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A comparison of different criteria for selecting
binary tests in diagnostic keys

B Y J. C. GOWER AND R. W. PAYNE

Rothamsted Experimental Station, Harpenden, Hertfordshire

SUMMARY

The problem of selecting tests to be used in nonprobabilistic binary diagnostic keys is
discussed. Five selection criteria are compared and it is shown that all except a new criterion
suffer from some deficiency. This criterion cannot be extended easily to cope with multi-
response tests but another criterion, which behaves satisfactorily with binary tests, can be
extended in some circumstances. The only criterion which can always be used with multi-
response tests is least satisfactory for binary tests.

Some key words: Diagnostic keys; Error rates; Test selection.

1. INTRODUCTION

Consider n populations characterized by p binary characters. An individual sample from
one of the populations may be assigned to its population of origin, or identified, by observing
the values of its characters. In the following this process of observation will be termed testing
and, unless otherwise stated, each test will be assumed to have two possible responses,
termed positive and negative. A binary diagnostic key is a device for identifying samples,
by applying the tests sequentially in a hierarchical manner. A sequence of test responses
leading to an identification is termed a branch of the key. In general, branches will differ
in length and the tests they use, although the same test can occur on several branches.
VOSB (1952) gives an interesting review of the historical development of keys.

To construct a key one requires a table giving the responses to thep tests for every popula-
tion. There are four possible entries in this table: the response may be known to be positive
for the whole population, or to be negative, or to be variable within the population, or the
response may be unknown, there being no information available about the population value
of the character concerned. Clearly, in the latter case, samples from the population may give
either positive responses or negative responses and different samples need not give the same
response. The first two types of response enable populations to be separated with certainty
and when sufficient of these so-called fixed responses occur, all n populations can be identi-
fied uniquely. Even when there are insufficient fixed responses to give complete separation of
the populations, one may identify a sample to within a group of populations with certainty.
Such groups may be further separated, either by using a probabilistic key (Good, 1970) or
better by discriminant methods. In this paper we are concerned solely with certain identi-
fication and therefore regard variable and unknown responses as equally uninformative,
referring to both as unknown responses.

An optimum key may be denned as that with minimum average number of tests for
identification. Alternative formulations include keys with minimum cost per identification
or minimum number of different tests used (Gower & Barnett, 1971; Willcox & Lapage,
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666 J. C. GOWEB AND R. W. PAYNE

1972). Except for dynamic programming algorithms, which effectively enumerate all
possible keys (Garey, 1972), no exact algorithm is known for finding optimum keys.
These are impracticable for most real data which may be concerned with several hundred
populations and up to about one hundred characters (Bamett & Pankhurst, 1974). Several
authors (Pankhurst, 1970; Hall, 1970; Morse, 1971; Payne, 1974) present algorithms giving
approximate solutions. These all operate by selecting first the test that best divides all the
populations into two sets. Various criteria, some of which are described below, have been
used to define what is meant by the best test. After the first division, the chosen criterion is
used to select the next test to be used with each subset of populations, and so on. Garey &
Graham (1974) give examples showing that selecting tests in this way, without examining
their later consequences, can lead to inefficient keys, but most authors claim that their
algorithms work well in practice and certainly give keys as good as, if not better than, those
prepared by intuitive methods.

This paper compares and contrasts three criteria used to determine the best test and
also discusses two farther criteria, one of which is new. When all responses are fixed, these
criteria all select the test that most nearly divides the populations into two equal groups.
When some populations have unknown responses to a test, the populations concerned must
be allocated to both groups. The criteria then differ but aim to select tests with few unknown
responses while keeping the group sizes comparable.

We shall define pt to be the proportion of populations giving positive responses to
the ith test, qt to be the proportion of populations giving negative responses to the ith
test, and ri to be the proportion of populations giving unknown responses to the ith test.

Thus, pi + q{ + rt = 1 and the ith test may be represented as a point Ti in barycentric
coordinates (Gower, 1967, p. 23). Thus in Fig. 1, the midpoint of PQ, labelled 0, represents
the best possible test and R the worst possible test. Generally the better tests are those in the
region of 0.

It may sometimes be preferable to identify some populations more readily than others,
either because they occur frequently or because they are more important in some sense. In
these circumstances one may ascribe a weight to each population and redefine pit qt and ri

as weighted proportions. In particular these weights might be prior probabilities for the
populations.

2. THE CRITERIA AND SOME PROPERTIES

We considered three criteria in detail: DV (Morse, 1971), S (Seshu, 1965; Gower &
Barnett, 1971), and C (Gower & Bamett, 1971).

DV< = - 2ptqt - \rt{pt + qt), (1)

rt) log (pt + rt) + (qt + rt) log {qt + ri), (2)

(3)

To ensure that all three criteria are to be minimized, DV is here defined as the negative of
the criterion proposed by Morse (1971). The left-hand side of Fig. 1 shows contours at equal
intervals for each criterion. Tests lying on the same contour are regarded as equivalent.
Gower & Barnett (1971) suggests that tests lying within a band around a contour might
also be regarded as equivalent. When selecting one from several equivalent teste, additional
considerations can be taken into account. For example, one can select the test with least
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Selecting binary tests in diagnostic keys 667

cost, or the test that has been most used on other partially, orwholly, constructed branches
of the key, or the test with fewest unknownresponses. The band is merely the region between
contours with criterion values differing by a small constant, similar to the wider bands
shown on the left-hand side of Fig. 1. The bandwidth is governed by the rate of change of
the criterion.

The criterion DV has parabolic contours and C has circular contours. All three have
roughly circular contours near 0. On the line PQ, where r = 0; DV = 2{p — £)8 — £ and

Criterion DV

Criterion 5

O

R

Criterion C

O

Fig. 1. Left-hand column: triangles show contours at equal intervals for each criterion.
Right-hand column: triangles on the left, contours of type I error at intervals of 0-005;
triangles, on the right, contours of type H error at intervals of 0-03. Shaded areas: regions
with no error. Dotted line: contours tangential to PR and QR.
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668 J. C. GOWEB AND R. W. PAYNE

C = 2(p — J)a differ only by a constant, and 8 behaves similarly to DV but its value
initially increases less steeply from the minimum at 0. On the lines p — q = k, that is lines
perpendicular to PQ, DV increases linearly with r and C = ĵfc2 + 3r2); 8 behaves similarly
to C increasing less steeply from p = \.

Definite separation of populations cannot be guaranteed when either p or q is zero, and
therefore such tests, termed indefinite below, should only be used when there are no alterna-
tives. Yet the contours for all three criteria cut the lines Pi? and QR. The bigger the areas
of the contours that touch the lines PR and QR the fewer indefinite tests will be selected in
preference to tests giving definite separation. Tangential contours are shown as dotted lines
in Fig. 1. When p = 0 the contour for C touches QR at q = 0-75, r = 0-25, the contour for
DV at q = 0-5, r = 0-3 and the contour for S at q = 1 - 1/e = 0-6321, r = 1/e = 0-3679. It is
clear that DV encloses the greatest area and that 8 encloses slightly more than C. This implies
that DV is less susceptible to accepting indefinite tests than are 8 and C. The criteria could be
modified to reject tests lying on the boundaries, but tests near the boundaries should also be
excluded because they are inferior to tests near P and Q with greater criterion value; see the
discussion of type I error below.

3. EBBOBS ASSOCIATED WITH THE OBTTEBIA

In some situations it is clear that one test is better or worse than another. If for two tests
Ttand Ty

max {pt,qt) > max(^ ,^) , m in^ . f t ) > m i n i f y ) , (4)

then T< is certainly a better test than Tjt because more samples will be assigned definitely
to both the positive and the negative response groups. Conversely if

max (pt, qt) < max (pp q,), min (pit qt) < min (pp qt), (5)

then Ti is certainly a poorer test than Tj. Equations (4) and (5) are expressed in terms of
max (pit q{) and min (pt, qj because for any test, an equivalent test can be defined which
interchanges the definitions of positive and negative responses. In the following we assume
that this relabelling has been done to make pi ^ qt and pj ^ q^. Thus we only consider the
region to the left of OR. Regions containing tests better and worse than a given test T are
shown on the left-hand side of Fig. 2. Tests in the unshaded regions are not clearly better
or worse than T.

Using any of the criteria to compare T with other tests, two types of error may arise. A
type I error occurs when the criterion defines a test to be poorer than T, though (4) shows
that it is better, hence it is possible for T to be selected in preference to other, better, tests.
A type II error occurs when the criterion defines a test to be better than T though (5) shows
that it is worse. Thus, if there were no better tests available, the criterion might select a
test worse than T in preference to T. No criterion with convex contours can have tests with
type II errors only, except on the boundary PQ or if they contain sections parallel to PR;
see criterion BP, below. On the right-hand side of Fig. 2, tests Tj, T2 ^ d Tz are, respectively,
tests with both type I and type II errors, type I error only, and no errors. For the criteria
DV, 8 and C the areas associated with both errors have been calculated for a range of tests.
As these errors are symmetric about 0.R, contours of equal error have been shown for both
types in the pairs of triangles on the right-hand side of Fig. 1. The left-hand triangle gives
the type I errors and the right-hand triangle the type II errors. The contours are at the same
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Selecting binary tests in diagnostic keys 669

intervals for the three criteria; for type I errors at step lengths of 0- 005 and for type II errors
at step lengths of 003, taking the area of PQR as ̂ 3. The circle criterion C is least prone to
both types of error followed by DV, while S is poorest in both respects. Although DV and S
have zero type I and type II errors near 0, the most useful region, C has only negligible error
in this region.

O P
Type I error for 7i and Tt

Fig. 2. Left-hand triangle: regions containing tests definitely better and definitely worse
than T. Right-hand triangle: test T1 has both type I and type II errors, test Tt type I error
only and test Ts no error.

Fig. 3. Left-hand triangle: contours of BP through p = J, q = J for k = 0, 1 and 2.
Right-hand triangle: contours at equal intervals of GP with d = \.
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670 J . C. G O W E B AND R. W. P A Y N E

Criteria with no type I or type II errors can be defined. Barnett & Pankhurst (1974) use

where k = n, but we shall consider other nonnegative integer values of k. Figure 3 shows
contours through the pointy = \, q = J for k = 0, 1 and 2. When k < 1 type I and II errors
occur; when k = 1 a test T on Ax C has vestigial type II error on the line ArT. When k > 1
neither type I nor type II errors occur. However, tests on any of the lines A^Bj (j = 0, 1,2)
are considered equivalent, whereas tests on OR are clearly the best of such groups.

Contours which are isosceles triangles based on PQ avoid this deficiency and will have
zero type I and type II error, provided their base angles are less than 277/3. By increasing
the base angle as the triangles increase in size, contours may be prevented from cutting the
lines PR and QR, so avoiding indefinite tests. The following criterion fulfils all these con-
ditions:

i,qi)}], (6)

where 0 < 6 < 1. As the triangular contours increase in size their slopes increase from
to .^3 as shown on the right-hand side of Fig. 3. Choice of 6 governs how heavily one wishes
to guard against using unknown responses. High values of 6 give contours which include
more unknown responses than those for low values of 6. Values of 6 near zero will not dis-
tinguish very well between tests on PQ, culminating in regarding all these as equivalent
when 6 = 0. If 0 = 1 were allowed, (6) would become av{ = — min (pit q{), which gives nested
equilateral triangle contours, corresponding to (4) and (5), which have type II errors.

4. TESTS WITH MORE THAN TWO RESPONSES

It is always possible to recode a test with m responses as m — 1 binary pseudotests. This is
often sufficient but may be unsatisfactory when, costs of tests are significant. For example,
suppose the n populations can be separated by a single test with n responses. When this test
is regarded as (n — 1) pseudoteste the criteria discussed above are unlikely to select just from
the pseudotests and will therefore generally produce a more costly key. Thus methods are
needed to assess multiresponse tests directly.

To compare a test with m^ responses to one with m2 > m^ responses we note that they both
may be regarded as dividing the populations into mi classes, but that with the former m2 — w^
of the classes are empty. When all responses are fixed we can choose M = max (m{) and
amend S{ and C4 to become

m(

ST = S

where p^ is the proportion of populations in the jth. class of the tth test. Thus both S? and
Cf rank the tests independently of the choice of M. I t might seem that BP extends similarly
to give

1M
BPf= £

1-1
Pa- M

However, even with M = 3 the two sets of tests responses (J, \, 0) and (J, f, 0) both give
BP* = J which does not preserve the ranking for M = 2. Thus this method of extension is
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Selecting binary tests in diagnostic keys

Table 1. Performance of the five criteria

Criterion

671

Characteristic

Computation
Type I errors \
Type II errors/
Prevention of in-
definite tests

Performance for
r constant

Weighting of un-
known responses

Multiresponse ex-
tension

• Provided
** Worsens

DV

Efficient
Intermediate

Good

Perfect

Fixed

No

k > 1.
with increasing

S

Inefficient
Largest errors

Satisfactory

Perfect

Fixed

Yes

k.

C

Efficient
Errors smaller
than DV or S

Satisfactory

Perfect

Fixed

Only when all
responses
fixed

BP

Efficient
None*

Poor**

Poor

Control-
lable***

Unsatisfactory

GP

Efficient
None

Perfect

Perfect

Controllable

No

*** The choice of k = n (Barnett & Pankhurst, 1974) seems excessively restrictive.

unacceptable. Pankhurst (1970) has an alternative method of extension which biases against
tests with more than two responses.

With unknown responses we define

i-i

and #* remains independent of M. However we have been unable to find any similar exten-
sion for Cf or BP? . It might seem that a suitable extension of Cf would be

M

With M = 3, this would regard the two-response test (plt p2, r) as equivalent to the three-
response test {p1,P2> 0, r) although the former separates the populations into groups with
sizes proportional to (j>i + r, pz + r,0) compared with (px+r, p% + r,r) for the latter. Thus
the three-response test is better because it offers the possibility of separation, should samples
actually occur with the third level of response.

Neither DV nor GP seem to extend simply to include tests with more than two responses.

5. CONCLUSION

Criteria for selecting binary tests with unknown responses, have been shown to have
the following possible deficiencies: (i) they may produce type II and/or type I errors; (ii) they
may select indefinite tests in preference to definite tests; (iii) for constant r, they may regard
tests for which p =(= q, to be as good as a test with p = q. Apart from such clear deficiencies,
there is the more subjective question of deciding how much weight should be given to un-
known responses. The possibility of extending a criterion to deal with multiresponse tests
is important for some applications. Finally, as the calculation of selection criteria occurs
in the innermost loops of computer programs for generating diagnostic keys, their computa-
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672 J. C. GOWEB AND R. W. PAYNE

tional efficiency is important. Table 1 sete out the performance of the criteria in these
respects.

For tests with only two responses GP is best on all counts, but C and DV are satisfactory.
In the multiresponse case, only S seems to be suitable unless all responses are fixed.
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