Impacts of neonicotinoid use on long-term population changes in wild bees in England. <i>Nature Communications</i>, 7, 12459. Woodcock, B.A., Redhead, J., Vanbergen, A.J., Hulmes, L., Hulmes, S., Peyton, J., <i>et al.</i> (2010). Impact of habitat type and landscape structure on biomass, species richness and functional diversity of ground beetles. <i>Agriculture, Ecosystems & Environment</i>, 139, 181–186. Woodcock, B.A., Savage, J., Bullock, J.M., Nowakowski, M., Orr, R., Tallowin, J.R.B., <i>et al.</i> (2013). Enhancing beetle and spider communities in agricultural grasslands: The roles of seed addition and habitat management. <i>Agriculture, Ecosystems & Environment</i>, 167, 79–85.
921	
922	
923	
924	
925	
926	
927	
928	
929	
930	
931	
932	
933	
934	
935	
936	
937	
938	
939 940	
940 941	
941 942	
342	

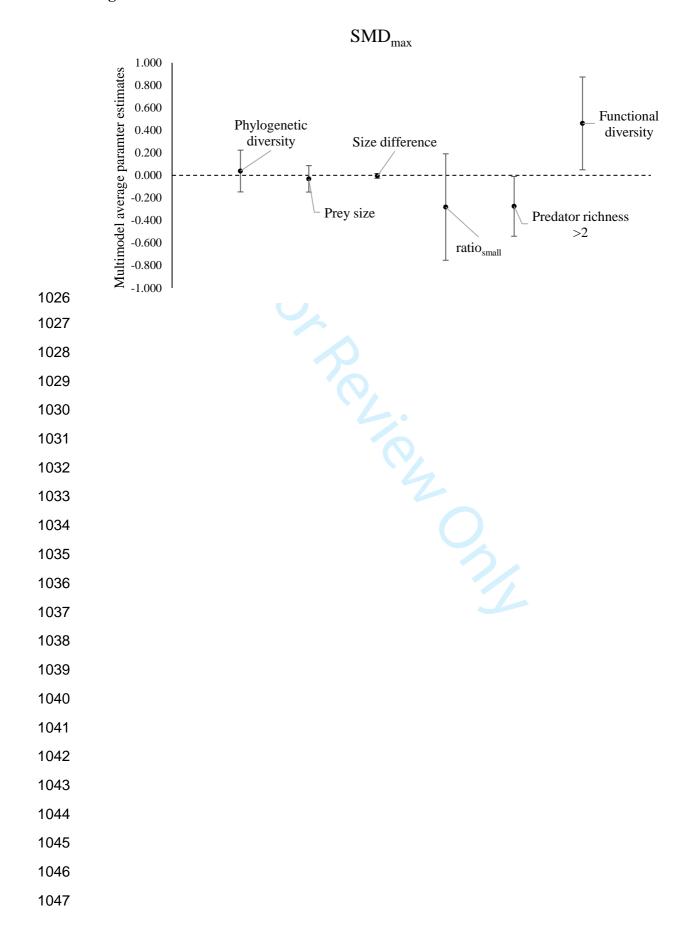
Variable	Measure	Description
Functional diversity (FD)	Continuous	Mean pairwise functional dissimilarity between species in each experiment based on the traits included in Appendix S3 (evoluting body size)
Hunting strategy	Continuous	Appendix S3 (excluding body size). Mean pairwise dissimilarity between species in each experiment based on hunting (sit and wait, ambush and pursue or active).
Habitat domain	Continuous	Mean pairwise dissimilarity between species in each experiment based on habitat (ground/base of plant, foliar or broad).
Diet breadth	Continuous	Mean pairwise dissimilarity between species in each experiment based on diet breadth (specialist or generalist).
Phylogenetic diversity (PD)	Continuous	Mean pairwise phylogenetic dissimilarity between species based on Linnaean taxonomic classification decoupled from the functional traits.
ratio _{large}	Continuous	Body size ratio between the largest predator species and the prey species (largest predator body size/prey body size). Sqrt transformed. *Excluded from analysis.
ratio _{small}	Continuous	Body size ratio between the smallest predator species in the polyculture and the prey species (smallest predator body size/prey body size). Sqrt transformed.
Size difference	Continuous	Mean pairwise difference in body size (length in mm) between predator species in each experiment.
Prey size (mm)	Continuous	Body length of the prey. Where multiple prey were included in a treatment the mean of their body sizes was used. Log transformed.
Predator species richness	Factor (2 or >2)	Two level factor categorising polyculture treatments on whether they contained two predators or more than two predators (max predator species richness = 4).
Prey species richness	Factor (1 or >1)	Two level factor categorising whether one or more than one prey species was present in the study (max prey species richness = 4).

943	Table	1.	Species	variables	included	in	analysis.

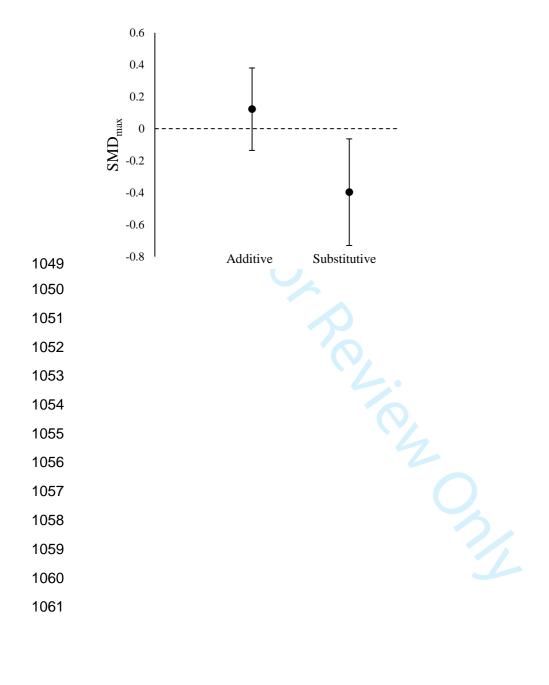
945	Table 2. Multimodel average parameter estimates for SMD_{mean} (predator polyculture)
946	compared to the mean of the component predator species in monocultures) and SMD_{max}
947	(predator polyculture compared to the most effective predator species in a monoculture). Prey
948	richness and predator richness estimate is the difference between the reference level (predator
949	richness = 2 species; prey richness = 1). Parameters in bold indicate that the variable was
950	included in the highest ranked model.


Metric	Parameter	Estimate	Importance	95% CI lower bound	95% CI uppe bound
SMD _{mean}					
	Prey richness >1	0.007	0.062	-0.033	0.047
	Predator richness >2	0.011	0.120	-0.044	0.066
	Prey size	-0.011	0.133	-0.062	0.04
	Phylogenetic diversity	0.099	0.233	-0.284	0.482
	Size difference	-0.008	0.320	-0.035	0.019
	ratio _{small}	-0.080	0.336	-0.344	0.184
	Functional diversity	0.448	1.000	0.065	0.831
SMD _{max}					
in a second s	Phylogenetic diversity	0.038	0.122	-0.147	0.223
	Prey size	-0.032	0.211	-0.149	0.085
	Size difference	-0.005	0.245	-0.026	0.016
	ratiosmall	-0.282	0.747	-0.754	0.190
	Predator richness >2	-0.276	1.000	-0.541	-0.011
	Functional diversity	0.461	1.000	0.049	0.873
	Predator richness >2	-0.276	1.000	-0.541	-0.011

961	Table 3. Tests for experimental moderator variables. Parameter estimates are shown for
962	continuous variables. Categorical variable estimate is the reference level then the difference
963	between the other levels of the factor. QM statistic is the omnibus test for the factors and
964	Wald z-tests show differences between levels. SMD_{mean} is predator polyculture compared to
965	the mean of the component predator species in monocultures. SMD_{max} is the predator
966	polyculture compared to the most effective predator species in a monoculture.


Metric	Factor	n	Estimate	95% CI	95% CI	QM	df	P-value
				lower	upper			
				bound	bound			
SMD _{mean}	Log cage	186	0.049	-0.018	0.116	2.084	1	0.149
	volume (cm ³)							
	Duration of	209	-0.0002	-0.001	0.0002	0.892	1	0.345
	study (hours)							
	Design					3.188	1	0.074
	Additive	99 🧹	0.569	0.341	0.797			
	(reference)							
	Substitutive	115	-0.277	-0.581	0.027			0.074
	Study setting					0.191	1	0.662
	Field (reference)	89	0.487	0.222	0.752			
	Lab/Greenhouse	125	-0.072	-0.393	0.250			0.662
SMD _{max}	Log cage	186	0.037	-0.036	0.109	0.988	1	0.320
	volume (cm ³)							
	Duration of	209	-0.0002	-0.001	0.0003	0.707		0.401
	study (hours)							
	Design					9.351	1	0.002
	Additive	99	0.122	-0.136	0.379			
	(reference)							
	Substitutive	115	-0.519	-0.852	-0.186			0.002
	Study setting					0.003	1	0.955
	Field (reference)	89	-0.104	-0.392	0.185			
	Lab/Greenhouse	125	-0.010	-0.353	0.333			0.955

973	Figure 1 . Multimodel average parameter estimates for SMD _{mean} (predator polyculture
974	compared to the mean of the component predator species in monocultures); lines indicate
975	±95% confidence intervals. Predator richness and prey richness are factors and show the
976	difference between the reference level (reference level for predator richness = 2 species and
977	prey richness = 1 species).
978	
979	Figure 2. Multimodel average parameter estimates for SMD_{max} (predator polyculture
980	compared to the most effective predator species in a monoculture); lines indicate ±95%
981	confidence intervals. Predator richness is the difference between the reference level (predator
982	richness = 2 species).
983	
984	Figure 3. SMD_{max} (predator polyculture compared to the most effective predator species in a
985	monoculture) for additive (n = 99) and substitutive (n = 115) designs; lines indicate $\pm 95\%$
986	confidence intervals.
987 988 989 990	
991	
992	
993	
994	
995	
996	
997	
998	
999	
1000	
1001	


1002 Figure 1

1025 Figure 2

1048 **Figure 3**

Appendix S1

Search terms used in web of science:

(predator OR predation OR natural enemy OR parasitoid) AND (richness OR biodiversity OR diversity) AND (pest OR prey OR suppression OR biocontrol OR biological control OR ecosystem function* OR ecosystem process* OR diversity-function) AND (insect* or invertebrate*) AND (experiment OR experimental OR manipulation)

(predator OR predation OR natural enemy OR parasitoid) AND (pest OR prey OR suppression OR biocontrol OR biological control OR ecosystem function* OR ecosystem process* OR diversity-function) AND (insect* or invertebrate*) AND (experiment OR experimental OR manipulation OR cage OR mesocosm)

L on) A .tion OR L

Appendix S2

Studies included in the meta-analysis.

Acheampong, S. & Stark, J.D. (2004). Can reduced rates of pymetrozine and natural enemies control the cabbage aphid, Brevicoryne brassicae (Homoptera: Aphididae), on broccoli? *International Journal of Pest Management*, 50, 275–279.

Alhmedi, A., Haubruge, E. & Francis, F. (2010). Intraguild interactions and aphid predators: biological efficiency of *Harmonia axyridis* and *Episyrphus balteatus*. *Journal of Applied Entomology*, 134, 34–44.

Ajvad, F.T., Madadi, H. and Gharali, B. (2014). Influence of intraguild predation between Episyrphus balteatus and Hippodamia variegata on their prey. *Arch. Phytopathol. Plant Protection*, 47, 106-112.

Aquilino, K.M., Cardinale, B.J. & Ives, A.R. (2005). Reciprocal effects of host plant and natural enemy diversity on herbivore suppression: an empirical study of a model tritrophic system. *Oikos*, 108, 275–282.

Asiry, K.A.M. (2011). The impacts of cereal-legume intercropping on biological control of cereal aphids within temperate agro-ecosystems. Doctoral Thesis. University of Reading.

Ball, S.L., Woodcock, B.A., Potts, S.G. & Heard, M.S. (2015). Size matters: Body size determines functional responses of ground beetle interactions. *Basic and Applied Ecology*, 16, 621–628.

Bjorkman, C. & Liman, A.-S. (2005). Foraging behaviour influences the outcome of predator-predator interactions. *Ecological Entomology*, 30, 164–169.

Cardinale, B.J., Harvey, C.T., Gross, K. & Ives, A.R. (2003). Biodiversity and biocontrol: emergent impacts of a multi-enemy assemblage on pest suppression and crop yield in an agroecosystem. *Ecology Letters*, 6, 857–865.

Cardinale, B.J., Weis, J.J., Forbes, A.E., Tilmon, K.J. & Ives, A.R. (2006). Biodiversity as both a cause and consequence of resource availability: a study of reciprocal causality in a predator-prey system. *Journal of Animal Ecology*, 75, 497–505.

Chang, G.C. (1996). Comparison of Single Versus Multiple Species of Generalist Predators for Biological Control. *Environmental Entomology*, 25, 207–212.

Cisneros, J. & Rosenheim, J. (1997). Ontogenetic change of prey preference in the generalist predator Zelus renardii and its influence on predator-predator interactions. *Ecological Entomology*, 22, 399–407.

Denno, R.F., Mitter, M.S., Langellotto, G.A., Gratton, C. & Finke, D.L. (2004). Interactions between a hunting spider and a web-builder: consequences of intraguild predation and cannibalism for prey suppression. *Ecological Entomology*, 29, 566–577.

Drieu, R. and Rusch, A. (2016). Conserving species-rich predator assemblages strengthens natural pest control in a climate warming context. *Agricultural and Forest Entomology*, 19, 52-59.

Dinter, A. (2002). Microcosm studies on intraguild predation between female erigonid spiders and lacewing larvae and influence of single versus multiple predators on cereal aphids. *Journal of Applied Entomology*, 126, 249-257.

Erbilgin, N., Dahlsten, D.L. & Chen, P. (2004). Intraguild interactions between generalist predators and an introduced parasitoid of Glycaspis brimblecombei (Homoptera: Psylloidea). *Biological Control*, 31, 329–337.

Evans, E.W. (1991). Intra versus interspecific interactions of ladybeetles (Coleoptera: Coccinellidae) attacking aphids. *Oecologia*, 87, 401–408.

Fennel, J. (2013). Does host-plant nutrient supply affect the interaction of arthropod predators in a multi-species assemblage? Unpublished dissertation. Lancaster University.

Ferguson, K.I. & Stiling, P. (1996). Non-additive effects of multiple natural enemies on aphid populations. *Oecologia*, 108, 375–379.

Finke, D.L. & Denno, R.F. (2002). Intraguild Predation Diminished in Complex-Structured Vegetation: Implications for Prey Suppression. *Ecology*, 83, 643.

Finke, D.L. & Denno, R.F. (2003). Intra-guild predation relaxes natural enemy impacts on herbivore populations. *Ecological Entomology*, 28, 67–73.

Finke, D.L. & Denno, R.F. (2005). Predator diversity and the functioning of ecosystems: the role of intraguild predation in dampening trophic cascades. *Ecology Letters*, 8, 1299–1306.

Flowers, R.W., Salom, S.M. & Kok, L.T. (2005). Competitive Interactions Among Two Specialist Predators and a Generalist Predator of Hemlock Woolly Adelgid, *Adelges tsugae* (Homoptera: Adelgidae), in the Laboratory. *Environmental Entomology*, 34, 664–675.

Gable, J.T., Crowder, D.W., Northfield, T.D., Steffan, S.A. and Snyder, W.E., (2012). Niche engineering reveals complementary resource use. *Ecology*, 93, 1994-2000.

Gardiner, M.M. & Landis, D.A. (2007). Impact of intraguild predation by adult Harmonia axyridis (Coleoptera: Coccinellidae) on Aphis glycines (Hemiptera: Aphididae) biological control in cage studies. *Biological Control*, 40, 386–395.

Hogg, B.N. and Daane, K.M. (2011). Diversity and invasion within a predator community: impacts on herbivore suppression. *Journal of Applied Ecology*, 48, 453-461.

Hogg, B.N. & Daane, K.M. (2014). The roles of top and intermediate predators in herbivore suppression: contrasting results from the field and laboratory. *Ecological Entomology*, 39, 149–158.

Hogg, B.N. & Daane, K.M. (2015). Cascading effects of cannibalism in a top predator. *Ecological Entomology*, 40, 805–813.

Hogg, B.N., Wang, X.-G., Levy, K., Mills, N.J. & Daane, K.M. (2013). Complementary effects of resident natural enemies on the suppression of the introduced moth Epiphyas postvittana. *Biological Control*, 64, 125–131.

Lester, P.J. & Harmsen, R. (2002). Functional and numerical responses do not always indicate the most effective predator for biological control: an analysis of two predators in a two-prey system. *Journal of Applied Ecology*, 39, 455–468.

Losey, J.E. & Denno, R.F. (1998). Positive Predator-Predator Interactions: Enhanced Predation Rates and Synergistic Suppression of Aphid Populations. *Ecology*, 79, 2143-2152

Lucas, É. & Alomar, O. (2002). Impact of the presence of Dicyphus tamaninii Wagner (Heteroptera: Miridae) on whitefly (Homoptera: Aleyrodidae) predation by Macrolophus caliginosus (Wagner) (Heteroptera: Miridae). *Biological Control*, 25, 123–128.

Mallampalli, N., Castellanos, I. & Barbosa, P. (2002). Evidence for intraguild predation by Podisus maculiventris on a ladybeetle, Coleomegilla maculata: Implications for biological control of Colorado potato beetle, Leptinotarsa decemlineata. *BioControl*, 47, 387-398

Lewins, S.A. (2006). The Influence of Predator Species Richness on Prey Mortality: Implications to Conservation Biological Control. Unpublished Masters Thesis. University of Maryland

Moreno-Ripoll, R., Gabarra, R., Symondson, W.O.C., King, R.A. and Agustí, N. (2014). Do the interactions among natural enemies compromise the biological control of the whitefly Bemisia tabaci?. *Journal of Pest Science*, 87, 133-141.

Northfield, T.D., Snyder, G.B., Ives, A.R. & Snyder, W.E. (2010). Niche saturation reveals resource partitioning among consumers. *Ecology Letters*, 13, 338–348

Obrycki, J.J., Giles, K.L. & Ormond, A.M. (1998). Experimental assessment of interactions between larval *Cole-omegilla maculata* and *Coccinella septempunctata* (Coleoptera : Coccinellidae) in field cages. *Environmental Entomology*, 27, 1280–1288.

Rosenheim, J.A. (2001). Source-Sink Dynamics for a Generalist Insect Predator in Habitats with Strong Higher-Order Predation. *Ecological Monographs*, 71, 93-116

Rosenheim, J.A., Limburg, D.D., Colfer, R.G., Fournier, V., Hsu, C.L., Leonardo, T.E. & Nelson, E.H. (2004a). Herbivore population suppression by an intermediate predator, Phytoseiulus macropilis, is insensitive to the presence of an intraguild predator: an advantage of small body size? *Oecologia*, 140, 577–585.

Rosenheim, J.A., Glik, T.E., Goeriz, R.E. & Rämert, B. (2004b). Linking a predator's foraging behavior with its effects on herbivore population suppression. *Ecology*, 85, 3362–3372.

Rosenheim, J.A., Wilhoit, L.R. & Armer, C.A. (1993). Influence of intraguild predation among generalist insect predators on the suppression of an herbivore population. *Oecologia*, 96, 439–449.

Roubinet, E., Straub, C., Jonsson, T., Staudacher, K., Traugott, M., Ekbom, B. & Jonsson, M. (2015). Additive effects of predator diversity on pest control caused by few interactions among predator species. *Ecological Entomology*, 40, 362–371.

Sigsgaard, L. (2007). Early season natural control of the brown planthopper, Nilaparvata lugens: the contribution and interaction of two spider species and a predatory bug. *Bulletin of Entomological Research*, 97, 533–544.

Snyder, W.E. & Wise, D.H. (2001). Antipredator behavior of spotted cucumber beetles (Coleoptera : Chrysomelidae) in response to predators that pose varying risks. *Environmental Entomology*, 29, 35–42.

Snyder, W.E., Snyder, G.B., Finke, D.L. & Straub, C.S. (2006). Predator biodiversity strengthens herbivore suppression. *Ecology Letters*, 9, 789–796.

Sokol-Hessner, L. & Schmitz, O.J. (2002). Aggregate Effects of Multiple Predator Species on a Shared Prey. *Ecology*, 83, 2367-2372

Werling, B.P., Lowenstein, D.M., Straub, C.S. & Gratton, C. (2012). Multi-predator effects produced by functionally distinct species vary with prey density. *Journal of Insect Science*, 12, 1-7

Wilby, A., Anglin, L.A. & Nesbit, C.M. (2013). Plant species composition alters the sign and strength of an emergent multi-predator effect by modifying predator foraging behaviour. *Plos One*, 8, e70258.

Wilby, A. & Orwin, K.H. (2013). Herbivore species richness, composition and community structure mediate predator richness effects and top-down control of herbivore biomass. *Oecologia*, 172, 1167–1177.

Wilby, A., Villareal, S.C., Lan, L.P., Heong, K.L. & Thomas, M.B. (2005). Functional benefits of predator species diversity depend on prey identity. *Ecological Entomology*, 30, 497–501.

Wiethoff, J., Poehling, H.M. & Meyhofer, R. (2004). Combining plant- and soil-dwelling predatory mites to optimise biological control of thrips. *Experimental and Applied Acarology*, 34, 239–261.

Yasuda, H. & Kimura, T. (2001). Interspecific interactions in a tri-trophic arthropod system: effects of a spider on the survival of larvae of three predatory ladybirds in relation to aphids. *Experimental and Applied Acarology.*, 98, 17–25.

to Review Only

Appendix S3

Table of species functional traits and their definitions. Also shown are the trait categorisations for each of the species included in the meta-

analysis.

Trait	Categories	Definition
Habitat domain	Foliar	Predator species that predominantly hunt on plant foliage.
		Example Coccinellidae and Miridae.
	Ground or base of plant (BPG)	Predators that predominantly hunt on the ground or around the
		base of plant. Example Carabidae.
	Broad	Predators that are likely to hunt in both foliar and ground
		domains. Examples Lycosidae and Phalangiidae.
Hunting strategy	Sit and wait (SW)	Predator species waits for prey as opposed to actively pursuing
		prey. Examples Nabis species.
	Ambush and pursue (AP)	Predator species waits for prey and then actively pursues once a
		prey item has been identified. Example Misumenops species.
	Active	Predator actively searches and pursues prey. Example
		Cocinnellidae.
Diet breadth	Generalist	Broad arthropod diet with little or no feeding specialisation
		documented for a particular herbivore species. Example
		Lycosidae.
	Specialist	Specialisation documented for particular herbivore species,
		however this categorisation does not preclude intraguild
		predation or alternate prey species. This category also includes
		parasitoid species. Example Phytoseiulus.
Body size (mm)		Mean body length across the life stage of the predator species in
		mm.

Table 1. Species	functional trai	t categories	and their	definitions.

Table 2. All the species included in the studies used in the meta-analysis; their code used in analysis; trait categorisations for diet breadth, hunting strategy and habitat domain; mean body size (mm); and sources used for trait information.

Predator	Code	Diet breadth	Habitat domain	Hunting strategy	Size (mm)	Ref
Adalia bipunctata (adult)	Ab_a	Specialist	Foliar	Active	4.5	Agarwala, B.K. and Dixon, A.F. (1993). Kin recognition: egg and larval cannibalism in Adalia bipunctata (Coleoptera: Coccinellidae). <i>Eur. J. Entomol.</i> , 90 , 45-50. Pervez, A. (2005). Ecology of two-spotted ladybird, Adalia bipunctata: a review. <i>J.</i> <i>Appl. Entomol.</i> , 129 , 465-474.
Adalia bipunctata (larvae)	Ab_1	Specialist	Foliar	Active	3.25	Agarwala, B.K. and Dixon, A.F. (1993). Kin recognition: egg and larval cannibalism in Adalia bipunctata (Coleoptera: Coccinellidae). <i>Eur. J. Entomol.</i> , 90, .45-50. Pervez, A. (2005). Ecology of two-spotted ladybird, Adalia bipunctata: a review. <i>J.</i> <i>Appl. Entomol</i> , 129 , 465-474.
Amblyseius fallacis	Af	Specialist	Foliar	Active	0.5	 Appliedbio-nomics. (2017). <i>Amblyseius</i> (Neoseiulus) <i>fallacis</i>. [online] Available at: <u>https://www.appliedbio-nomics.com/wp-content/uploads/201-fallacis.pdf</u>. [Accessed 4 Jul. 2017]. Hogmire, H. (1995). <i>Mid-Atlantic orchard monitoring guide</i>. Ithaca, N.Y. Northeast Regional Agricultural Engineering Service,

						Cooperative Extension.
Amblyseius cucumeris	Ac	Specialist	Foliar	Active	0.4	Evergreen Growers Supply. (2017). Amblyseius cucumeris. [online] Available at: https://www.evergreengrowers.com/thrips- control/amblyseius-cucumeris-thrips- control/amblyseius-cucumeris.html [Accessed 4 Jul. 2017]. Wiethoff, J., Poehling, H.M. & Meyhofer, R. (2004). Combining plant- and soil- dwelling predatory mites to optimise biological control of thrips. <i>Experimental</i> <i>and Applied Acarology</i> , 34, 239–261.
Anthocoris nemorum (adult)	An_a	Generalist	Foliar	Active	3.5	
Anyphaena pacifica (juvenile)	Ар	Generalist	Broad	Active	4.2	Hogg, B.N. and Daane, K.M. (2014). The roles of top and intermediate predators in herbivore suppression: contrasting results from the field and laboratory. <i>Ecol. Entomol.</i> , 39 , 49-158.

Aphidius ervi	Ae	Specialist	Foliar	Active	2.5	Applied Bio-nomics. (2017). Aphidius (Aphidius matricariae, A. colemani, A. ervi) Aphid Parasites. [online] Available at: http://www.appliedbio-nomics.com/wp- content/uploads/242-aphidius.pdf [Accessed 4 Jul. 2017].
Aphidius floridaensis (adult)	Aflor	Specialist	Foliar	Active	2.5	Ferguson, K.I. and Stiling, P. (1996). Non- additive effects of multiple natural enemies on aphid populations. <i>Oecologia</i> , 108 , 375- 379.
Aphidius matricariae	Amat	Specialist	Foliar	Active	2.5	Applied Bio-nomics. (2017). Aphidius (Aphidius matricariae, A. colemani, A. ervi) Aphid Parasites. [online] Available at: http://www.appliedbio-nomics.com/wp- content/uploads/242-aphidius.pdf [Accessed 4 Jul. 2017].
Aphidoletes aphidimyza (larvae)	Aaphi	Specialist	Foliar	Active	2.5	Cornell University College of Agriculture and Life Science. (2017). Aphidoletes aphidimyza. [online] Available at: https://biocontrol.entomology.cornell.edu/pr edators/Aphidoletes.php [Accessed 4 Jul. 2017].
Atypena formosana (juvenile)	Afor	Generalist	Broad	SW	3	Sigsgaard, L. (2007). Early season natural control of the brown planthopper, Nilaparvata lugens: the contribution and interaction of two spider species and a predatory bug. <i>B. Entomol. Res.</i> , 97 , 533- 544. Sigsgaard, L., Toft, S. and Villareal, S.
						(2001). Diet-dependent fecundity of the spiders Atypena formosana and Pardosa

Calathus fuscipes	Cf	Generalist	BPG	Active	12	pseudoannulata, predators in irrigated rice. <i>Agr. Forest Entomol.</i> , 3 , 285-295. Expert opinion.
Cheiracanthium mildei (juvenile)	Cm	Generalist	Broad	Active	5.17	 Hogg, B.N. and Daane, K.M. (2011). Diversity and invasion within a predator community: impacts on herbivore suppression. <i>Journal of Applied Ecology</i>, 48, 453-461. Spiders.us. (2017). Cheiracanthium mildei (Longlegged Sac Spider) Pictures and Spider Identification. [online] Available at: http://www.spiders.us/species/cheiracanthiu m-mildei/ [Accessed 4 Jul. 2017].
Chrysoperla carnea (larvae)	Cc_1	Specialist	Foliar	Active	4.85	 Hanskumar, S.V. (2012). Feeding potential and insecticidal safety evaluation of Chrysoperla sp.(carnea-group) (Doctoral dissertation, Iari, Division Of Entomology). Mochizuki, A., Naka, H., Hamasaki, K. and Mitsunaga, T. (2006). Larval cannibalism and intraguild predation between the introduced green lacewing, Chrysoperla carnea, and the indigenous trash-carrying green lacewing, Mallada desjardinsi (Neuroptera: Chrysopidae), as a case study of potential nontarget effect assessment. Environ. Entomol., 35, 1298- 1303. Ulhaq, M.M., Sattar, A., Salihah, Z., Farid, A., Usman, A. and Khattak, S.U.K. (2006).

						Effect of different artificial diets on the biology of adult green lacewing (Chrysoperla carnea Stephens). <i>Songklanakarin J Sci</i> <i>Technol</i> , 28 , 1-8.
Chrysoperla plorabunda (larvae)	Cp_1	Specialist	Foliar	Active	4.85	 Hanskumar, S.V. (2012). Feeding potential and insecticidal safety evaluation of Chrysoperla sp.(carnea-group) (Doctoral dissertation, Iari, Division Of Entomology). Mochizuki, A., Naka, H., Hamasaki, K. and Mitsunaga, T. (2006). Larval cannibalism and intraguild predation between the introduced green lacewing, Chrysoperla carnea, and the indigenous trash-carrying green lacewing, Mallada desjardinsi (Neuroptera: Chrysopidae), as a case study of potential nontarget effect assessment. Environ. Entomol., 35, 1298- 1303. Ulhaq, M.M., Sattar, A., Salihah, Z., Farid, A., Usman, A. and Khattak, S.U.K. (2006). Effect of different artificial diets on the biology of adult green lacewing (Chrysoperla carnea Stephens). Songklanakarin J Sci Technol, 28, 1-8.
Clubiona saltitans	Csal	Generalist	Broad	Active	7.55	Finke, D.L. and Denno, R.F. (2005). Predator diversity and the functioning of ecosystems: the role of intraguild predation in dampening trophic cascades. <i>Ecol.</i>

						<i>Lett.</i> , 8 , 1299-1306.
Coccinella septempunctata (adult)	Csem_a	Specialist	Foliar	Active	7.6	Cornell University College of Agriculture and Life Science. (2017). Coccinella septempunctata. [Online]. [4 July 2017]. Available from: <u>https://biocontrol.entomology.cornell.edu/pr</u> <u>edators/Coccinella.php</u> Accessed 4 Jul. 2017].
Coccinella septempunctata (larvae)	Csem_1	Specialist	Foliar	Active	5.5	Cornell University College of Agriculture and Life Science. (2017). Coccinella septempunctata. [Online]. [4 July 2017]. Available from: <u>https://biocontrol.entomology.cornell.edu/pr</u> <u>edators/Coccinella.php</u> Accessed 4 Jul. 2017].
Coleomagilla maculata (adult)	Cmac_a	Specialist	Foliar	Active	5.5	Cornell University College of Agriculture and Life Science. (2017). Coleomegilla maculata. [Online]. [4 July 2017]. Available from: https://biocontrol.entomology.cornell.edu/pr edators/Coleomegilla.php. [Accessed 4 Jul. 2017].
Cycloneda sanguinea (adult)	Csang	Specialist	Foliar	Active	4.75	Gordon, R. D. (1985). The Coccinellidae (Coleoptera) of America North of Mexico Journal of the New York Entomological Society, Vol. 93 Işıkber, A.A. and Copland, M.J.W., 2002. Effects of various aphid foods on Cycloneda sanguinea. <i>Entomol. Exp. Appl.</i> , 102 , 93-97.
Cyclotrachelus sodalis	Csod	Generalist	BPG	Active	15	Snyder, W.E. and Wise, D.H. (2000). Antipredator behavior of spotted cucumber

Page 5	54 of	94
--------	-------	----

Cyrtorhinus	Cl a	Specialist	Foliar	Active	2.85	beetles (Coleoptera: Chrysomelidae) in response to predators that pose varying risks. <i>Environ. Entomol.</i> , 29 , 35-42. Wilby, A., Villareal, S.C., Lan, L.P., Heong,
lividipennis (adult)	u a a a a a a a a a a a a a a a a a a a				2.00	K.L. & Thomas, M.B. (2005). Functional benefits of predator species diversity depend on prey identity. Ecological Entomology, 30, 497–501.
Diaeretiella rapae	Dr	Specialist	Foliar	Active	2.15	Kant, R., Minor, M.A. and Trewick, S.A. (2012). Fitness gain in a koinobiont parasitoid Diaeretiella rapae (Hymenoptera: Aphidiidae) by parasitising hosts of different ages. <i>J. Asia-Pacific Entomol.</i> , 15 , 83-87.
				en.		Karad, N.K., Korat, D.M. (2014). Biology and morphometry of Diaeretiella rapae (McIntosh) - a parasitoid of aphids*. Karnataka J. Agric. Sci., 27 , 531-533
Dicyphus tamaninii (nymph)	Dt	Generalist	Foliar	Active	4.5	Agustí, N., Gabarra, R. (2009). Effect of adult age and insect density of Dicyphus tamaninii Wagner (Heteroptera: Miridae) on progeny. <i>J. Pest Sci.</i> , 82 , 241–246.
						Wheeler, A. G. (2000). Predacious plant bugs (Miridae),. In C. W. Scaefer and A. R. Panizzi (eds.), Heteroptera of economic importance. CRC press, Boca Raton, FL. p 657–693
Episyrphus balteatus (larvae)	Eb	Specialist	Foliar	Active	15	Biopol. (2017). Episyrphus balteatus. [online] Available at: http://www.biopol.nl/en/solutions/biological

						-pest-control/aphids/hoverfly/episyrphus- balteatus/ [Accessed 4 Jul. 2017].
Erigone atra	Ea	Generalist	BPG	SW	2.25	Dinter, A. (2002). Microcosm studies on intraguild predation between female erigonid spiders and lacewing larvae and influence of single versus multiple predators on cereal aphids. <i>Journal of Applied</i> <i>Entomology</i> , 126 , 249-257. Expert opinion.
			Rei	•		 Harvey, P.R., Nellist, D.R. & Telfer, M.G. (eds) 2002. Provisional atlas of British spiders (Arachnida, Araneae), Volumes 1 & 2. Huntingdon: Biological Records Centre.
Forficula auricularia	Fa	Generalist	Broad	Active	13.5	Department of Entomology (Penn State University). (2017). European Earwigs (Department of Entomology). [online] Available at: http://ento.psu.edu/extension/factsheets/ear wigs [Accessed 4 Jul. 2017].
Geocoris pallens and Geoc oris punctipes* (adult)	Geo	Generalist	Foliar	Active	4	Bao-Fundora, L., Ramirez-Romero, R., Sánchez-Hernández, C.V., Sánchez- Martínez, J. and Desneux, N. (2016). Intraguild predation of Geocoris punctipes on Eretmocerus eremicus and its influence on the control of the whitefly Trialeurodes vaporariorum. <i>Pest Manag. Sci.</i> , 72 , 1110- 1116.
						Utah Pests Fact Sheet. (2011). Beneficial True Bugs: Big-Eyed Bugs. [online]

						Available at: http://extension.usu.edu/files/publications/fa ctsheet/big-eyed-bugs.pdf [Accessed 4 Jul. 2017].
Grammonota trivitatta	Gt	Generalist	BPG	SW	3	Denno, R.F., Mitter, M.S., Langellotto, G.A., Gratton, C. and Finke, D.L. (2004). Interactions between a hunting spider and a web-builder: consequences of intraguild predation and cannibalism for prey suppression. <i>Ecol. Entomol.</i> , 29 , 566-577.
			Rev			Wimp, G.M., Murphy, S.M., Lewis, D., Douglas, M.R., Ambikapathi, R., Van-Tull, L.A., Gratton, C. and Denno, R.F. (2013). Predator hunting mode influences patterns of prey use from grazing and epigeic food webs. <i>Oecologia</i> , 171 ,1-11
Harmonia axyridis (adult)	Haxy_a	Generalist	Foliar	Active	6.75	University of Michigan - Animal Diversity Web. (2017). Hippodamia convergens (convergent lady beetle). [online] Available at: http://animaldiversity.org/accounts/Hippoda mia_convergens/ [Accessed 4 Jul. 2017].
Harmonia axyridis (larvae)	Haxy_1	Generalist	Foliar	Active	6.3	University of Michigan - Animal Diversity Web. (2017). Hippodamia convergens (convergent lady beetle). [online] Available at: http://animaldiversity.org/accounts/Hippoda mia convergens/ [Accessed 4 Jul. 2017].
Harpalus pennsylvanicus (adult)	Hpen	Generalist	BPG	Active	14.5	Department of Entomology (Penn State University). (2017). Ground and Tiger Beetles (Coleoptera: Carabidae)

		<i>k</i>				(Department of Entomology). [online] Available at: http://ento.psu.edu/extension/factsheets/grou nd-beetles [Accessed 4 Jul. 2017]. NC State University. (2017). The Ground Beetles of Eastern North Carolina Agriculture. [online] Available at: http://www4.ncsu.edu/~dorr/Insects/Predato rs/Ground_Beetle/Ground_Beetles1_final.p df [Accessed 4 Jul. 2017].
Hippodamia convergens (adult)	Hc_a	Specialist	Foliar	Active	6	University of Florida Entomolgy and Nematology. (2017). convergent ladybug - Hippodamia convergens. [online] Available at: http://entnemdept.ufl.edu/creatures/BENEFI CIAL/convergent_lady_beetle.html [Accessed 4 Jul. 2017]. University of Michigan - Animal Diversity Web. (2017). Hippodamia convergens (convergent lady beetle). [online] Available at: http://animaldiversity.org/accounts/Hippoda mia_convergens/ [Accessed 4 Jul. 2017].
Hippodamia convergens (larvae)	Hc_1	Specialist	Foliar	Active	5.5	University of Florida Entomolgy and Nematology. (2017). convergent ladybug - Hippodamia convergens. [online] Available at: http://entnemdept.ufl.edu/creatures/BENEFI CIAL/convergent_lady_beetle.html [Accessed 4 Jul. 2017].

Page	58 c	of 94
------	------	-------

						University of Michigan - Animal Diversity Web. (2017). Hippodamia convergens (convergent lady beetle). [online] Available at: http://animaldiversity.org/accounts/Hippoda mia convergens/ [Accessed 4 Jul. 2017].
Hippodamia sinuata (larvae)	Hs_1	Specialist	Foliar	Active	5.5	PDF at <u>http://mint.ippc.orst.edu/ladybeetfact.pdf</u> modified from: Berry, R., Hall, B., Mooney, P. and Delaney, D. (1998). Insects and Mites of Economic Importance in the Northwest. 2 nd ed. Corvallis, Or. Dept. of Entomology, Oregon State University
Hippodamia tredecimpunctata (larvae)	Ht_1	Specialist	Foliar	Active	5.45	Chinery, M., 1986. Collins guide to the insects of Britain and western Europe. London: Collins. p 258
Hippodamia variegata (larvae)	Hv_1	Specialist	Foliar	Active	4	 Farhadi, R., Allahyari, H. and Juliano, S.A. (2010). Functional response of larval and adult stages of Hippodamia variegata (Coleoptera: Coccinellidae) to different densities of Aphis fabae (Hemiptera: Aphididae). <i>Environ. Entomol.</i>, 39, 1586-1592. Rebolledo, R., Sheriff, J., Parra, L. and
						Aguilera, A., 2009. Life, seasonal cycles, and population fluctuation of Hippodamia

						variegata (Goeze)(coleoptera: coccinellidae), in the Central plain of La Araucanía region, Chile. <i>Chilean J. Agr.</i> <i>Res.</i> , 69 , 292-298.
Hogna helluo	Hh	Generalist	BPG	Active	19.5	Expert opinion. Snyder, W.E. & Wise, D.H. (2001). Antipredator behavior of spotted cucumber beetles (Coleoptera : Chrysomelidae) in response to predators that pose varying risks. <i>Environmental Entomology</i> , 29 , 35– 42.
Hypoaspis aculeifer	Hacul	Specialist	BPG	Active	0.6	 Biological Services. (2017). Killer mites (Hypoaspis aculeifer) – Biological Services, Australia. [online] Available at: http://www.biologicalservices.com.au/produ cts/killer-mites-23.html [Accessed 4 Jul. 2017]. Wiethoff, J., Poehling, H.M. & Meyhofer, R. (2004). Combining plant- and soil- dwelling predatory mites to optimise biological control of thrips. <i>Experimental and Applied Acarology</i>, 34, 239–261.
Laricobius nigrinus	Lnig	Specialist	Foliar	Active	3	Cornell Chronicle. (2017). Cornell releases predator beetle to battle hemlock pest Cornell Chronicle. [online] Available at: http://news.cornell.edu/stories/2009/11/corn ell-releases-predator-beetle-battle-hemlock- pest [Accessed 4 Jul. 2017]. Zilahi-Balogh, G.M.G., Humble, L.M., Kok,

Page 6	0 of 94
--------	---------

						L.T. and Salom, S.M. (2006). Morphology of Laricobius nigrinus (Coleoptera: Derodontidae), a predator of the hemlock woolly adelgid. <i>Canadian Entomol.</i> , 138 , 595-601.
Laricobius nigrinus (larvae)	Lnig_l	Specialist	Foliar	Active	2.69	Cornell Chronicle. (2017). Cornell releases predator beetle to battle hemlock pest Cornell Chronicle. [online] Available at: http://news.cornell.edu/stories/2009/11/corn ell-releases-predator-beetle-battle-hemlock- pest [Accessed 4 Jul. 2017]. Zilahi-Balogh, G.M.G., Humble, L.M., Kok, L.T. and Salom, S.M. (2006). Morphology of Laricobius nigrinus (Coleoptera: Derodontidae), a predator of the hemlock woolly adelgid. <i>Canadian Entomol.</i> , 138 , 595-601.
Macrolophus caliginosus	Mc	Generalist	Foliar	Active	3.25	 Bonato, O., Couton, L. and Fargues, J. (2006). Feeding preference of Macrolophus caliginosus (Heteroptera: Miridae) on Bemisia tabaci and Trialeurodes vaporariorum (Homoptera: Aleyrodidae). <i>J. Econ. Entomol.</i>, 99, 1143-1151. Lucas, E. and Alomar, O. (2001). Macrolophus caliginosus (Wagner) as an intraguild prey for the zoophytophagous Dicyphus tamaninii Wagner (Heteroptera: Miridae). <i>Biol. Control</i>, 20, 147-152.
Marpissa pikei	Mpik	Generalist	Foliar	Active	8	Expert opinion.

Meteorus ictericus	Mict	Specialist	Foliar	Active	5.15	Brodeur, J. and Boivin, G. eds., 2006. <i>Trophic and guild interactions in</i> <i>biological control</i> . New York: Springer. p 249 Bürgi, L.P. and Mills, N.J. (2013).
noreor us terer teus					5.10	Developmental strategy and life history traits of Meteorus ictericus, a successful resident parasitoid of the exotic light brown apple moth in California. <i>Biol. Control</i> , 66 , 173-182.
<i>Metioche</i> <i>vittaticollis</i>	Mvit	Specialist	Foliar	Active	10	Expert opinion. Wilby, A., Villareal, S.C., Lan, L.P., Heong, K.L. and Thomas, M.B., 2005. Functional benefits of predator species diversity depend on prey identity. <i>Ecol. Entomol.</i> , 30 , 497- 501.
Micraspis crocea (adult)	Mcroc	Specialist	Foliar	Active	4.5	 Shanker, C., Mohan, M., Sampathkumar, M., Lydia, C. and Katti, G., 2013. Functional significance of Micraspis discolor (F.)(Coccinellidae: Coleoptera) in rice ecosystem. J. Appl. Entomol., 137, 601- 609. Shepard, B.M. and Rapusas, H.R. (1989). Life cycle of Micraspis sp. on brown planthopper (BPH) and rice pollen. International Rice Research Newsletter
Misumenops (two	Mis	Generalist	Foliar	AP	6	<i>(Philippines).</i> Expert opinion.
mid instar)						

Page	62	of	94
· uge	~	۰.	

						Yasuda, H. & Kimura, T. (2001). Interspecific interactions in a tri-trophic arthropod system: effects of a spider on the survival of larvae of three predatory ladybirds in relation to aphids. Experimental and Applied Acarology., 98, 17–25
Misumenops tricuspidatus	Mtric	Generalist	Foliar	АР	6	Expert opinion. Yasuda, H. & Kimura, T. (2001). Interspecific interactions in a tri-trophic arthropod system: effects of a spider on the survival of larvae of three predatory ladybirds in relation to aphids. Experimental and Applied Acarology., 98, 17–25
Nabis (sp)	Nabis	Generalist	Foliar	SW	7.5	Aquilino, K.M., Cardinale, B.J. & Ives, A.R. (2005). Reciprocal effects of host plant and natural enemy diversity on herbivore suppression: an empirical study of a model tritrophic system. <i>Oikos</i> , 108 , 275–282. Berry, R., Hall, B., Mooney, P. and Delaney, D. (1998). Insects and Mites of Economic Importance in the Northwest. 2 nd ed. Corvallis, Or.: Dept. of Entomology, Oregon State University
Nabis alternatus	Nalt	Generalist	Foliar	SW	8	Northfield, T.D., Snyder, G.B., Ives, A.R. & Snyder, W.E. (2010). Niche saturation reveals resource partitioning among consumers. <i>Ecology Letters</i> , 13 , 338–348 Berry, R., Hall, B., Mooney, P. and Delaney, D. (1998). Insects and Mites of

						Economic Importance in the Northwest. 2 nd ed. Corvallis, Or.: Dept. of Entomology, Oregon State University
Naemia seriata	Nser	Generalist	Foliar	Active	5.35	
Nesidiocoris tenuis (nymph)	Nten	Generalist	Foliar	Active	2.5	assessment. Part 1. Foundation Report. Biological Services. (2017). Nesidiocoris (Nesidiocoris tenuis) – Biological Services, Australia. [online] Available at: http://www.biologicalservices.com.au/produ cts/nesidiocoris-28.html [Accessed 4 Jul. 2017]. Gervassio, S., Nadia, G., Pérez-Hedo, M., Luna, M.G. and Urbaneja, A. (2016). Intraguild predation and competitive displacement between Nesidiocoris tenuis and Dicyphus maroccanus, 2 biological control agents in tomato pests. <i>Insect Sci.</i> , doi:10.1111/1744-7917.12361
Nesticodes rufipes	Nest	Generalist	Foliar	SW	2	Rosenheim, J.A., Limburg, D.D., Colfer, R.G., Fournier, V., Hsu, C.L., Leonardo,

Page	64	of	94
------	----	----	----

		Ĩ,				T.E. & Nelson, E.H. (2004a) Herbivore population suppression by an intermediate predator, Phytoseiulus macropilis, is insensitive to the presence of an intraguild predator: an advantage of small body size? <i>Oecologia</i> , 140, 577–585. 2) Rosenheim, J.A., Glik, T.E., Goeriz, R.E. & Rämert, B. (2004b) Linking a predator's foraging behavior with its effects on herbivore population suppression. <i>Ecology</i> , 85, 3362–3372.
Oedothorax apicatus	Oapi	Generalist	BPG	SW	2.75	Dinter, A. (2002). Microcosm studies on intraguild predation between female erigonid spiders and lacewing larvae and influence of single versus multiple predators on cereal aphids. <i>Journal of Applied</i> <i>Entomology</i> , 126 , 249-257.
						Spider and Harvestman Recording Scheme website. (2017). Summary for Oedothorax apicatus (Araneae). [online] Available at: http://srs.britishspiders.org.uk/portal/p/Sum mary/s/Oedothorax+apicatus [Accessed 4 Jul. 2017].
Oligota sp.	Oli	Specialist	Foliar	Active	0.5	Rosenheim, J.A., Limburg, D.D., Colfer, R.G., Fournier, V., Hsu, C.L., Leonardo, T.E. & Nelson, E.H. (2004a) Herbivore population suppression by an intermediate predator, Phytoseiulus macropilis, is insensitive to the presence of an intraguild predator: an advantage of small body size?

		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				<ul> <li>Oecologia, 140, 577–585.</li> <li>Rosenheim, J.A., Glik, T.E., Goeriz, R.E. &amp; Rämert, B. (2004b) Linking a predator's foraging behavior with its effects on herbivore population suppression. <i>Ecology</i>, 85, 3362–3372.</li> <li>Williams, S.A. (1976). The genus oligota (Coleoptera: Staphylinidae) in New Zealand. <i>New Zealand Journal of Zoology</i>, 3, 247-255</li> </ul>
Orius tristicolor (adult)	Otri	Generalist	Foliar	Active	3	Cornell University College of Agriculture and Life Science. (2017). <i>Orius tristicolor</i> <i>and O. insidiosus</i> . [online] Available at: https://biocontrol.entomology.cornell.edu/pr edators/Orius.php [Accessed 4 Jul. 2017].
Orthotylus marginali	Omarg	Generalist	Foliar	SW	6.4	<ul> <li>Bantock, T. (2017). (Miridae) Orthotylus marginalis. [online] Britishbugs.org.uk.</li> <li>Available at: https://www.britishbugs.org.uk/heteroptera/ Miridae/orthotylus_marginalis.html</li> <li>[Accessed 4 Jul. 2017].</li> <li>Björkman, C. and Liman, A.S. (2005).</li> <li>Foraging behaviour influences the outcome of predator-predator interactions. <i>Ecol.</i> <i>Entomol.</i>, <b>30</b>, 164-169.</li> </ul>
Pardosa littoralis (adult)	Pl_a	Generalist	Broad	Active	4	Finke, D.L. and Denno, R.F. (2005). Predator diversity and the functioning of ecosystems: the role of intraguild predation in dampening trophic cascades. <i>Ecol.</i>

						<i>Letters</i> , <b>8</b> , 1299-1306. Lewis, D. and Denno, R.F. (2009). A seasonal shift in habitat suitability enhances an annual predator subsidy. <i>J. Anim.</i> <i>Ecol.</i> , 78, 752-760.
Pardosa pseudoannulata	Рр	Generalist	BPG	Active	8.5	A Guide to Common Singapore Spiders. (2017). pond wolf spider (pardosa pseudoannulata). [online] Available at: http://habitatnews.nus.edu.sg/guidebooks/sp iders/text/Pardosa_pseudoannulata.htm [Accessed 4 Jul. 2017]. Heong, K.L., Bleih, S. and Rubia, E.G. (1991). Prey preference of the wolf spider, Pardosa pseudoannulata (Boesenberg et Strand). <i>Res. Popul. Ecol.</i> , <b>33</b> , 179-186.
Phidippus rimator	Prim	Generalist	Broad	Active	8.7	<ul> <li>Sokol-Hessner, L. and Schmitz, O.J. (2002). Aggregate effects of multiple predator species on a shared prey. <i>Ecology</i>, 83, 2367- 2372.</li> <li>Horton, C.C. (1983). Predators of two orb- web spiders (Araneae, Araneidae). <i>The</i> <i>Journal of Arachnology</i>, 11, 447-449.</li> <li>TGSpId: Table Grape Spider Identification. (2017). TGSpID-Factsheet Phidippus clarus. [online] Available at: http://itp.lucidcentral.org/id/table- grape/tgspid/html/fsheet_phidippus_clarus.h tm [Accessed 4 Jul. 2017].</li> </ul>

Philonthus sp (adult)	Phil	Generalist	BPG	Active	10.5	Expert opinion.
Phalangium opilio	Popi	Generalist	Broad	АР	3.75	NatureSpot. (2017). Phalangium opilio - Phalangium opilio   NatureSpot. [online] Available at: http://www.naturespot.org.uk/species/phalan gium-opilio [Accessed 4 Jul. 2017]. Expert opinion.
Phytoseiulus macropilis	Pmacro	Specialist	Foliar	Active	0.5	<ul> <li>Rosenheim, J.A., Limburg, D.D., Colfer,</li> <li>R.G., Fournier, V., Hsu, C.L., Leonardo,</li> <li>T.E. &amp; Nelson, E.H. (2004). Herbivore</li> <li>population suppression by an intermediate</li> <li>predator, Phytoseiulus macropilis, is</li> <li>insensitive to the presence of an intraguild</li> <li>predator: an advantage of small body size?</li> <li><i>Oecologia</i>, 140, 577–585.</li> <li>Okassa, M., Tixier, M.S. and Kreiter, S.,</li> <li>2010. Morphological and molecular</li> <li>diagnostics of Phytoseiulus persimilis and</li> <li>Phytoseiulus macropilis (Acari:</li> <li>Phytoseiidae). <i>Exp. Appl. Acarol.</i>, 52, 291-303.</li> </ul>
Pisaurina mira	Pmir	Generalist	Foliar	SW	14	University of Michigan - Animal Diversity Web. (2017). Pisaurina mira. [online] Available at: http://animaldiversity.org/accounts/Pisaurin a_mira/ [Accessed 4 Jul. 2017]. Sokol-Hessner, L. and Schmitz, O.J. (2002). Aggregate effects of multiple predator

Page 6	58 of	94
--------	-------	----

						species on a shared prey. <i>Ecology</i> , <b>83</b> , .2367-2372.
Podisus maculiventris (adult)	Pmac_a	Generalist	Foliar	Active	10.75	Cornell University College of Agriculture and Life Science. (2017). Podisus maculiventris. [online] Available at: https://biocontrol.entomology.cornell.edu/pr edators/Podisus.php [Accessed 4 Jul. 2017].
			Dr Re			University of Florida Entomolgy and Nematology. (2017). Spined soldier bug - Podisus maculiventris Say. [online] Available at: http://entnemdept.ufl.edu/creatures/benefici al/podisus_maculiventris.htm [Accessed 4 Jul. 2017].
Podisus maculiventris (nymph)	Pmac_n	Generalist	Foliar	Active	5.65	Cornell University College of Agriculture and Life Science. (2017). Podisus maculiventris. [online] Available at: https://biocontrol.entomology.cornell.edu/pr edators/Podisus.php [Accessed 4 Jul. 2017]. University of Florida Entomolgy and Nematology. (2017). Spined soldier bug - Podisus maculiventris Say. [online] Available at: http://entnemdept.ufl.edu/creatures/benefici al/podisus_maculiventris.htm [Accessed 4 Jul. 2017].
Propylea japonica (larvae)	Pjap_l	Specialist	Foliar	Active	4.5	Ouyang, F., Men, X., Yang, B., Su, J., Zhang, Y., Zhao, Z. and Ge, F. (2012). Maize benefits the predatory beetle, Propylea japonica (Thunberg), to provide

						potential to enhance biological control for aphids in cotton. <i>PloS One</i> , <b>7</b> , p.e44379. Zhang, S.Z., Zhang, F. and Hua, B.Z. (2007). Suitability of various prey types for the development of Propylea japonica (Coleoptera: Coccinellidae). <i>Eur. J.</i> <i>Entomol.</i> , <b>104</b> , 149.
Psyllaephagus bliteus (adult)	Pblit	Specialist	Foliar	Active	1.54	
Pterostichus madidus	Pmad	Generalist	BPG	Active	17.5	NatureSpot. (2017). Black Clock Beetle - Pterostichus madidus   NatureSpot. [online] Available at: http://www.naturespot.org.uk/species/black- clock-beetle [Accessed 4 Jul. 2017]. Expert opinion.
Pterostichus melanarius	Pmel	Generalist	BPG	Active	15	NatureSpot. (2017). Pterostichus melanarius - Pterostichus melanarius   NatureSpot. [online] Available at: http://www.naturespot.org.uk/species/pteros tichus-melanarius [Accessed 4 Jul. 2017]. Expert opinion.
Rabidosa rabida	Rrab	Generalist	BPG	AP	17	University of Michigan - Animal Diversity Web. (2017). <i>Rabidosa rabida</i> . [online] Available at: http://animaldiversity.org/accounts/Rabidos

						a_rabida [Accessed 4 Jul. 2017]. Sokol-Hessner, L. and Schmitz, O.J. (2002). Aggregate effects of multiple predator species on a shared prey. <i>Ecology</i> , <b>83</b> ,
Salticus scenicus	Sscen	Generalist	Broad	Active	7	.2367-2372. Drieu, R. and Rusch, A. (2016). Conserving species-rich predator assemblages strengthens natural pest control in a climate warming context. <i>Agricultural and Forest</i> <i>Entomology</i> , 19, 52-59. Arkive. (2017). Zebra spider - <i>Salticus</i> <i>scenicus</i>   Arkive. [online] Available at: http://www.arkive.org/zebra-spider/salticus-
Sasajiscymnus tsugae	Stsu	Specialist	Foliar	Active	0.48	scenicus/#text=All [Accessed 4 Jul. 2017]. Cornell University College of Agriculture and Life Science. (2017). Sasajiscymnus tsugae. [online] Available at: https://biocontrol.entomology.cornell.edu/pr edators/sasajiscymnus.php [Accessed 4 Jul. 2017].
Sasajiscymnus tsugae (larvae)	Stsu_1	Specialist	Foliar	Active	1.9	Cornell University College of Agriculture and Life Science. (2017). Sasajiscymnus tsugae. [online] Available at: https://biocontrol.entomology.cornell.edu/pr edators/sasajiscymnus.php [Accessed 4 Jul. 2017].
Stethorus siphonulus	Ssiph	Specialist	Foliar	Active	0.35	

Tachyporus hypnorum (adult)	Thyp	Generalist	Broad	Active	3.5	Evergreen growers. (2017). Stethorus punctillum. [online] Available at: http://www.evergreengrowers.com/stethorus -punctillum-spider-mite-destroyer.html [Accessed 4 Jul. 2017]. Rosenheim, J.A., Limburg, D.D., Colfer, R.G., Fournier, V., Hsu, C.L., Leonardo, T.E. and Nelson, E.H. (2004). Herbivore population suppression by an intermediate predator, Phytoseiulus macropilis, is insensitive to the presence of an intraguild predator: an advantage of small body size? <i>Oecologia</i> , <b>140</b> , 577-585. NatureSpot. (2017). <i>Tachyporus hypnorum - Tachyporus hypnorum</i>   <i>NatureSpot</i> . [online] Available at: http://www.naturespot.org.uk/species/tachyp orus-hypnorum [Accessed 4 Jul. 2017].
					1	Petersen, M.K. (1997). Life histories of two predaceous beetles, Bembidion lampros and Tachyporus hypnorum, in the agroecosystem. Swedish University of Agricultural Sciences. Vancouver.
Theridion melanurum	Tmel	Generalist	Broad	SW	1.735	Hogg, B.N. and Daane, K.M. (2011). Diversity and invasion within a predator community: impacts on herbivore suppression. <i>J. Appl. Ecol.</i> , <b>48</b> , 453-461.

						NatureSpot. (2017). <i>Theridion melanurum</i> - <i>Theridion melanurum</i>   <i>NatureSpot</i> . [online] Available at: http://www.naturespot.org.uk/species/theridi on-melanurum [Accessed 4 Jul. 2017].
Typhlodromus pyri	Тру	Specialist	Foliar	Active	0.6	Washington State University - Orchard Pest Management Online. (2017). Typhlodromus occidentalis. [online] Available at: http://jenny.tfrec.wsu.edu/opm/displaySpeci es.php?pn=830 [Accessed 4 Jul. 2017].
Tytthus vagus (adult)	Tvag	Specialist	Foliar	Active	2.34	<ul> <li>Finke, D.L. &amp; Denno, R.F. (2002) Intraguild Predation Diminished in Complex- Structured Vegetation: Implications for Prey Suppression. <i>Ecology</i>, 83, 643.; 2</li> <li>Henry, T.J. (2012). Revision of the Plant Bug Genus Tytthus (Hemiptera, Heteroptera, Miridae, Phylinae). <i>ZooKeys</i>,</li> </ul>
Zelus renardii (adult)	Zren_a	Generalist	Foliar	Active	13.2	<ul> <li>220, 1-114</li> <li>Hart, E.R. (1986). Genus Zelus Fabricius in the United States, Canada, and Northern Mexico (Hemiptera: Reduviidae). Ann. Ent. Soc. Am. 79, 535-548.</li> <li>Thomas, H.J., Froeschner. R.C. (1988). Catalog of the Heteroptera, or True Bugs of Canada and the Continental United States.</li> <li>Brill Academic Publishers. Leiden, Netherlands.</li> <li>Schaefer C.W., Panizzi A.R. (2000). Heteroptera of economic importance. CRC</li> </ul>

						Press, Boca Raton, FL, 828.
Zelus renardii (nymph)	Zren_n	Generalist	Foliar	Active	8.75	Hart, E.R. (1986). Genus Zelus Fabricius in the United States, Canada, and Northern Mexico (Hemiptera: Reduviidae). <i>Ann. Ent.</i> <i>Soc. Am.</i> 79, 535-548.
		A.				Thomas, H.J., Froeschner. R.C. (1988). Catalog of the Heteroptera, or True Bugs of Canada and the Continental United States. Brill Academic Publishers. Leiden, Netherlands.
			Re			Schaefer C.W., Panizzi A.R. (2000). Heteroptera of economic importance. CRC Press, Boca Raton, FL, 828.
				Ch (		

Ecology

For Review Only

Table showing the collinearity between predator and prey body size variables (Table 1). Also shown is the model results where ratio_{large} (body size ratio between the largest predator and prey) was included instead of ratio_{small} (body size ratio between the smallest predator and prey).

**Table 1.** Pearson correlation coefficient between predator-prey size variables. Correlation where r > 0.5 have been in highlighted in bold.

	Size of largest predator (mm)*	Size of smallest predator (mm)*	Size difference between predators	ratio _{small}	ratio _{large} *	Prey size (mm)
Size of largest predator (mm)*		0.60	0.82	-0.05	0.26	0.43
Size of smallest predator (mm)*	0.60		0.11	-0.04	-0.26	0.75
Size difference between predators	0.82	0.11	4	0.01	0.45	0.03
ratio _{small}	-0.05	-0.04	0.01		0.62	-0.44
ratio _{large} *	0.26	-0.26	0.45	0.62		-0.41
Prey size (mm)	0.43	0.75	0.03	-0.44	-0.41	

Ratio_{small} = body size ratio between the smallest predator and prey

Ratio_{large} = body size ratio between the largest predator and prey

Size difference = mean pairwise distance in body size between the predator species

### Ratio_{large} models

Table 2. 2AIC_c model subset for SMD_{mean} (predator polyculture compared to the mean of the component predator species in monocultures).

Rank	Model	AIC _c	Weight	Relative weight
1	Functional diversity	445.671	0.087	0.201
2	Functional diversity + Size difference	446.136	0.069	0.159
3	Functional diversity + Phylogenetic diversity	446.481	0.058	0.134
4	Functional diversity + Phylogenetic diversity + Size difference	447.097	0.043	0.099
5	Functional diversity + Predator richness	447.260	0.040	0.091
6	Functional diversity + Prey richness	447.378	0.037	0.086
7	Functional diversity + ratio _{large}	447.570	0.034	0.078
8	Functional diversity + Predator richness + Size difference	447.615	0.033	0.076
9	Functional diversity + Prey size	447.616	0.033	0.076

**Table 3**. Multimodel averaged parameter estimates for  $SMD_{mean}$  (predator polyculture compared to the mean of the component predator species in monocultures). Prey richness and predator richness estimate is the difference between the reference level (predator richness = 2 species and prey richness = 1 species). Parameter in bold indicate that the variable was included in the highest ranked model.

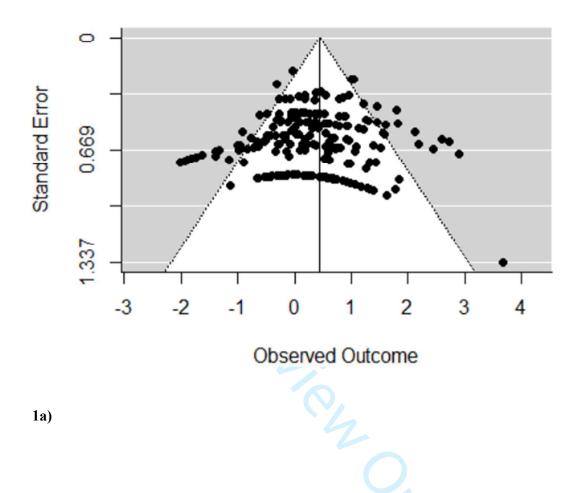
Parameter	Estimate	Importance	95% CI lower bound	95% CI upper bound
Prey size	-0.002	0.076	-0.020	0.016
ratio _{large}	-0.003	0.078	-0.024	0.018
Prey richness >1	0.010	0.086	-0.045	0.065
Predator richness >2	0.016	0.167	-0.058	0.09
Phylogenetic diversity	0.102	0.233	-0.287	0.491
Size difference	-0.009	0.334	-0.037	0.019
Functional diversity	0.452	1.000	0.070	0.834

### **SMD**_{max} ratio_{large} models

Table 4. 2AIC_c model subset for SMD_{max} (predator polyculture compared to the most effective predator species in a monoculture).

Rank	Model	AIC _c	Weight	Relative weight
1	Predator richness + Functional diversity	543.920	0.086	0.242
2	Predator richness + Functional diversity + Size difference	544.817	0.055	0.154
3	Predator richness + Functional diversity + ratio _{large}	545.036	0.049	0.139
4	Predator richness + Functional diversity + Phylogenetic diversity	545.133	0.047	0.132
5	Functional diversity	545.170	0.046	0.130
6	Functional diversity + ratio _{large}	545.482	0.039	0.111
7	Functional diversity + Size difference	545.806	0.033	0.094

Ecology


**Table 5**. Multimodel averaged parameter estimates for  $SMD_{max}$  (predator polyculture compared to the most effective predator species in a monoculture). Predator richness estimate is the difference between the reference level (predator richness = 2). Parameter in bold indicate that the variable was included in the highest ranked model.

Parameter	Estimate	Importance	95% CI lower bound	95% CI upper bound
Phylogenetic diversity	0.052	0.132	-0.180	0.282
Size difference	-0.006	0.248	-0.029	0.017
ratio _{large}	-0.030	0.249	-0.143	0.083
Predator richness >2	-0.158	0.666	-0.464	0.148
Functional diversity	0.471	1.000	0.057	0.885

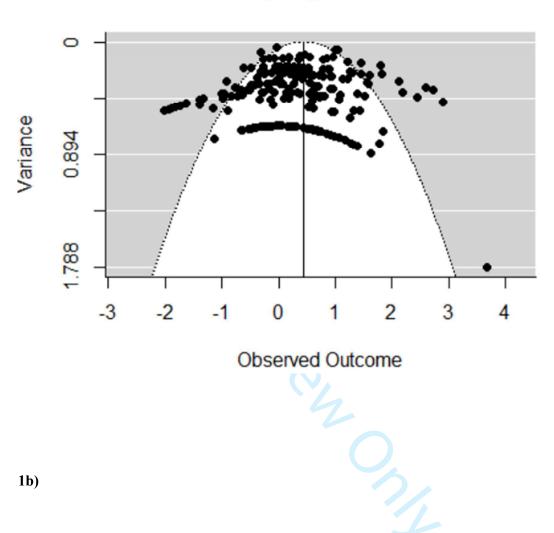
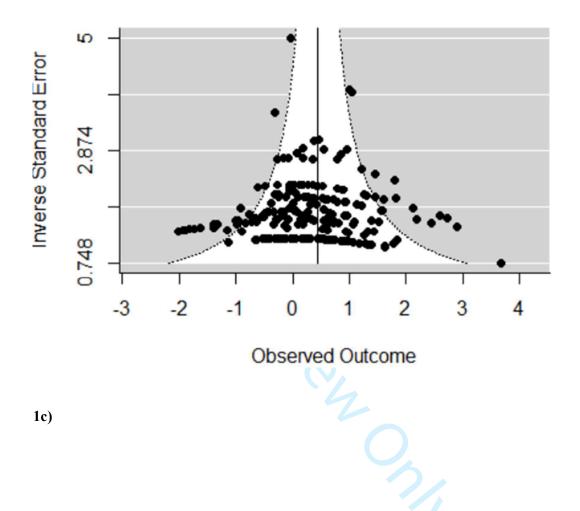
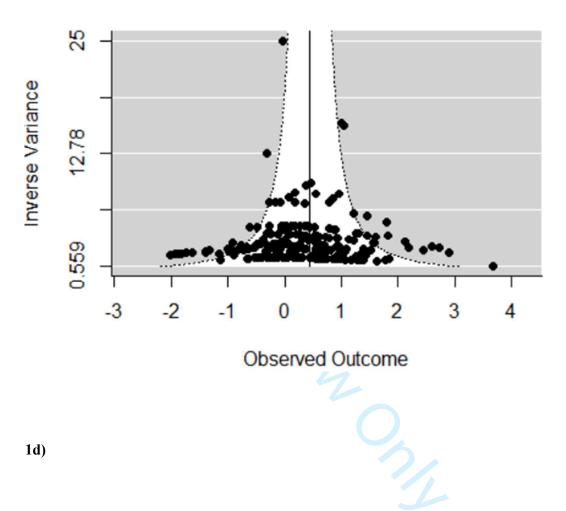

Funnel plots to assess publication bias.

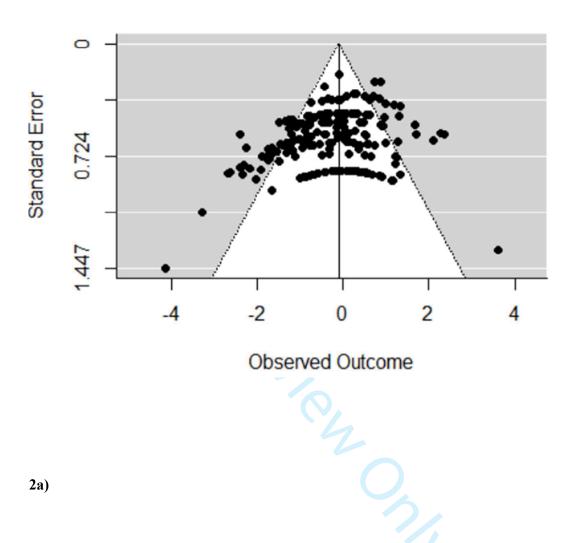
Figure 1. Funnel plots for SMD_{mean} showing the effect size plotted against the a) standard error, b) sampling variance, c) inverse standard error and the d) inverse sampling variance for each point.


Figure 2. Funnel plots for SMD_{max} showing the effect size plotted against the a) standard error, b) sampling variance, c) inverse standard error and the d) inverse sampling variance for each point.

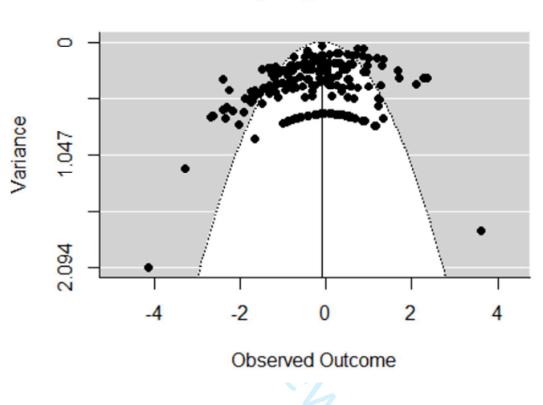



## Standard Error



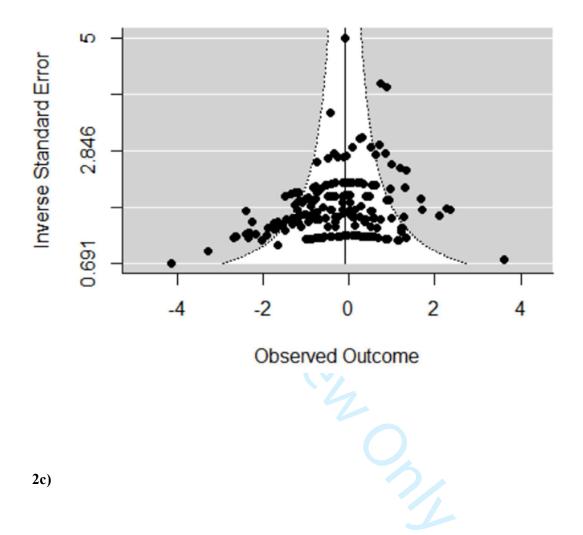

# Sampling Variance



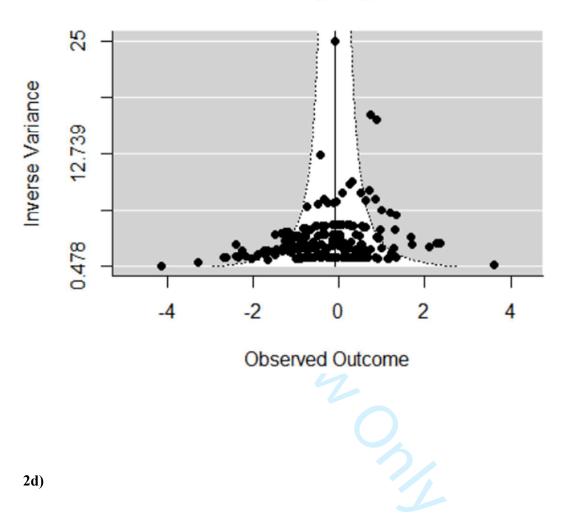

# Inverse Standard Error



# Inverse Sampling Variance




## Standard Error




Sampling Variance

2b)



# Inverse Standard Error



# Inverse Sampling Variance

Model 2AIC_c subset for  $SMD_{mean}$  and  $SMD_{max}$  metrics.

### **SMD**_{mean}

Table 1. 2AIC  $_{c}$  model subset for  $SMD_{mean}\ (predator\ polyculture\ compared\ to\ the\ mean\ of\ the$ 

component predator species in monocultures).

Rank	Model	AIC _c	Weight	Relative weight
1	Functional diversity	445.671	0.070	0.145
2	Functional diversity + Size difference	446.136	0.055	0.115
3	Functional diversity + ratio _{small}	446.167	0.054	0.113
4	Functional diversity + Phylogenetic diversity	446.481	0.046	0.097
5	Functional diversity + Size difference + ratio _{small}	446.860	0.038	0.080
6	Functional diversity + Prey size + ratio _{small}	446.906	0.037	0.078
7	Functional diversity + Phylogenetic diversity +			
/	Size difference	447.097	0.034	0.071
8	Functional diversity + Predator richness	447.260	0.031	0.065
9	Functional diversity + Phylogenetic diversity +			
9	ratio _{small}	447.266	0.031	0.065
10	Functional diversity + Prey richness	447.378	0.030	0.062
11	Functional diversity + Predator richness + Size			
11	difference	447.615	0.026	0.055
12	Functional diversity + Prey size	447.616	0.026	0.055

### **SMD**_{max}

Table 2.  $2AIC_c$  model subset for  $SMD_{max}$  (predator polyculture compared to the most

effective predator species in a monoculture).

Rank	Model	AIC _c	Weight	Relative weight
1	Predator richness + Functional diversity + ratio _{small}	542.820	0.090	0.267
2	Predator richness + Functional diversity + ratio _{small} + Prey size	543.295	0.071	0.211
3	Predator richness + Functional diversity	543.920	0.052	0.154
4	Predator richness + Functional diversity + Size difference + ratio _{small}	544.029	0.049	0.146
5	Predator richness + Functional diversity + Phylogenetic diversity + ratio _{small}	544.398	0.041	0.121
6	Predator richness + Functional diversity + Size difference	544.817	0.033	0.099

Ecology

to peries only

Analysis of the individual traits diet breadth, hunting strategy and habitat domain on SMD_{mean} (predator polyculture compared to the mean of the component predator species in monocultures) and SMD_{max} (predator polyculture compared to the most effective predator species in a monoculture). A functional diversity only model has also been included for comparison.

#### **SMD**_{mean}

Table 1. 2AIC_c model subset for SMD_{mean}.

Rank	Model	AIC _c	Weights	<b>Relative weight</b>
1	Diet breadth	443.960	0.479	0.709
2	Diet breadth + Hunting strategy	445.743	0.197	0.291

Table 2. Multimodel averaged parameter estimates for SMD_{mean}.

Parameter	Estimate	Importance	95% CI lower bound	95% CI upper bound
Hunting strategy	0.023	0.291	-0.098	0.144
Diet breadth	0.371	1.000	0.096	0.646

### **Table 3.** Functional diversity only model for SMD_{mean}.

Table 3. Functional diversity only model for $SMD_{mean}$ AIC = 445.671						
$AIC_{c} = 445.671$						
Parameter	Estimate	95% CI lower bound		95% CI upper bound		
Functional diversity	0.453	0.072		0.831		

#### **SMD**_{max}

Table 4. 2AIC_c model subset for SMD_{max}.

Rank	Model	AIC _c	Weights	Relative weight
1	Diet breadth	547.266	0.220	0.278
2	Hunting strategy	547.864	0.163	0.206
3	Diet breadth + Hunting strategy	547.882	0.162	0.204
4	Null model	547.942	0.157	0.198
5	Diet breadth + Habitat domain	549.028	0.091	0.115

Parameter	Estimate	Importance	95% CI lower bound	95% CI upper bound
Habitat domain	0.012	0.115	-0.058	0.082
Hunting strategy	0.084	0.410	-0.17	0.338
Diet breadth	0.141	0.596	-0.179	0.461

Table 5. Multimodel averaged parameter estimates for  $SMD_{max}$ .

Table 6. Functional diversity only model for  $\ensuremath{\mathsf{SMD}}_{max.}$ 

 $AIC_{c} = 545.170$ 

Parameter	Estimate	95% CI lower bound	95% CI upper bound
Functional diversity	0.458	0.051	0.865

As study design had a significant effect on the SMD_{max} metric (predator polyculture compared to the most effective predator species in a monoculture) (see Main paper; Table 3). We reanalysed SMD_{max} removing additive design studies that did not account for predator density. This left 140 data points from a total of 26 studies. The model results from this subset of data supported our main result that functional diversity had a positive effect on SMD_{max} (Table 1 and 2). The only difference was the absence of  $ratio_{small}$  from the 2AIC_c subset. However, our main analysis showed large variation of the impact of  $ratio_{small}$  on SMD_{max}. Thus, indicating no clear positive or negative effect of this variable.

Table 1.	$2AIC_{c}$	model	subset f	or S	MD	max .

Rank	Model	AIC _c	Weight	<b>Relative weight</b>
1	Functional diversity + Predator richness	355.877	0.122	0.385
2	Functional diversity + Predator richness + Phylogenetic diversity	356.524	0.089	0.279
3	Functional diversity + Predator richness + Prey size	357.294	0.060	0.190
4	Functional diversity + Predator richness + Size difference	357.794	0.047	0.148

**Table 2.** Multimodel average parameter estimates for  $SMD_{max}$ . Predator richness estimate is the difference between the reference level (predator richness = 2 species). Parameters in bold indicate that the variable was included in the highest ranked model.

Parameter	Estimate	Importance	95% CI lower bound	95% CI upper
				bound
Size difference	0.002	0.148	-0.01	0.014
Prey size	-0.023	0.189	-0.122	0.076
Phylogenetic diversity	0.161	0.278	-0.412	0.734
Predator richness >2	-0.487	1.000	-0.794	-0.18
<b>Functional diversity</b>	0.688	1.000	0.067	1.309

Ecology

to Review Only